

3100186

Interlisp Ref ere nee Manual

October, 1983

Copyright© 1983 Xerox Corporation

All rights reserved.

Portions from "Interlisp Reference Manual" Copyright © 1974,

1975, 1978 Bolt. Beranek & Newman and Xerox Corporation

This publication may not be reproduced or. transmitted in any

form by any means, electronic, micro~ xerography, or

otherwise, or incorporated into any information retrieval syste~

without the written permission of Xerox Corporation.

BACKGROUND AND ACKNOWLEDGEMENTS

1 . A BRIEF lilSTORY OF INTERLISP

Interlisp began with an implementation of the Lisp programming language for the PDP-1 at Bolt. Beranek
and Newman in 1966. It was followed in 1967 by 940 Lisp, an upward compatible implementation for
the SDS-940 computer. 940 Lisp was the first Lisp system to demonstrate the feasibility of using software
paging techniques and a large vinual memory in conjunction with a list-processing system [Bobrow & (-----\

) Murphy, 1967]. 940 Lisp was patterned after the Lisp 1.5 ~plementation for CTSS at MIT, with several')
i1ew facilities added to take advantage of its timeshared. on-line environment. DWIM, the Do-What+
Mean error correction facility, was introduced into this system in 1968 by Warren Teitelman [Teitelman.
1969].

The SDS-940 computer was soon outgro~ and in 1970 BBN-Lisp, an upward compatible Lisp system
for the PDP-10, was implemented under the Tenex operating system. With the hardware paging and
256K of virtual memory provided by Tenex. it was practical to provide more extensive and sophisticated
user support facilities, and a library of such facilities began to evolve. In 1972. the name of the system was
changed to Interlisp. and its development became a joint effon of the Xerox Palo Alto Research Center
and Bolt. Beranek and Newman. The next few years saw a period of rapid growth and development of
the language, the system and the user support facilities. including the record package, the file package.
and Masterscope. Titis growth was paralleled by a corresponding increase in the size and diversity of the
Interlisp user community.

In 1974. an implementation of Interlisp was begun for the X~rox Alto. an experimental microprogrammed
personal computer [Thacker et al., 1979]. AltoLlsp [Deutsch, 1973] introduced the idea of providing a
specialized.. microcoded instruction set that modelled the basic operations of Lisp more closely than a
general-purpose instruction set could - and as. such was the first true "Lisp machine". AltoLisp also 1"-,
served as a deparrure point for Interlisp-D, the implementation of Interlisp for the Xerox 1100 Series of"-. j
single-user computers. which was begun in 1979 [Sheil & Masinter, 1983].

In 1976, partially as a result of the AltoLisp effort. a specification for the Interlisp ·'virtual machine ..
was published [Moore. 1976J. This attempted co specify a small set of "primitive'' operations which
would suppon all of the higher level user facilities, which were nearly all written in Lisp. Although
incomplete and written at a level which preserved too many of the details of the Tenex operating systen
this document proved to be a watershed in the development of Interlisp. since it gave a clear definition
of a (relatively) small kernel whose implementation would suffice to pon Interlisp to a new environment.
This was decisive in enabling the subsequent implementations and preserving the considerable investment
that had been made in developing Interlisp's sophisticated user programming tools.

Most recently. the implementation of Interlisp on personal workstations (such as Interlisp-D) has extended
. Interlisp in major ways. Most striking has been the incorporation of interactive graphics and local area
network faciiities. Not only have these extensions expanded the range of applications for which Interlisp is
being used (to include interactive interface design. network protocol experimentation and the development
of specialized workstations. among others) but the personal machine capabilities have had a major impact
on the Interiisp programmin·g system itself. Whereas the original Interlisp user interface assumed a very
limited (teletype} channel to the user. the use of interactive graphics and the ··mouse" pointing device has n

iii

0 .
Interlisp Implementations

radically expanded the bandwidth of communication between the user and the machine. This has enabled
completely new scyles of interaction with the user (e.g •• the use of multiple windows to provide several
different interaction channels with the user} and these have provided both new programming tools and
new ways of viewing and using the existing ones. In addition. the increased use of local area networks
(such as the Ethernet) has expanded the horizon of the Interlisp user beyond the local machine to a
whole community of machines, processes and services. Large portions of this manual are devoted to
documenting the enhanced environment that has resulted from these development'S.

2 INTERLISP IMPLEMENI' A TIONS

.,----,pevelopment of Interlisp· IO was. until approximately 1978, funded by the Advanced Research ProjectS
V .dministration of the Department of Defence (DARPA). Subsequent development'S, which have

·- emphasized the personal workstation facilities. have been sponsored by the Xerox Corporation. with
some conaibutions from members of the Interlisp user communicy •

.
Interlisp is currently ?ID.plemented on a number of different machines. Each distinct Interlisp
implementation is denoted by a suffix: Interlisp-10 is the implementation for the DEC PDP-10 family of
machines running either the TENEX or TOPS-20 operating systems. Interlisp-D is the impiementation
·for the Xerox 1100 series of machines (1100. 1108. ll32). lnterlisp·V AX is the implementation for
the DEC VAX family, under either the VMS or UNIX operating systems. Interlisp-Jericho is the
implementation for the BBN Jericho, a internal research computer built by Bolt. Beranek and Newman.
Other implementations of Interlisp have been reported (e.g. Interlisp-370. Interlisp-B5700), but are not
widely used or actively maintained.

This manual is a reference manual for all Interlisp implementations. Where necessary, notes indicate
when features are only available in certain implementations. For some ·implementations, there is also a
companion "Users Guide"' which documents feawres which are completely unique to that machine; for
example. how to turn on the system. logging on. and unique facilities which link Interlisp to the host
environment or operating system.

0
3 ACKNOWLEDGEMENTS

Toe Interlisp system is the work of many people - after nearly twenty years. too many even to list. much
less detail their contributions. Nevertheless. some individuals cannot go unacknowledged:

0

Warren Teitelman, more than anyone else, made Interlisp '"happen". Warren designed and
implemented large partS of several generations of Interlisp, including the initial versions of most
of the user facilities. coordinated the system development and assembled and edited the first
four editions of the Interlisp reference manual.

Dan Bobrow was a principal designer of Interlisp ·s predecessors. has contributed to the
implementation of several generations of Interlisp, and (in collaboration with others) made
major advances in the underlying architecture. including the spaghetti stack. the transaction
garbage collector. and the block compiler.

iv

(:

:-' : (·- .

(··::­
\-;~

(
'·

'--

BACKGROUND AND ACKNOWLEDGEMENfS

Larry Masinter is the principal architect of the current Interlisp system. has contributed
extensively to several implementations, and has designed and developed major extensions to
both the Interlisp language and the programming environment. ·

Ron Kaplan has decisively shaped many of the programming language extensions and user
facilities of Interlisp. has played a key role in two implementations and has contributed
extensively to the design and content of the Interlisp reference manual.

Peter Deutsch designed the AltoLlsp implementation of Interlisp which developed several key
design insightS on which the current generation of personal machine implementations depend.

Alice Hartley and Daryle Lewis were key contributors to implementations of Interlisp at Bolt,
Beranek and Newmann.

-- No matter where one ends this list. one is tempted to continue. Many others who contributed to panicular
mplementations or revisions are acknowledged in the documentation for those systems. Following that
tradition. this manual. which was prepared primarily to document· the extensions implemented by the
Interlisp·D group at Xerox. Palo Alto, acknowledges. in addition to those listed above, the work of

Dick Burton who designed and implemented most of the interactive display facilities

Bill van Melle who designed and implemented the local area network facilities and multiple
process extensions

and the contributions of Beau Sheil Alan Bell Steve Purcell. Steve GadoL Jon! White. Don Charnley,
Willie Sue Haugeland and the many others who have helped and contributed to the development of
Interlisp·D.

Like Interlisp itself. the Interlisp Reference Manual is the work of many people, some of whom are
acknowledged above. This edition was designed., edited and produced by Michael Sannella ·or the
Interlisp·D group at Xerox. Palo Alto. It is a substantial revision of the previous edition [Teitelman et

()

0

al.. 1978] - it has been completely reorganized., updated in most sections, and extended with a large
amount of new material. In addition to material taken from the previous edition. this edition contains n
-najor extensions contributed by members of the Interlisp·D group and contributions from other Interlisp)
developers at the Information Sciences Institute of the University of Southern California and Bolt Beranek
and Newman.

Interlisp is not designed by a formal committee. It grows and changes in response to the needs of those
who use it. Contributions and discussion from the user community remain. as they have always been,
warmly welcome.

L 0
V

0
References

4 REFERENCES

[Bobrow & Murphy, 1967] > •
Bobrow. D.G .. and Murphy, D.L.. ''The Structure of a LISP System Using Two
Level Storage" - Communications of the ACM, VoL 10, 3. (Marcll, 1967).

[Bobrow & W egbreit, 1973]
· Bobrow, D.G., and Wegbreit, B .• "A Model and Stack Implementation for Multiple

Environments" - Communications of the ACM, VoL 16, 10. (October 1973).

[Deutsch. 1973]

Q1oore, 1976]

Oeutseh. L.P.. "A Lisp machine with very compact programs" - Proceedings of
the Third International Joint Conference on Anificial Intelligence. Stanford., (1973).

Moore. J.S .. ''The Interlisp Virtual Machine Specification" - Xerox PARC, CSL·
76-S. (1976). .

[Sheil & Masinter, 1983]

fr eitelman, 1969]

Sheil, B .• and Masinter. L.M. (eds.), "Papers on Interlisp-0" - Xerox PARC,
CIS-5 (Revised), (1983).

Teitelman, W.. '"Toward a Programming Laboratory" - Proceedings of the
International Joint Conference on Anificial Intelligence. Washingten. (1969).

rr eitelman, et al., 1972]
Teitelman. W .. Bobrow, D.G .. Hanley. A.K. Murphy, D.L .. BEN-LISP TENEX
Reference Manual - Bolt Beranek and Newman. (July 1971. first revision February
1972, second revision August 1972).

[Teitelman, et al .• 1978]
_ Teitelman. W .. et al., The Interlisp Reference Manual - Xerox PARC. (October

1978).

C.

!Thacker, et al.. 1979} Q Thacker. C .• Lampso~ B .• and Sproull. R., "Alto.: A personal computer,. - Xerox ~. ·.
PARC,CSL-79-11, (August. 1979). • \.:.--.

0
vi

(_:

TABLE OF CONTENTS

Chapter 1 INTRODUCTION
1.1 Interlisp as a Programming Language 1.1
1.2 Interlisp as an Interactive Environment 1.2
1.3 Interlisp Philosophy 1.4
1.4 How to Use this Manual 1.6
1.5 References 1. 7

,., - Chapter 2
I,

DATA TYPES
2.1 Data Type Predicates 2.1
2.2 Data Type Equality 2.2
2.3 "Fast" and "Destructive" Functions 2.3
2.4 Litatoms 2.4

2.4.l Using Litatoms as Variables 2.4
2.4.2 Function Definition Cells 2.6
2.4.3 Property Lists 2.6
2.4.4 Print Names 2.8·
2.4.5 Character Code Functions 2.12

2.5 Lists 2.14
2.5.1 Creating Lists 2.16
2.5.2 Building Lists From Left to Right 2.17
2.5.3 Copying Lists 2.19
2.5.4 Extracting Tails of Lists 2.19
2.5.5 Counting List Cells 2.21
2.5.6 Logical Operations 2.22
2.5. 7 Searching Lists 2.23
2.5.8 Substimtion Functions 2.23
2.5.9 Association Lists and Propeny Lists 2.25
2.5.10 Other List Functions 2.27

2.6 Strings 2.27
2. 7 Arrays 2.32

2. 7 .1 Interlisp-10 Arrays 2.33
2.8 Hash Arrays . 2.35

2.8.1 Hash Overflow. 2.36
2.9 Numbers and Arithmetic Functions 2.36

2.9.1 Integer Arithmetic 2.38
2.9.2 Logical Arithmetic Functions 2.40
2.9.3 Floating Point Arithmetic 2.42
2.9.4 Mixed Arithmetic 2.44
2.9.5 Special Functions 2.45

Chapter 3 THE RECORD PACK.\GE
3.1 FETCH and REPLACE 3.1
3.2 CREA TE 3.3

I
\ ---~-

vii

/~
')

()

()

0

Chapter 4

Chapter 5

Chapter 6

0

3.3 TYPE? 3.4
3.4 WITH 3.4
3.5 Record Declarations 3.5
3.6 Defining New Record Types 3.10
3.7 Record Manipulation Functions 3.11
3.8 Changetran 3.11
3.9 User Defined Data Types 3.14

4.1
4.2

CONDmONALS AND ITERATIVE STATEMENTS
Toe IF Statement 4.4
Toe Iterative Statement 4.S
4.2.l I.s.cypes 4.6
4.2.2 Iteration Variable I.s.oprs 4.7
4.2.3 Condition Ls.oprs 4.10
4.2.4 Other I.s.oprs 4.10
4.2.5 Miscellaneous 4.11
4.2.6 Errors in Iterative Statements 4.13
4.2.7 Defining New Iterative Statement Operators 4.13

FUNCTION DEFINITION. MANIPULATION. AND EVALUATION
5.1 Function Types 5.2

5.2
·s.J
S.4
S.5

S.1.1 Lambda-Spread Functions
5.1.2 Nlambda-Spread Functions
5.1.3 Lambda·Nospread Functions
S.1.4 Nlambda·Nospread Functions
S.1.5 Compiled Functions 5.5
5.1.6 SUBRs S.5

5.2
5.3

5.4
5.5

5.1.7 Function Type Functions 5.6
Function Definition 5.8
Function Evaluation 5.10
Functional Arguments 5.15
Macros 5.17

5.5.1 MACROTRAN 5.19

INPUT /OUTPlJT
6.1 Files 6.1

6.1.1 File Naming and Recognition 6.3
6.1.2 Manipulating File Names 6.5
6.1.3 File Attributes 6.6
6.1.4 Randomly Accessible Files 6.8
6.1.5 Closing and Reopening Files 6.11
6.1.6 Dribble Files 6.12

6.2 Input Functions 6.12
6.3 Output Functions 6.16

6.J.l Princlevel 6.18
6.3 .:! . Printing numbers 6.19
6.3.J User Defined Printing 6.23
6.3.4 Dumping Unusual Data Strucrures

6.4 READFILE and WRITEFILE 6.24

viii

6.23

(:

()"

(;.

\...

6~ PRINTOUT 6.25
6.5.l Horizontal Spacing Commands
6.5.2 Vertical SP.acing Commands
6.5.3 Special Foxmatting Controls
6.5.4 Printing Specifications 6.28

6.26
6.27
6.27

6.5.4.l Paragraph Foxmat 6.28
6.5.4.2 Right-F1ushing 6.29
6.5.4.3 Centering 6.29
6.5.4.4 Numbering 6.29

6.5.5 Escaping to LISP 6.30
6.5.6 User-Defined Commands 6.30
6.5.7 Special Printing Functions 6.31

6.6 Readtables 6.32
6.6.l Readtable Functions 6.32
6.6.2 Syntax Qasses 6.33
6.6.3 Read-Macros 6.36

6.7 Terminal Tables 6.40
6.7.l Tetminal Table Functions 6.41
6.7.2 Terminal Syntax Oasses 6.41
6.7.3 Terminal Control Functions 6.42
6. 7.4 Line-Buffering 6.45

6.8 Prettyprint 6.47
6.8.l Comment Feature 6.49
6.8.2 Comment Pointers 6.51
6.8.3 -Converting Comments to Lower Case
6.8.4 Special Prettyprint Controls 6.53
6.8.5 Font Package 6.55

6.9 ASKUSER 6.57
6.9.l Startup Protocol 6.57
6.9 .2 Operation 6.59
6.9.3 Foxmat of KEYLST 6.59
6.9.4 Completing a Key 6.61
6.9.5 Options 6.62
6.9.6 Special Keys 6.64

6.52

Chapter 7 VARIABLE BINDINGS AND THE Il"ITERLISP STACK
7 .1 The Spaghetti Stack 7.2
7.2 Stack Functions 7.3
7.3 Releasing and Reusing Stack Pointers 7.10
7.4 The Push-Down List and the Interpreter 7 .10
7.5 Generators and Coroutines · 7.13

7.5.l Generators 7.13
7.5.2 Coroutines 7.14
7.5.3 Possibilities Lists 7.16

Chapter 8 THE PROGRAMl\![ER'S ASSISTANT
8.1 Introduction 8.1

8.1.l Input Formats 8.1
8.1.2 Examples 8.2

ix

/\
\)

n

0

o- (

8.2 Programmer's Assistant Commands 8.5
8.2.1 Event Specification 8.5
8.2.2 Commands 8. 7
8.2.3 P.A. Commands Applied to P.A. Commands 8.17

8.3 Changing The Programmer's Assistant 8.18
8.4 Statistics 8.21
8.5 Undoing 8.22

8.5.l Undoing Out of Order 8.23
8.5.2 SA VESET 8.23
8.5.3 UNOONLSETQ and RESETUNDO 8.24

8.6 Format and Use of the History List 8.25
8.7 Programmer's Assistant Functions 8.28
8.8 The Editor and the Programmer's Assistant 8.35

::)' __ -hapter 9 ERRORS AND BREAK HANDLING
9.1 Breaks 9.1

c~ _;
9.2 When 10 Break 9.10
9.3 BREAKl 9.11
9.4 Error Functions 9.13
9.5 Error Handling by Error Type 9.16
9.6 Interrupt Characters 9.17
9.7 Changing and Restoring System State 9.18
9.8 Error List 9.21 .

Chapter 10 BREAKING. TRACING. AND ADVISING
10.1 Breaking Functions and Debugging 10.1
10.2 Advising 10.7

10.2.1 Implementation of Advising 10.8
10.2.2 Advise Functions 10.9

U__,_-,iapter 11 FILE PACKAGE
11.1 Loading Files 11.4
11.2 Storing Files · 11.6 ·

~-

11.2.l Remaking a Symbolic File 11.10
11.3 Marking Changes 11.11
11.4 Noticing Files ll.12
11.5 Distributing Change Information 11.14
11.6 File Package Types 11.14

11.6.l Functions for Manipulating Typed Definitions 11.16
11.6.2 Defining New File Package Types 11.19

11.7 File Package Commands 11.21
11.7.1 Exporting Definitions 11.28
11.7.2 FileVars 11.30
11.7.3 Defining New File Package Commands 11.30

11.8 Functions for Manipulating File Command Lists ll.32 ·
11.9 Symbolic File Format 11.34

11.9.l Copyright Notices 11.36
11.9.2 Functions Used Within Source Files 11.37
11.9.3 File Maps 11.38

0 :c

Chapter U THE COMPILER
12.1 Compiler Printout 12.2
12.2 Global Variables 12.3
12.3 LOCAL VARS and SPECV ARS 12.4
12.4 Constants 12.5
12.S Compiling Function Calls 12.6
12.6 FUNCTION and Functional Arguments 12.8
12. 7 Open Functions 12.8
12.8 COMPil.ETYPELST 12.8
12.9 Compiling CLISP 12.9
12.10 Compiler Functions 12.10
12.11 Block Compiling 12.13

12.lLl RETFNS 12.13
12.1L2 BLKAPPL YFNS . 12.14
U.11.3 BLKLIBRAR Y 12.14
12.11.4 Block Declarations 12.14
12.11.S Block Compiling Functions 12.16

12.12 Linked Function Calls 12.18
U.12.1 Relinking 12.19

12.13. .Compiler Error Messages 12.20

Chapter 13 · MASTERSCOPE
13.1 Command Language 13.4

13.1.1 Commands 13.4 ·
13.1.2 Relations 13.7
13.1.3 Sets 13.10

13.1.3.1 Set Specifications 13.10
13.1.3.2 Set Determiners 13.12
13.1.3.3 Set Types 13.12

13.1.4 Conjunctions 13.13
13.2 Paths 13.13

13.2.l Path Options 13.14
13.3 Error Messages 13.15
13.4 Macro Expansion 13.15
13.5 Affecting Masterscope Analysis 13.16
13.6 Data Base Updating 13.19
13. 7 Masterscope Entries 13.19
13.8 Noticing Changes that Require Recompiling 13.21
13.9 Implementation Noces 13.22

Chapter 14
14.l
14.2
14.3

, 14.4
14.5
14.6
14.7
14.8

MISCELLANEOUS
Saving Interlisp State 14.2
Greeting and User P;ofiles 14.5
Manipulating File Directories 14.6
Sorting Lists 14.8
Date/Time Functions 14.9
Timers and Duration Functions l4.l0
GAfNSPACE 14.13
Performance Measuring Functions 14.14

xi

0

0

()

0

0

14.8.1 BREAKDOWN
14.9 Page Mapped Files

14.15
14.17

Chapter 15 DWIM
15.3

15.S
15.5

0

15.1 Spelling Correction Protocol
15.2 Parentheses Errors Protocol
15.3 U.D.F. T Errors Protocol
15.4 DWIM Operation 15.6

15.4.1 DWIM Correction: Unbound Atoms
15.4.2 Undefined CAR of Form 15.8
15.4.3 Undefined Function in APPLY 15 • .9

15.5 DWIMUSERFORMS 15.10
15.6 DWIM Functions and Variables 15.11
1S.7 Spelling Correction 15.13

15.7.l Synonyms 15.13
15.7.2 Spelling Lists 15.14

15.7

15.7.3 Generators for Spelling Correction 15.15
15.7.4 Spelling Corrector Algorithm 15.16
15.7.5 Spelling Corrector Functions and Variables

Chapter 16 CLISP
16.1 CLISP Interaction with User 16.4
16.2 CLISP Character Operators 16.5
16.3 Declarations 16.9

16.3.1 Local Declarations 16.10
16.4 CUSP Operation 16.11
16.5 CLISP Translations 16.13
16.6 DWIMIFY 16.14
16.7 CLISPIFY 16.17
16.8 Miscellaneous Functions and Variables 16.19
16.9 CLISP Internal Conventions 16.21

0
Chapter 17 THE TELETYPE EDITOR

17.1 Introduction 17.1
17.2 Commands for the New User 17.7
17.3 Local Attention-Changing Commands 17.9
17.4 Commands That Search 17 .13

17.4.1 Search Algorithm 17.15
17.4.2 Search Commands 17.15
17.4.3 Location Specification 17.17

15.17

17.5 Commands That Save and Restore the Edit Chain 17.20
17.6 Commands Thac Modify Structure 17.22

17.6.1 Implementation of Structure Modification Commands
17.6.2 The A. B. and : Commands 17.24
17.6.3 Form Oriented Editing and the Role of CP 17.26
li.6.4 Extract and Embed 17.27
17.6.5 Tne MOVE Command 17.29

" 17.6.6 Commands That Ylove Parentheses 17.Jl
17.6.7 TO and THRU 17.32

0 xii

17.23

(

C.'
-J'

~-­\..._< .·

(
CJ

17.6.8 The R Command 17.35
17. 7 Commands That Print 17.37
17.8 Commands for Leaving the Editor 17.38
17.9 Nested Calls to Editor 17.40
17.10 Manipulating the Characters of an Atom or Sering 17.41
17.11 Manipulating Predicates and Conditional Expressions 17.42
17.12 History commands in the editor 17 .42
17.13 Miscellaneous Commands 17.43
17.14 Commands That Evaluate 17.45
17.15 Commands That Test 17.46
17.16 Edit Macros 17.48
17.17 Undo 17.S0
17.18 EDITDEFAULT 17.Sl
17.19 Editor Functions 17.53
17.20 Time Stamps 17.60

n
Chapter 18 INTERLISP·D SPECIFICS

18.1 Interlisp·D Interrupt Characters 18.1
18.2 Garbage Collection 18.2
18.3 Variable Bindings 18.3
18.4 Staclc Format 18.3
18.S Saving Virtual Memory State 18.3
18.6 Error Types 18.4
18.7 Compiler 18.5
18.8 Linked Function Calls 18.5
18.9 HELPSYS 18.5
18.10 Operating System Dependent Functions 18.6
18.11 IDA TE Fonnat 18.6
18.12 Character Set 18.7
18.13 Read Tables 18.7
18.14 Keyboard Interpretation 18.8
18.15 Llspusers Packages 18.9
18.16 File System · 18.10

18.16.1 File Names 18.10
18.16.2 Renaming Files 18.10
18.16.3 End Of Line Convention 18.10
18.16.4 Using Files with Processes 18.11
18.16.5 Miscellaneous File Manipulation 18.11
18.16.6 Connecting to Directories 18.11
18.16. 7 Binary I/O 18.12
18.16.8 Temporary Files and the CORE Device 18.12
18.16.9 Floppy Disks on the Xerox 1108 18.13
18.16.10 Page Mapping 18.13

18.17 File Servers 18.13
18.17.l File Server File Names 18.14
18.17.2 Logging [n 18.14
18.17.3 Abnormal Conditions 18.15
18.17.4 Caveacs 18.15
18.17.5 New Functionality 18.16

18.18 HardCopy Facilities 18.16 n
xiii

0 (.·

18.19 Performance Considerations 18.18
18.19.1 Variable Bindings 18.19
18.19.2 Garbage Collection 18.20
18.19 .3 Dacacypes 18.21
18.19.4 Incomplete Filenames 18.21
18.19.S Turning Off the Display 18.22
18.19.6 Gathering Statistics 18.22

18.20 The Interlisp· D Process Mechanism . 18.25
18.20.1 Creating and Destroying Processes 18.26
18.20.2 Process Conttol Consmicts 18.28
18.20.3 Events 18.29
18.20.4 Monitors 18.30
18.20.S Global Resources 18.32

0
18.20.6 Typein and the TIY Process 18.33

18.20.6.l Switching the 1TY Process 18.33
18.20.6.2 Handling of Interrupts 18.35

(-_ .. i
~ .

