
Overview and Status of DoradoLisp

Richard R. Burton, L. M. Msintcr, 1)anicl C. Robrow,
Willic Sue Haugeland, Ronald M. Kaplan and R. A. Shcil

Xerox Palo Alm Research Center

Abstract: Doradolhp is an implcmentation of the Interlisp
programming system on a large pcrsonal computer. It has cvolvcd
from AltoLisp, an implementation on a less powerful machine.
' h e major goal of thc Dorado implementation was to eliminate
the pcrfonnance deficiencies of the previous system. This paper
describes the currcnt status of the system and discusses some of
the issues that arose during its implcmentation. Among the
tcchniques that helped us meet our performance goal were
transferring much of the kcrncl software into Lisp, intensive use of
performance measurement tools to detcrminc the areas of worst
performance, and use of thc Intcrlisp programming environment
to allow rapid and widespread improvements to the system code.
The paper lists some areas in which performance was critical acd
offers some observations on how our cxperiencc might be useful
to other iinplemcntations of Interlisp.

I. Background

Interlisp is a dialect of Lisp whose most striking feature is a very
extensive set of uscr facilities including, for example, syntax
extension, error correction, and type declarations. It has been in
wide use on a variety of time shared machines over the past ten
years.

In 1974, an implementation of Interlisp for the Alto, a small
personal computer, was bcgun at Xerox PARC by Pcter Dcutsch
and Willie Sue Haugeland [Dcutsch, 19731. 'l'his Alto1,isp
hplcmentation introduced the idca of providing a microcoded
target languagc for Lisp compilations which modelled the basic
operations of Lisp more closcly than a general purposc instruction
set. A similar instruction set was also implcmentcd for Maxc, a
microprogrammed machine running the 'TENEX operating system
[Fiala, 19781.

The design of AltoLisp is prcsentcd in [Dcutsch, 19781. Its
characteristics include a vcry largc address space (24 bits); decp
binding; CDR encoding [Robrow & Clark, 19791; transaction
garbage collection [Dcutsch & Bobrow. 19761; and an extensive
kcrncl implemented in a mix of microcode and Bcpl. Although
AltoLisp was completed and scvcral largc Intcrlisp programs wcre
run on it, its pcrformancc was ncvcr satisfactory, due prtncipally to
the lirn~tcd arnotrnt of main memory and the lack of support in
the processor architectur? for either virtual memory management
or bytc codc decoding. DoradoLisp is the rc\ult of transfcrring
AltoLisp to an environment with ncithcr of thesc limitations.

Thc Dorado [Lampson & Picr, 19801 is a largc, fast, microcodable
pcrsonal machine with %bit data paths. It has a large main
memory (-1 megabyte) and hardware support for both instruction
decoding and virtual memory management.

'Ihe Dorado had microcode to emulate the Alto, so the initial
transfer of thc running AltoLisp system to the Dorado was
straightforward. Although thc microcode to interpret the 1-isp
instruction set nccded to be rewrittcn, the Dcpl runtime support
system was transportcd with only minor changcs. However, initial
pcrformance was far worse than would bc expectcd from a simple
consideration of machine features. We expected DoradoLisp to
dorninatc Interlisp running on a DEC KA-10, but in fact, some
computations took 10 to 100 times longer on thc Dorado. Ihe
primary goal of thc Doradol-isp implcmentation, then, was to
improve the pcrformancc of thc existing system. First, careful
tneasurcments wcrc taken of the system doing a variety of tasks.
Functions which took inordinate amounts of timc wcre examined
in detail. Additional microcode was writtcn, and major portions of
the Lisp codc were redone.

Thc most surprising thing to us was that we obtaincd considerable
pcrfonnance improvements by moving largc parts of the system
from Bcpl into Lisp. This allowed us to use a numbcr of
programming tools in thc Interlisp system, and allowed us to put
nlorc structure into the laycrs of the system's kernel. Dorado1.isp
is now supporting a uscr community. While spccd ratios vary
widely across different classes of computation, it appcars that
DoradoIdsp runs fivc times fastcr than a single-uscr 1)EC KA-10.

