
Integration, extensibility, and ease of modification made Interlisp
unique and powerful. Its adaptations will enhance the power of
the coming world of personal computing and advanced displays.

The InterIisp
Programmg
l:nvionment
Warren Teitelman and Larry Masinter
Xerox Palo Alto Research Center

Interlisp is a programming environment based on the
Lisp programming language. 1.2 In widespread use in the

artificial intelligence community, Interlisp has an ex-
tensive set of user facilities, including syntax extension,
uniform error handling, automatic error correction, an
integrated structure-based editor, a sophisticated debug-
ger, a compiler, and a fiing system. Its most popular im-
plementation is Interlisp-IO, which runs under both the
Tenex and Tops-20 operating systems for the DEe
PDP-IO family. Interlisp-IO now has approximately 300
users at 20 different sites (mostly universities) in the US
and abroad. It is an extremely well documented and well
maintained system.

Interlisp has been used to develop and implement a
wide variety of large application systems. Examples in-
clude the Mycin system for infectious disease diagnosis,)
the Boyer-Moore theorem prover,4 and the BBN speech
understanding system. 5

This article describes the Interlisp environment, the fa-
cilities available in it, and some of the reasons why Inter-
lisp developed as it has.

Overview

From its inception, the focus of the Interlisp project has
been not so much on the programming language as on the
programming environment. An early paper on Interlisp
states, "In normal usage, the word 'environment' refers
to the aggregate of social and cultural conditions that

influence the life of an individuaL. The programmer's
environment influences, and to a large extent determines,
what sort of problems he can (and will want to) tackle,
how far he can go, and how fast. If the environment is
cooperative and helpful (the anthropomorphism is

deliberate), the programmer can be more ambitious and
productive. If not, he will spend most of his time and

April 1981

energy fighting a system that at times seems bent on

frustrating his best efforts. "6
The environmental considerations were greatly influ-

enced by the perceived user community and the style of
programming in that community: first, typical Lisp users
were engaged in experimental rather than production pro-

gramming; second, they were willing to expend computer
resources to improve human productivity; third, we be-
lieved users would prefer sophisticated tools, even at the
expense of simplicity.

Experimental programming and structured growth.
The original architects of the Interlisp system were in-
terested in large artificial intelligence applications pro-
grams. Examples of such programs are theorem provers,
sophisticated game-playing programs, and speech and
other pall ern recognition systems. These programs are
characterized by the fact that they often cannot be com-
pletely specified in advance because the problems-to say
nothing of their solutions-are simply not well enough

understood. Instead, a program must evolve as a series of
experiments, in which the results of each step suggest the
direction of the next. During the course of its evolution, a
program may undergo drastic revisions as the problem is
better understood. One goal of Interlisp was to support
this style of program development, which Erik Sande-
wall. has termed structured growth: .. An initial program
with a pure and simple structure is written, tested, and
then allowed to grow by increasing the ambition of its
modules. The process continues recursively as each

'Sandewalls excellent survey article. "Programming in an Interactive En-
vironment: The Lisp Experience." gives an overview of existing program-
ming methodology in the Lisp user's environment. emphasizing methods
for interactive program development. It includes a comprehensive descrip-
tion and analysis of current Lisp programming environments in general,
and Interlisp and MacLisp in particular.

0018-9162/81/04-O25Soo.75 's 1981 tEEE 25

module is rewritten. The principle applies not only to in-
put/output routines but also to the flexibility of the data
handled by the program, sophistication of deduction, the
number and versatility of the services provided by the
system, etc. The growth can occur both 'horizontally'
through the addition of more facilities, and 'vertically'
through a deepening of existing facilities and making
them more powerful in some sense.' q

Computer costs vs. people costs. The second major in-
fluence in Interlisp's development was a wilingness to
"let the machine do it." The developers were wiling to

expend computer resources to save people resources
because computer costs were expeèted to continue to
drop. This perspective sometimes led to tools which were
ahead of their time in respect to the available computer re-
sources.

The Advanced Research Projects Administration of
the Department of Defense sponsored much of this ef-
fort. As a result, we had a fair amount of freedom in the
development of Interlisp, i.e., we did not have to justify
the cost-effectiveness of our research to a profit-oriented
management. ARPA's willngness to make InterIisp avail-
able at a number of sites on the Arpanet justified and moti-
vated the extra effort it took to turn a research project into
a real system. These Arpanet sites also provided an active
and creative user community from which we obtained
many valuable suggestions and much-needed feedback.

Interlisp is for experts. The incremental, evolutionary
way in which Interlisp developed was not especially con-
ducive to simple interfaces. It was inappropriate to spend
a lot of time and effort trying to design the right interface
to a new, experimental capability whose utility had not yet
been proven. Would the users like automatic error correc-
tion? Was the programmer's assistant really a good idea?
The inherent complexity of the interactions among some
of the more sophisticated tools, such as Masterscope,

DWIM, and the programmer's assistant, made it very diff-
cult to provide simple interfaces. In many cases, unification
and simplification came only after considerable ex-
perience.