18.20. 7 Keeping the Mouse Alive 18.35
18.20.8 Debugging Processes 18.36
18.20.9 Non-Process Compatibility 18.37

18.21 PROMPTFORWORD 18.37

Chapter 19 INTERLISP·D DISPLAY FACILITIES
19.1 rosmoN 19.2
19.2 REGION 19.2
19.3 BITMAP 19.3
19.4 BITBLT 19.4
19.5 TEXTURE 19.6
19.6 Saving BITMAPs 19.6
19.7 Screen Operation 19.6
19.8 Characters and Fonts 19.7
19.9 Display Stteams 19.10

19.9.l Manipulating Display Stteams 19.10
19.9.2 Drawing on Windows and Display Stteams
19.9.3 Drawing Lines and Curves 19.13

19.12
~--

19.10 Typescript Facilities: The "T' File 19.14
19.11 Cursor and Mouse 19.15

19.11.1 Mouse Button Testing 19.16
19.11.2 Low Level Access to Mouse 19.17

19.12 Windows 19.18
19.12.1 What are Windows? 19.19
19.12.2 Interactive Window Operations 19.20
19.12.3 Changing Entries on the Window Command Menus 19.22
19.12.4 Coordinate Systems 19.23
19.12.5 Scrolling 19.23
19.12.6 Programmatic Window Operations 19.25
19.12.7 Window Properties 19.28

19.12.7.1 :VIouse Function Window Propemes 19.29
19.12.7.2 Event Window Properties 19.30
19.12.7.J :V1isccllaneous Properties 19.32

19.12.8 Auxiliarv Funcuons 19.33 . .

0 xiv
(..

()
(._

19.12.9 Example: A Scrollable Window 19.34
19.13 Interactive Display Functions 19.36
19.14 Menus 19.38

19.14.l Menu Fields 19.39
19.14.2 Miscellaneous Menu Functions 19.41
19.14.3 Examples of Menu Use 19.41

19.15 Grid Functions 19.42
19.16 Color Graphics 19.43

19.16.l Color Bianaps 19.43
19.16.2 Color Specifications 19.44
19.16.3 Color Maps 19.45
19.16.4 Turning the Color Display On and Off 19.47
19.16.5 Printing and Drawing in Color 19.48
19.16.6 Using the Cursor on the Color Screen 19.49
19.16.7 Miscellaneous Color Functions 19.49 0
19.16.8 Demonstration programs 19.49

Chapter 20 INTERLISP·D DISPLAY·ORIENTED TOOLS
20.1 DEdit 20.1

20.1.1 General Commencs 20.1
20.1.2 Operation 20.1
20.1.3 Interactive Operation 20.2

20.1.3.1 Selection 20.2
· 20.1.3.2 Typein 20.3

20.1.3.3 Shift-Selection 20.3
20.1.3.4 Commands 20.3
20.1.3.5 Multiple Commands 20.6
20.1.3.6 Idioms 20.7

20.l.4 DEclit Parameters 20.8
20.2 Interactive Bitmap Editing 20.8
20.3 Display Break Package 20.10
20.4 The Inspector 20.12

\._. ,.· 20.4.l Inspect Windows 20.12
()

20.4.2 Calling the Inspector 20.13
20.4.3 Choices Before Inspection 20.14
20.4.4 Redisplaying an Inspect Window 20.14
20.4.5 Interaction With tb.e Display Break Package 20.14
20.4.6 Controlling the Amount Displayed During Inspection 20.14
20.4.7 Inspect Macros 20.15
20.4.8 INSPECIWs 20.15

20.5 CHAT 20.17
20.6 The TEdit Text Editor 20.19

20.6.l Selecting Text 20.21
20.6.2 Editing Operations 20.22
20.6.3 TEdit Functional Interface 20.23

20.6.3.1 TEdic Interface Functions 20.:?.i
20.6.3.2 User-function "Hooks" in TEdit 20.27
20.6.3.3 Changmg the TEd.it Command .Menu 20.28
20.6.3.4 Variables Which Control TEd.it 20.28 · ~

20.6.4 TEdit"s Tennmal Table and Readtables 20.29 ()
xv

0

20.6.S The TEdit Abbreviation Facility 20.31
20.7 The TIYIN Display Typein Editor 20.31

20.7.l Entering Input With TIYIN 20.31
20.7.2 Mouse Commands [Interlisp·O Only] 20.33
20.7.3 Display Editing Commands 20.33
20.7.4 Using TIYIN for Lisp Input 20.37
20.7.S Useful Macros 20.37
20.7.6 Programming With TIYIN 20.38
20.7.7 EE Interface 20.40
20.7.8 ?= Handler 20.41
20.7.9 Read Macros 20.41
20. 7 .10 Assoned Flags 20.43
20.7.11 Special Responses 20.44

0
20.7.12 Display Types 20.45

Chapter 21 ETHERNET
21.l Ethernet Protocols 21.1

21.1.1 Protocol Layering 21.1
21.1.2 Level Zero Protocols 21.2
21.l.3 Level One Protocols 21.3
21.l.4 Higher Level Protocols 21.3
21.1.S Connecting Networks: Routers and Gateways 21.3
21.1.6 Addressing ConflictS wi.th Level Zero Mediums 21.4
21.1.7 References 21.4

21.2 Higher-level PUP Protacol Functions 21.4
21.3 Higher-level NS Protocol Functions 21.6

21.3.1 SPP Stream Interface 21.6
21.3.2 Courier Remote Procedure Call Protocol 21.'Z

21.3.2.1 Courier Template Language 21.8
21.3.2.2 Manipulating Courier Representations 21.10
21.3.2.3 Using Bulle Data Transfer with Courier 21.10

21.3.3 NS Printing 21.10
21.3.4 Clearinghouse 21.12
21.3.S NS Filing 21.13 0

21.3.S.l Pachnames and NS Fileservers 21.13
21.4 Level One Ether Packet Format 21.14
21.S PUP Level One Functions 21.15

21.S.l Creating and Managing Pups 21.15
21.5.2 Sockets 21.15
21.5.3 Sending and Receiving Pups 21.16
21.5.4 Pup Routing Information 21.17
21.S.5 Miscellaneous PUP Utilities 21.17
21.S.6 PUP Debugging Aids 21.18

21.6 NS Level One Functions 21.21
21.6.l Creating and Managing XIPs 21.21
21.6.2 NS Sockets 21.22
21.6.3 Sending and Receiving XIPs 2.1..!Z
21.6.4 NS Debugging Aids 2.1.23

21.7 Support for Other Level One Protocols 21.23
21.8 The SYSQL!ECE mechanism· 21.25

0 xvi

(_

(- - -,

A­\.: __ .

(j

()

Chapter 22 INTERLISP· 10 SPECTFICS
22.1 Interlisp· IO Intemipt Characters 22.1
22.2 Type Number Functions 22.2
22.3 Valid.icy of Definitions in Interlisp· 10 22.3
22.4 Reusing Boxed Numbers in Interlisp· 10 • SE'I'N 22.3

22.4.1 Caveats concerning use of SETN 22.4
22.5 Box and Unbox in Interlisp· 10 22.5
22.6 Miscellaneous Operating System Functions 22.5
22.7 Storage Allocation and Garbage Collection 22.7
22.8 Toe Assembler and LAP 22.11

22.8.1 Assemble %2.12
22.8.1.1 Assemble Statements 22.12

(

22.8.1.2 COREY ALs 22.14
22.8.2 LAP 22.15

22.8.2.1 LAP Statements 22.15
()

22.8.3 Using Assemble · 22.18
22.9 Interfork Communication in Interlisp· IO 22.20
22.10 SUBSYS 22.21
22.11 JFN Functions in lnterlisp-10 22.22
22.12 Display Temtinals 22.23

-22.13 Toe lnterlisp-10 Swapper 22.24
22.13.1 Overlays 22.24
22.13.2 Efficiency 22.25
22.13.3 Specifications 22.25

Chapter 23 LISPUSERS PACKAGES
23.l Pattern Match Compiler 23.1

23.1.l Pattern Elements 23.2
23 .1.2 Element Patterns 23.2
23.l.3 Segment Patterns 23.3
23.1.4 Assignments 23.5
23.1.S Place-Markers 23.5
23.l.6 Replacements 23.6 n
23.1.7 Reconstruction 23.6
23.l.8 Examples 23.7

23.2 Printing Reentrant and Circular List Structures 23.8
23.2.l CIRCLPR~'T 23.8
23.2.2 PRI1'ffL 23.11

23.3 Indexing and Cross Referencing Files 23.12
23.3.1 SINGLEFILEINDEX 23.12
23.3.2 MUL TIFILEINDEX 23.13

23.4 Dar.abasefns 23.15
23.5 Lambciacran 23.16
23.6 Permsr.atus 23.17
23.i The Deel Package 23.18

23.7.1 Using Declarations in Programs 23.18
23.7.2 DLAMBDAs 23.20
23.7.3 DPROG 23.21
23.7.4 Declarauons in fterative Statements 23.22
23.7.5 Declaring a Variable for a Restricted Lexical Scope 23.23 • ()

xvii

CJ

23.7.6 Declaring the Values of Expressions 23.23
23.7.7 Assertions 23.24
23.7.8 Using Type Expressions as Predicates 23.24
23.7.9 Enforcement 23.24
23.7.10 Oecltypes 23.25
23.7.11 Predefined Types 23.25
23.7.12 Type Expressions 23.26
23.7.13 Named Types 23.28

23.7.13.l Manipulating Named Types 23.29
23.7.14 Relations Between Types 23.29
23.7.15 The Declaration Database 23.30
23.7.16 Declarations and MasterSCope 23.31

23.8 TRANSOR 23.31

0
23.8.l Using TRANSOR 23.32
23.8.2 Translating 23.32
23.8.3 The Translation Notes 23.33 C-··1
23.8.4 Errors and Messages 23.34
23.8.5 TRANSORSET 23.35
23.8.6 TRANSORSET Commands 23.36
23.8.i The REMARK Feature 23.37
23.8.8 Controlling the Sweep 23.39

23.9 WHEREIS Package 23.40
23.10 Hash Files 23.41

23.10.l Unstructured Pages and Symbol Tables 23.45
23.10.2 The Printing Region 23.46

23.11 EDIT A 23.46
23.lLl Overview 23.47
23.11.2 Input Protocol 23.48
23.1L3 EDITA Commands and Variables 23.49
23.1L4 Editing Arrays 23.52

23.12 Cjsys 23.53
23.13 Nobox 23.54

0
23.13.l CONS Cells 23.54
23.13.2 Number Boxes 23.55
23.13.3 Cautions 23.56

23.14 Dateformat 23.57
23.15 Exec 23.59

23.15.1 Exec Commands 23.59
23.15.2 EXEC Functions 23.60

23.16 Passwords 23.62
23.17 Telnet 23.62
23.18 Ftp 23.62
23.19 Net 23.64

0 xviii G

(

..,_ T."

•.; ...

n

: i. : -~ _. f·~_;i··_.;_~.··:_i_i· ~,\.t,:i~~-::,_~.\,:j:~_::i.·:.1 .. :.~ :.~.~--~~--~.~- .. f .. -~,=J·,~:_;:~~: __ :-.~-:'._.,_~ :.l!:

~-·:,_:i.-,_~.--:: __ ·,~:_:,::;_~,.r._:,;~-~-:_r_t_:_·:::,,._::_·,:~_;,_,_·.,1.·_:1,,-::; __ f,,:i,,·:_::,,:J,_·,_:r;,,,t,_.:.;,,J,r.i_: .. ~.: .. T,:,,r.:J,·,:::_·.;_:::_,~~ .. r.\.'.·::_I_:,::: .. :;,_'.1,.~.:_:,~,_: .. ,_:;::~:: : , ,......... ~-TTf ~l]l.i:rrJf:Hf"l}'.Jll)I
, 53 69¥ Al#i&fiii!A&#Ri ~

i:H ,(•11,.LUN><L:SPUS£RS>GRAPHU.0CON;%9 ? •s0a2"!SD~-.!.. • .. -.d or 5811 ,- 11,.-.c•or, ~
:,;. ·: COH1 led ... 12-:t•-u H · !S: 16 • •• • • • •. •

t) m:~ll~~~!iC 12•SEP•tZ et:!•:iS :. ;~~~98 NOH uael, 8181 left Ill ~lie Sy&UI l r :.: \
-~·,. {Ptt,.LUN}<I.ISPUSE~S)<~<rS£R.OC0N;15 . taelue (flies)•,
,.:· :: 11• .mo• AU. PATIi$ TO 011D layCt 11 ' H•no U' or ,oils) 2
:;,·. NIL 'H i:i t: U• AIIAl.,.Zf FUNCTIONS ON INTl!:ltCA\.C :' <o;:~:~:~1 [Cont,re) yea. I ·:,,,_;,·,
.-: •••••• •

0
•'

0 0
••• ' ••

0
' ••••• '•' :· 'tftt,.O.Df"'l•0'3 (Co11,,,..J yes.

~:·j elt·:1 {,n fcnt••••} ",. •• , •• c1,sp, yes . <D•Rus,e11)1tsac:oul""se> ··-~ · · · ········ · · · ··· · · ····; :::~:!::~-:~::::~ f=~~~:J ~:: Interl1·s'TII -D :J
;:: · ~ t2•ft!D0 ·ii· · · · · · .. · · · · · · "' · · ' · · · · Gane : (011Russe 11} Ii.I' :;-~
., , MIL : •11ETTYZ.PRE$S!l [Cant,re) yes. ---,...------------....!~----::;
.:··; 1:S•X:

~~::: ~-···· . 1

~;'.-~ :':II;:"" , '"
ii)-t ;/: i. :I·{.f.;.::}~; ;.i: ·; : i:::iii;:i::2::m:i?M~DUT
;":':, ':. : .. : ... ::,,.;.; •. :· ::: ·: ::· .. l,.,,c,LAF:TEIIIAll.fATCH IDD,.ted.

]{J}j}~;i:r::11:~,f ;:;;_f fil~t;::;~. :::::u -· ~~-='~- :;J]j
You"""" - ""'~ • 1' J!!L:.::.~· .. rnWi-··IC:,if :·. I~'[

:'~- 8rawse Mes..,ae rorm <,u,r / / ln•\,,_ll_l~ •••· .,,. ''fl' .. · ·

OtSDI0¥ o Unaffm Answ~ -~'-~:' ~~~~~··:,~:~:. ~~.. £i -~ . . .,-~ IW•-:~;~~"'"' ... ~:: :·~'.; ~

..

;e ;,.. ,

·flu.
:I! ;"
:" '"

DAut:Ple.-,.,,.~.E~

IOnke =•

,',>n•i, ::: !
,•,,••f" t'if I t"!

... x. ?MALL, :NT!~Ell · ;!1:. c.,.,..; •• · ..,..,,.Q e lt••"i ~ ,:,. c.,,~ s.

n,so1w11(:JFJ71-':IK .- .. ~ ;;/)

\
·~ ·--~~::!=.. • ,.u... ;: ;_: ~ \ ,

... iZi.iii2iB 11"'1~ ,... • ,,,.:

""H...-,.._ tC1tri-'"-0:?n.l :
\ ~ ..f61" F:::mm· C. ·j .. : ~"-·"" ~
~' . f"""'5'ijj"jj KICWPUDCU'"TWI '!~
~[d••.... ., •• ~•-,,,, , u,
~(f•~I U"Ot31L•ii4flyl

0

CHAPTER 1

INTRODUCTION

Interlisp is a programming system. A programming system consistS of a programming language., a large
number of predefined programs (or junctions. to use the Lisp terminology) that can be used either
as direct user commands or as subroutines in user programs. and an environment that supports the
.programmer by providing a variety of specialized programming tools. The language and predefined
functions of Interlisp are rich. but similar to those of other modem programming languages. The Interlisp

,,....-..rogramming environment. on the other hand. is very distinctive. Its most salient characteristic is an
U egrated set of programming tools which know enough about Interlisp programming so that they can act
· ·-as semi-autonomous. intelligent "assistants" to the programmer. In ;..ddition. the environment provides a

completely self-contained world for creating, debugging and maintaining Interlisp programs.

This manual describes all three components of the Interlisp system. There are discussions about the
content and structure of the language, about the pieces of the system that can be incorporated into user
programs. and about the environment. The line between user code and the environment is thin and

• changing. Most users extend the environment with some special features of their own. Because Interlisp
is so easily extended. the system has grown over time to incorporate many different ideas about effective
and useful ways to program. This gradual accumulation over many years has resulted in a rich and diverse
system. That is the reason this manual is so large.

Whereas the rest of this manual describes the individual pieces of the Interlisp system. this chapter attempts
to describe the whole system-language, environment. tools. and the otherwise unstated philosophies chat
tie it all together. It is intended to give a global view of Interlisp to readers approaching it for the first
time.

0.1 INTERLISP AS A PROGRA1\11\1ING LANGUAGE

This manual does not contain an introduction to programming in Lisp. Sadly, primers and teaching
materials for Lisp are few and quickly become dated. [Winston & Hom. 1981] discuss Lisp and its
applications. but focus on MacLisp. with only a limited section on Interlisp in an appendix. [Siklossy.
19i6] and [Weissman. 1967] are both sound. but a little dated. In this section. we simply highlight a few
key poincs about Lisp on which much of the later material depends. · .
The Lisp family of languages (e.g., Interlisp, UCI Lisp [Meehan. 1979], FranzLisp [Foderaro. 1979],
MacLisp [Moon. 1974], Lisp Machine Lisp [Weinreb & Moon. 1979), etc.) shares a common structure
in which large programs (or functions) are built up by composing the results of smaller ones. Although
[nterlisp, like most modern Lisps. allows programming in almost any style one can imagine. the natural
style of Lisp is functional and recursive. in that each function computes its result by selecting from or
building upon the values given co it and then passing that result back to its caller (rather than by producing
"side-effects'' o.n external data structures. for example). A great many appliQtions can be written in Lisp
in this purely functional style. which is encouraged by the simplicity with which Lisp functions can be
composed together.

0
1.1

"\ ..

(',;. . .
. ,

('.'' ..

,.
l

·-----.

Interlisp as an Interactive Environment

Lisp is also a list-manipulation language. Toe essential primitive data objects of any Lisp are "atoms"
(symbols or identifiers) and "lists" (sequences of atoms or lists}, rather than the "characters" or "numbers"
of more conventional programming languages (although these are also present in all modern Lisps). Each
Lisp dialect has a set of operations that act on atoms and lists, and these operations comprise the core of
the language.

Invisible in the programs. but essential to the Lisp style of programming, is an automatic memorJ
management system (an "allocator" and a "garbage collector"). Allocation of 12ew srorage occurs
automatically whenever a new data object is created. Conversely, that storage is automatically reclaimed

· for reuse when no other object makes reference to it. Automatic allocation and deallocation of memory
is essential for rapid, large· scale program development· because it frees · the programmer from the task
of maintaining the details of memory administration. which change constantly during rapid program
evolution.

A key property of Lisp is that it can represent Lisp function definitions as pieces of Lisp list data.
Each subfunction "call" (or junction application) is written as a list in which the function is written first,
followed by its arguments. Thus, { PLUS 1 2) is a list structure representation of the expression 1 +
2. Each program can be written as a list of such function applications. This representation of program as
data allows one to apply the same operations to programs that one uses to manipulate data. which makes
it very straightforward to write Lisp programs which look at and change other Lisp programs. This, in
tum. makes it easy to develop programming tools and translators. which was essential in enabling the
development of the Interlisp environment.

One result of this ability to have one program examine another is that one can extend the Lisp programro;ng
language· itself. If some desired programming idiom· is not supponed. it can be added simply by defining
a function that translates the desired expression into simpler Lisp. Interlisp provides extensive facilities ·
for users to make this type of language extension. -In addition. the CUSP (Conversational LISP) package
provides definitions for several commonly used programming constructs (if ... then ·- e 1 se. for and
do loops, etc.) that make many programs easier to express. Using this ability to extend itself. Interlisp has
incorporated many of the constructs that have been developed in other modem programming languages.