11. 'I'he "lispificntion" of I)or;~doI,isp

Much of thc Interlisp system is writtcn in Lisp itself, resting on a
kcrnel not defincd in Lisp. The Interlisp virtual machine
specification [Moore, 19761 attcmptcd to idcntify a set of kcrncl
facilitics which would support t l~c fidl Interlisp system. 'I'his was
donc by carefully documenting thosc parts of thc PDP-10 Interlisp
system that wcre writtcn in asscmbly language or importcd from
the opcrating system. This spcciticatiotl is quitc large. AltoLisp
rcduced this kernel by irnplcmcnting sotnc of tllc VM facilitics in
1,isp; DoradoLisp accclcrated this dcvcloprncnt. In addition to
improving the trnnsportnbilily of thc implenvmtation, thc move
also improved pcrfonnnnce, gavc thc iotplcmcntors acccss to more
a more powerful implementation languagc and programming tools,
and lirnitcd the breadth of cxpcrtisc requircd of system
hnplemcntors.

Efficiency

Programs written in a higher level language are often less.efficient
than equivalent assembly language programs, because they cannot
exploit known invariances and optimizations which would violate
the strict semantics of the target language. Moving code from
Lisp into the kernel has been a traditional way of improving the
performance of Lisp systems. Substantial sections of the PDP-10
implementation of Interlisp, for example, are in machine code for
this reason. When a large proportion of AltoLisp was moved from
Bcpl into Lisp in order to improve memory utilization and aid
modification, the speed of the system decreased by nearly a factor
of three [Deutsch, 1978]. Thus, to improve DoradoLisp
performance, we first looked for Lisp-coded sections of the system
that could be incorporated into the Bcpl'kerne[,.However,'~,e soon
discovered that the poor performance was due more to the design
of the algorithms in the kernel than to the language in which they
were implemented. Since we did not wish to carry out a large-
scale redesign in the limited Bcpl programming environment, we
decided to go in the other direction: we would move code out of
the extended Bcpl kernel and into Lisp so that we would be better
able to change the algorithms. Specific targets for replacement
were large sections of the Bcpl kernel with known performance
problems whose functionality could easily be expressed in Lisp;
one of the major areas was the I /O system.

Language power and tools

A primary reason for implementing the bulk of a programming
system in itself is that one obtains the advantage of programming
in a (presumably) more expressive and powerful language. In
addition, we felt that the major modifications and tuning that
would be necessary to provide adequate performance would be far
more tractable in Interlisp. In lntcrlisp we had both a first rate
programming environment and instrumentation tools, and we had
no other system implementation language which had either. Our
subsequent experience has sustained this view.

Linguistic uniformity

An important sociological benefit of having a programming system
described in the language it implements is that the system's
hnplementors and users share the same culture. Users can inspect
the system code, comment on it, adapt it for their own purposes,
and sometimes even change it. This involves the users of the
system in its design and maintenance f i !a way that would not be
possible if system construction took l~lac~ in a different language
culture. Specifically, the availability of the system source code
allows the system to grow and adapt much more rapidly than
environments in which a formal documentation phase is a
prerequisite to the development and distribution of new facilities.
In turn, the users can explore the behavior of the system "all the
way to the .edges", as there are no sharp language barriers. The
value of this linguistic uniformity has been confirmed by its
successful use in other language cultures, such as Smalltalk
[Goldberg, 1980].

An example: the IO system

A high level language I/O system consists of both low level device
handlers and device independent sequential and random access. In
most Interlisp implementations, the entire I /O system, up to and
including the functions defined in the virtual machine, is provided
by the host operating system. In DoradoLisp, all of the logical
I /O system and a substantial proportion of the device dependent

code is written in Lisp. The logical I /O system implements the
Interlisp user program I/O facilities and the underlying operations
in terms of which these are implemented. These include
sequential and random access operations (i.e., read and write a
byte, query end of file, reposition file pointer, etc.), buffer
management (both for system only and directly user accessible
buffers) and a device independent treatment of file properties. The
logical level is in turn implemented in terms of the notion of an
I /O device. This is an object which provides a standard set of low
level, device dependent fimctions, such as those to read and write
a page, create and delete files, etc. Using this interface, the
addition of a new device is simply a matter of writing a new set of
these functions. The DoradoLisp I /O system design is extensively
described in [Kaplan et aL, 1980].