Further complexity stemmed from the commitment to
accommodate a wide variety of programming styles and
to enable the tools to be tailored for many applications.
Given the choice of sophistication and generality of tools
or simplicity of design, we chose the former, under the
assumption that the system was primarily for expert pro-
grammers. As a result, mastery of all of the tools and
facilities of Interlisp has become quite difficult and initial
learning time fairly long. We accept this as part of

the price

for the system's power and productivity.

Background

Programming environments have been built for a num-
ber of languages, on top of a number Of operating

systems, and for a variety of user communities. Each of
these factors can influence the path taken in the develop-
ment of a programming environment. In the case of Inter-

26

lisp, the Lisp language itself and the sociological factors in
effect during its early development were both important.

The Lisp language. The Lisp language is conducive to
the development of sophisticated programming tools be-
cause it is easy to write programs that manipulate other
programs. The core symax for the Lisp language is sim-
ple, and Lisp programs are naturally represented in sim-
ple Lisp data structures in a way that reflects the structure
of the program. Since Lisp requires no declarations, pro-
grams can be built up incrememally; this is more difficult
in declarative languages. This means that Lisp supports
the structured growth style of program building.

Early sociology of Interlisp. One unusual historical
aspect of the development of Interlisp is that from the
very beginning those interested in programming en-
vironments were in a position to strongly influence the
development of the language system. We were not con-
strained to live within the language and operating system
we were given, as is usually the case. Most ofthe additions
or extensions to the underlying Lisp language performed
under the Interlisp project were in response to perceived
environmental needs. For example, Interlisp permits ac-
cessing the control stack at an unusually detailed leveL.
eapabilities such as this were added to Interlisp to enable
development of sophisticated and intelligent debugging
facilities. Similarly, uniform error handling was added to
the Lisp base in order to permit experimentation with

automatic error correction.

Some representative Interlisp facilities

File package. Interactive program development con-
sists alternately of testing of program parts and editing to
correct errors discovered during the tests and/or extend
the program. Interlisp, unlike many other imeractive pro-
gramming systems, supports both the testing and editing
operations. The user talks exclusively to the Inter

lisp

system during the interactive session. During this process,
the primary copy of the program (the copy that is changed
during editing operations) resides in the programming
system as a data structure; editing is performed by modi-
fying this data structure. For this reason, Imerlisp is called
a residential system.'

In a residential system, it is important to be able to take
procedures represented by data structures and print them
on text files in an input-compatible format for use as
backup, for transporting programs from one environ-
ment to another, and to provide hard-copy listings. In In-
terlisp, the file package is a set of functions, conventions,
and interfaces with other system packages. The role of

the

file package is to automate the bookkeeping necessary for
a large system consisting of many source files and their
compiled counterparts. The fie package removes from
the user the burden of keeping track of where things are
and what things have changed. For example, the fie
package keeps track of which file contains a particular
datum, e.g., a function definition or record declaration.
In many cases, it automatically retrieves the necessary

COMPUTER

datum, if it is not already in the user's working environ-
ment. The fie package also keeps track of which fies
have been in some way modified and need to be dumped,
which fies have been dumped but still need to be recom-
piled, etc.8

Once the user agrees to operate in the residential mode,
it becomes possible to design and implement such power-
ful tools as DWIM and Masterscope to assist in program
development. The file package makes this mode attrac-
tive to the user.

The significant breakthrough occurred with
the emergence of the idea of having

the system notice when a datum was changed
and associate this fact with

the fie containing the datum.

The history of the file package is instructive, as it is a
paradigm for the development of user facilities that has
frequently been followed in Interlisp. The file package
was not designed in a coherent, integrated way; nobody
sat down and said, "We need a file package." Instead, it
evolved gradually. Originally, there was only a very limit-
ed facility for symbolically saving state at the end of a ses-
sion in a form that could be loaded into a Lisp system to
restore that state: the PrettyDef function. This took as its
arguments a list of function names, a list of variable
names, and a file name. PrettyDefwrote ("prettyprinted")
the definitions of the named functions and the values of
the named variables onto the indicated file. PrettyDefwas
soon extended to take a set of commands, which could in-
dicate not only the functions and variables (Q be saved,

but properties on property lists, values in arrays, defini-
tions of new editor commands, and record declarations,
among others. Finally, PrettyDef was extended (Q allow
the user (Q augment this simple command language by
defining his own filing commands (usually in terms of ex-
isting ones).

eoncurrently, as the contents of source files became
more complicated, the ability to interrogate files as to
their contents (e.g., which file contained a particular

datum and what functions were contained in a particular
fie) became more important. This required the system to
be able to enumerate all of the user's source files, which
was accomplished by adding the fie to a global list so it
would be noticed when it was first loaded or dumped.