1.2 INTERLISP AS AN INTERACTIVE ENv1RONMENT

Interlisp programs should not be thought of as autonomous, external files of source code. All Interlisp
programming takes place within the Interlisp environment. which is a completely self-sufficient environment
for developing and using Interlisp programs. Not only does the environment contain the obvious
programming facilities (e.g., program editors. compilers. debuggers. etc.), but it also contains a variety of
tools which assist the user by "keeping track" of what happens. so the user doesn't have to. For example.
the Interlisp file package notices when programs or data have been changed. so that the system will
know what needs to be saved at the end of the session. The ··residential" style, where one stays within
the environment throughout the development. from initial program definition through final debugging. is
essential for these tools to operate. Furthermore. this same environment is available to suppon the final
production version. some parts providing run time support and other parts ignored until the need arises
for further. debugging or development.

For terminal interaction with the user. Interlisp provides a ··Read-Eval-Prim" loop. That is. whatever c..'1e
user types in is READ by the system. executed (or "'EVAL"'-uaced) and the result is PRINT-ed onto the
terminal. (This interaction is also recorded by the programmer's assistant. described below. so the user

1.2

Cl

0

0

0

0
INTRODUCTION

can ask to do an action again. or even to undo the effects of a previous action.) Although each interactive
terminal listener (or .. executive,.) defines a few specialized commands. most of the interaction will consist
of simple evaluations of ordinary Lisp expressions. Thus. instead of specialized terminal commands for
operations like manipulating the user's files. actions like this are carried out simply by typing the same
expressions that one would use to accomplish them inside a Lisp program. This creates a vecy rich. simple
and uniform set of interactive commands. since any Lisp expression can be typed at a command executive
and evaluated immediately.

In normal use, one writes a program (or rather, "defines a function ..) simply by typing in an expression
that invokes the "function defining" function (DEFINEQ). giving it the name of the function being defined
and its new definition. The newly defined function can be executed immediately, simply by using it in
a Lisp expression. Although most Interlisp code is normally run compiled (for reasons of efficiency),
the initial versions of most programs. and all of the user's terminal interactions, will be run interpreted.

OEventually, as a function gets larger or is used in many places. it becomes more effective to compile it.
'sually, by that stage, the function has been stored on a file· and the whole file (which may .contain many

·-- runctions) is compiled at once. DEFINEQ, the compiler (COMPILE). and the interpreter (EVAL}, are all
themselves Lisp functions that use the ability to treat ocher Lisp expressions and programs as data.

In addition to these basic programming tools. Interlisp also provides a wide .variety of programming
· suppon mechanisms:

S cructure editor

Pretty-printer

Break Package

0
DWIM

Since Interlisp programs are represented as list strUcture, Interfis1:, provides an editor
which allows one to change the list snucture of a function's definition directly.

The pretty printer·.is a function that prints Lisp function definitions so that their
syntactic strueture is displayed by the indentation and fonts used.

When errors occur, the break package is called, allowing the user to examine and
modify tt,e context at the point of the error. Often. chis enables execution to
continue without starting over from the beginning. Within a break. the full power
of Interlisp is available to the user. Thus. the brmcen function can be edited. data
strucrures can be inspected and changed. other computations earned out. and so
on. All of this occurs in the context of the suspended computation. which will
remain available to be resumed.

The "Do What I Mean·· package automatically fixes the user's misspellings and
errors in typing.

Programmer's Assistant

Masterscope

Interlisp keeps track of the user's actions during a session and allows each one to
be replayed. undone. or altered.

Masterscope is a program analysis and management tool which can analyze users'
functions and build (and automatically maintain) a data base of the results.
This allows the user to ask questions like ''WHO CALLS ARCT AW" or "'WHO
USES COEF 1 FREELY" or to request systematic changes like ··Eon WHERE ANY
(fanction) FETCHES ANY FIELD OF (the data structure) FOO ...

Record/Oatatype Package

0

Interlisp allows a programmer to define new data structures. This enables one co
separale the issues of data access from the details of how the data is actually stored.

LJ

(..,:.
.·-

(

File Package

Performance Analysis

Interlisp Philosophy

Files in Interlisp are managed by the syste~ removing the problem of ensuring
timely file updates from the user. Toe file package can be modified and extended
to accomodate new types of data.

These tools allow statistics on program operation to be collected and analyzed.

, . These facilities are tightly integrated. so they know about and use each other. just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes. By
combining the program analysis features of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For example, when the lowest-level interface
of the Interli..cp·D I/0 system was changed to a new format. the entire edit was made by a single call
to Masterscope of the form EDIT WHERE ANY CALLS ' { BIN BOUT · · ·). [Bunon et al.., 1980] This
caused Masterscope to invoke the editor at each point in the system where any of the functions in the list
' {BIN BOUT • · ·) were called. This ensured that no functions used in input or output were overlooked
during the ~edification.

The new. personal machine implementations of Interlisp •. such as Interlisp-D. also provide some new user
facilities. and some new, interactive graphic interfaces to some of the older Interlisp programming tools:

Multiple Processes

Windows

Inspector

Toe multiple and independent processes allowed in Interlisp--D simplify problems
which require logically separate pieces of code to operate in parrallel.

Toe ability to have multiple. independent windows on the display allows many
different processes or activities to be active on the screen at once.

Toe inspector is a display tool for examining complex data strucrures encountered
during debu&,aing.

The figure found at the beginning of this chapter shows a standard user display within Interlisp-D. One
window displays a list of messages available for browsing, using an experimental mail reading system.
This operates in parallel with the user's other activities. continually monitoring the remote mail server

0

and watching for any new messages. The "DEdit,. window is editing an Interlisp function. The ··Chat"
window offers a direct connection to a remote machine (th.is one is a remote file server). There are two (J
nested break windows showing the environment of an interrupted evaluation. And in the lower right.
there is a Masterscope display showing all the possible execution paths to some function.

Some of the newer implementations of Interlisp have embedded within them an entire operating system
written in Interlisp. For the most part. that is of no concern to the user (although it is nice to know that one
can write programs of this complexity and performance within Interlisp!). However. some of the facilities
provided by this low level code allow the use of Interlisp for applications that would previously have
been forced into a relatively impoverished system programming environment. ln panicular. Imerlisp-D
provides complete facilities for experimenting with distributed machines and services on a local area
networL plus access to all the services that such networks provide (e.g .• maiL printing, filing, etc.).

1.3 INTERLISP PHILOSOPHY

The extensive environmental support that the Interlisp system provides has developed over the years
in order to support a particular style of programming called ··exploratory programming·· [Sheil. 1983].

1.4

0
INTRODUCTION

For many complex programming problems, the task of program creation is not simply one of writing a
program to fulfill pre-identified specifications. Instead. it is a matter of exploring the problem (crying
out various solutions expressed as partial programs) until one finds a good solution (or sometimes. any
solution at all!). Such programs are by their ver:y nature evolutionary; they are transformed over time
from one realization into another in response to a growing understanding of the problem. This point of
view has lead to an emphasis on having the tools available to analyze. alter. and test programs easily.
One important aspect of this is that the tools be designed to work together in an integrated fashion. so
that knowledge about the user's programs. once gained, is available throughout the environment.

.
The development of prog.rarnming tools to suppon exploratory programming is itself an exploration.
Noone knows all the tools that will eventually be found useful, and not all programmers want all of the
tools to behave the same way. In response to this diversity. Interlisp has been shaped. by its implementors
and by its users. to be easily extensible in several different ways. First. there are many places in the system
where its behavior can be adjusted by the user. One way that this can be done is by changing the value Q >f various "flags" or variables whose values are e;ramined by system code to enable or suppress cenain

- behavior. The other is where the user can provide functions or other behavioral specifications of what is to
happen in certain contexts. For example, the format used for each type of list structure when it is printed
by the pretty-printer is determined by specifications that are found on the list PRETTYPRINTMACROS.
Thus, this format can be changed for a given type simply by putting a printing specification for it on that
list.

Another way in which users can effect Interlisp's behavior is by redefining or changing system functions.
The "Advise" capability, for instance. permits the user to modify the operation of virtually any function
in the system by wrapping user code "around" the selected function. (This same philosophy extends
to the break package and tracing, so almosi: any function in the system can be broken or traced.)
Ex;,erimentation is thus encouraged and actively facilitated, which allows the user to find useful pieces of
the Interlisp system which can be configured to assist with application development. This is even easier
in systems like Interlisp·D. where the entire system is implemented in Interlisp. since there are extremely
few places where the system's behavior depends on anything outside of Interlisp (such as a low level
system implementation language).

While these techniques provide a fair amount of tailorability, the price paid is that Interlisp presents an

0-overall appearance of complexity. There are many flags. parameters and controls that affect the behavior
,ne sees. Because of this complexity, Interlisp tends to be more comfonable for expens. rather than t,1i.~

casual users. Beginning users of Interlisp should depend on the default settings of parameters until they ~- '
learn what dimensions of flexibility are available. At that point. they can begin to ··rune" the system to
their preferences.

The various implementations of Interlisp share not only this general philosophy, but a philosophy about
each other also. _ Interlisp is available in highly compatible versions across several machines. The
community of Interlisp implementors is committed to maintain this level of compatibility. One testimony
to this is the existence of pieces of ver:y old code in modem versions of Interlisp that have been inherited
from the original BBN-Lisp system nearly 15 years ago. Many of the function definitions in the core of
the system have not changed since 1977, over many different versions of Interlisp.

Appropriately enough. even Interlisp's underlying _philosophy was itself discovered during Interlisp's
development. rather than laid out beforehand. The Interlisp environment and iLc; interactive style were
first analyzed in Sandewall's excellent paper [SandewalL 1978]. The notion of "exploratory programming"
and the genesis of the Interlisp programming tools in terms of the characteristic demands of this style of
programming was developed in [Sheil. 1983 I. The evolution and structure of the Interlisp programming
environment are discussed in greater depth in [T ~itelman & Masinter. 198 l].

0 1.5

How to Use this Manual

1.4 HOW TO USE THIS MANUAL

This document is a reference manual. not a primer. We have tried. to provide a manual that is complete.
and that allows Interlisp users to find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference. these arguments are fully explained.
even though they would normally be defaulted. There is a lot of information in this manual that is only
of interest to experts.

()

Users should not try to read straight through this manual. like a novel In general, the chapters are
organized with overview exJ)lanations and the most useful functions at the be~ing of the chapter, and
implementation details towards the end. If you are interested in becoming acquainted with Interlisp using Q

.. this manual. the best way would be to sldm through the whole book, reading the beginning of each ,

._.
chapter .

A few notes about the notational conventions used .in this manual:

Lisp object notation: All Interlisp objects in this manual are printed in the same font: Functions
(ANO, PtUS, OEFINEQ, LOAD); Variables (MAX. INTEGER, FILELST, DFNFLG}; and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG ({ A 1)) · · ·), etc.

Case is significant: An important piece of information. often missed by newcomers to Interlisp, is that
upper and lower case is sign{licanL The variable FOO is not the same as the variable f oo. which is not the

. same as the variable Foo. By convention. most Interlisp system functions and variables are all-uppercase,
but users are free to use upper and lower case for their own functions and variables as they wish.1

This manual contains a large number of descriptions of functions. variables. commands, etc, which are
printed in the following standard format:

(FOO BAR BAZ -} • [Function}
This is a description for the function named FOO. FOO has two arguments. BAR and
BAZ. Some system functions have extra optional·arguments that are not documented Q
and should not be used. These extra arguments are indicated by··-".

Toe descriptor [Function] indicates that this is a function, rather than a [Variable],
[Prog. Asst. Command], etc .. For function definitions only, this can also indicate
the function "type": [NLambda Function), fNoSpread Function], or [NLambda
NoSpread Function], which describes whether the function takes a fixed or variable
number of arguments. and whether the arguments are evaluated or not.

LQne exception to the case-significance rule is provided by the Interlisp CUSP facility, which allows
iterative statement operators and record operations to be typed in either all-uppercase or all-lowercase
letters: (for~ from 1 to 5 ···) is the same as (FOR X FROM 1 TO 5 ···). The few situations
where this is the case are explicitly mentioned in the manual. Generally, one should assume that case is r'\ . .
;igniikant. \.)

1.6

0
INTRODUCTION

1.S REFERL'ICES

[Bunon, et al. 1980] Burton, R. R.. L M. Masinter. A. Bell. D. 0. Bobrow, W. S. Haugeland. R-4\1.

[Foderaro, 1979]

[Meehan. 1979]

[Moon, 197 4]

0 .
· tSandewall. 1978]

[Sheil. 1983]

Kaplan and B.A. Sheil. "Interlisp-D: Overview and Status" - in [Sheil & Masinter.
1983].

Foderaro, John K .. The FRANZ LISP Manual- University of California. Bekeley,
California (1979).

Meehan. J. R., The New UCI Lisp Manual - Lawrence Erlbaum Associates,
Hillsdale, New Jersey (1979).

Moon, David. MAC LISP Reference Manual-Version 0, Laboratory for Computer
Science, MIT, Cambridge, M~usetts, (1974)

Sandewall Erik. "Programming in the Interactive Environmnet: The LISP
Experience" - ACM Computing Surveys. vol 10, no 1, pp 35·72. (March 1978).

Sheil. B.A .• "Environments for Exploratory Programming" - Datamation. (February,
1983} - also in [Sheil & Masinter. 1983].

[Sheil & Masinter, 1983]

[Siklossy. 1976]

Sheil B.A. and L. M. Masinter. "Papers on Interlisp-D", Xerox PARC Technical
Report CIS-5 (Revised), (January, 1983) . ..
Siklossy, L.. Let's Talk Lisp- Prentice-Hall. Englewood Cliffs. New Jersey (1976).

fTeitelrnan & Masinter. 1981]
Teite!man. W. and L. M. Masinter, ·Toe Interlisp Programming Environment" -
Compuzer, vol 14, no 4, pp 25-34, (April 1981) - also in [Sheil & Masinter. 1983].

[Weinreb & Moon, 19791

() v
[W eissrnan. 1967]

Weinreb, D. and D. Moon. Lisp Machine Manual - Artificial Intelligence
Laboratory, MIT, Cambridge. Massachusetts, (January 1979).

Weissman. C .• LISP 1.5 Primer - Dickenson Publishing Company, Belmont.
California (1967).

[Winston & Horn. 19811

0

Winston. P.H .• and B.K.P. Horn. LISP- Addison-Wesley, Reading, Massachusetts
(1981).

1.7

r-.. :·, ·. \.:.··.\ .

G-

0
References

(0
\
'- - .

0

\
()

1.8

()-·

CHAPTER 2

DATA TYPES

Interlisp is a system for the manipulation of various kinds of data; it provides a large set of built-in data
· types. which may be used to represent a variety of abstract objects, and the user can also define new data

types which can be used exactly like built-in data types.

Each data type in Interlisp has an associated ••type name," a litatom.1 Some of the type names of built-in
data types are: LITATOM, LISTP, STRINGP, ARRAYP, STACKP, SMALLP, FIXP, and FLOATP. For user
data types (page 3.14), the type name is specified when the data type is created.

(OATATYPES . .,,....) [Function]
Returns a list of all type names cu.."'I'ently defined.

{TYPENAME DATUM) [Function]
Rerurns the type name for the data type of DATUM.

(TYPENAMEP DATUM' TYPENAME) [Function]
Returns T if DATUM is an object with type name equal to TYPENAME, otherwise
NIL. .

Note: TYPENAME and TYPENAMEP distinguish the logical data types ARRAYP, CCODEP and HARRAYP,
even though they may be implemenced as ARRAYPs in some Interlisp implementations.

2.1 DATA TYPE PREDICATES

Q Interlisp provides seperate functions for testing whether objects are of cenain commonly-used types:

0

{LITATOM x)

{SMALLP X)

{FIXP X)

(FLOATP x)

[Function]
Returns T if xis a litatom. NIL otherwise. Note that a number is not a litatom.

[Function]
Returns x if x is a small integer. NIL otherwise. (Note thac the range of small
integers is implementation-dependent. See page 2.36.)

[Function]
Returns x if xis a small or large integer (between MIN. FIXP and MAX. FIXP):
NIL otherwise.

[Function]
Returns x if x is a floating point number: NIL otherwise.

1 ln Interlisp· 10. each daca type also has an associated ··type number." See page 22.2.

2.1

(NUMBERP X)

(ATOM X}

(LISTP X)

(NLISTP X)

,-

Data Type Equality

[Function]
&eturns x if xis a number of any cype (FIXP or FLOATP). NIL otherwise.

[Function]
Returns T if x is an atom (i.e. a litatom or a number); NIL otherwise.

Warning: { ATOM X) is NIL if Xis an array. string. etc. In many dialects of Lisp.
the function ATOM is defined equivalent to the Interlisp function NLISTP.

[Function]
Returns x if xis a list cell e.g.. something created by CONS; NIL otherwise.

[Function)
(NOT (LISTP X)). Returns T if xis not a list cell. NIL otherwise.

\. \ STRINGP X) [Function]

(ARRAYP X)

{HARRAYP x)

Returns X if X is a string. NIL otherwise.

[Function]
Returns X if X is an array' NIL otherwise •

.
Note: In some implementations of Interlisp. ARRA YP may also return x if it is of
type CCODEP or HARRAYP.

[Function]
Returns x if xis a hash array, NIL otherwise.

Note: Toe empty list, () or NIL. is considered to be a lira.tom. rather than a list. Therefore. (LITATOM
N IL) = (AT OM NIL) = T and (LI ST P NIL) = NIL. Care should be taken when using these functions
if the object may be the empty list NIL.

' ., ... DATA TYPE EQUALITY

A common operation when dealing with data objects is to test whether two objects are equal. In some
cases. such as when comparing two small integers. equality can be easily determined. However. sometimes
there is more than one type of equality. For instance. given two lists. one can ask whether they are
exactly the same object, or whether they are two distinct listS which contain the same elements. Confusion
between these two types of equality is often the source of program errors. Interlisp supplies an extensive
set of functions for testing equality:

(EQ X Y)

{NEQ X Y)

[Function}
Returns T if x and Y are identical pointers: NIL otherwise. EQ should not be used
to compare two numbers. unless they are small integers; use E Q P instead.

[Function)
(NOT { EQ X Y))

2.2

n
(;

0
'

0

(NULL x}
{NOT X}

{EQP X Y)

(EQUAL X Y)

DATA TYPES

{EQ X NIL)

[Function]
[Function]

[Function]
Rerums T if x and Y are EQ, or if x and Y are numbers and are equal in value;
NIL otherwise. For more discussion of EQP and other number functions. see page
2.36.

Note: EQP also can be used to compare stack pointers (page 7.3) and compiled
code (page 5.8).

[Function]
EQUAL returns T if x and Y are (1) EQ; or (2) EQP, i.e., numbers with equal value:
or (3) STREQUAL, i.e., strings containing the same sequence of characters: or (4)
lists and CAR of X is EQUAL to CAR of Y, and CDR of X is EQUAL to CDR of Y.
EQUAL remrns NIL otherwise. Note that EQUAL can be significantly slower than
EQ.

A loose description of EQUAL might be to say that x and Y are EQUAL if they
print out the same way.

(EQUALALL X Y) [Function]
Like EQUAL, except it descends into the contents of arrays. hash arrays. user data
types, etc. Two non-EQ arrays may be EQUALALL if their respective componants
are EQUALALL.

2.3 "FAST' AND "DESTRUCTIVE., FUNCTIONS

Among the functions used for manipulating objects of various data types, there are a number of functions
which have "fast" and "destructive" versions. The user should be aware of what these functions do, and
when they should be used.

"Fast" functions: By convention. a function named by prefixing an existing function name with F indicates
that the new function is a .. fast" version of the old. These usually have the same definitions as the slower
versions, but they compile open and run without any "safety" error checks. For example, FNTH runs
faster than NTH, however, it does not make as many checks {for lists ending with anything but NIL.
etc). If these functions are given arguments that are not in the form that they expect, their behavior is
unpredictable: they may run forever. or cause a system error. In general. the user should only use "fast"
functions in code that has already been completely debugged, to speed it up.

0 Desouctive" functions: By convention. a function named by prefixing an existing function with- 0
indicates the new function is a "destructive" version of the old one, which does not make any new
soucture but cannibalizes its argument(s). For example. REMOVE returns a copy of a list with a particular
element removed. but DREM0VE acrually changes the list structure of the list. (Unfortunately, not all
destructive functions follow this naming convention: the destructive version of APPEND is NC0NC.} The
user should be careful when using destructive functions that they do not inadvenantly change data
strucrures.

Q_ - .., ~,

(
!
i

Litatoms

2.4 LITATOMS

A "lit.atom" (for "literal atom") is an object which conceptually consistS of a print name. a value. a
function definition. and a property list. In some Lisp dialectS. litatoms are also known as "'symbols."

A lit.atom is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntatic characters that delimit litatoms are called separator or break characters {see page 6.32) and
normally are space. end-of-line. line-feed. ((left paren),) {right paren). " (double quote), [(left bracket).
and] {right bracket). However. any character may be included in a lit.atom by preceding it with tile
escape character %. Here are some examples of .litatoms:

A wxyz 23SKIDDOO %J 3.1415+17

:· · .ong% L i.t.atom% With% Embedded% Spaces
l
I.

Lit.atoms ~~ printed by PRINT and PRIN2 as a sequence of characters with %'s inserted before all
delimiting characters (so tilat tile lit.atom will read back in properly). Lit.atoms are printed by PRIN1 as a
sequence of characters without these extra %'s. For example. the lit.atom consisting of the five characters
A. B, c. (. and D will be printed as ABC%(0 by PRINT and ABC(D by PRINl.

Litatoms can also be constructed by PACK. PACK•. SUSATOM. MKATOM. and GENSYM (which uses
MKATOM)'.

Litatoms are unique. In other words. if two litatoms print the same. they will always be EQ. Note tilat
this is not tt'Ue for strings. large integers. floating point numbers.· and lists; they all can print the same.
without being EQ. Thus if PACK or MKATOM is given a list of characters corresponding to a lit.atom that
already existS, they rerurn a pointer to that litatom. and do not make a new litatom. Similarly. if the read
program is given as input a sequence of characters for which a · litatom already existS. it returns a pointer

, to that lit.atom. Note: Interlisp is different from other Lisp dialects which allow "unintemed .. lit.atoms.

Note: Litatoms are limited to 255 characters in Interlisp·D: 127 characters in Interlisp· 10. Attempting to
create a larger litatom either via PACK or by typing one in (or reading from a file) will cause an error.

0
(··. ..

_,- I\ TOM TOO LONG. . ()
\~

V" ""
2.4.1 Using Litatoms as Variables

Litatoms are commonly used as variables. Each litatom has a "top level .. variable binding. which can
be an arbitrary Interlisp object. Litatoms may .also be given special variable bindings within PROGs- or
function calls. which only exist for the duration of the function. When a litatom is evaluated. the "current"
variable binding is returned. This is the most recent special variable binding, or the top level binding if
the litatom has not been rebound. SETQ is used to change the current binding. For more information
on variable bindings in Interlisp, see page 7 .l.