III. Implementation techniques

Measuremen ts

In tuning the performance of a program, it is crucial to be able to
determine exactly where time is being spent. With a large body of
code and limited manpower, it is not possible to "optimize
everything." Our performance measurement system has proved
invaluable in tracking down specific (and unforeseen) problems.

The measurement system was originally developed for Alt0Lisp by
Deutsch and Haugeland. It operates in two stages. First, the
computation of interest is run with event logging enabled. This
produces a (very large) file of log events, which is later analyzed.
The log events are put out by both the microcode and the run
time support system and include time-stamped events for function
call and return, entry and exit from the Bcpl routines, I /O activity,
and other events of interest. Alternatively, the microcode can also
collect counts of opcode frequencies and a frequency sample of
the microcode PC.

Statistics gathering can be enabled at any time that Lisp is
running. One can decide spontaneously to take measurements
whenever performance unexpectedly degrades. Comparison of
these measurements with those taken during a similar run that
exhibited normal performance can be used to identify the source
of intermittent performance problems. This technique was used,
for example, to track down an intermittent slowdown in the code
that handled stack frame overflow.

The analysis phase reads the log file and computes summary
statistics from it. From call and return events, the time spent in
individual functions can be computed, either including or
excluding the time spent in the functions called by them. The
accumulated times (including the times spent by called functions)
locate the higher level functions which are the root of a large
amount of time and which may be a candidates for redesign. The
individual time (excluding called functions' times) are useful for
isolating what improvement can be expected from optimizing or
microcoding the body of that function.

244

function
NTHCHC
\HT.FIND
LITLEN
LITBASE

Function performance data is presented in tables which show the
number of times each function was called and the time spent in
each function. For example:

#ofCalls Time %ofTime PerCall
1977 236702 10.6 119
1729 168492 7 .6 97
2111 131708 5 .9 61
2141 118902 5 .3 56

Tables such as this isolate very accurately those functions which
are worth rewriting as well as identifying those which are not. In
this example, NTHCHC, which calls both LITLEN and LI,TBASE, is
an obvious candidate. In another run we discovered that 15
percent of the time was being spent adding one to a counter which
had overflowed the small number range. This prompted a redesign
of the large number arithmetic.

Additional controls on the analysis routines allow more specific
questions to be answered. The analysis can be restricted to that
part of the computation within any particular function. For
example, only that part of the computation that takes place within
READ can be analysed. The analysis can also be limited to a set of
functions, in which case only these functions will appear in the
table-of results. Any time spent in a function not in the set will be
charged to the closest bounding function that is.

The analysis routines extract from the log file useful information
besides performance data. For example, the dynamic calling
behavior is captured in the log, so one frequently useful technique
is to list which functions have called (and been called by) other
functions, and even how many arguments they were passed. The
flexibility of the analysis routines combined with the wealth of
informatibfi collected during the logging stage allows a given
computation to be examined from many points of view.

Initialization

There are several areas that cause fundamental problems for the
implementation of a language system in itself: memory
management (which requires that the memory manager itself will
not cause memory faults), stack overflow recovery (where the stack
manager must itself have some stack), and initialization.
Initialization is difficult because the initialization program must
operate when the system is not in a well formed state. The
problem in initialization can be characterized by the question: "If
the compiled code reader is itself compiled code, who will read it
in?"

Several methods of doing initialization suggest themselves. For
example, the image can be initialized by a program written in
some other language. This is the solution adopted in AltoLisp.

Alternatively, the interpreter can be coded in some other language
and the compiled code reader can be run interpretively to read
itself in. Both of these solutions require a substantial body of non-
Lisp code either for storage allocation or for interpretation.