The significant breakthrough occurred with the emer-
gence of the idea (probably through some user saying,
"Wouldn't it be nice if the system. . . ") of having the
system notice when a datum was changed, e.g., defined
for the first time, edited, redefined, or reset, and associate
this fact with the file containing the datum. This enhance-
ment was relatively straightforward since the ability to de-
compose and interpret the commands that described the
contents of a particular file was already available. It was
implemented by a function that took the name of a datum
and its type (function, variable, record definition, etc.)
and marked the datum as changed and therefore in need
of dumping. This function, MarkAsehanged, operated
by discovering which file(s) contained the datum and

April 1981

associating with each such file the name of the object that
had changed. ealls to MarkAsehanged were then in-
serted in all of the parts ofthe Interlisp system that changed
objects-the editor, the DEFINE function, the facility
for (re)declaring records, and DWIM (which can modify
a function when it performs a spelling correction or some
other transformation inside the function).

With this change, the fie package assumed a degree of
autonomy, often operating automatically and behind the
scenes. Furthermore, since it was no longer a function
that the user called, but included "tendrils" into many
parts of the system, we began to think of it as a package.
In this light, a number of extensions became apparent.
For example, the "Cleanup" function provided the
capability to enumerate all of the user's files and write out
those that contain data that had changed. Next, an

automatic warning was added to eleanup, in case an ob-
ject not associated with any file changed or was newly
defined. Then a filing capability was added, which en-
abled the user to add a datum to a file by automatically
modifying the commands for that fie. Finally, eleanup
was extended to prompt the user about unfiled objects
and to allow the user to specify the destinations of these
objects.

By this point, the Interlisp user did not have to worry
about maintaining his source files, save for occasionally
calling eleanup. The file package, however, had become
smart with respect to its built-in commands, but if a user
defined a new type of command, the file package would
not necessarily be able to support operations such as add-
ing an object of that type to a file, deleting or renaming an
object, or obtaining the "definition" of an object of a

particular type from a file. The user was placed in the
posirion of having to choose between using an automatic
facility that did jmt what he wanted-provided he stuck
(Q a predefined class of file objects-or extending this
facility (Q print out his own types of file objects, which
meant returning to manual bookkeeping of symbolic

files.

Thus, the next extension to the file package identified
and exposed its primitive operations and allowed the user
to define or change these operarions. This resulted in a
more complicated interface (Q the file package than that
used directly by most, but it enabled builders of systems
within Interlisp to enjoy the same privileges of defining
file package operations that the original implementors en-
joyed. I n fact, we were able to express the semantics of all
of the built-in file package commands and types in terms
of the above interface. We thus eliminated all distinction
between built-in operations and those defined by the user
(a good test of the completeness of this lower-level inter-
face) and permitted the user to redefine the way these

operations are performed.
The file package supports the abstraction that the user

is truly manipulating his program as data and that the file
is merely one particular external representation of a col-
lection of program pieces. During a session, the user
manipulates the pieces with a variety of tools, occasional-
ly saving what he has done by calling the eleanup func-
tion. The user can also operate in a mode where programs
are treated as residing in a data base, i.e., the external file

27

system, with a variety of sophisticated retrieval tools at his
dis posal.

Note the evolution of the file package. It started as an
isolated facility that was explicitly invoked by the user to
perform a paricular and limited action. More and more
capabilities were added, increasing the range of ap-
plicability of the tool. At the same time, the tool was in-
tegrated into the system to produce a semi-autonomous
configuration in :-hich the tool is invoked automatically
in a number of contexts. Finally, the utility of the tool
became so great that a form of user extensibility, to adapt
the tool to accommodate unforeseen situations, became
imperative.

The fie package also ilustrates one of the principal
design criteria of the Interlisp system, the accommoda-
tion of a wide range of styles and applications. The user is
not forced to choose between using a facility that is
powerful and attractive but forces adherence to its pre-
scribed conventions, abandoning the tool, or even creat-
ing a personal, renegade version whenever he needs a ca-
pability the tool does not provide. In other words, if a
particular tool handles 95 percent of the user's applica-

tions correctly, he should be able to extend the tool in a
prescribed and "blessed" manner to accommodate the
remaining five percent without undue effort.

Masterscope, like the fie package, has its
roots in an extremely simple program.

Mastersope. As the size of systems built within In-
terlisp grew larger and larger, it became increasingly dif-
ficult for a user to predict the effect of a proposed change.
It was also growing difficult to effect a pervasive change,
for example, to change the calling convention of a low-
level procedure and be sure that all of the relevant places
in programs would be found and modified. Masterscope
is an interactive program for analyzing and cross-refer-
encing user programs that addresses this problem. It con-
tains facilities for analyzing user programs to determine
which functions are called, how and where variables are
bound, set, or referenced, which functions use paricular
record declarations, etc.

Masterscope maintains a data base of the results of the
analyses it performs. The user can interrogate the data
base explicitly (e.g., WHO USES FOO FREELY), or
have Masterscope cali the editor on all functions that con-
tain expressions that satisfy certain relations (EDIT
WHERE ANY FUNCTION USES THE RECORD
DICTENTRY).