Note: Toe compiler (page 12.1) treatS variables somewhat differently than the interpreter. and the user
has to be aware of these differences when writing functions that will be comoiled. For example, variable
references in compiled code are not checked for NOB I ND. so compiled code will not generate unbound
atom errors. In general. it is better to debug interpreted code. before compiling it for speed. Toe cornpiier
offers some facilities to increase the efficiency of variable use in compiled functions; Glpbal variables
(page 12.3) can be defined so that the entire stack is not searched at each variable reference. Local
variables (page 12.4) allow compiled functions co access variable bindings which are not on the stack.

2.4

0

0

0

DATA TYPES

which reduces variable conflicts, and also makes variable lookup faster.

By convention. a litatom whose top level binding is to the litatom NOB IND is considered to have no top
level binding. If a litatom has no local variable bindings. and its top level value is NOB I NO, attempting
to evaluate it will cause an unbound arom error.

The. two litatoms T and NIL always evaluate to themselves. Attempting to change the binding of T or
NIL with the functions below will generate the error ATTEMPT TO SET Tor ATTEMPT TO SET NIL.

The following functions (except BOUNOP) will also generate the error ARG NOT LIT ATOM, if not given
a litatom.

(BOUNDP VAR) [Function]
Rerums T if VAR has a special variable binding (even if bound to NOB IND), or
if VAR has a top level value other than NOB IND; otherwise NIL. In other words.
if X is a litatom. (EVAL X) will cause. an UNBOUND A TOM error if and only if
(BOUNDP x) rerums NIL.

(SET VAR VALUE) [Function]
Sets the "current" variable binding of VAR to VALUE. and recurns VALUE.

Note that SET is a norm.al lambda spread function. so both VAR and VALVE are
evaluated before it is called. Thus. if the value of X is B, and the value of Y is C,
then (SET X Y) would result in B being set to C, and C being returned as the
value of SET.

(SETQ V.A.t:l VALVE) [NLambda NoSpread Function]
Nlambda version of SET; VAR is not evaluated, VALVE is.2 Thus if the value of X
is B and the value of Y is C, (SETQ X Y) would result in X (not B) being set to
C, and C being returned.

(SETQQ VAR VALUE) [NLambda Function]
Like SETO except that neither argument is evaluated, e.g.. (SETQQ X (A B C))
sets X to (A B C).

{ GETTOPVAL VAR) [Function]
Rerums the top leyel value of VAR (even if NOB IND). regardless of any intervening
local bindings.

(SETTOPVAL VAR VALUB) [Function]
Sets the top level value of VAR to VALVE, regardless of any intervening bindings,
and returns VAL UB.

A major difference between various Interlisp implementations is the way that variable bindings are
implemented.. Interlisp-10 and Interlisp-Jerico use what is called ~'shallow" binding. Interlisp-D and
Interlisp-V .A.X use what is called .. deep" binding.

2Since SETQ is an nlambda. neither argument is evaluated during the calling process. However. SETQ itself
calls EVAL on its second argument. Note that as a result. typing (SETQ VAR FORM) and SETQ(VAR
FORM) to the Interlisp executive is equivalent: in both cases VAR is not evaluated.. and FORM is.

2.5

Function Definition Cells

In a deep binding system, a variable is bound by saving on the stack the variable's new value. When a
variable is accessed. itS value is found by searching the stack for the most recent binding. If the variable is
not found on the stack, the top level binding is retrieved from a "value cell" associated with the variable.

In a "shallow" binding system, a variable is bound by saving on the stack the variable name and the
variable's old value and putting the new value in the variable's value cell When a variable is accessed.
its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow binding system, because they have to search
the staek for rebindings; it is more economical to simply rebind variables. In a deep binding system,
GETTOPVAL and SETTOPVAL are very efficient since they do not have to search the stack, but can simply
access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a·variable's value cell. in either a shallow or deep
1d.ing system.

(GETATOMVAL VAR) [Function]
Returns the value in the value cell of VAR. In a shallow binding system. this is the
same as (EVAL ATM), or simply VAR. In a deep binding system, this is the same
as (GETTOPVAL VAR). •

(SETATOMVAL ATM VALUE) [Function]
SetS the value cell of VAR to VALt'E. In a shallow binding system. this is the same
as SET; in a deep binding system. this is the same as SETTOPVAL.

2.4.2 Function Definition Cells

Each litatom has a function definition cell. which is accessed when a Uta.tom is used as a function.· Tne
mechanism for accessing and setting the function definition cell of a litatom is described on page 5.8.

7.4.3 Property Lists

Each Utatom has a property list. which allows a set of named objects to be associated with the Uta.tom. A
property list associates a name. known as a "property name" or "property'', with an abitrary object. the
"property value" or simply "value". Sometimes the phrase "to store on the property x' is used. meaning
to place the indicated information on a property list under the property name x. ·

Property names are usually litatoms or numbers. although no checks are made. However. the standarQ.
property list functions all use EQ to search for property names. so they may not work with non-atomic
property names. Note that the same object can be used as both a propeny name and a property value.

Note: Many litacoms in the system already have property lists. with properties used by the compiler. the
break package. DWTh1. etc. Be careful not to clobber such system properties. The variable SYSPROPS is
a list of property names used by the system.

The functions below are used to manipulate the prcpert lis.s of liratoms. Except when indicated. they
generate the error ARG NOT LI TATOM, if given an object that is not a litatcim.

2.6

(J
(:·.; .

n

0
'

0

0

DATA TYPFS

(GETPROP ATM PROP) [Function]
Rerums the property value for PROP from the property list of ATM. Rewrns NIL if
ATM is not a litatom. or PROP is not found. Note that GETPROP also returns NIL
if there is an occurrence of PROP but the corresponding property value is NIL:
this can be a source of program errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PROP VAL) [Function]
Puts the property PROP with value VAL on the property list of ATM. VAL replaces
any previous value for the property PROP on this property list. Returns V.AL.

(ADDPROP ATM PROP NEW FLG) [Function]
Adds the value NEW to the list which is the value of property PROP on the property
list of A.TM. If FLO is T, NEW is COrlSed onto the front of the propeny value of
PROP, otherwise it is NCONCed on the end (using NCONCl). If ATM does not
have a property PROP, or the value is not a list. then the effect is the same as
(PUTPROP ATM PROP (LIST NEW)), ADO PROP returns the (new) property
value. Example:

+- (PUTPROP 'POCKET 'CONTENTS NIL)
NIL
+- {AOOPROP 'POCKET 'CONTENTS 'COMB)
(COMB)
+- (ADDPROP 'POCKET 'CONTENTS 'WALLET)
(COMB WALLET)

(REMPROP ATM PROP) [Function]
Removes all occurrences of the property PROP (and its value) from the property
list of A.TM. Rerurns PROP if any were found. otherwise NIL.

~

(REMPROPLIST ATM PROPS) [Function]
Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM. Returns NIL.

(CHANGE PROP X PROP1 PROP2) [Function]

(PROP HAMES ATM).

Changes the property name of property PROPI to PROP2 on the property list of
x, (but does not affect the value of the property}. Remrns x, unless PROP1 is not
found, in which case it returns NIL.

[Function]
Returns a list of the property names on the property list of ATM.

(DEFLIST L PROP) [Function]
Used to put values under the same property name on the property lists of several
litatoms. L is a list of two-element lists. The first element of each is a litatom. and
the second element is the property value for the property PROP. Remms NIL. For
example.

(DEFLIST '((FOO MA) (BAR CA) (BAZ RI)) 'STATE)

puts MA on FOO's STATE property, CA on BAR's STATE property, and RI on BAZ's

2.7

Print Names

STATE property.

Property lists are conventionally implemented as lists of the form

(NAME1. VALOE1 NAME2 VALUE,2 • · •)

although the user can store anything as the property list of a litatom. However, the functions which
manipulate property lists observe this convention by searching down the property lists two CD Rs at a time.
Most of these functions also generate an error, ARG HOT LIT ATOM, if given an argument which is not a
litatom, so they cannot be used directly on lists. (LISTPUT, LISTPUTl, LISTGET, and LISTGETl are
functions similar to PUTPR0P and GETPR0P that work directly on lists. See page 2.26.) The property
lists of litatoms can be directly accessed with the following functions:

(GETPR0PLIST ATM) . [Function]
Returns the propeny list of ATM'.

(SETPR0PLIST ATM LST) [Function]
· · - If ATM is a non-NIL litatom, sets the property list of ATM to be LST, and returns LST

as its value. If ATM is NIL. generates the error, ATTEMPT TO RP LAC ~IL (unless
LST is also NIL).

(GETLIS X PROPS) [Function]

l.4.4 Print Names

Searches the property list of x, and returns the property list as of the first property
on PROPS that it finds. For example.

~ (GETPR0PLIST 'X)
(PR0P1 A PR0P3 BA C)
~ (GETLIS 'X '(PR0P2 PR0P3))
(PR0P3 BA C)

Recurns NIL if no element on PROPS is found. x can also be a list itself~ in which
case it is searched as described above. If x is not a litatom or a tis~ returns NIL.

Each litatom has a print name. a string of characters that uniquely identifies that litatom. The term
"print name" has been extende~ however. to refer to the characters that are output when any object is
printed. In Interlisp. all objects have print names. although only lit.atoms and strings have their print name
explicitly stored. Tnis section describes a set of functions which can be used to access and manipulate the
print names of any object. though they are primarily used with the print names of litatoms.

The print name of an object is those characters that are output when the object is printed using PR IN 1.
e.g., the print name of the litatom ABC% (D consists of the five characters ABC (D. Toe print name of the
list (A B C) consists of the seven characters (A B C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a ··PRINZ-name." The PRIN2-name of an object is those
characters output when the object is printed using PRIN2. Thus the PRIN2-narne of the lit.atom ABC~(D
is the six characters ABC%(D. Note that the PRINZ-name depends on what readtable is being used {see
page 6.32). since chis determines where %'s will be inserted. Many of the functions below allow either
prim names or PRINZ-names to be used. as specified by FLG and R.DTBL arguments. If FLG is NIL. print
names are used. Othenvise. PRINZ-names are used. computed with respect to the readtable RDTBL (or

2.8

(~
\)-;,,
·~

0

0

0

()

DATA TYPES

the current readtable, if RDTBr. = NIL).

Note: Toe print name of an integer depends on the setting of RADIX (page 6.19). The functions described
in this section (UNPACK. NCHARS, etc.) define the print name of an inu~ger as though the radix was 10,
so that {PACK (UNPACK 'X9)). will always be X9 (and not sometimes Xll) regardless of the setting •
of RAO IX. However, integers will still be printed by PR IN 1 using the cuITent radix. Toe user can force
these functions to use print names in the CUITent radix by changing the setting of the variable PRXFLG
(see page 6.20).

(MKATOM X) [Function]
Creates and returns an atom whose print name is the same as that of the string x
or, if x isn't a string. the same as that of (MKSTRING x). Examples:

(MKATOM '{ABC)) => %(A% 8% C%)

(MKATOM "1.5") => 1.5

Note that the last example returns a number, not a litatom. It is a deeply-ingrained
feature of Interlisp that no litatom can have tb.e print name of a number.

(SUBATOM X N M) [Function]

(PACK X)

Equivalent to { MKATOM (SUBSTRING X N M)) , but does not make a string
pointer (see page 2.29). Returns an atom made from the Nth through Mth characters
of the print name of x. If N or M are negative, they specify positions counting
backwards from the end of the print name. Examples:

(SUBATOM "F001.5BAR" 4 6) => 1.5

(SUBATOM '(ABC) 2 -2) => A% 8% C

[Function]_
If x is a list of atoms. PACK rerurns a single atom whose print name is the
concatenation of the print names of the atoms in x. If the concatenated print name

. is the same as that of a number, PACK will rerum that number. For example,

{PACK '(A BC DEF G)) => ABCOEfG

(PACK '{1 3.4)) => 13.4

{PACK '(1 E -2)) => .01

Although x is usually a list of atoms, it can be a list of arbitrary [nterlisp objects.
The value of PACK is still a single atom whose print name is the concatenation of
the print names of all the elements of x. e.g., •

(PACK '({AB) "CD~)) => %(A% B%)CD

If xis not a list or NIL, PACK generates an eITor. ILLEGAL ARG.

(PACK• X 1 x 2 · •• XN) [NoSpread Function]
Nospread version of PACK that takes an arbitrary number of arguments, instead of
a lisL Examples:.

2.9

..

Print Names

(PACK• 'A 'BC 'DEF 'G) => ABCOEFG

(PACK• 1 3.4) => 13.4

(UNPACK X FLG RDTm.) [Function}
Returns the print name of x as a list of single-characters atoms. e.g ..

(UNPACK 'ABC5D) => {ABC 5 0)

(UNPACK "ABC(O") => {ABC%(D)

If na=T, the PRIN2·name of xis used (computed with respect to &OT.BL), e.g..

(UNPACK "ABC(D" T) => (%"ABC%(D %")

(UNPACK 'ABC'X(D" T)_ => {ABC%%%(D)

Note: (UNPACK x} performs N CONSes. where N is the number of characters in
the print nam~ of x.

(DUN PACK X SCRA.TCBLIST FLG RDTm.) [Function]
A destructive version of UNPACK that does not perform any CONSes but instead
reuses ·the list SCRA.TCHUST. If the print name is too long to fit in SCRATCHLIST,
DUt~PACK will extend it. If SCRA.TCHLIST is not a list, OUNPACK rerums (UNPACK
X FLG RDTBL}.

(NCHARS X FLG RDTBL) [Function}

'1111

Remrns the number of characters in the print name of x. If FLG=T, the PRIN2·
name is used. For example,

(NCHARS "ABC"} => 3

(NCHARS "ABC" T) => 5

0,
(~'.-, . . ,~.

.. - (NTH CHAR X N FLG RRDTBL)th f . f [Function} ()
. etums e Nth character o the pnnt name o x as an atom. N can be negative. ff.!\
in which case it counts from the end of the print name, e.g_ ·l refers to the last "-· ,.
character, -2 next to last, etc. If N is greater than the number of characters in
the print name. or less than minus that number, or 0, NTHCHAR returns NIL.
Examples:

(NTHCHAR 'ABC 2) => B

{NTHCHAR 15.6 2) => 5

(NTHCHAR 'ABCo/.(0 -3 T) => %%

(NTHCHAR "ABC" 2) => B

(NTHCHAR "ABC" 2 T) => A

Note: NTHCHAR and NCHARS work much faster on objects that actually have an internal representation
of their print name, i.e., lit.atoms and strings, than they do on numbers and lists. as they do not have co
simulate printing.

2.10

n
"·. / .. .,

\..,;:

0
DATA TYPES

(L-CASE X F.tG) [Function]

(~-,

td~ASE X)

(U-CASEP X}

(GEHSYM CliAR)

GE1HtUM

Returns a lower case version of x. If FI.G. is T, the first letter is capitalized. If x is
a string, the value of L-CASE is also a string. If xis a list. L-CASE returns a new
list in which L-CASE is computed for each corresponding element and non·N IL
tail of the original list. Examples: ·

(L-CASE 'FOO) => foo

(L-CASE 'FOOT) => Foo

(L-CASE "FILE NOT FOUND" T) => "File not found"

(L-CASE '(JANUARY FEBRUARY (MARCH "APRIL")) T)
=> '{January February (March "April"))

Similar to L-CASE. except returns the upper case version of x.

.
Returns T if x contains no lower case letters; NIL otherwise.

[Function]

[Function]

[Function]
Returns a litatom of the form Xnnnn. where X=CBA.R (or A if CXA.R is NIL) and
nnnn is an integer. Thus. the first one generated is AOOOl, the second A0002. etc.
GENSYM provides a way of generating lit.atoms for various uses within the system.

. ..
. [Variable]

Toe value of GENNUM. initially 10000. determines the next GENSYM. e.g., if
GENNUM is set to 10023. { GE NSYM) = AO 024.

Tne term "gensym" is used to indicate a lit.atom that was produced by the function GENSYM. Ur.atoms
generated by GENSYM. are the same as any other litatoms: they have propeny lists. and can be given

· function definitions. Note that the litatoms are not guaranteed to be new. For example, if the user has

U-~viously created AO O 12. either by typing it in. or via PACK or GENSYM itself: when GENNUM getS to
, Jll. the next litat0m returned by GENSYM will be the A0012 already in existence.

(MAPA TOMS FN) [Function]

0

Applies FN (a function or lambda expression) to every litatom in the system.
Returns NIL

For example,

{MAPATOMS (FUNCTION (LAMBOA(X)
(if (GETD X) then (PRINT X)]

will print every litatom with a function definition.

Note: In some implementations of Interlisp. unused litatoms may be garbage
collected. which can effect the action of MAPA TOMS.

2.11

.: .. :·

.:.,..:·

·, ,;,_ ~-. '

. ..
~-~~:.-
-~

.. · ..

•:,
"'!·

·­
~ ~·.-

-- --·--· .. ·"""· _,.,:o,.c,p'·

Character Code Functions

2.4.S Character Code Functions

Characters may be represented in two ways: as single-character atoms. or as integer character cod.es. 3 In
many situations. it is more efficient to use character codes. so Interlisp provides parallel functions for both
representations.

(PACKC X)
Similar to PACK except xis a list of character codes. For example.

(PACKC· • (70 79 79}} => FOO

[Function]

(CHC0N X FLG R.OTBL) . . . [Function]
Like UNPACK. except returns the print name of x as a list of character codes. If
FLG=T. the PRIN2·name is used. For example.

(CHC0N 'FOO) => (70 79 79}

(0CHC0N X SCB.ATC1ILIST FLG .RDTm.)
Similar to 0UNPACK.

[Function]

(NTHCHARC00E X N F!.G RDTBL) [Function]

(CHC0N1 x)

. CHARACTER N}

(FCHARACTER N)

Similar to NTHCHAR. except rerums the character code of the Nth character of the
print name of x. If N is negative. it is interpreted as a count backwards from the
end of x. If the absolute value of N is greater than the number of characters in z
or o. then the value of HTHCHARC00E is NIL

If FI.G is T, then the PRIN2·name of x is used. computed with respect to the
readtable R.OTBL

[Function]
Returns the character code of the fust character of the print name of x; equal to
(NTHCHARCODE X 1) .

[Function]
N is a character code. Retums the atom· having the corresponding single character
as its print name.

{CHARACTER 70) => F

[Function]
Fast version of CHARACTER that compiles open.

The following function makes it possible t6 gain the efficiency that comes from dealing with character
codes without losing the symbolic advantages of character atoms:

(CHARCOOE c) [NLambda Function)
Returns the character code structure specified. by c (unevaluated). If c is a
l·character atom or string. the corresponding character code is simply returned.

3Interlisp·D uses an 8-bit character set. so the legal character codes range from O to 255. lnterlisp-10 uses
· standard i-bit ASCII. so the range is 0-127.

2.12

n ' _)

C:~

()
C

-;;:,: . ,.

(\
~·

0

Q

DATA TYPES

Thus. (CHARCCOE A) is 65, (CHARCOOE O) is 48. If c is a list Structure, the
value is a copy of. c with all the leaves replaced by the corresponding character
codes. For instance, (CHARCODE (A (B C))) = > (65 (66 6 7))

CHARCODE permits easy specification of non-printable ASCII character codes: A
multi-character litatom or string whose first character is .,.. is interpreted as the
control-character corresponding to its second character. Thus. (CHARCODE 1'A) is
l, the code for control-A.

Also, if a multi-character litatom or string begins with #, this signifies a "meta­
character", with a code between US to 255. # and "' may be combined, so
{CHARCOOE #1"A} is U9. (Note: Interlisp-10 cannot directly represent meta·
characters as ~acter litatoms, because it only supports 7-bit characters.)

The following key litatoms are mapped into the indicated codes: CR (13), LF (10),
SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB (9), NULL (0), and
DEL (127). The litatom EOL maps into the appropriate End-Of-Line character code
in the different Interlisp implementations (31 in Interlisp· 10, 13 in Interlisp·D, 10
in Interlisp· VAX).

Finally, CHARCODE maps NIL into NIL This is included because some character·
code producing functions sometimes return NIL (e.g. NTHCHARCODE); a test for
that value can be included in a CHARCODE list along with true character-code
values. ·

Charcode of litatomic arguments can be used wherever a structure of character
codes would be appropriate. For example:

(FMEMB [NTHCHARCODE X 1) (CHARCODE (CR LF SPACE)))
(EQ (BIN FOO) (CHARCOOE 1"C))

There is a macro for CHARCODE which causes the character-code structure to be
construeted at compile-time. Thus, the compiled code for these examples is exactly
as efficient as the less readable:

{FMEMB {NTHCHARCODE X 1) (QUOTE (13 10 32)))
(EQ {BIN FOO} 3)

{ SELCHARQ E CLAUSE1 • • · CLAUSEN DEFAULT) [NLambda NoSpread Function]
Similar to SELECTQ (page 4.2). except that the selection keys are determined by
applying CHARCOOE (instead of QUOTE} to the key-expressions. If the value of E is
a character code or N It and it is EQ or MEMB to the result of applying CHAR CODE
to the first element of a clause, the remaining forms of that clause are evaluated.
Otherwise. the default is evaluated.

Thus

(SELCHARQ (BIN FOO)
((SPACE TAB) (FUM))
({1"D NIL) (BAR))
(a _(BAZ))
(ZIP))

2.13

.... 5 LISTS

is exactly equivalent to

(SELECTQ {BIN FOO)
((32 9) (FUM))
((4 NIL) (BAR))
(97 (BAZ))'
(ZIP))

Lists

Furthermore. SELCHARQ has a macro such that it always compiles as an equivalent
SELECTQ.

One of the most useful dawypes in Interlisp is the list cell. a data structure which contains pointers to
two other objects. known as the CAR and the COR of the list cell (after the accessing functions). Vezy
complicated structures can be built out of list cells. including lattices and trees. but list cells are most
frequently used for representing simple linear lists of objects.

The following functions are used to manipulate list cells:

(CONS X Y)

(CAR X)

COR X)

[Function]
CONS is the primary. list construction function. It creates and returns a new list
cell containing pointers to x and Y. If Y is a list. this retum.S a list with x added
at the beginning of Y.

[Function]
Returns the first element of the list x. CAR of NIL is always NIL. For all other
nonlists (e.g .. litatoms, numbers. strings. arrays). the value is undefined (and in
some implementations may generate an error).

[Function]
Returns all but the first element of the list x. CO R of NIL is always NIL. The value
of CDR is undefined for other nonlists.

Often. combinations of the CAR and CDR functions are used to extract various components of complex
list structures. Functions of the fonn C· • -R may be used for some of these combinations:

(CAAR X) ==> {CAR (CAR X})

(CAOR X) ==> (CAR (COR X))

(C0D0DR X) ==> (C0R (C0R (C0R (C0R X))))

All 30 combinations of nested CARs and CD Rs up to 4 deep are included in the system.