We adopted still another solution. The compiled code reader was
modified to load code into an environment other than that in
which it is running. The primitive functions that the loader uses to
manipulate the environment (e.g., fetch and store into specified
virtual memory locations) are replaced by functions that

manipulate another memory image stored as a file. To begin with,
an empty memory image file is created and then ~he "indirect"
version of the compiled code reader is used to load into this
empty image the compiled files that constitute the lowest level of
the system. We thus avoid the potential problem of maintaining
two different programs which embody knowledge of system data
structures.

An appropriate programming environment

One of the strong advantages of writing most of the kernel in Lisp
is that Interlisp provides a very powerful programming
environment. Some of the tools we found particularly useful are:

Language features: The advantages of "data-less" or data-structure-
independent programming have long been known: more readable
code, fewer bugs, the ability to change data structures without
having to make major source program modifications. The Interlisp
record package and data type facility encourages this good practice
by providing a uniform and efficient way of creating, accessing
and storing data symbolically, i.e., fields of data structures are
referred to by name. Because the DoradoLisp implementation
allows a large number of data types, we have felt free to give
system data structures (such as file-handles, page buffers, read
tables) their own data types. In addition, records could be overlaid
on structures not under Lisp's control (e.g., the leader page of a
disk file or the format of a network packet) to provide the same
uniform access.

Cross compilation: We maintained an Interlisp-10 environment in
which we could edit, compile and examine functions for the
Dorado. The function and record definitions for the Dorado
implementation were kept on property lists instead of defintion
cells. This allowed us to work on functions such as READ and
CONS without destroying the environment in which we were
working.

Masterscope: Many of our improvements to AltoLisp involved
massive changes throughout the many system source files.
Interlisp's Masterscope program was an essential aid in
determining what would be affected by a proposed improvement
and in actually performing the necessary edits. Masterscope is an
interactive program for analyzing and cross-referencing Lisp
functions. It constructs a database of which fi.mctions call which
other functions, where variables are bound, used, or set, and where
record declarations are referenced. Masterscope utilizes the
information in the database to interpret a variety of English-like
commands. Our cross-compilation environment incrementally
updated a database that was shared among all programmers on the
project, so that with very little overhead the information in the
database was kept consistent with the current state of the evolving
system.

Masterscope was most helpful in planning and carrying out
modifications to major system interfaces, which usually meant
changing the numbers and kinds of arguments to various
functions. We would first ask Masterscope to simply list the
callers of those functions to give some estimate of the impact of
the proposed change, much as one might use a static cross-
reference program. We would then invoke the SHOW command,
instructing Masterscope to locate in the source-file definitions of
all the callers the expressions that actually called the interface
functions. These expressions were gathered together and displayed
as a group, so that we could verify our intuitions about what
assumptions clients were making abonC the interface. In many

245

cases, the rapid source-code exploration that Masterscope made
possible revealed flaws in our redesign which otherwise would not
have become apparent until much more effort had been expended.
Having decided that our modification was acceptable, we used
Masterscope's EDIT command to actually drive the editing, q'his
caused Masterscope to load the definitions of all the client
functions, call the lnterlisp editor on each one, and position the
editor at each of the expressions that needed to be changed.
Masterscope, not the programmer, kept track of which functions
had been changed and which still needed to be edited. When
Masterscope finished the editing sequence, the programmer was
sure that the changes had been made completely and consistently.

Our redesign of the I /O system [Kaplan et aL, 1980] is a good
illustration of the power of this interactive tool. We completely
replaced the lowest-level I /O interface, which involved changes to
approximately 40 functions on 15 source files. 'I'he major part of
the revision was accomplished in response to a single EDIT WHERE
ANY CALLS '(BIN BOUT ,..) command, without ever looking at hard-
copy source listings.

Rapid access to system sources: Our cross-compilation environment
maintained a shared data base which allows the definition of any
Lisp function to be retrieved for viewing or editing in a few
seconds. The microcode and Bcpl can be "browsed" using the
same interface. Rapid online access to system sources lessened the
need for working from listings.