Masterscope, like the fie package, has its roots in an
extremely simple program. Called PrintStructure, this
program analyzed function definitions and pónted out
the tree structure of their calls It was first extended to in-
clude the names of the arguments for each function it
analyzed, and then to include more information about
variable usage within each function. However, as Print-
Structure presented more and more information about
larger and more complicated program configurations, it
became increasingly diffcult for the user to extract par-
ticular information from this massive output. It became

28

clear that the user wanted access to specific information
rather than a complete listing. This led to the idea of
separating the analysis of the program from the interroga-
tion of the data base.

The next stage was integration with other pars of the

system. As in the case of the fie package, the utility of
Masterscope increased greatly when the burden of re-
membering what had changed, and therefore needed re-
analysis, was lifted from the user and carried out auto-
matically behind the scenes. The next phase of the evolu-
tion 0 f Masterscope was to permit the user to extend Mas-
terscope's built-in information on analysis of special Lisp
forms, such as PROG, SETQ, and LAMBDA expres-
sions. This was accomplished through use of Masterscope
"templates," which are essentialy patterns for evaluation
of functions. Finaly, al built-in information was removed
from Masterscope and replaced by templates, both to test
the completeness of the interface and to expose this infor-
mation to users so they could change it.

DWIM. According to Sandewall, "One of the most
impressive features in the Interlisp system is the DWIM
(Do What I Mean) facility, which is invoked when the
basic system detects an error and which attempts to guess
what the user might have intended.' '7

The most visible part of DWIM9 is the spellng correc-
tor, which is invoked from many places in the system, in-
cluding the fie package, Lisp editor, and the Lisp inter-
preter itself. When an unrecognized file package com-
mand, edit command, Lisp function, etc., is encoun-
tered, the spellng corrector is invoked. The spelling cor-
rector attempts to find the closest match within a list of
relevant items. If an edit command is misspelled, for ex-
ample, the list of valid edit commands is searched; if the
name of a function is misspelled, the corrector scans a list
of the functions the user has recently been working with.
If the spelling correction is successful, the cause of the er-
ror is also repaired, so subsequent corrections will not be
necessary. For example, when DWIM corrects a user's
misspelled function name in one of his programs, it ac-
tually modifies the user's program to contain the correct
spelling (and notifies the fie package of the change).

Although most users think of DWIM as a single iden-
tifiable package, it embodies a pervasive philosophy of
user interface design: at the user interface level, system
facilties should make reasonable interpretations when
given unrecognized input. Spellng correction is only one
example of such an interpretation. Depending on how far
off the input is, a facility might make the transformation
silently and automatically, without seeking user ap-
proval. For example, a function expecting a list of items
wil normally interpret an argument that is a single atom
as a list made up of that single atom. In this case, the
package in question probably would not even indicate to
the user that it had made this correction, and in fact the
user might view the package as expecting either a list or an
atom. Similarly, the style of interface used throughout In-
terlisp allows the user to omit various parameters and
have these default to reasonable values, such as "the last
thing this package operated upon."

DWIM is an embodiment of the idea that the user is in-
teracting with an agent who attempts to interpret the

COMPUTER

user's request from contextual information. Since we
want the user to feel that he is conversing with the system,
he should not be stopped and forced to correct himself or
give additional information in situations where the cor-
rection or information is obvious.

The iterative expresion. The various forms of the In-
terlisp iterative expression permit the user to specify com-
plicated loops in a straightforward and visible manner. In
one sense, the iterative expression represents a language
extension, but by its design, implementation, and in par-
ticular its extensibility, it more naturally falls into the
same category as other Interlisp tools.

An iterative expression in Interlisp consists of a se-
quence of operators, indicated by keywords, followed by
one or more operands; many different operators can be
combined in the same iterative statement. For example,
(for X in L sum X) iterates the variable X over the
elements of the list L, returning the sum of each value
seen. The iterative could be further embellshed by in-
cluding "when (GREA TERP X 30)" to only sum ele-
ments greater than 30, or "while (LESSP $V AL 50)" to
terminate the iteration when the sum exceeds 50. Other
operators can be used to specify different ranges. For ex-
ample, iteration can take place over a range of numbers
instead of over the elements of a list: (for i from i to
10 . . .). Operators can also specify the value returned by
the iterative expression. For example, (for X in L collect
(ADD! X)) would return a new list, consisting of the
elements in L, each incremented by i.

The iterative expression currently understands approx
imately two dozen operators. Furthermore, new iterativ(
operators can be defined simply. One group, experiment-
ing with a relational data base system, provided access to
that data base merely by defining a new iterative operator
called "matching." This matching operator can be used
in conjunction with all of the other iterative constructs, as
in "(for Records matching (payment (:; 30) .) sum

Record: 3)," which would find all payment records in the
data base and sum their third component. Such language
extensions are quite diffcult in most programming

languages.

Programmer's assistant. The central idea of the pro-
grammer's assistant is that the user is not talking to a
passive executive that merely responds to each input and
waits for the next, but is addressing an active interme-

diary.io The programmer's assistant records, in a data
structure called the history list, t.he user's input, a descrip-
tion of the side effects of the operation, 8 and the result of
the operation.