{ RPLAC0 X Y) [Functionj
Replaces the CDR of the Hst cell x with Y. This physically changes the internal
structure of x. as opposed to CONS. which creates a new list cell. It is possible to
construct a circu.lar list by using RPLAC0 to place a pointer to the beginning of .r
list in a spot at the end of the list.

2.14

"·

0
(·.

0
\. ..

0

DATA TYPES

Toe value of RPLACD is x. An attempt to RPLACD NIL will cause an error.
ATTEMPT TO RPLAC NIL (except for { RPLACD NIL NIL)). An attempt to
RPLACD any other non-list will cause an error. ARG NOT LIST.

(RPLACA X Y) [Function]
Similar to RPLACD. butreplaces the CAR ofxwith Y. Toe value of RPLACA is x. An
attempt to RPLACA NIL will cause an error. ATTEMPT TO RPLAC NIL. (except
for (RPLACA NIL NIL)). An attempt to RPLACA any other non-list will cause
an error, ARG NOT LIST.

(RPLNODE X .A D) [Function}

(. RPLNOOE2 X Y)

(FRPLACO X Y)
(FRPLACA X Y)
(FRPLNOOE X .AD}
{ FRPLNODE2 X Y)

Performs (RPLACA X .A), (RPLACD X D), and returns X.

[Function]
Performs (RPLACA X (CAR Y)). (RPLACD X (CDR Y)) and returns X.

Faster versions of RPLACD, etc.

[Function]
[Function] ,
[Function]
[Function]

Warning: In Interlisp-10 and Interlisp-VAX. these functions compile open wit.'1. no
error checks on the type of x. so a compiled FRPLACO can produce unpredictable
effects. ··

Usually, single list cells are not manipulated in isolation, but in strucrures known as .. lists". By convention.
a list is represented by a list cell whose CAR .is the first element of the list, and whose COR is the rest of
the list (usually another list cell or the .. empty list." NIL). List elements may be any Interlisp objects,
including other lists.

The input syntax for a list is · a sequence of Interlisp data objects (litatoms. numbers. other lists. etc.)
enclosed in parentheses or brackets. Note that {) is read as the litatom N IL. A right bracket can be used
to match all left parenthesis back to the last left bracket, or terminate the lists. e.g. (A (B (C].

If there are two or more elements in a list, the final element can be preceded by a period delimited on
both sides, indicating that CD R of the final list cell in the list is to be the element immediately following
the period. e.g. (A • B) or (A B C . D) , otherwise CD R of the last list cell in a list will be NIL.
Note that a list does not have to end in NIL. It is simply a strucmre composed of one or more list cells.
The input sequence (A B C • NIL) is equivalent to (A B C), and (A B • (C D)) is equivalent to
(A B C D). Note however that (A B . C D) will create a list containing the five litatoms A, B. % ••
C, and D.

Lists are printed by printing a left parenthesis. and then printing the first element of the list. then printing
a space. then printing the second element. etc. until the final list cell is reached. The individual elements
of a list are printed by PR IN 1 if the list is being printed by PR IN 1. and by PR IN 2 if the list is being
printed by PRINT or PR!N2. Lisrs are considered to terminate when COR of some node is not a list. If
CCR of this terminal node is NIL (the usual case}. CAR of the terminal node is printed followed by a
right parenthesis. If CDR of the terminal node is not NIL. CAR of the terminal node is printed. followed
by a space. a period. another space. COR of the terminal node. and then the right parenthesis. Note that
a list input as (A B C . NIL) will print as (A B C), and a list input as (A B . { C D)) will print
as (A B C D). Note also that PRINTLEVEL affects the printing of lists (page 6.18}, and that carriage

2.15

Creating Lists

retuI'l?,S may be inserted where dictated by LINELENGTH (page 6.8).

Note: One must be careft.11 when testing the equality of list strUctures. EQ will be true only when the two
lists are the exact same list. For example •

._ (SETQ A '(1 2))
(1 2)
._ (SETQ BA)
(1 2)
._ (EQ AB)
T
._ (SETQ C '{1 2))
(1 2)

__ ···,_ (EQ A C)
(IL

._ (EQUAL AC)
T

In the example above. the values of A and B are the exact same ~t. so they are EQ. However. the value
of C -is a totally different list, although it happens to have the same elemencs. EQUAL should be used to
compare the elementS of two lists. In geneJ:al. one should notice whether list manipulation functions use
EQ or EQUAL for comparing listS. This is a frequent source of errors.

Interlisp provides an extensive set of list manipulation functions:

2.5.1 Creating Lists

(MKLIST x)

(APPEND x1 x2

[Function]
"Make List." If Xis a· list or NIL. rerurns X: Otherwise. returns (LIST X).

XN) (NoSpread Function]
Returns a list of ics arguments. e.g.

(LI ST ' A ' B ' (C D)) = > (A B (C D))

xN) [NoSpread Function]
Copies the top level of the list x 1 and appends this to a copy of the top level of
the list x2 appended to · · · appended to xN, e.g ••

(APPEND '{A.B) '(COE) '(F G}) => (ABC DEF G)

Note that only the first N· 1 liscs are copied. However N= 1 is treated specially;
(APPEND X) copies the top level of a single list. To copy a list to all levels, use
COPY.

The following examples illustrate the treaanent of non-liscs:

(APPEND '(ABC) '0) => (A B C . 0)

(APPEND 'A '(BCD)) => (B C D}

2.16

0
(-

0
(_ .. -~

'. ~

{)
. ~-

0

DATA TYPES

(APPEND '(ABC • D) '(EFG)) => (ABC EFG)

(APPEND '{ABC D)) => (ABC. D)

(NCONC x1 x2 • • • XN) [NoSpread Function]
Returns the same value as APPEND, but acmally modifies the list structure of x 1

(NCONCl I.STX)

(.ATTACH XL}

••• X'n-1·

Note that NCONC cannot change NIL to a list:

+-(SETQ FOO NIL}
NIL
+-(NCONC FOO '(ABC}}
(ABC)
+-FOO
•UL

Although the value of the NCONC is (A B C}, FOO has not been changed. The
.. problem" is that while it is possible to alter list structure with RPLACA and
RPLACO, there is no way to change the non-list NIL to a list.

[Function]
• (NCONC LST (LIST x))

[Function]
.. Attaches'' x to the front of L by doing a RPLACA and RPLACO. The value is
EQUAL to (CONS X L). but EQ to L, which it physically changes (except if L is
NIL). (ATTACH X NIL) is the same as (CONS X NIL). Otherwise, if Lis not
a list, an error is generated. ARG NOT LIST.

2.5.2 Building Lists From Left to Right

0 (TCONC PTR X) [Function]
TCONC is similar to NCONC1; it is useful for building a list by adding elements one
at a time at the end. Unlike NCONC1, TCONC does not have to search to the end
of the list each time it is called. Instead, it keeps a pointer to the end of the list
being assembled. and updates this pointer after each call. This can be considerably
faster for long lists. Toe cost is an extra list celL PTR. (CAR PTR) is the list being
assembled. {CCR PTR) is (LAST (CAR PTR)). TCONC returns PTR, with its
CAR and CCR appropriately modified.

0

PTR can be initialized in two ways. If PTR is NIL. TCONC will create and return a
PTR. In this case, the program must set some variable to the value of the first call
to TCONC. After that, it is unnecessary to reset the variable. since TCONC physically
changes its value. Example:

~(SETQ FOO (TCONC NIL 1))
((1) 1)
~(for I from 2 to 5 do (TCONC FOO I))
NIL
~FOO

2.17

(LCONC PTR X}

Building Lists From Left to Right

((1 2 3 4 5) 5)

If PTR is initially (NIL), the value of TCONC is the same as for PTR= NIL but
TCONC changes PTR. This method allows the program to initialize the TCONC
variable before· adding any elements to the list. Example:

· ..,.{ SETQ FOO (CONS))
(rHL)
~(for I from 1 to 5 do (TCONC FOO I))
NIL
,._FOO
((1 2 3 4 5) 5)

[Function}
Where TCONC is used to add elements at the end of a list. LCONC is used for
building a list by adding lists at the end. Le .• it is similar to NCOr•c instead of
NCOHC 1. Example:

~(S6TQ FOO (CONS))
(NIL)
~(LCONC FOO '(1 2))
((1 2) 2)
.. (LCONC FOO '(3 4 5))
((1 2 3 4 5) 5)
~(LCONC FOO NIL)
((1 2 3 4 5) 5)

LCONC uses the same pointer conventions as TCONC for eliminating searching to
the end of the list. so that the same pointer can be given to TCONC and LCDrJC
interchangeably. Therefore. continuing from above,

.. (TCONC FOO NIL)
((1 2 3 4 5 NIL) NIL)
~(TCONC FOO '(3 4 5))
((1 2 3 4 5 NIL (3 4 5)) (3 4 5))

The functions OOCOLLECT and ENDCOLLECT also permit building up lists from left-to-right like TCONC.
but without the overhead of an extra list cell. Toe list being maintained is kept as a circular list.
DOCOLLECT adds items: ENDCOLLECT replaces the tail with its second argument. and returns the full
list.

(DOCOLLECT ITEM LST) [Function}
"Adds" ITEM to the end of LST. Returns the new circular list. Note that LST is
modified. but it is not E Q to the new list. The new list should be stored and used
as LST to the next call co OOCOLLECT.

{ ENDCOLLECT LST TA.LL) [Function]
Takes LST, a list returned by DOCOLLECT. and returns it as a non-circular list.
adding TAIL as the terminating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRINT is used to print the results because
they are circular lists. Notice that FOO has to be set to the value of DOCOLLECT as each element is

2.18

n
C-
'<..·

(-)
(.:.: -~

()
\...C-.:

Q

0

0

added.

+-(SETQ FOO NIL]
NIL

DA"i"A TIPES

+-(HPRINT (SETQ FOO {OOCOLLECT l•FOO]
1'(1 • {1})
+-(HPRINT (SETQ FOO (OOCOLLECT 2 FOO]
1'{2 1 • {1})
+-(HPRINT (SETQ FOO (OOCOLLECT 3 FOO]
1'(3 1 2 . {1})
+-(HPRINT (SETQ FOO (DOCOLLECT 4 FOO]
1'(4 l 2 3 • {1})
+-{SETQ FOO (ENDCOLLECT FOO 5]
(1 2 3 4. 5)

2.5.3 Copying Lists

(COPY X)

{COPYALL x)

{HCOPYALL X)

[Function]
Creates and returns a copy of the list x. All levels of x are copied down to non-lists.
so that if x contains arrays and stri.ngs. the copy of x will contain the same arrays
and strings. not copies. COPY is recursive in the CAR direction only, so very long
lists can be copied.

Note: To copy just the top level of X. do (APPEND x).

[Function]
Like COPY except copies down to atoms. Arrays. hash-arrays. strings. user data
types. etc .. are all copied. Analagous to EQUALALL (page 2.3). Note that this
will not work if given a data sttucture with circular pointers; in this case. use
HCOPYALL.

[Function]
Similar to COPY ALL, except that it will work even if the data sttucture contains
circular pointers.

2.5.4 Extracting Tails of Lists

(TAILP X Y}

(NTH X N}

[Function]
Returns x. if x is a tail of the list Y: otherwise NIL. x is a tail of Y if it is E Q to
0 or more CDRs of Y.

Note: If xis EQ to 1 or more CO Rs of Y. xis called a .. proper tail."

[Function]
Returns the call of x beginning with the Nth element. Returns NIL if x has fewer
than N elemencs. Examples:

(NTH '(ABC D) 1) => (ABC D)

2.19

(FNTH X N)

- (LAST X)

(FLAST ·x}.

Extracting Tails of Lists

(NTH I (A B C D) 3) => (CD)

(NTH '(A B C D) 9} => NIL

(NTH '(A • 8) 2) => B

For consistency. if N= 0. NTH remrns (CONS tUL x):

{NTH '(AB) 0) => (NIL AB)

[Function]
Faster version of NTH that terminates on a null-check.

(lnterlisp-10) Interpreted. generates an error. BAO ARGUMENT - FNTH, if X ends
in other than NIL.

[Function]
RetumS the last list cell in the list x. Returns NIL if x is not a list. Examples:

(LAST '(ABC)) => (C)

(LAST '(AB C)) => (B. C)

(LAST 'A) => NIL

[Function]
Faster version of LAST that terminates on a null-check.

(Interlisp-IO) Interpreted. generates an error. BAD ARGUMEN r - FLAST, if xends
in other than NIL.

(NLEFT L N TAZL) - [Function)
NLEFT returns the tail of L that contains N more elements than TAZL. If L does
not contain Nmore elements than TAZL. NLEFT returns NIL. lfTAZL is NIL or not
a tail of L. NLEFT returns the last N· list cells in L. NLEFT can be used to work

-~ - backwards through a list. Example:

(LASTN L N)

~csETQ FOO '(ABC DE))
(A B C O E)
~{NLEFT FOO 2)
(DE)
~{NLEFT FOO 1 (COOR FOO))
(BCD E)
~{NLEFT FOO 3 (COOR FOO})
NIL

[Function)
Returns (C OHS X Y), where Y is the last N elements of L. and X is the initial·
segment. e.g ..

{LASTN '{ABC DE) 2) => ((ABC) DE)

(LASTN '(AB) 2) => (NIL A 8)

2.20

.. . ..

Q,
t _:_,! •
"-·

n
~-t.fJ \..: ...

()
-~·,

0 , ___ .

,,.----. u ·-- .~

n
\_/•

0

DATA TYPES

Rewms NIL if L is not a list containing at least N elements.

l.5.S Counting List Cells

(LENGTH X)

(FLENGTH x}

[Function]
Returns the length of the list x. where "length" is defined as the number of CD Rs
required to reach a non-list. Examples: ·

(LENGTH I (A B C)) => 3

(LENGTH '(A B C • 0)) => 3

(LENGTH 'A) => 0

[Function]
Faster version of LENGTH that terminates on a null-check.

(Interlisp·lO) Interpreted. generates an error, BAO ARGUMENT - FLENGTH, if x.
ends in other than NIL.

(EQLENGTH X N) [Function]
Equivalent to (EQUAL (LENGTH x) N), but more efficient. because EQLENGTH
Steps as soon as it knows that xis longer than N. Note that EQLENGTH is safe to
use on (possibly) circular lists, since it ~ .. bounded" by N.

(COUNT X) [Function]
Returns the number of list cells in the list x. Thus, COUHT is like a LEHGTH that
goes to all levels. COUNT of a non-list is 0. Examples:

(COUNT '(A)) => 1

(COUNT '(A. B)) => 1

(COUNT '(A (B) C)) => 4

In this last example, the value is 4 because the list { A x C) uses 3 list cells for
any object X. and (B } uses another list cell.

(COUNTDOWN X N) [Func--JonJ
Counts the number of list cells in x. decrementing N for each one. Stops and
returns N when it finishes counting, or whe:i N reaches 0. COUNTDOWN can be
used on circular structures since it is .. bounded" by N. Examples:

(COUNTDOWN '(A} 100) => 99

{COUNTDOWN '(A . B) 100) => 99

(COUNTDOWN '(A (8) C) 100) => 96

{COUNTDOWN '(DOCOLLECT 1 NIL) 100) => 0

2.21

···-,

Logical Operations

(EQUALN X y DEPTH) [Function}

.5.6

Similar to EQUAL. for use with (possibly) circular sauctures. Whenever the depth
of CAR recursion plus the depth of COR recursion exceeds DEPTH. EQUALN does
not search funher along that chain. and returns the litatom ? • If recursion never
exceeds DEPTH. EQUALN returns T if the expressions x and Y are EQUAL; otherwise
NIL. .

{EQUALN '{({A)) B) '(({Z)) B) 2) => 7

(EQUALN '(((A)) B) '(((Z)) B) 3) => NIL

(EQUALN· I (((A)} B} '(((A)) S) 3) => T

Logical Operations

(LDIFF X Y Z) [Function]
Y must be a tail of z Le .• EQ to the result of applying some number of CO Rs to
X. (LOI FF X Y) returns a list of all elements in X up to Y. '

If z is not NIL. the value of LOIFF is effectively (NCONC z {LDIFF x Y)).
i.e., the list difference is added at the end of z.

If Y is not a tail of Z LOI FF generates an eITOr. LDIFF: NOT A TAIL. LOIFF
terminates on a null-check. so it will go into an infinite loop if x is a circular list
and Y is not a tail.

Example:

~(SETQ FOO '{ABC OE F))
(ABC DEF)
~ccooR FOO)
(CD E F}
~(LDIFF FOO (COOR FOO))
(AB)
~(LOIFF FOO (COOR FOO) '(1 2))
(1 2 AB)
~(LOIFF FOO '(CD E F))
LOIFF: not a tail
(CD E F)

Note that the value of LO I FF is always new list structure unless Y= NIL. in which
case the value is x itself.

(LOIFFERENCE x Y) [Function]
.. List Difference." Returns a list of those elements in x that are not members of
Y.

(HITERSECT IO~I x Y) [Function!
Returns a list whose elements are members of both lists x and Y. Note that
(INTERSECTION X X) gives a list of all members of X without any duplications.

2.22

()
(.

(l
(i: •.·

0

0

(UNION X Y)

DATA TYPES

[Function]
Returns a (new) list consisting of all elements included on either of the two original
lists. It is more efficient to make x be the shoner list.

The value of UNION is Y with all elements of x not in Y C0NSed on the front of
it. Therefore, if an element appears twice in Y, it will appear twice in (UNI ON x
Y). Since (UNION '(A) '(A A)) = (A A), while (UNION '(A A) '{A))
= (A), UN I ON is non-commutative.

2.5. 7 Searching Lists

(MEMB x Y)

{ FMEMB X Y)

(MEMBER X Y)

(EQMEMB X Y)

[Function}
Determines if xis a member of the list Y. If there is an element of Y EQ to x,
retums the tail of Y starting with that element. Otherwise, returns NIL. Examples:

{MEMB 'A '(A {W) C 0)) => (A (W) C 0)

(MEMB ·c '(A {W) C 0)) => (C 0)

(MEMS ·w '{A (W) C 0)) => NIL

(MEMB '(W) '{A (W) C 0)) => NIL

[Function]
Faster version of MEMB that terminates on a null-check. .
(Interlisp-10) Interpreted. FMEMB gives an error, BAD ARGUMEHT - FMEMB, if Y
ends in a non-lisrother than NIL.

[Function]
Identical to MEMB except that it uses EQUAL instead of EQ to check membership
of x in Y. Examples:

(MEMBER 'C '{A (W) C 0)) => (C 0)

{MEMBER 'W '(A (W) C 0)) => NIL

(MEMBER '(W) '(A (W) C 0)) => ((W) C 0)

[Function]
Returns T if either x is EQ to Y, or else Y is a list and x is an FMEMB of Y.

z_s.s

(SUBST

Substitution Functions

NEW OLD EXP·R) [Function}
Returns the result of substituting NEW for all occurrences of OLD in the expression
E:a'R. Substitution occurs whenever OLD is EQUAL to CAR of some subexpression
of EXPR. or when OLD is atomic and EQ to a non-NIL CDR of some subexpression
of EXPR. For example:

2.23

l

Substitution Functions

{SUBST 'A 'B '(CB (X • B))) => (CA (X • A))

(SUBST 'A ' (B C) ' ((B C) D B C))
=> (A 0 B C) nol (A D • A)

SUBST remrns a copy of EXPR with the appropriate changes. Furthennore, if NZW
is a list. it is copied at each substitution.

(DSUBST NEW OLD EXPR) [Function]
Similar to SUB ST, except it does not copy EXPR. but changes the list structure
E:a'R itself. Like SUBST. OSUBST substitutes with a copy of NEW. More efficient
than SUBST •

0
(.·

. _(LSUBST NEW OLD EXPR) [Function]
r Like SUBST except NEW is substituted as a segment of the list EXPR rather than n _
\, ... ··· as an element. For instance, (>:: ·

(LSUBST '(AB) 'Y '(X Y Z)) => (X AB Z}

Note that if NEW is not a list. LSUBST returns a copy of EXPR with all OLD's
deleted:

(LSUBST NIL 'Y '(X Y Z)) => (X Z)

(SUBLIS ALST EXPR FLG) [Function]
'" ALST is a list of pails:

{(OLDz • NEW1) (OLD2 • NEW2) • •• (OLDN . NEWN)}

Each OLDi is an atom: SUBLIS rerurns the result of substituting each NEWi for
the corresponding OLDi in EXPR, e.g..

(SUBLIS '((A. X) (C. Y)) '(ABC 0)) => {X BY 0)

'--··· .
If FLG =NIL, new structure is created only if needed. so if there are no substitutions.
the value is EQ to EXPR. If FLG=T. the value is always a copy of EXPR.

n.
..._A

(OSUBLIS ALST EXPR FLG) [Function]
Similar to SUBLIS. except it does not copy EXl'R. but changes the list strucrure
EXPR itself.

(SUB PAIR OLD NEW EXPR FLG) [Function]
Similar to SUB LIS. except that elements of NEW are substituted for corr1:sponding
atoms of OLD in EXPR, e.g .•

(SUBPAIR '(AC) '(X Y) '(ABC 0)) => (X BY 0)

As with SUB LIS. new structure is created only. if needed. or if FLG = T. e.g.. if
FLG= NIL and there are no substitutions. the value is EQ to EX?R.

If OLD ends in an atom other than NIL. the rest of the elemencs on NEW. are
substiruted for tl;lat atom. For example. if OLD= (A B • C) and NEW= (U . V X
Y Z). u is substitucea for A. v for B. and_{ x Y z) for C. Similarly. if OLD itself

2.24

\..: ·.

Q

0
\.

o·
·

()

0

DATA TYPES

is an atom (other than NIL), the entire list NEW is substituted for it. Examples:

(SUBPAIR '{AB • C) '(W X Y Z) '{CAB BY)) => ((Y Z) W X
X Y)

Note that SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression. whereas
SUBLIS, .and DSUBLIS, and SUBPAIR substitute the identical structure (unless FLG=T). For example:

., (SETQ FOO '{A 8))
{AB)
., {SETQ BAR '(X Y Z))
(X Y Z)
., (DSUBLIS (LIST (CONS 'X FOO)) BAR)
{(A B) Y Z)
., (DSUBLIS {LIST (CONS •y FOO)) BAR T)
((A B) (A B) Z)
""(EQ (CAR BAR) f.00)
T
., (EQ (CAOR BAR) FOO)
NIL

2.5.9 Association Lists and Property Lists

(ASSOC KEY .ALST) [Function]
ALST is a list of lists. ASSOC returns the first sublist of AI.ST whose CAR is EQ to
KEY. If such a list is not found. ASSOC returns NIL. Example:

(ASSOC 'B '((A. 1) (B. Z) (C. 3))) => (B • 2)

(FASSOC KEY .ALST) [Function]
Faster v.ersion of ASSOC that terminates on a null-check.