Levelling

One of the original mouvations for having a large part of AltoLisp
in Bcpl was the belief that it was important not to provide Lisp
primitives that gave unrestricted access to the implementation data
structures. This reasoning fails to discriminate between the system
implementation and user program levels. Allowing system
programs arbitrary access to memory locations does not at all
imply that user level code has this access.

Failing to make the system/user distinction hurt AltoLisp in three
ways. First, it provided one-motivation for the large Bcpl kernel.
Second, most of that part of the system which was written in Lisp
was prohibited from manipulating underlying data structures
except through overly general functional interfaces. Last, it
discouraged the use of higher level structuring facilities (such as
the record package) so that code that required any knowledge of
system data structures tended to be written entirely in tenns of low
level primitives.

Using Lisp as a system implementation language requires very
careful consideration of the layering of the system into levels of
access and knowledge. Furthe r , the precision that is needed cannot
be obtained by simple binary discriminations but must be carefully
considered for each piece of code. This presents a considerable
challenge to the implementors' self restraint, as Lisp provides few
facilities to enforce such a layering. Appropriate use of abstraction
is essential if layerir/g is to be preserved under the constant
revision necessitated by intensive performance debugging.

Diagnostics

Development of the Lisp microcode was aided by a reasonably
complete set of microcode diagnostics written in Lisp. Diagnostics
are difficult because they are most useful when very little can be
assumed a priori to work. It is also difficult to achieve complete

coverage of all cases. In addition, extensive knowledge of the Lisp
system was required to develop diagnostics. For example, every

opcode needs to be tested when encountering page faults or stack
overflows. Setting up a situation which will page fault or overflow
the stack in the next opcode requires a very intimate knowledge of
the implementation. Having undertaken several mierocode
revisions, development of a comprehensive set of diagnostics seems
well worth the effort.

Important performance issues

While not strictly a technique, we feel that it is important to
mention the major areas in which performance has proved to be
crucial. While some of these are undoubtedly specific to
DoradolJsp, we fecl that they deserve consideration by those who
might be building similar l.isp systems.

The earlier intuition that the hardware assist for decoding byte
opcodes was important was substantiated. Performance improved
by nearly a factor of two when this was installed. Implementing
the decoding and dispatch in microcode is conceding a large
performance loss.

q'here are several parts of the system for which it seems important
to have microcode support. When written in Lisp, the garbage
collector seems to consume between 10-30% of the processor,
although the figure varies widely over different computations.
Further, in a system that uses deep binding, some form of
microcode assist for free variable lookup is very desirable. A
speedup factor of between two and four accompanied the
introduction of microcode support for this in DoradoLisp.
Statistics show that less than one percent of the execution time is
now spent in free variable lookup.

Their heavy use in implementing system code almost mandates
that the arithmetic functions have complete microcode support.
Further, we found it to be critical to have a large range of small
numbers (numbers without boxes), so that the performance critical,
low level system code did not invoke Lisp's storage management.

\

IV. Why is an lnterlisp implementation so hard?
-,

]'he Dorado implementation of Interlisp took many times the
expected effort to complete, Given the widespread intuition to the
contrary, it is perhaps worthwhile to reflect on why it has proved
so difficult. The answer is painfully simple: lnterlisp is a very large
software system and large software systems are not easy to
construct. DoradoLisp has 17,000 lines of Lisp code, 6,000 lines of
l~pl, and 4,000 lines of microeode. In many ways, the more

interesting question is why does it look so straightforward?

Without a doubt, the perceived ease of implementing lnterlisp
springs from the existence of the virtual machine (VM).
specification. This admirable document purports to give a
complete description of the facilities that are assumed by the
higher level lnterlisp software, and does a remarkable job of laying
out the foundations of this very large software confederation. It is
difficult to resist the implication that a straightforward
implementation of this mere 120 pages of specification, much of
which is already described in programmatic form, will constitute a
new implementation of lnterlisp. The issue is rather more
complicated than that.