The programmer's assistant also responds to com-
mands that manipulate the history list. For example, the
REDO command allows the user to repeat a particular
operation or sequence of operations, the FIX command
allows the user to invoke the Interlisp editor on the
specified events and then re-execute the modified opera-
tions, the USE command performs a substitution before
re-executing a specified event (e.g., USE PRINT FOR
READ), and the UNDO command cancels the effect of
the specified operations. In addition to the obvious use of
recovering information lost through typing errors, UN-

April 1981

DO is often used to selectively flip back and forth between
two states. For example, the user might make some
changes to his program and/ or data structures, run an ex-
periment, undo the changes, rerun the experiment, undo
the undo, and so on.

The various replay commands, such as REDO and
FIX, permit the user to construct complex console opera-
tions out of simpler ones, in much the same fashion as
programs are constructed. That is, simple operations can
be first checked and then combined into large ones. The
system always remembers what the programmer has
typed, so that keyboard input can be reused in response to
an afterthought.

The programmer's assistant has been implemented for
use in contexts besides the handling of inputs to the Lisp
"listen" loop. For example, the Interlisp editor also uses
the programmer's assistant for storing operations on the
history list and thereby provides all the history commands
for use in an editing session. Similarly, user programs can
take advantage of the history facility. A system for
natural language queries of a data base of lunar rock

samples provides one example of how this facility can be
used. After a complicated query regarding the percentage
of cobalt in a sample, a user could say USE MANGA-
NESE FOR COBALT to repeat the query with a different
parameter.

What makes Interlisp unique?

The Interlisp programming environment has been
characterized as friendly, cooperative, and forgiving.
While these qualities are desirable, they are not unique to
Interlisp. The two attributes that set it apart are the degree
to which the system is integrated and the degree to which
facilities in the environment can be tailored, modified, or
extended.

Integration. Interlisp is not merely a collection of in-
dependent programming tools, but an integrated system.
By integration, we mean that there need not be any expli-
cit context switch when switching between tasks or pro-
gramming tools, in switching, for example, from debug-
ging to editing to interrogating Masterscope about the
program. Thus, having called the editor from inside the
debugger, the user can examine the current run-time state
from within the editor or ask Masterscope a qu/'stion

without losing the context of the editing session. Also, the
various facilities themselves can use each other in impor-
tant ways, since they all coexist in the same address space.
For example, the editor can directly invoke DWIM, or
Masterscope commands can be used to drive the editor.
The integration of facilities increases their power.

Integrated programming tools such as these are not
feasible without a large virtual address space. Where the
size of the programming environment is constrained, it is
unreasonable to have a large variety of resident tools that
can all interact with the user's run-time environment and
with each other. Interlisp-lO's large virtual address space
of 256K 36-bit words (large, at least, for the early 1970's)
made it possible to add new features to the programming

..

!:

29

environment without trying to squeeze them into a small
amount of space or worrying about leaving enough space
for the user.

Extensibilty. Most programming environments, even
when they provide a variety of tools, support only a nar-
row range of programming styles. In the development of
Interlisp, we have tried to accommodate a variety of pro-
gramming styles.

The most straightforward way of allowing users to
modify or tailor system tools to their own applications is
simply to make sources available and allow the users to
edit and modify tools as they wish. A benefit of this ap-
proach is that it absolves the system designers of responsi-
bility for unforeseen bugs or incompatibilities. ("The

manufacturer's warranty is void if this panel is removed. ")

Extensions and modifications were provided
for in a variety of ways.

Of course, this kind of extensibility isn't really defensible,
as it discourages all but the most intrepid of users. If a
creative user does manage to extend a system capability,
he must then worry about tracking improvements and

bug fixes in this tool and be constantly aware of changes
to the system, which could introduce incompatibilities
with respect to his modifications.

Extensions and modifications were provided in a varie-
ty of ways. eapabilities that have associated command
languages lend themselves quite naturally to extensibility,
because new commands can be defined in terms of exist-
ing ones. Almost all Interlisp packages (e.g., the file
package, the editor, the debugger and programmer's
assistant) support such extensions via substitution
macros, which associate a template (composed of existing
commands) with the new command. The arguments to
the new command are then substituted for those of the
template's as appropriate. In addition, most facilities
support computed macros. A computed macro is basical-
ly a Lisp expression, evaluated lO produce a new list of
operators/commands/expressions. For example, a com-

puted edit macro produces a list of edit commands, and a
computed file package command produces a list of file
package commands.