(Interlisp-10} Interpreted. F ASSOC gives an error if ALST ends in a non-list other
than NIL, BAO ARGUMENT - FASSOC. .

(SASSOC KEY ALST) [Function]
Same as ASSOC but uses EQUAL instead of EQ when searching for KEY.

(PUT ASSOC KEY VAL ALST) [Function]
Searches ALST for a sublist CAR of which is EQ to KEY. If one is found. the CDR is
replaced (using RPLACD) with VAL. If no such sublist is found. (CONS KEY VAL)
is added at the end of .ALST. Returns VAL. If ALST-is not a list, generates an error.
ARG NOT LIST.

Note that the argument order for ASSOC, PUT ASSOC. etc. is-different from that of LISTGET, LISTPUT,
ere.

(LISTGET I.ST PROP} [Function]
Similar to GETPROP (page 2.7) but works on !is~ using property list format.
Searches I.ST two elements at a time. by COOR. looking for an element EQ to
PR.OP. lf one is found. returns the next element of r..sT. otherwise NIL. Returns

2.25

Association Lists and Property Lists

NIL if LST is not a list. Example:

(LISTGET '(A 1 B 2 C 3) 'B) => 2

(LISTGET '(A 1 B 2 C 3) 'W) => NIL

(LISTPUT I.ST PROP VAL} [Function}
Similar to PUTPROP. Searches LST two elements at a time, by COOR. looking for
an element EQ to PROP. If PROP is found. replaces the next element of LST with
VAL. Otherwise. PROP and VAL are added to the end of LST. If LST is a list with
an odd number of elemenrs. or ends in a non-list other than NIL. PROP and VA.L­
are added at its beginning. Returns VAL. If LST is not a list, generates an error.

--~
(/

(

ARG NOT LIST. · 1
[F . J_) (LISTGET1 LST PROP.) unction .

Like LISTGET, but searches LST one CDR at a time. Le.. looks at each element. (
Returns the next element after PROP. Examples:

(LISTGETl '(A 1 B 2 C 3) 'B) => 2

(LISTGET1 '(A 1 B 2 C 3) '1) => B

(LISTGET1 '(A 1 B 2 C 3) 'W) => NIL

Note: LISTGET1 used to be called GET.

(LISTPUT1 I.ST PROP VAL) {Function1
Like LISTPUT, except searches LST one CDR at a time. Returns the modified LST.
Example:

._(SETO FOO '(A 1 B 2))
(A 1 B 2)
._(LISTPUT FOO 'B 3)
{A 1 B 3)
.. (LISTPUT FOO 'C 4)
(A 1 B 3 C 4)
.. (LISTPUT FOO 1 'W)
(A 1 W 3 C 4)
.. FOO
(A 1 W 3 C 4)

Note that if LST is not a list, no error is generated. However. since a non-list
cannot be changed into a list. LST is not modified. In this case. the value of
LISTPUT 1 should be saved. Example:

._(SETQ FOO NIL)
NIL
._(LISTPUT FOO 'A 5)
(A 5)
.-Foo
NIL

2.26

()
(-;­
\.:;;

() .
.. •

. Q_,

0

DATA TYPES

2.5.10 Other List Functions

(REMOVE x t)

(DREMOVE XL)

(REVERSE L)

(DREVERSE L)

2.6 STRlNGS

[Function]
Removes all top-level occurrences of x from list z.., returning a copy of L with all
elements EQUAL to x removed. Example:

(REMOVE 'A '(ABC (A) A)) => (BC {A))

(REMOVE '(A) '(ABC (A) A)) => (ABC A)

[Function]
Similar to REMOVE, but uses EQ instead of EQUAL. and actually modifies the list
L when removing x. and thus does not use any additional storage. More efficient
than REMOVE.

Note that OREMOVE cannot change a list to NIL:

+-(SETQ FOO ' (A))
{A)
+-(OREMOVE 'A FOO)
NIL
+-FOO
(A)

Toe DREMOVE above returns·NIL, and does not perform any C0NSes. but the value­
of FOO is still (A). because there is no way to change a list to a non-list. See
NCONC.

Reverses (and copies) the top level of a list. e.g..

(REVERSE '(AB (C 0))) => ((CD} BA)

If L is not a list. REVERSE just returns L •

[Function]

[Function]
Value is the same as that of REVERSE. but OREVERSE destroys the original list
L and thus does not use any additional storage. More efficient than REVERSE.

A string is an object which represents a sequence of characters. Interlisp provides functions for creating
strings, concatenating strings, and creating sub-strings of a string.

The input syntax for a string is a double quote ("). followed by a sequence of any characters except
double quote and %, terminated by a double quote. The % and double quote characters may be included
in a su"ing by preceding them with the escape character %.

Strings are printed by PRINT and PRIN2 with initial and final double quotes. and %s inserted where

2.27

··--· ·--··-··,. - • __ - ..,_..,_.z,_, __________ _

Strings

necessary for it to read back in properly. Strings are printed by PRINl without the delimiting double
quotes and extra %s.

A "null string" containing no characters is input as"". Toe null string is printed by PRINT and PRIN2
as "". (PRUJl "") doesn't print anything.

Strings are created by MKSTRING. ALLOCSTRU.tG, SUBSTRING, and CONCAT.

Internally a string is stored in two pans; a "string pointer'' and the sequence of characters. Several string
pointers may reference tb.e same character sequence, so a substring can be made by creating a new string
pointer, without copying any characters. It is not possible to directly access a character sequence. so
functions that refer to "strings" actually manipulate string pointers. In most cases, the user does not have·
to be aware of string pointeIS, but there are some situations where it is important to understand th.em. n
For example, suppose th.at x is a string pointer to a sequence of characte:s. and Y is another string pointer' _.
to a substring of rs-characters. If the characters of Y are modified (with RPLSTRING or RPLCHARCODE),
the coITesponding characters of x will be modified too. (

(STREQUAL X Y) [Function]
Rerums T if x and Y are both strings and they contain the same sequence of
characters, otherwise NIL. EQUAL uses STREQUAL. Note that strings may be
STREQUAL without being Eq. For instance,

(STREQUAL "ABC" "ABC") => T

(EQ "ABC" "ABC") => NIL

STREQUAL returns T if x and Y are the same string pointer, or two different string
pointers which point to the same character sequence, or two string pointers which
point to different character sequences which contain the same characters. Only in
the first case would x and Y be EQ.

(ALLOCS_TRING N IMTC'HAR OLD) [Function]
.r,, '. Creates a string of length N charaters of INITCHAR (which can be either a character J

code or something coercible to a character}. If INITCH.AB. is NIL. it defaults co
character code 0. if OLD is supplied. it must be a string pointer. which is re-used. ~

(MKSTRING X FLG JWTBL) [Function]
If x is a string, returns x. Otherwise. creates and returns a string containing the
princ name of x. Examples:

(MKSTRING "ABC") => "ABC"

(MKSTRING '(ABC)) => "(ABC)"

(MKSTRING NIL) => "NIL"

Note thac the last example returns the string "NIL". nae the atom NIL.

ff F'LG is T. then the PRIN2-name of xis used. computed with respect to the
readtable ROTBL. For example. ·

(MKSTRING "ABC" T) => "%"ABC%""

2.28

o~

O'':

o ..

6

.. -·-- ·-·· . -------- ·---· ---·--·· -., ... _______ ,, ..

DATA TYPFS

(SUBSTRING X N M OLDPTR) [Function]

. (GN~ X}

(GLC X)

Returns the substring of x consisting of the Nth through Mth characters of x. If M
is NIL. the substring contains the Nth character thru the end of x. N and M can be
negative numbers, which are interpreted as counts back from the end of the string,
as with NTHCHAR (page 2.10). SUBSTRIHG returns NIL if the substring is not well
defined, e.g.. N or M specify character positions outside of x. or N corresponds to
a character in x to the right of the character indicated by M). Examples:

(SUBSTRING "ABCDEFG" 4 6) => "DEF"

(SUBSTRING "ABCDEFG" 3 3) => "C"

(SUBSTRING "ABCOEFG" 3 NIL) => "CDEFG"

(SUBSTRING "ABCOEFG" 4 -2) => "DEF"

csuaSTRING "ABCDEFG" 6 4) => NIL

(SUBSTRING "ABCDEFG" 4 9) => NIL

If xis not a string, it is converted to one. For example,

{SUBST-ING '{ABC) 4 6} => "BC"

SUBSTRING does not actually copy any characters. but simply creates a new string
p.ointer to the characters in x. If OLDPTR is a string pointer, it is modified and
returned.

[Function]
"Get Next Character." Returns the next ch&-acter of the string x (as an atom);
also removes the character from the string. by changing the string pointer. Returns
NIL if xis the null string. If x isn't a string, a string is made. Used for sequential

. access to characters of a string. Example:

~csETQ FOO "ABCDEFG")
"ABCD.EFG"
~(GNC FOO)
A
~(GNC FOO)
B
~FOO
"CD EFG"

Note that if A is a substring of B, (GNC A) does not remove the character from
B. GNC doesn't physically change the string of characters, just the string pointer.

[Function}
.. Get Last Character." Returns the last character of the string x (as an atom); also
removes the character from the string. Similar to GNC. Example:

~(SETQ FOO "ABCDEFG·)
"ABCDEFG"
~{GLC FOO)

2.29

(CONCAT Xi X,2

G
~(GLC FOO)
F
~FOO
"ABCOE"

Strings

xN) [NoSpread Function}
Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are traDSformed to strings. Examples:

{CONCAT "ABC" 'DEF "GHI") => "ABCDEFGHI"

(CONCAT '{ABC) "ABC") => "{AB C)ABC"

{ CONCAT) returns the null string, "".

(CONCATLIST .;t") [Function}
xis a list of Strings and/or other objects. The objects are transformed to strings if
they aren't strings. Returns a new string which is the concatenation of the strings.
Example:

(CONCATLIST '{AB (C 0) "EF")) => "AB(C D)EF"

(RPLSTRING x N Y) [Function}
Replaces the characters of string x beginning at character position N with stting
Y. x and Y are converted to strings if they aren't already. N may be positive or
negative. as with SUBSTRING. Characters are smashed into (converted) x. Returns
the string x. Examples:

(RPLSTRING "ABCDEF" -3 "END") => "ASCEND"
«ll

{RPLSTRING "ABCDEFGHIJK" 4 '(ABC)) => "ABC(A ~ C)K"

0-,~-­
\..:"

Generates an error if there is not enough room in X for Y. i.e.. the new string n
would be longer than the original. If Y was not a string, x will already have been . _ 7'~.;.~_.· ..
modified since RPLSTRING does not know whether Y will "fit'' without actually -
attempting the traDSfer.

Note that if x is a substring of z. Z will also be modified by the action of
RPLSTRING. Example:

~ (SETQ FOO "ABCOEFG")
"ABCDEFG"
~ (SETQ BAR (SUBSTRING FOO 4 6)
"DEF"
~ (RPLSTRING BAR 2 "XY")
"OXY"
~ i!OO
"ABCDXYG"

(RPLCHARCODE X N CHARCODE) [Function}
Replaces the Nth character of the string x with the character code CHAR.CODE. N
may be positive or negative. Returns the new x. Similar to RPLSTRING. Example:

2.30

0 -.. _ .

0

DATA TYPES

(RPLCHARCOOE "ABCOE" 3 (CHARCOOE F)) => "ABFOE"

(STRPOS PAT STRING START SKIP ANCHOR TAlI.) [Function]
STRPOS is a function for searching one string looking for another. PAT and.
STRING are both strings (or else they are converted automatically}. STRPOS
searches STRING beginning at character number ST.A.RT, (or 1 if START is PHL)
and looks for a sequence of characters equal to PAT. If a match is found, the
character position of the first matching character in STRING is returned, otherwise
NIL. Examples:

(STRPOS "ABC" "XYZABCDEF") => 4

{STRPOS "ABC" "XYZABCOEF" 5) => NIL

{STRPOS "ABC" "XYZ.ABCOEFABC" 5) => 10

SKIP can be used to specify a character in PAT that matches ·any character in
STRING. Examples:

(STRPOS "A&C&" "XYZABCOEF" NIL'&) => 4

(STRPOS "DEF&" "XYZABCOEF" NIL'&) => NIL

If ANCHOR is T, STRPOS compares PAT with the characters beginning at position
START (or 1 if START is NIL). If that comoarison fails, STftPOS returns NIL
without searching any further down STRING. Thus it can be used to compare one
string with some portion of another string. Examples: .

(STRPOS "ABC" "XYZABCOEF" NIL NIL T) => NIL

(STRPOS "ABC" "XYZABCDEF" 4 NIL T) => 4

Fmally, if TALL is T, the value returned by STRPOS if successful is not the starting
position of the sequence of characters corresponding to PAT, but the position of the
first character after that, i.e., the starting position plus { NCHARS PAT). Examples:

(STRPOS "ABC" "XYZABCDEFABC" NIL.NIL NIL T) => 7

(STRPOS "A" "A" NIL NIL NIL T) => 2

If TA.II.= NIL, ST RPO S returns NIL. or a character position within STRING which
can be passed to SUBSTRING. In particular, (STRPOS "" "") => NIL.
However, if TAlI.=T. STRPOS may return a character position outside of STRING.

For instance. note that the second example above rerums 2, even though "A" has
only one character. ·

(STRPOSL A STR START NEG) [Function]
STR is a string (or els~ it is convened automatically to a string), A is a list
of characters or character codes. STRPOSL searches STP. beginning at character
number S'Z:ART (or else l if START= NIL) for one of the characters in A. lf one is
found. STRPOSL returns as its value the.corresponding character position. other.vise
NIL. Example:

2.31

Arrays

(STRPOSL '(ABC) "XYZBCO") => 4

If NEG=T, STRPOSL searches for a character not on A. Example:

(STRPOSL '(ABC) "ABCOEFff•NIL T) => 4

If any element of .A is a number. it is assumed ·co be a character code. Otherwise.
it is convened to a character code via CHCON 1. Therefore. it is more efficient to
call STRPOSL with A a list of character codes.

If A is a bit table, it is used to specify the characters (see MAKEBITTABLE below)

STRPOSL uses a "bit table" data structure to search efficiently. If .A is not a bit table. it is convened it to
a-bit table using MAKES ITT ABLE. If STRPOSL is tO be called frequently with the same list of characters.

-. a considerabl~_savings can be achieved by converting the list to a bit table one~ and then passing the bit
table to STRPOSL as its first argument.

(ritAKEBITTABLE L NEG .A) [Function]
Retums a bit table suitable for use by STRPOSL. L is a list of characters or
character codes. NEG is the same as described for STRPOSL. If A is a bit table,
MAK EB ITT ABLE modifies and returns it. Otherwise. it will create a new bit table.

Note: if NEG=T, STRPOSL must call MAKEBITTABLE whether .A is a list or a bit table. To obtain bit
table efficiency with NEG=T, MAKEBITTABLE should be called with NEG=T, and the resulting .. invened"
bit table should be given to STRPOSL with NEG=NIL.

2.7 . ARRAYS

An array in Interlisp is an object representing a one-dimensional vector of objects. · Arrays do not have
input syntax; they can only be created by the function ARRAY. Arrays are printed by PRINT, PRIN2,
md PRINl as# followed by an integer.

Note: Interlisp-IO and Interlisp-Vax provide a much more primitive version of arrays than other
implementations of Interlisp. See page 2.33.

{ARRAY SIZE TYPE INIT ORIG) [Function]
Creates and rerurns a new array capable of containing SIZE objects of type
TYPE. TYPE may be one of BIT, BYTE, WORD, FIXP. FLOATP. POINTER. or
DOUBLEPOINTER.4 ARRAY also accepts any .. type" which is legal in OATATYPE
records (such as (BITS 7), FLAG. see page 3.7). (Note: OATATYPE types are
coerced into the next ··enclosing .. array type. Therefore, users should not rely on
truncation of values stored in arrays of these types.}

. ~For backward compatibility with Incerlisp-10 arrays. TYPE can be ~H L or 0 (meaning to create an array of
type OOUBLEPOINTER) or SIZE (meaning an array of type F IXP). For arrays of type DOUBLEPOINTER.
the functions El TD and SETO are defined the same as in Interlisp-10 (page 2.34). For arrays of any
other type. ELTD and SETO are the same as ELT and SETO. Combined POINTER/FIX? arravs are not

· supported. Interlisp-O users should avoid using Interlisp· 10 arrays. ·

. 2.32

n
c·

().
(-.~ ·:

n \ <.
~:

Oc;,

(ELT A N)

(SETA A N v)"

(ARRAYTYP A)

{ARRAYSIZE A)

(ARRAYORIG A)

(COPYARRAY A)

.. ···----·- - .. ____ _______ ,.._ ·- -····--· - ... -· ·~· ·--·-- - -··· .. ~- ... --*·-·- · .. __ . -~---··--

DATA TYPES

1N1T is the initial value in each element of the new array. If not specified, the array
elements will be initialized with O (for number arrays) or NIL (all other types).

Arrays can have either 0.origin or I ·origin indexing, as specified by the ORIG
argument; if ORIG is not specified, the default is 1.

[Function}
Returns the Nth element of the array A.

[Function]
Sets the Nth element of the array A to v. SET A returns v.

[Function!
Returns a value corresponding to the second argument to ARRAY •

. Note: If ARRAY coerced the array type as described above, ARRAYTYP will return
the new type.

[Function]
Returns the size of array A. Generates the error, ARG NOT ARRAY, if A is not an
array.

[Function]
Returns the origin of array A. which may be O or 1. Generates an ·error, ARG tlOT'
ARRAY, if A is not an array.

. [Function]
Returns a new array of the same size and type as A. and with the same contents
as A. Generates an ARG NOT ARRA y errot, jf A is not an array.

2.7.1 Interlisp•!O Arrays

Interlisp-10 and Interlisp· Vax have a more primitive array facility than the other implementations of
Interlisp. In Interlisp· 10, arrays are partitioned into four sections: a header, a section containing unboxed
numbers. a section containing list cells (each with a CAR and CDR), and a section containing relocation
information. Toe last three sections can each be of arbitrary length (including O): the header is two words
long and contains the length of the other sections. Toe unboxed number region of an array is used to
store 36 bit quantities that are not Interlisp pointers, and therefore are not to be chased during garbage
collections, e.g. machine instructions. Toe relocation informaion is used when the array contains the
definition of a compiled function. and specifies which locations in the unboxed region of the array must
be changed if the array is moved during a garbage collection.

ARRAY returns an "array pointer" to the beginning of the array, but it is also possible to create a pointer
into the micid.le of an array> ARRAYP will accept a pointer into the middle of an array, but ELT. SETA,
EL TD, and SETO generate an error, ARG NOT ARRAY, if A is not.an array pointer to the beginning of
an array.

.
Array-pointers print as #NNNN, where NNNN is the octal representation of the pointer. Note that #NNNN
will br;: read as a literal atom. and not an array pointer.

The following functions are used to manipulate lnterlisp-10 arrays:

· 2.33

(ARRAY N P v)

I
I
'

(ELT A N)

(SETA A N V)

(ELTD A N)

(SETO A N v)

_, ARRAYTYP A)

(ARRAYP x)

(ARRAYBEG A)

(ARRAY0RIG A)

Interlisp-10 Arrays

[Function}
Allocates a block of N+2 words. of which the first two are header information.
Toe next P (< N) words contain unboxed numbers. and are initialized to unboxed
0. The last N·P (> 0) words are list cells; both CAR and C0R are available for
storing information. and each is initialized to v. If P is NIL. 0 is used (i.e .. an array
containing all Interlisp pointers). ARRAY returns an .. array pointer" to the array.

If sufficient space is not available for the array, a garbage collection of array space is
initiated. If this is unsuccessful in obtaining sufficient space, an error is generated,
ARRAYS FULL

. [Function]
Returns the Nth eiement of the array A. (EL T A 1) is the first element of the
array (actually corresponds to the 3rd cell because of the 2 word header).

If N corresponds to the unboxed number region of A, ELT retumS the full 36 bit
word as a boxed integer. If N corresponds to the list cell region of A, EL T retumS
the CAR of the corresponding element.

[Function}
Sets the Nth. element of the array A to v. If N corresponds to the unboxed number
region of A, v must be a number, and is unboxed and stored as a full 36 bit word
into the Nth element of A. If N corresponds to the list cell region of A. v replaces
the CAR of the Nth element. SET A returns v.

[Function}
Same as ELT for the unboxed number region of A, but returns the-C0R of the Nth
element. if N corresponds to the list cell region of A.

[Function]
Same as SETA for the unboxed number region of A, but sets the C0R half of the
Nth element. if N corresponds to the list cell region of A. SETO returns v.

[Function]
Returns the number of unboxed number words of array A. This value corresponds
to the second argument to ARRAY. ·

[Function]
Returns x if xis an array pointer. otherwise NIL. No check is made to ensure that
x actually addresses the beginning of an array.

[Function)
If A is a pointer into the middle of an array. returns the pointer to its beginning.
Otherwise retumS NIL.

[Function]
Returns l. A dummy function provided for compatibility with other Interlisp
arrays.

2.34

()
(:,

n
C .. ,

· ..
·.l

n
\ ./ v

0

DATA TYPES

2.8 HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp objects (.. hash keys") with other objects
("hash values"), such that the hash value associated with a particular hash key can be quickly obtained.
A set of associations could be represented as a list or array of pairs, but these schemes are very inefficient
when the number of associations is large. There are functions for creating hash arrays, putting a hash
ke1/value pair in a hash array, and quickly retrieving the hash value associated with a given hash key.

Hash keys can be any lisp object, but is should be noted that the hash array functions use EQ for
comparing hash kqs. Therefore, if non-atoms are used as hash keys, the exact same object {not a copy}
must be used to retrieve the hash value.

In the description of the functions below, the argument RAR.RA.Y has one of three forms: NIL, in which
case a hash array provided by the system. SYSHASHARRAY, is used; a hash-array created by the function
HARRAY: or a list, CAR of which is a hash array. Toe. latter form is used for specifying what is to be
done on overflow, as described below.

(HARRAY•LEN) [Function]
Creates a hash array containing at least LEN hash keys.

(HARRAYSIZE BARRAY) [Function}
Returns the size of .a:ARR.AT. the number of hash keys it can hold before becoming
''full".

(CLRHASH HARRAY) . [Function]
Oears all hash keys/values from HARRAY. Returns !iARRAY.

(PUT HASH KEY VAL I!A.R.RA.Y) [Function]
Associates the hash value VAL with the hash key KEY in HARRA.Y. Replaces the
previous hash value, if any. If VAL is NIL, any old association is removed (hence
a hash value of NIL is not allowed). If HARRAY is full when PUTHASH is called
with a key not already in the hash ·array, the function HASHOVERFLOW is called.
and the PUTHASH is done to the value returned (see below). Returns VAL.

(GETHASH KEY HA.RRA.Y) . [Function]
Returns the hash value associated with the hash key KEY in HAR.RAY. Returns NIL,
if KEY is not found.