2 4 6

The VM specification looks small, but it is not, There is no simple
correspondence between the size of a specification and the volume
of code required to implement it. Many of the major problems of
an Interlisp implementation (e.g., performance, the garbage
collector, the compiler) are simply not addressed at all. We caution
Interlisp implementets that the slimness of that document is
misleading.

Further, while the virtual machine specification is an excellent first
pass, it is far from complete. Many "incidental" functions and
variables were left out (e.g. tlOSTNAME). It is occasionally
ambiguous in places where the system code relies on a specific
interpretation. Even though once complete, changes in the higher
level code required that the VM be extended to support new
facilities. Finding all these variations is an exhausting task. It is
substantially easier to get 95% compatibility than 99.9%, and
amazing how many programs are sensitive to the difference.

One way to look at the Lisp kernel that was written for
DoradoLisp is as the definition of a new VM specification in Lisp
code. While much of the code is specific to the Dorado
environment, a great deal of it simply extends the virtual machine
downwards by providing a much lower level treatment of
functions such as PRINT and READ. We hope our work will prove
useful to others as a firmer foundation for new implementations
than that provided by the VM document alone.

Another problem for any very large software system is the
existence of a long development tail. A version of DoradoLisp was
"sort of running" years ago. Several other implementations of
Interlisp have "sort of run" but have never reached production
status. One of the key problems here is performance. The success
of the PDP-10 implementation of Interlisp is due to a lot of hand
tuning. Any obvious clean implementation will prove to be slow,
and finding performance problems is difficult, even with good
measurement tools. A large number of design decisions have to be
made and a large amount of code has to be written. While not all
of the decisions have to be optimal, none of them can be pessimal.
While the DoradoLisp experience can provide some guidance,
many of these decisions will be environment specific.

Finally, an important issue has been compatability with the PDP-
10 implementation of Interiisp. In some ways our determination to
remain compatible has helped. Ambiguities and omissions from
the VM specification could always be resolved by copying the
PDP-10 implementation. However, this compatibility requirement
was also a burden. Complete compatibility with another
implementation is hard. This is particularly so when the new
implementation is in a quite different environment (a personal
rather than a time-shared machine). The tension between
remaining compatible versus exploring the possibilities of a
personal machine environment is a continuing issue, which will
probably be a focus of our further efforts on the DoradoLisp
system.

Acknowledgements

Peter Deutsch was a principal designer and motivating force
behind AltoLisp, of which DoradoLisp is a successor. Warren
Teitelman has made major contributions to the DoradoLisp
project. Martin Kay, Henry Thompson, Richard Fikes and Austin
Henderson have also contributed time and effort on various
aspects of the project.

References

Bobrow, D. G. & Clark, D. W. Compact encodings of list
structure. ACM Transactions on programming languages
and systems 1, 1979.

Deutsch, L. P. A Lisp machine with very compact programs.
Proceedings of the third international joint conference on
artificial intelligence, Stanford 1973.

Deutsch, L. P. Experience with a microprogrammed Interlisp
system. IEEE Micro-ll Conference, 1978.

Deutsch, L. P. & Bobrow, D. G. An efficient incremental,
automatic garbage colector. CACM 19:9, 1976.

Fiala, E. R. The Maxc systems. IEEE Computer I1, May 1978.

Goldberg, A. Smalltalk: Dreams and schemes. Xerox PARC, to
appear.

Kaplan, R. M., Sheil, B. A., & Burton, R.R. The DoradoLisp IO
system. Xerox PARC, to appear.

Lampson, B. W. & Pier, K.A. A Processor for a High-Peformance
Personal Computer. 7th Int. Symp. on Computer
Architecture, La Baule, France, May 1980.

Masinter, L. M. & Deutsch, L. P. Local Optimization in a
Compiler for Stack-based Lisp Machines. Proceedings of
the 1980 Lisp Converence, Stanford, 1980.

Moore, J S. The Interlisp virtual machine specification. Xerox
PARC report CSL-76-5, 1976.

Teitelman, W. et al., Interlisp Reference Manual, XEROX Pare,
1978.

247