However, many extensions are not expressible in terms
of macros because they are triggered not by the appear-
ance of a particular lOken, but by the existence of a more
general condition. Interlisp provides for such extensions
by allowing the user to specify a function to be called
upon any object/expression/command that the par-
ticular facility does not recognize. This function is
responsible for selecting from among the various condi-
tions that might pertain and deciding whether or not it
recognizes a particular case. If it does, it takes the ap-
propriate action. Typical applications of such functions
are implementation of infix edit commands and specifica-

tion of the compilation of a class of expressions, such as

the iterative expression.
For example, the DWIM facility, which corrects spell-

ing errors encountered while running, is implemented via

30

an extension to the Lisp interpreter of this form, caled
FaultEval. Whenever the Interlisp interpreter encounters
an expression for which it is going to generate an error,
such as an undefined function or variable, the interpreter
instead calls FaultEval. Originally, FaultEval merely

printed an error message. DWIM was implemented by
redefining FaultEval to try to correct the spelling of the
undefined function or variable, according to names

defined in the context in which the error occurred.
One might suppose that a facility as basic as correction

of program errors would have been implemented by

modifying the Lisp interpreter-especially since a fair
amount of knowledge about the interpreter's state was re-
quired in order to be able to continue a computation after
an error correction. The fact that this is not the case il-
lustrates a basic tenet of the Interlisp design philosophy,
which holds that the implementation of enabling capabil-
ities is a top priority. When DWIM was first being imple-
mented, the interpreter did not call FaultEval, and there
was no way to trap all DWIM errors. Instead of trying to
implement DWIM directly, we tried to find the enabling
capability that would make it possible for a user

to imple-

ment DWIM. This capability was provided by having the
interpreter call FaultEval, which was then used to imple-
ment DWIM.

The enabling capability was then available for other ap-
plications, as well. It has allowed users to experiment with
building their own tools and extending system capabilities
in ways we did not foresee. For example, one application
program redefined FaultEval to send error messages not
to the user but instead to the implementor of the applica-
tion, via computer maiL.

Finally, because we realized that some users just might
not like a particular facility, we made it easy for them to
"turn off" any automatic facility in the system. This
made the use of the programming tool a deliberate choice
of the user and provided a powerful force for quality con-
trol: if the feature didn't help as much as it got in the way,
people would turn it off.

The support of a wide variety of programming styles
and settings of parameters has some drawbacks. Interlisp
has an overabundance of user-setable parameters, to the
point where new users are sometimes overwhelmed by
their number of choices. In addition, it is necessary to en-
sure that the system will work correctly for every possible
setting of the various system parameters. For example,
the Masterscope facility normally relies on DWIM to per-
form some of its transformations, so we had to take care
that Masterscope would continue to work, even if

the user

disabled DWIM.

A brief history of Interlisp

Interlisp began with an implementation of the Lisp pro-
gramming language for the PDP-l at Bolt Beranek and
Newman in 1966, followed in 1967 by

940 Lisp, an upward-

compatible implementation for the SDS-940 computer.
94 Lisp was the first Lisp system to demonstrate the
feasibility of using software paging techniques and a large
virtual memory in conjunction with a list-processing sys-

COMPUTER

tem.1 i 940 Lisp was patterned after the Lisp 1.5 implemen-
tation for eTSS at MIT, with several new facilities added to
take advantage of its timeshared, on-line environment.

The SDS 940 computer was soon outgrown, and in 1970
BBN-Lisp, an upward-compatible version of the system
for the PDP-IO, was implemented for the Tenex oper-
ating system. With the hardware paging and 256K of vir-
tual memory provided by Tenex, it was practical to pro-
vide more extensive and sophisticated user support
facilities, and a library of such facilities began to evolve.
In 1972, the name of the system was changed to Interlisp,
and its development became a joint effort of the Xerox
Palo Alto Research eenter and Bolt Beranek and New-
man. The next few years saw a period of rapid growth and
development at the language and system levels and at user
support facilities, notably in the record package, the file
package, and Masterscope. This growth was paralleled by
the increase in the size and diversity of the Interlisp user
community.

In 1974, Interlisp was implemented for the Xerox Alto,
an experimental microprogrammed minicomputer.12
AltoLisp introduced the idea of providing a microcoded
target language for Lisp compilations, which modeled the
basic operations of Lisp more closely than could a
general-purpose instruction set.13 AltoLisp served as a
model and departure point for Interlisp-D,14.15 the im-
plementation of Interlisp for the Dolphin and Dorado
Xerox personal computers,I6 the successors to Alto.
Interlisp-D now supports a user community within Xerox
Palo Alto Research eenter.

Evolution of Interlisp. The origins of Interlisp at Bolt
Beranek and Newman were fortuitous. There was neither
an exisring Lisp implementation for the available hard-
ware nor a user community, so it was necessary to start
from ,cratch. Along with the necessity of starting from
scratch came the freedom to develop the environment.
We were free to experiment with various ideas and
facilities. discard those that did not work out, and learn
from mistakes in the process. We approached the prob-
lem of building the programming environment with the
same paradigm with which we approached the programs
being developed in that environment-as an ongoing
research problem, not something that had to be right the
first time or even finished at alL. New capabilities were
often introduced without a thorough design or a complete
understanding of the underlying abstractions. Further-
more, "hooks" into the system were provided at many dif-
ferent levels in order to encourage users to augment system
packages or experiment with their own. Many of the now-
permanent facilities of the Interlisp system evolved from
tools designed by individual users to augment their own
working environments.