(REHASH OLDHARRA.Y NEWHA.RRAY) [Function}
Hashes all hash keys and values in OLDHA.R.RAY into NEWHARRAY. Toe two hash
arrays do not have to be (and usually aren't) the same size. Retuqis NE~Y.

{ MAP HASH HAR.RAY MA.PHFN) [Function]
MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN
will be applied to (1) the hash value. and (2) the hash key. For example.

[MAPHASH A
(FUNCTION (LAMBDA (VAL KEY)

(if (LISTP KEY) then (PRINT VAL)]

wiil print the hash value for all hash keys that are lists. MAP HASH returns HA..~RAY.

2.35

. -·--·---------······---·- ·-···-- ~•- --'--' ---·--·- _.;_._·.

Hash Overflow.

(OMPHASH B'.A.RRAY1 HAR.RAY,2 • •• l'IAJUUYN) [NLambda NoSpread Function]
Prints on the primary.output file L0A0able forms which will restore the hash-arrays
conr.ained as the values of the atoms HA.RRA.Y1• BARRA.Ya, • • • HARR.AYN· Example:
(0MPHASH SYSHASHARRAY) will dump the system hash-array.

Note: all EQ identities except atoms and small integers are lost by dumpi.ag
and loading because READ will create new structure for each item. Thus if two
lists contain an EQ substructure. when they are dumped and loaded back in. the
corresponding- substrUcmres while EQUAL are no longer EQ. The HORRIBLEVARS
file package command (page 1L2S) provides a way of dumping hash tables such
that these identities ·are preserved. ·

2.8.1 Hash o,eriiow

When a hash array becomes full. attempting to add another hash key will cause the function
HASHOVERFLOW to be called. Tnis will either automatically "!nlarge the hash array, or cause the eITOr
HASH TABLE FULL How hash overfiow is handled is detennined by the form that was passed to
PUTHASH:

NIL

(RARRAY N)

(HARRAY . F)

:!:lAR.R.A.Y. FN)

(HA.R.R.AY)

If a plain hash array is passed to a hash function. and it overflows, the error HASH
ARRAY FULL is generated.

. .
If a hash function is passed MIL as its .rIA.RRAY argument, the system hash array
SYSHASHARRAY is used. This array is not used by the system. but is provided for
the user. If SYSHASHARRAY overflows, it is automatically enlarged by 1.5.

N is a positive integer. This form specifies that upon hash overflow, a new
hash-array is created with N more cells than the CUITent hash-array.

F is a floating point number. This form specifies that upon hash overflow, the new
hash array will be F times the size of the current hash-array.

FN is a function name or a lambda expression. This form specifies that upon hash
overflow, FN is called wirh (HARRAY • FN) as its argument. If FN returns a
number, the number will be the size of the new hash array. Otherwise, the new
size defaults to 1.5 times the size of the old hash array. FN could be used to print
a message, or perform some monitor function.

Equivalent to (HAR.RAY • l . 5) .

If a list form is used, upon hash overflow the new hash-array is RPLACAed into the dotted pair. and
HASH0VERFL0W returns it.

2.9 NUMBERS AND ARITHivIETIC FUNCTIONS

Numerical atoms. or simply numbers. do not have value cells. function definition cells. property lists.
or explicit print names. There are three different cypes of numbers in Interlisp: small integers. large
integers, and floating point numbers. Small integers are those integers that can be directly stored within a

2.36

0
(

(

0 .- .
..
•.; _,.

·oJ •.:

0

DATA TYPE.5

pointer value. The range of small integers is implementation-dependent Since a large integer or floating
point number can be (in value) any full word quantity (and vice versaJ. it is necessary to distinguish
between those full word quantities that represent large integers or floating point numbers. and other
Interlisp pointers. We do this by .. boxing" the number: When a large integer or floating point number is
created (via an arithmetic operation or by READ), Interlisp gets a new word from "number storage·· and
puts the large integer or floating point number into that word. Interlisp then passes around the pointer to
that word. i.e., the .. boxed number", rather than the actual quantity itself. Then when a numeric function
needs the actual numeric quantity. it performs the extra level of addressing to obtain the .. value" of the
number. This latter process is called .. unboxing". Note that unboxing does not use any storage, but that
each boxing operation uses one new word of number storage. Thus. if a computation creates many large
integers or floating point numbers. i.e., does lots of boxes. it may cause a garbage collection of large
integer space, or of floating point number space. Different implementations of Interlisp may use different
boxing strategies. Thus, while lots of arithmetic operations may lead to garbage collections. this is not
n~~Y always the case. ·

The following functions can be used to distinguish the different types of numbers:

(SMALLP X)

(FIXP X)

(FLOATP X)

(NUMBERP x)

[Function]
Returns x. if x is a small integer; NIL otherwise. Does not generate an error if x
is not a number.

[Function]
Returns X. if Xis an integer (between MIN. FIXP and MAX. F-IXP); fUL otherwise.
Note that F IXP is true for both large and small integers. Does nor generate an
error if x is nae a number.

[Function]
Returns x if x is a floating point number; NIL otherwise. Does not give an error
if x is not a number.

[Function]
Returns x. if xis a number of any type {FIXP or FLOATP); NIL otherwise. Does
no1 generate an error if x is not a number.

Note that if { NUMBERP X) is true, then either (FIXP X) or (FLOATP X) is
true.

Each small integer has a unique representation, so EQ may be used to check equality. Note that EQ
should not be used for large integers or floating point numbers, EQP, IEQP, or EQUAL must be used.
inst~~ '

{EQP X Y) [Function]
Returns T. if x and Y are E Q. or equal numbers: N IL otherwise. Note that E Q
may be used if x and Y are known to be small integers. EQP does not convert
x and Y to integers. e.g.. (E Q P 2 O O O 2 O O O . 3) = > NIL. but it can be used
to compare an integer and a floating point number. e.g., (E Q P 2 O O O 2 O O O . 0)
=> T. EQP does not generate an error if x or y are not numbers. ·

Note: EQP can also be used to compare stack pointers (page 7.3) and compiled
code objects (page 5.8).

2.37

Integer Arithmetic

2.9.1 Integer Arithmetic

The input syntax for an integer is an optional sign (+ or - } followed by a sequence of digits. followed
by an optional Q, and terminated by a delimiting character. If the Q is present, the digits are interpreted
in octal otherwise in d~ e.g. 77Q and 63 both correspond to the same integers, and in fact are
indistinguishable internally since no record is kept of how integers were created.

The· setting of RAO IX (page 6.19}, determines how integers are printed: signed or unsigned, octal or
decimal.·

Integers are created by PACK and MKATOM when given a sequence of characters observing the above
syntax. e.g. (PACK ' (1 2 Q)) => 10. Integers are also created as a result of arithmetic operations.

_ ,... -"1t~_range of integers of various types is implementation-dependent. This information is accessable to the
· .»er through the following variables:

MUf. SMALLP
MAX.SMALLP

MIN. FIXP
MAX. F.IXP

MIN.INTEGER
MAX.INTEGER

The smallest/largest possible small integer.

The smallest/largest possible large integer.

[Variable]
[Variable]

[Variable}
[Variable]

[Variable]
[Variable]

The smallest/largest possible integer representable. Currently, these variables
are equal to MHL FIXP and MAX. F IXP; they may be different in furore
implementations with other methods for representing integers.

In Interlisp-D, the action taken on integer overflow is determined with the following function:

n
G·-

-...: ...

n. _
l .·,:

.. ;'! •
. .

(OVERFLOW FLG) [Function] n
Sets a flag that determines the system response to integer overflow; returns the
previous setting. If FLG = T, an error occurs on integer overflow. If FLG = NIL. the it~ ·
largest (or smallest) integer is rerumed as the result of the overflowed computation.
If FLG = O, the result is rerurned modulo 2-r 32 (the default action).

All of the functions described below work on integers. Unless specified otherwise. if given a floating point
number. they first convert the number to an integer by truncating the fractional bits. e.g •• (IPLUS 2. 3
3. 8) = 5: if given a non-numeric argument. they generate an error. "NON-NUMERIC ARG.

XN)
Returns the sum X1 + X2 + • • · + XN- { I PLUS)= o.

{!MINUS x)
-x

(!DIFFERENCE X Y)
X·Y

2.38

[NoSpread Function}

[Function]

[Function]

(J

0

(AODl X)

(SUBl x)

(IT IMES Xi x 2

(!QUOTIENT x Y)

x+l

x-1

XN)

DATA TYPES

Returns the product Xi * Xa • • • • • XN. (IT IMES) = 1.

x I Y truncated. Examples:

(!QUOTIENT 3 2) => 1

(!QUOTIENT -3 2) => -1

[Function]

[Function]

[NoSpread Function]

[Function]

_(!REMAINDER X Y) . [Function]

(IMOO X Y)

(IGREATERP X Y)

(ILESSP X Y)

(IGEQ X Y)

(ILEQXY)

Rerurns· the remainder when x is divided by Y. Example:

(!REMAINDER 3 2) => 1

[Function]
Computes the integer modulus; this differs from !REMAINDER in that the result
is always a non-negative integer in the range (0 , Y).

[Function]
T, if X > r, NIL otherwise.

[Function]
T. if x < r, NIL otherwise.

[Function]
T. if X ~ r, NIL otherwise.

[Function]
T, if X :5 r, NIL otherwise.

xN) [NoSpread Function]
Returns the minimum of x 1• Xa, • .• , xN. (IM IN) returns the largest possible large
integer. the value of MAX. FIXP. ·

{ IMAX Xi X3 ••• XN) [NoSpread Function]

(IEQP NM)

(ZEROP x)

Rerurns the maximum of x 1• Xa, • · -. xN. {IMAX) returns the smallest possible
large integer, the value of MIN. F IXP.

[Function}
Returns T if N and M are EQ or equal integers: NIL otherwise. Note that EQ
may be used if N and Mare known to be small integers. IEQP convens N and M

to integers. e.g., (IEQP 2000 2000. 3) . => T. Causes NON-NUMERIC ARG
error if either N or M are not numbers.

[Functionj
(EQ X 0).

2.39

(MINUSP x)

(FIX X)

Logic:il Arithmetic Functions

Note: ZEROP should not be used for floating point numbers because it uses EQ.
Use (EQP x O) instead.

[Function]
Recums T if x is negative: NIL otherwise. Does not convert x to an integer. but
simply checks the sign biL

[Function]
If x is an integer, returns x. Otherwise. convens x to an integer by mmcating
.fractional bits, e.g.. (FIX 2. 3) => 2, (FIX -1. 7) => -1.

Since FIX is also a programmer's assistant command (page 8.10), typing FIX
directly to Interlisp will not cause the function FIX to be called.

()
(.

{GCO X Y) [Function] (;
Recums the greatest common divisor of x and Y, e.g., (GCD 72 64) = 8. (:~ ·

2.9.2 Logical Arithmetic Functions

(LOGAND Xi X.2 ••• XN) [NoSpread Function]
Remrns the logical AND of all its arguments, as an integer. Example:

(LOGAND 7 5 6) => 4

(LOGOR X1 X.2 • • • XN) [NoSpread Function}

(LOGXOR x1 X:z

(LSH X N)

(RSH X N)

(LLSH X N)

Remrns the logical OR of all itS arguments. as an integer. Example:

(LOGOR 1 3 9) => 11

xN) • [NoSpread Function]
Returns the logical exclusive OR of its arguments. as an integer. Example:

(LOGXOR 11 5) => 14

(LOGXOR 11 5 9) <=> (LOGXOR 14 9) => 7

[Function}
(arithmetic) .. Left Shift." Returns x shifted left N places. with the sign bit
unaffected. x can be positive or negative. If N is negative, x is shifted right -N
places.

[Function}
(arithmetic} .. Right Shift." Rerurns x shifted right N places. with the sign bit
unaffected, and copies of the sign bit shifted into the leftmost biL x can be
positive or negative. If N is negative, x is shifted left -N places.

Warning: Be careful if using RSH to simulate division: RSHing a negative number
is not generally equivalent to deviding by a power of two.

[Function}
'"Logical Left Shift:·

2.40

,--------u -.. ..
DATA TYPES

(LRSH X N) [Function]
"Logical Right Shift.••

(INTEGERLENGTH N) [Function]

(POW.EROFTWOP N)

(EVENP X Y)

Returns the number of bits needed to represent N (coerced to a F IXP). This is
equivalent to: l+fioor{log2[abs[Nffl. (INTEGERLEHGTH 0) = 0.

[Function]
Returns non-rHL if N (coerced to a FIXP) is a power of two.

{NoSpread Function]
If Y is not given. equivalent to (ZEROP (IMO0 x 2)); otherwise equivalent to
(ZEROP (!MOD X Y)).

o·:, (ODDP X Y)
Equivalent to (NOT (EVENP X Y)).

{NoSpread Function}

O'

The difference between a logical and arithmetic right shift lies in the treatment of the sign bit. Logical
shifting treats it just like any other biti arithmetic shifting will not change it, and will "propagate ..
rightward when actually shifting rightwards. Note that shifting (arithmetic) a negative number "all the
way" to the right yields -1. not 0.

The following "logical.. arithmetic functions are derived from Common Lisp, and have both macro
and function definitions (the macros are for speed in running of compiled code). The following code
equivalences are primarily for definitional purposes. and should not be considered an implementation
(especially since the real implementation tends to be faster and less .. consy .. than would be apparent from
the code here}.

Note: The following logical functions are cun-ently only implemented in lnzerlisp-D.

(L0GNOT N)
(LOGXOR N -1)

(BITTEST N MASK)
(NOT (ZEROP {LOGAND N MASK)))

(BITCLEAR N MASK)
. (LOGAND N (LOG NOT MASK) }

(BITS ET N MASK)
(LOGOR N MA.SK)

(MASK.l'S POSITION SIZE)

(LLSH (SUB1 (EXPT 2 SIZE}}
POSITION)

(MASK.O'S POSITION SIZE)
(LOG NOT (MASK. 1 'S POSITION SIZE))

{ L0A0BYTE N POSITION SIZE)

(LOGANO (LRSH N POSITION)

[function]

[Function}

[Function]

[Function]

[Function]

[Function]

[Function]

C .

0 2.41

Floating Point Arithmetic

(MASK.l'S O SIZE))

(OEPOSITBYTE N POSITION SIZE BYTE) [Function]

(LOGOR (BITCLEAR N (MASK.l'S POSITION sm;))
(LLSH (LOGAND BYTE (MASK.l'S O SIZE))

POSITION))

(ROT X N FIELDSIZE) [Function]
"Rotate bits in field". This is a slight extension of the CommonLisp ROT function.
It performs a bitwise left-rotation of the integer x, by N places. within a field of
FIELDSIZE bits wide. Bits being shifted out of the position selected by (EXPT 2
(SUB 1 FZELDSIZE)) will fiow into the "units" position.

Toe optional argument FIELDSIZE defaults to the "cell" size (the integerlength of
the CUITent maximum FIX P). and must either be a positive integer. or else b: one
of the litatoms CELL or WORD. In the latter two cases the appropriate numerical
values are respectively substituted. A macro optimizes the case where FIELDSIZE is
WORD and N is L

The notio.ns of position and size can be combined to make up a "byte. specUier". which is constructed by
the macro BYTE [note reversal of arguments as compare with above functions]:

(BYTE SIZE POSITION) [Macro]
Constructs and returns a '"byte specifier" containing SIZE and POSITION.

(BYTESIZE BYTESPEC) [Macro]
Returns the SIZE componant of the .. byte specifier'' BYTESPEC.

(BYTEPOSITION BYTESPEC) [Macro]
Returns the POSITION componant of the .. byte specifier" BYTESPEO.

(LOB BYTESPEC VAL}

(LOAOBYTE VAL

(DPS N BYTESPEC VAL)

(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC))

(DEPOSITBYTE VAL

2.9.3 Floating Point Arithmetic

(BYTEPOSITION BYTESPEO)
(BYTESIZE BYTESPEC}
N)

[Macro]

[Macro]

A floating point number is input as a signed integer. followed by a decimal point. followed by another
sequence of digits called the fraction. followed by an exponent (represented by E followed by a signed
integer} and terniinated by a delimiter.

2.42

n

n -c·· -; r~7. .. ,,

DATA TYPES

Both signs are optional. and either the fraction following the decimal point, or the integer preceding the
decimal point may be omitted. One or the other of the decimal point or exponent may also be omitted.
but at least one of them must be present to distinguish a floating point number from an integer. For
example, the following will be recognized as floating point numbers:

5.
5E2

5.00 5.01
5.1E2 5E-3

.3
-5.2E+6

Floating point numbers are printed using the format control specified by the function FL TFMT (page
6.20). FLT FMT is initialized to T, or free format. For example, the above floating point numbers would
be printed free format as:

5.0
500.0

5.0 5.01
510.0 .005

.3
-5.2E6

Q:; Floating point .numbers are created by the read program when a "." or an E appears in a number.
e.g., 1 O O o is an integer. 1 O O O • a floating point number, as are 1 E 3 and 1. E 3. Note that 1 O O OD,
lOOOF, and 1E3D are perfectly legal literal atoms. Floating point numbers are also created by PACK and
MKATOM, and as a result of arithmetic operations.

I 0----,

0

PRIHTNUM (page 6.21) permits greater controls on the printed appearance of floating point numbers.
allowing such things as left-justification, suppression of trailing decimals, etc.

The floating point number range is stored in the. following variables:

MIN.FLOAT [Variable] _·
The smallest possible floating point number.

MAX.FLOAT [Variable]
The largest possible floating point number.

All of the functions described below work on floating point numbers. Unless specified otherwise, if given an
integer, they firn conven the number to a floating point number, e.g., (FPLUS 1 2. 3) <=> { FPLUS
1. O 2. 3) => 3. 3: if given a non-numeric argument. they generate an error. NON-NUMERIC ARG.

{ FPLUS X1 X2 · ·· XN)
. X1 + X:.z + · · · + XN

(FMINUS x)
-x

(FDIFFERENCE x Y}
X·Y

{ FT IMES X1 X:z · · · XN)
X1 • X:z • ··· * XN

{ FQUOTIENT X Y)
XIY

{ FREMAH.!DER X Y}

[NoSpread Function]

[Function]

[Function]

[NoSpread Function]

[Function]

· [Function]
Returns the remainder when x is divided by Y. Equivalent to:

2.43

Mixed Arithmetic

(FDIFFERENCE x (FTIMES Y (FIX (FQUOTIENT X Y))))

Example:

(FREMAINDER 7.5 2.3) => 0.6

(MINUSP X) [Function]
T, if x is negative; NIL othenvise. Works for both integexs and Boating point
numbers.

(FGREATERP X Y) [Function]

{ FLESSP X Y)

(FEQP X Y)

T' if X > Y, NIL otherwise.

[Function]
T. if X < Y, NIL otherwise.

[Function]
Rerurns T if N and Mare equal floating point numbers; NIL otherwise. FEOP
convens N and M to floating point numbers.Causes NON-NUMERIC ARG en-or if
either N or M are not numbers. ·

(FMIN X1 X:z .. • XN) [NoSpread Function]
Rerurns the minimum of x1, ~ • ··, xN. (FMIN) returns the largest possible
floating point number, the value of MAX • FLOAT.

(FMAX X1 X:z .. : XN) .. [NoSpread Function]
Rerurns the maximum of x1, x2, • • ·, xN. (FMAX) rerurns the smallest possible
floating point number. the value of MIN. FLOAT.

(FLOAT r)
Convens x to a floating po~t number. Example:

(FLOAT 0) => 0.0

2.9.4 Mixed Arithmetic

[Function]

The functions in this section are ··generic" floating point arithmetic functions. If any of the arguments
are floating point numbers, they act exactly like floating point functions. and float all arguments. and
return a floating point number as their value. Otherwise. they act like the integer functions. If given a

· non-numeric argument. they generate an error. NON-NUMERIC ARG.

XN} [NoSpread Function]
X1 + X:z + ·· • + XN.

(MINUS x) [Function]

(DIFFERENCE X Y) [Function]

2.44

()
("· ,-

(')
'"-- -~

. . • C,..._-.

(;} DATA TYPES

,,--.,-
{

......

{TIMES X1 X:z • • • XN) [NoSpread Function]
X1 * X2 * ... * XN

(QUOTIENT X Y) [Function}
Ifxand Yare both integers, returns (IQUOTIENT X Y). otherwise { FQUOTIENT
X Y}.

(REMAINDER x Y) [Function]

(GREATERP X Y)

(LESSP X Y)

(GEQ X Y)

(LEQ X Y)

Ifxand Yare both integers, returns { I REMAINDER X Y}, otherwise { FREMAINDER
X Y).

[Function]
. T, if X > Y, NIL otherwise. 0

[Function}
T if X < Y, NIL otherwise.

[Function]
T' if X > Y, NIL otherwise.

[FunctionJ
T' if X ~ Y, NIL otherwise.

(MIN X 1 X:z • •• XN)
Returns the. minimum of x1, X:2o
MAX. nnEGER.

[NoSpread Function]
(MI H) returns the value of .. ·,

(MAX X 1 X:z ••• XN) [NoSpread Function]
(MAX } returns the value of

(ABS X)

Returns the maximtL-:i of x 1, X:2o

MIN. INTEGER.
... ,

[Function]
X if X > o. otherwise -x. ABS uses GREATERP and MINUS, (not IGREATERP and~
IMINUS~ ' 1

2.95 Special Functions

(EXPT M ·N)

(SQRT N)

(LOG X)

[Function]
Returns M'f'N. If M is an integer and N is a positive integer, returns an integer.
e.g. { EXPT 3 4} => 81. otherwise returns a floating point number. If M is
negative and N fractional, an error is generated, ILLEGAL EXPONENTIATION. If

· N is floating and either too large or too small. an error is generated, VALUE OUT
OF RANGE EXPT.

[Function]
Returns the square root of N as a floating point number. N may be fixed or floating
point. Generates an error if N is negative. ·

[Function}
Returns the natural logarithm of x as a floating point number. x can be integer (' __ -_-\
or floating point.)

2.45

0

Special Functions

{ANTILOG X) [Function]
Returns the floating point number whose logarithm is x. x can be integer or floating
point. Example:

(ANTILOG 1) = e => 2.71828 ...

(SIN X RADIANSFI.G)
Returns the sine of x as a floating point number.
RADIANSFLG = T.

(COS X RADIANSFLG)
Similar to SIN.

[Function]
x is in degrees unless

[Function]

(TAN X RADIA.NSFI.G) [Function]
_ Similar to SIN.

(.

Q"(ARCSIN x RADIANSFLG) [Function} (..

0

0

x is a number between -1 and l (or an error is generated). The value of ARCS IN is
a .floating point number. and is in degrees unless RADIANSFLG = T. In other words.
if (ARCSIN X RADIANSFLG) =z then {SIN z RADIANSFLG) =x. The range of
the value of ARCSIN is ·90 to +90 for degrees, --:r/2 to 1r/2 for radians.

{ARCCOS X RADLANSFI.G) [Function]
Similar to ARCS IN. Range is O to 180. 0 to 1r.