The result was a somewhat chaotic growth pattern and
a style sometimes characterized as baroque. Interlisp was
not designed, it evolved-but this was the right approach.
As Sandewall points out, "The task of designing interac-
tive programming systems is hard because there is no way
to avoid complexity in such systems. . . . The only ap-
plicable research method is to accumulate experience by
implementing a system, synthesize the experience, think
for a while, and start over. ,,- Had we been required to

April 1981

convince a disinterested third party of the need for certain
enabling facilities in the language or operating system in
order to perform experiments-whose exact shape and
ultimate payoff were unknown-many of the more suc-
cessful innovations would not exist. The value of a
number of these innovations, including history, UNDO,
and spelling correction, is now well recognized and ac-
cepted, and many new programming environments are
being built with these facilities in mind.

The ability of individual users to augment system tools
at a variety of levels, as well as quick responses to sugges-
tions for extensions that users could not perform

themselves, contributed greatly to the enthusiasm and
energy of the Interlisp community. These factors played a
large part in the growth and success of the system over the
last decade.

Interlisp was not designed, it evolved-but
this was the right approach.

Of course, as Interlisp matured and the user communi-
ty grew, we were occasionally restricted in some areas of
experimentation by a concern for backwards compatibili-
ty and the fact that the system was being used to get "real
work" done. But enough flexibility had been built in to
permit experimentation without performing major low-

level changes. Furthermore, Interlisp attracted users who
appreciated its flexibility and enjoyed experimentation
with avant-garde facilities. Thus, when planned evolution
led to some incompatibilities and consequent retrofitting,
our user community was understanding and supportive.

Future directions

Interlisp and the personal computing environment. In-
terlisp evolved in a timeshared, hard-copy terminal

world, and vestiges of this heritage have carried over into
implementations for personal computers. In the future,
we expect lO see increasing exploitation of the personal
nature of the computing environment. For example, there
is a significant difference between performing an Inter-
lisp-i 0 operation on a lightly loaded timeshared system
and one that is heavily loaded. If the former takes 50
milliseconds, the latter might take as long as five seconds
of real time, especially if the computation involves a large
working set, as is often the case with the more sophisti-
cated facilities of Interlisp. This makes the probability
high that portions of the working set will be swapped out
before the computation completes, and therefore must be
swapped back in again, adding to the delay.

This real-time difference is especially relevant when
dealing with interactive toob. A system can afford lO
spend 50 milliseconds trying lO find out what a user
means, because the extra 50 milliseconds is insignificant
compared lO the overhead of interacting with the user.
But a system that spends five seconds lO perform a spell-
ing correction is often not acceptable, because in most
situations the user would prefer to retype the correct input

31

32

rather than wait. In such a case, the tool not only fails to
add to the interactive quality of the system for this par-
ticular user, but since the user is competing with others for
the same resource, namely machine cycles, its very at-
tempt to be helpful causes response time-and hence the
interactive quality of the system-to degrade for other
users. To quote Sandewall, "When this facility (DWIM)
is presented to new users, it is not uncommon for them to
use it for a trivial typing error that could easily be cor-
rected using the character-delete key. However, the user
relies on DWIM for the correction, which at periods of
peak computer load may take considerable time. . . .As
computer systems become more and more heavily loaded,
more of the advanced features in inti!ractive program-
ming systems are canceled."7

The entire situation changes in the personal
computing environment. It is no longer

necessary to justify the use of a particular
tool by .a single user in terms of the overall

productivity of the community.

The entire situation changes in the personal computing
environment. It is no longer necessary to justify the use of
a particular tool by a single user in terms of the overall

productivity of the community, since there is no longer
any competition for cycles. It even becomes reasonable to
devise tools that operate continually in a background
mode while the user is thinking, such as an incremental
garbage collector, a program that updates a Masterscope
data base, or one that performs compilations. Personal
computing thus causes a qualitative change in the pro-
gramming environment, because the machine can be
working continually for a single user.

Integration of the display. A significant addition to In-
terlisp on the new generation of personal computers, such
as Interlisp-D,14 is the availability and integration of very
high-resolution and high-bandwidth displays. Because of
the high-output bandwidth of the display and the increased
input bandwidth arising from the use of pointing devices,
a number of trade-offs change significantly. The capabili-
ties affect, for example, something as elementary as how
much information to present to the user when an error oc-
curs; the utility of on-line documentation assistance also
increases. Complicated sequences of commands for spec-
ifying location, down to a particular frame on the stack, a
particular expression in a program, etc., are obviated by
the ability to display the data structure and have the user
,point at the appropriate place. Similarly, the choice be-

. tween short, éasily typed, but esoteric command or func-
tion names as opposed to those that are longer, more self-
explanatory, but more diffcult to type becomes academic
when operations can be invoked via menus.

These are examples of how a high-resolution display
can facilitate essentially the same operations found in the
hard-copy domain. Perhaps more interesting are the
modes of operation enabled by the display that are unlike
those of the hard-copy world. DLisp is an experimental

system that explores some of these techniques.17 In
DLisp, the user sees his programming environment

through a collection of display windows, each of which
corresponds to a different task or context. The user can
manipulate the windows, or the contents of a particular
window, by a combination of keyboard inputs and point-
ing operations. The technique of using different windows
for different tasks makes it easy for the user to manage
several simultaneous tasks and contexts, e.g., defining
programs, testing programs, editing, asking the system
for assistance, and sending and receiving messages. It also
facilitates switching back and forth between these tasks.

Finally, we have not really begun to explore the use of
graphics-textures, line drawings, scanned images, even

color-as a tool for program development. For example,
the system might present storage in a continually ad-
justing bargraph, or display a complicated data structure
as a network of nodes and directed arcs, perhaps even
allowing the user to edit this representation directly. This
is a rich area for development in the future. .

References

I. E. Charniak, C. Riesbeck, and D. McDermott, Artificial

lnte//gence Programming, Lawrence ErIbaum Associates,
Hilsdale, N.J., 1979.

2. D. Friedman, The Little LISPer, SRA Pub., Menlo Park,

Calif., 1974.

3. E. Shortliffe, Computer-Based Medical Consultations,

American Elsevier, New York, 1976.

4. R. S. Boyer and J. S. Moore, A Computational Logic.

Academic Press, New York, 1979.

5. J. Wolf and W. A. Woods, "The HWIM Speech Under-
standing System," in Trends in Speech Recognition.

Prentice-Hall, Englewood Cliffs, N.J., 1980.

6. Warren Teitelman, "Toward a Programming Laboratory,"

Proc. First Joint Conl. Artificial lnte//igence, May 1969, pp.
1-8.

7. Erik Sandewall, "Programming in an Interactive Environ-
ment: The LISP Experience," A CM Computing Surveys,
Vol. 10, No. I, Mar. 1978, pp. 33-71.

8. W. Teitelman et al., The lnter/isp Reference Manual,

Xerox Palo Alto Research Center, Palo Alto, Calif., re-
vised Oct. 1978.

9. Warren Teitelman, "Do What I Mean," Computers and
Automation, Apr. 1972.

10. Warren Teitelman, "Automated Programming-The Pro-
grammer's Assistant," AFlPS Conl. Proc., FJCC, Dec.
1972, pp. 917-922.

II. D. G. Bobrow and D. L. Murphy, "The Structure of a
LISP System Using Two Level Storage," Comm. ACM,
Vol. 10, No.3, Mar. 1967, pp. 155-159.

12. C. P. Thacker et al., Alto, a Personal Computer, Xerox
Palo Alto Research Center, Report No. CSL 79-1 i, Palo
Alto, Calif., 1979.

13. L. P. Deutsch, "A Lisp Machine with Very Compact Pro-

grams," Proc. 3rd Int'l Joint Conl. Artificial Inte//gence,
Stanford University, Palo Alto, Calif., 1973.

14. R. R. Burton et al., "INTERLlSP-D: Overview and
Status," in Papers on Interlisp-D, Xerox Palo Alto
Research Center, Report SSL-80-, Palo Alto, Calif.,
Sept. 1980, pp. 1-10..

COMPUTER

15. R. R. Burton, "INTERLISP-D Display Facilities," in
Papers on Interlisp-D, Xerox Palo Alto Research Center,
Report SSL-80-4, Palo Alto, Calif., Sept. 1980, pp. 33-46.

16. B. W. Lampson and K. A. Pier, "A Processor for a High-
Performance Personal Computer," 7th Int'l Symp. Com-
puter Architecture, La Baule, France, May 1980.

17. Warren Teitelman, "A Display Oriented Programmer's

Assistant," Proc. 5th Int'l Joint Conl. Artificial In-
tellgence, 1977, VoL. II, pp. 905-915.

Warren Teitelman is a researcher.at Xerox
Palo Alto Research Center, where he was

instrumental in the development of In-
terlisp. He also designed and implemented
OLisp, an extension of Interlisp that
makes extensive use of a bit-mapped
display and a pointing device. Prior to
joining Xerox, Teitelman worked at Bolt
Beranek and Newman, where he coor-
dinated the development of BBN Lisp and

was responsible for its documentation and most of its interactive
features. Work in these areas is a natural outgrowth of his long-
standing interest in making programming systems easier to use and
more accommodating to the demands of users.

He received degrees in mathematics from the California In-
stitute of Technology (BS, i 962) and from the Massachussetts In-
stitute of Technology (MS and PhD, 196 and 1972, respectively).

11 i Larr Masinter is a member of the research..' i staff at Xerox Palo Alto Research Center.
.. i His research interests include interactive

programming tools, the programming en-
vironment, and their implementations on
new computers.

Masinter, a member of ACM, com-
pleted a BA in mathematics at Rice U niver-
sity in 1970 and a PhO in computer science
at Stanford University in 1980.