(ARCTAN X RADLANSFLG) [Function].
Similar to ARCS IN. Range is Oto 180, 0 to -:r.

(ARCTAN2 Y x RADIANSFI.G) [Function]
Computes (ARCT Afj { FQUOT I ENT y X) RADIANSFLG). and returns a correspond­
ing value in the range -180 to 180 (or -1r to ,r), i.e. the result is in the proper
quadrant as determined by the signs of x and Y.

{ RAND LOWER OPPER) [Function]

(RANDSET X)

Returns a pseudo-random number between LOWER and OPPER inclusive,· i.e ••
RAND can be used to generate a sequence of random numbers. If both limits are
integers: the value of RAND is an integer. otherwise it is a floating point number.

'The algorithm is completely deterministic, i.e .• given the same initial state. RAND
produces the same sequence of values. The internal state of RAND is initialized
using the function RANDSET described below.

[Function]
Returns the internal state of RA NO. If x= NIL. just returns the current state. If
x=T. RAfJO is initialized using the clocks, and· RANOSET returns the new state.
Otherwise.xis interpreted as a previous internal state. Le., a value of RANDSET,
and is used to reset RAND. For example,

~·csETQ OLDSTATE (RANOSET))

~ (for X from 1 to 10 do {PRINl {RAND l 10)))
2847592748NIL.
~ {RANOSET bLDSTATE}

2.46

0 . .

0

0

0

DATA TYPES

~ (for X from 1 to 10 do (PRINl (RAND 1 10)))
2847592748NIL

2.47

Special Functions

2.48

n
C··

n
("·/.

Q·

0

CHAPTER3

THE RECORD PACKAGE

The advantages of "data abstraction" have iong been known: more readable code. fewer bugs. the ability
to change the data SO'UCture without having to make major modifications to the program. etc. The record
package e:icour-o::.g~ and facilitates this good progran-.JrJng practice by providing a uniform syn.ax for
creating. accessing and storing data into many cii,.i"erent cypes of data structures (arrays. list structures,
association lists, etc.) as well as removing from the user the task of writing the various manipulation
routines. The user declares (once) the data structures used by his programs. and thereafter indicates Q ·he manipulations of the data in a data-strucrure-independent manner. Using the declarations. the

. . record package automatically computes the corresponding Interlisp expressions necessary to accomplish
the indicated access/storage operations. If the dara structure is changed by modifying the declarations.
the programs automatically adjust to the new conventions.

The user describes the format of a dara strucrure (record) by making a .. record declaration" (see page
3.5). Tne record declaration is a description of the record. associating names with its various par-..s. or
.. fields". For example. the record declaration (RECORD MSG (FROM TO • TEXT)) describes a data
structure called MSG. which contains three fields: FROM. TO. and TEXT. Tne user can reference these fields
by name. to retrieve their values or to store new values into them. by using the FETCH and REPLACE
operators (page 3.1). Tne CREA TE operator (page 3.3} is used for creating new instances of a record. and
TYPE? (page 3.4) is used for testing whether an object is an instance of a particular record. (note: all
record operators can be in either upper or lower case.)

Records may be implemented in a variety of different ways. as determined by the first ele:nent ("record
type ..) of the record declaration. RECORD (used to specify elemenrs and tails of a list structure) is just
one of several record types currently implemented. The user can specify a property list format by using
the record type PROPRECORO. or that fields are to be associated with partS of a data structure via a

_ specified hash array by using the record type HASHLINK., or that an entirely new data cype be allocated Q {as described on page 3.14) by using the record-type DATATYPE.

0

The record package is implemented throug.11 the DWIM/CLISP facilities. so it ·contains features such as
spelling correction on field names. record types. etc. Record operations are translated using all CLISP
declarations in effect (standard/fast/undoable): it is also possible to declare local record declarations that
override global ones (see page 16.9).

The file package includes a RECORDS file package command for dumping record declarations (page 11.25).
and FILES? and CLEANUP will inform the user about records that need to be dumped.

3.1 FETCH AND REPLACE

The fields of a record are accessed and changed with the FETCH and REPLACE operators. [f the record
MSG has the record declaration (RECORD MSG (FROM TO • TEXT)). and Xis a MSG data structure.
(fetch FROM of X) will rerurn the value of the FROM field of X. and (rep 1 ace FROM of X with

3.1

s

--·

(l
FETCH and REPLACE

Y) win replace this field with the value of Y. In general. the value of a REPLACE operation is the same
as the value stored into the field.

Note that the form (fetch FROM of X) implicitly states that X -is an instance of the record MSG. or
at least it should to be treated as such for t.ltis particular operation. In other words, the interpretation
of {fetch FROM of X} never depends on the value of X. Therefore, if X is not a MSG record. this
may produce incorrect results. Toe TYPE? record operation (page 3.4) may be used to test the types of
objects.

If there is another record declaration. (RECORD REPLY (TEXT • RESPONSE)), then (fetch TEXT
of. X) is ambiguous. because X could be either a MSG or a REPLY record. In this case, an error wUI
occur, AMBIGUOUS RECORD FIELD. To clarify tbis, FETCH and REPLACE can take a list for their "field0

argument: (fetch { MSG TEXT) of X) will fetch the TEXT field of an MSG record.

Note that if a field has an identical interpretation in two declarations, e.g. if the field TEXT occurred D
the same location within the declarations of MSG and REPLY, then {fetch TEXT of X) would not be
considered ambiguous.

Another complication can occur if the fields of a record are themselves recorcis. Toe fields o: a record
can be funher broken down into sub-fields by a .. subdeclaration .. within the record declaration (see page
3.10). For example,

'
{RECORD NODE (POSITION. LABEL) (RECORD POSITION (XLOC. YLOC}))

permits the user to access the POSITION field with (fetch POSITION of X), or its subfield XLOC
with { fetch XLOC of X).

The user may also elaborate a field by declaring that field name in a separate record declaration (as
opposed to an embedded subdeclaration). For instance, the TEXT field in the MSG and REPLY records
above may be subdivided with the seperate record declaration (RECORD TEXT (HEADER • TXT)).
Fields of subfields (to any level of nested subfields) are accessed by specifying the "data path" as a list
of?ecord/field naces.- where ti.,ere is some path from each record to the next in the list. For instance,
(fetch (MSG. TEXT HEADER) of X) indicates that Xis to be treated as a MSG record. its TEXTr'\
field should be accessed. and its HEADER field should be accessed.. Onlv as much of the c.ata path as\._}
is necessary to disambiguate it needs to be specified. In this case, (fetch (MSG HEADER) of X) is"­
SUJ."n.cient. Toe record package interprets a data path by performing a tree search among all current record
declarations for a pat..'1. from each name to the next. considering first local declarations (if any) and then
global ones. The central point of separate declarations is that the (sub)record is not tied to another record
(as with embedded declarations), and therefore can be used in many different contexts. If a data-path
rather than a single field is ambiguous. (e.g., if there were yet another declaration (RECORD TO (NAME
• HEADER)) and the user specified (fetch (MSG HEADER) of X)), the error AMBIGUOUS DATA
PATH is generated.

FETCH and REPLACE fonns are translated using the CUSP declarations in effect. FFETCH and
FREPLACE are versions which insure fast CLISP declarations will be in effect. /REPLACE insures undoable
declarations.

3.2
0

0 TiiE RECORD PACKAGE

3.2 CREATE

Record operations can be applied to arbitrary strucrures. i.e.. the user can explicitely creating a data
stl'Ucture (using CONS, etc), and tb.en manipulate it with FETCH and REPLACE. However. to be consista:tt
with the idea of data abstraction. new data should be created using the same declarations that define its
data paths. This can be done with an expression of the form:

(CREATE RECORD-NAME • ASSIGNMENTS) ., .

A CREA TE expression translates into an appropriate Interlisp form usi:J.g CONS. LIST, PUT HASH, ARRAY,
etc .. that creates the new datum with the various fields initialized to the appropriate values. ASSIGNMENTS
is optional and may contain expressions of the following_ form:

FIELD-NAME • FORM C(. Spe--..ifies initial value for FIELD-NAME.

· USING FORM Specifies that for all fields not explicitly given a value. the value of the corresponding
field in FORM is to be used.

COPYING FORM Similar to USING except the corresponding values are copied (with COPYALL).

REUSING FORM Similar to USING, except that wherever possible, the corresponding srruczure in
FORM is used.

SMASHING FORM A new instance of .. the record is not created at all; rather, the value of FOR.\! is
used and smashed.

The record package goes to great pains to insure that the order of evaluation in the translation
is the same as that given in the original CREATE expression if the side effects of one e:q,ression
might affect the evaluation of another. For example, given the declaration (RECORD CONS (CAR .
COR)), the expression. (CREATE CONS CDR .. X CAR•Y) will translate to (CONS Y X), but (CREATE
CONS COR .. (FOO) CAR•(FIE)) will translate to ((LAMBDA (SS 1) (CONS (PROGN (SETQ SS l
{ F 00)) (FIE)) S S l))) ber...ause F 00 might set some variables used by F IE.

r""'\ Note that (CREATE RECORD REUSING FORM •••) does not itself do any destructive operations on
Uthe value of FOR.~. The distinction between USING and REUSING is that (CREATE RECORD REUSING

FOF..v •••) will incorporate as much as possible of the old data strucrure into the new one being created.
while (CR EAT E RECORD US I NG FORM •••) will create a completely new data strucrure. with oniy
the contents of the fields re-used. For example, CREATE REUSING a PROPRECORO just CONSes the new
propeny names :me values onto the list. while CREATE USING copies the top level of the list. Another
example of th.is distinction occurs when a field is elaborated by a subdeclaration: US I NG will create a
new instance of the sub-record. while REUS ING will use the old contents of the field (unless some field
of t.'1e subdecla.-ation is assigned in the CREA TE expression.)

0

If the value of a field is neither explicitly specified. nor implicitly specified via US I NG, COPY ING or
REUSING, the default value in the declaration is used. if any. otheN'ise NIL. (Note: For BETWEEN fields
in DAT A TYPE records. N 1 is used; for other non-pointer fields zero is used.) For example. following
(RECORD A (B C 0) D .. 3).

(CREATE A s-r) ==> (LIST T NIL 3)

(CREATE A a-r USING X) ==)· (LIST T (CAOR X) (CAODR X))

3.J

TYPE?

(CREATE A B~T COPYING X)) ==> [LIST T (COPYALL (CADR X)) {COPYALL {CADDR XJ

(CREATE A s~r REUSING X} •=> (CONST (CDR X))

3.3 TYPE?-

... -
Toe record package allows the -user to test if a given datum .. looks like .. an instance of a record. This can
be done via an expression of the form

(TYPE? RECORD-NAME FORM)

TYPE? is.mainly intended for records with a record type ofDATATYPE or TYPE RECORD. For DATATYPn
the TYPE? check is exact: i.e. the TYPE? expression will rettL.-n non-NIL only if the value of FOR.\l
is an instance of the record :iamed by RECORD-NAME. For TYPERECORDs. the TYPE? expression will
check that the value of FORM is a list beginning with RECORD-NAME. For ARRAYRECORDs. it checks that
the value is an array of the correct size. For PR0PREC0R0s and ASSOCRECORDs, a TYPE? expression
will make sure that the value of FORM is a property/association list with property names among the
field-names of the declaration.

i\ttempting to execute a TYPE? expression for a record of cype ACCESSFNS, HASHLINK or RECORD
will cause an error, TYPE? NOT IMPLEMENTED FOR THIS RECORD. Toe user can (re)define the
inten:>retation of TYPE? expressions fer a particular declaration by inclusion of an expression of the form
(TYPE? COM) in the record declaration (see page 3.9).

3.4 'WITH

Often it is necessary to manipulate the values of the fields of a particular record. The WITH constr'2Ct car~\
be used to talk about the fields of a record as if thev were variables within a lexical scope: \) .• . ',. . .
(WITH RECOE.I).NAME RECORD-INSTANCE FOiU!1 · • • FORM::,t)

RECORD-NAME is the name of a record. and RECORD-INSTANCE is an expression which evaluates to ·an
instance of that record.. The expressions F'ORM1 • • - FORMN are evaluated so that references to va.."iabl-es
which are field-names of RECORD-NAME are implemented via fetch and SETQs of those variables are
implemented via rep 1 ace.

For example, given

(RECORD RECN (FLD1 FLD2))
(SETQ INST (CREATE RECN FLOl ~ 10 FLD2 ~ 20))

Then the conStruct

(with P.ECN INST (SETQ FL02 (PLUS FLD1 FLD2]

is equivalent to

3.4

n

0

n \.._,).

0.

THE RECORD PACKAGE

(replace FLD2 of INST with (PLUS (fetch FLDl of INST} (fetch FLD2 of INST]

Note that the substitution is lexical: this operates by actually doing a substirution inside the forms.

3.S RECORD DECLARATIONS

.. -
A record is defined by evaluating a record declaration.1 which is an expression of the form:

{RECORD-TYPE RECORD-NAME FIELDS • RECORD-TA.II.)

RECORD-T'l'?!: specifies the "type,. of data being described by the record declaration. and thereby
implicitly speci:fies how the corresponding access/storage operations arc performed. RECORD-TYPE
currently is either RECORD, TYPERECOP.D. ARRAY RE CORO. ATOMRECORD. P..SSOCRECORO, PROP RECORD,
OATATYPE. HASHLINK. ARRAYBLOCK or ACCESSFNS. RECORD and TYPERECORO are used to describe
list Structures. OATATYPE to describe user data-types, ARRAYRECORD [O describe arrays. ATOMRECORD
to des...--nbe (the propeny list of) lit.atoms. PROPRECORD to· describe lists in propeny list format. and
ASSOCRECORD to describe association list format. HASHLINK can be used with any type of data: it
simply speci:fies the data path to be a hash-link. ACCESSFNS is also type-less: the user specifies the
data-paths in the record declaration itself. as described below.

RECORD-NAME is a lit.atom used to identify the record decta..-a.tion for creating instances of the record
via CREATE. testing via TYPE?. and dumping to files via the RECORDS file package command (page
11.25). OATATYPE and TYPERECORO declarations also use RECORD-NAME to identify the data strucrure
(as described below).

F'IELDS describes the s~crure of the record. Its exact interpretation varies with RECORD-TYPE:

RECORD

TYPE RECORD

[Rer..ord Type]
FIELDS is a list StrUcture whose non-NIL literal atoms are taken as field-names
to be associated with the corresponding elements and tails of a list strucrure.
Fore:cample,withtherecorddeclaration(RECORO MSG (FROM TO. TEXT)).
{fetch FROM of X) cranslates as (CAR X).

NIL can be used as a place marker to fill an unnamed field. e.g.. (A NIL 8)
describes a three element list. with 8 corresponding to the third element. A number
may be used to indicate a sequence of N I Ls. e.g. (A 4 B) is interpreted as (A
NIL NIL NIL NIL B).

[Record Type]
Similar to RECORD. except that RECORD-NAME is also used as an indicator in CAR
of the datum to signify what .. type" of record it is. This type-field is used by
the record package in the translation of TYPE? expressions. CREATE will insert
an extra field containing RECORD-NAME at the beginning of the structure, and
the translation of the access and storage functions will take this extra field into

1 Local record declarations are defined by including an expression of this form in the CUSP declaration
for that function. rather than evaluating the expression itself (see page 16.10).

3.5

...
;

---·--:"'-

ASSOC RECORD

PROPREC0RD

n
Record Declarations

-account. Forexample,for(TYPEREC0RD MSG (FROM TO. TEXT)), (fetch
FROM of X) translates as (CA0R X), not (CAR X }.

[Record Type}
FIELDS is a list of literal atoms. Toe fields are stored in association-list format:

{ (FIELDNAMB1 • VALUE l) { FIELDNAMB2 • VALt1E2} • • •)

Accessi.."lg is performed .. with ASSOC (or FASS0C, depending on current CLISP
declarations). storing with PUT ASSOC.

[Record Typej
FlELDS is a list of literal atoms. Toe fields are stored in "property list" format:

(FIBLDNAME1. YALUE1 FIELJ:)NAMB2 VALUE2 · • ·)

Accessing is per!'ormed with LISTGET, storing with LISTPUT.

()

Both ASS0CREC0RD and PR0PREC0R0 are useful for defining data structures in which it is often the
case that many of the fields are NIL. A CR EAT E for these record types only stores those fields which are
non-NIL. Note, however, that with the record declaration (PR0PREC0R0 FIE (H I J)) the expression
(CREATE FIE) would still construct (H NIL). since a later operation of (replace J of X witll
Y) could not possibly change the instance of the record if it were NIL.

ARRAYRECORD

HASHLINK

ATOMREC0RD

[Record Type]
FIELDS is a list of field-names that are associated with the corresponding elements
of an array. NIL can be used as a place marker for an unnamed field (element).
Positive integers can be used as abbreviation for the corresponding number of rl I Ls.
For example, (ARRAYREC0R0 {0RG OEST NIL ID 3 TEXT)) describes an
eight element array, with 0RG corresponding to the firn element. ID to the fourth.
and TEXT to the eighth.

Note that ARRAYREC0RD only creates arrays of pointers. Other kinds of arrays
must be implemented by the user with ACCESSFNS. n _

[Record TypeJ · .,
F1ZLDS is either an atom FIELD-NAME. or a list (FJELD.NAME F-ARR.Al'NAMZ
HA.rt.P..AYSIZE). EA.RR.Al'NAME indicates the hash-array to be used; if not given.
SYSHASHARRAY is used. HA.RP..AYSIZE is used for initializing the hash 2.,.-ray: if
HA.R.R.A.YNAME has not been initialized at the time of the deciaration. it will be
set to (LIST (HARRAY (OR HAR.R.AYSIZE 100))). HASHLINKs are useful as
subdeclarations to other records to add additional fields to already existing data·
structures. For example, suppose that FOO is a record declared with (RECORD FOO
(A B C)) . To add an adi!ional field BAR, without modifying the already-existing
data strurures,, redeclare FOO with:

(RECORD FOO (ABC) (HASHLINK FOO (BAR BARHARRAY)))
.

Now. (fetch BAR of X) will translate into (GETHASH X BARHARRAY), hash-
ing off the existing list X.

[Record Type}
FIELDS is a list of property names. e.g., (AT0MREC0RD (EXPR CODE ~ACR0

3.6
()

0
~ ·. ' .

OATATYPE

./\ u

THE RECORD PACKAGE

BLKLIBRARYOEF)). Accessing is performed with GETPROP, Storing wirh
PUTPROP. As with ACCESSFNS, CREATE is not initially defined for ATOMRECORO
records.

[Record Type]
Specifies that a new user data type with type name RECORD-NA..\!B be allocated.
via OECLAREOATATYPE (page 3.14). Unlike other record-types, the records of a
DATATYPE declaration are represented with a completely new Interlisp type, and
not in terms of other existing types.

FTEI.Ds is a list of fiela specifications, where each specification is either a list
(FIELDNAME • FirJ.oDTYPE). or an atom FIELDNAME. If FISLDTYPE is omitted,
it defaults to PO I NT ER. Options for FIBLDT'YPE are:

POINTER

BITS N

Field contains a pointer to any arbitrary Interlisp object.

Field contlins an N·bit unsigned integer.

BETWEEN N2 N2 A generalization of BITS. Field may contain an integer
X. such that x is greater than or equal to N 1 and less
than or equal to N~ Enough bits are allocated to srore a
number between O and N 2·N1; N 1 is ~ppropriately added or
subtracted when the field is accessed or stored into.

INTEGER or FIXP Field contains a full word signed integer (the size is
implementation-dependent).

FLOATING or FLOATP
Field, contains a full word floating point number.

FLAG Field is a one bit field chat .. contains,. T or NIL.
'

For example. the declaratioti

(DATATYPE FOO
{(FLG BITS 12)

TEXT
(CNT BETWEEN 10 25)
HEAD
(DATE BITS 18)
{PRIO FLOATP}
{READ? FLAG)))

would define a· data 0type F 00 which occupies (in· lnterlisp-10) three words of storage
with two pointer fields (one word). a full word floating point number. fields for an
18. 12. and 4 bit unsigned integer. and a flag (one bit). with 1 bit left over. Fields
are alloc3ted in such a way as to optimize the storage used and not necessarily in the
order specified.. To store this information in a' conventional RECORD list s.ruc~re.
e.g .• (RECORD MSG { FLG TEXT CNT DATE PRIO . HEAD)), would take 5
words of list space and up to three number boxes (for FLG. DATE. and PRIO).

Since the user data type must be set up at run·time. the RECORDS file package
command will dump a DECLAREDATATYPE expression as wen as the DATATYPE

3.7

ARRAYBLOCK

ACCESSFNS

Record Declarations

declaration itself. Toe INITRECOROS file package command (page 11.25) will
dump only the DECLAREDATATYPE expression.

Note: DATA TYPE declarations should be used with caution within local declarations.
since a new and different data type is allocated for each one with a different name.

[Record TypeJ
(Not implemented in Interlisp-D) Similar to a DATATYPE declaration. except that
the objects it creates and manipulates are arrays. As with DATATYPE·s. the actual
order of the fields of the ARRA YB LOCK may be shuffled around in order to satisff
garbage collector constraints.

For example.

(ARRAYBLOCK FOO
((Fl INTEGER)

(F2 FLOATING)
(F3 POINTER)
(F4 BETWEEN -30 -2)
(F5 BITS 12)
(F6 FLAG)))

. . [Record Type]
FrELDS is a list of elements of the form (FJELD.NAME ACCESSDEF SETDEF),
Le. for each fieldname, the user soecifies how it is to be accessed and set.
ACC'ESS!JEF should be a function of one argument. . the datum. and will be used
for accessing. SETDEF should be a function of two .arguments, the datum and
the new value, and will be used for storing. SETDEF may be omitted. in which
case, no storing operations are allowed. ACCESSDEF and/or SETDEF may also be a
LAMBDA expression or a form written in terms of variables DA TUM and (in SETDEF)
NEWVALUE. For example. given the declaration

C)

n

[ACCESSFNS ((FIRSTCHAR {NTHCHAR DATUM 1)
(RPLSTRING DATUM l NEWVALUE)) n

(RESTCHARS (SUBSTRING DATUM 2]

(replace FIRSTCHAR of X with Y) would t.L-anslate to (RPLSTRING X 1
Y). Since no SETDEF is given for the RESTCHARS field. attempting to perfonn
(replace RESTCHARS of X with Y) would generate a.TJ. error. REPLACE
UNDEFINED FOR FIELD. Note that ACCESSFNS do not have a CREATE definition.
However. the user may supply one in the defaults and/or subdeclarations of the
declaration. as described below. Attempting ta CREATE an ACCESSFNS record
without specifying a create definition will cause an error CREATE NOT DEFINED
FOR iHIS RECORD.

ACCESSDEF and SETDEF can also be a property list which specify FAST. ST ANDA RD
a.,d UNDOABLE versions of the ACCESSFNS-forms, e.g.

(ACCESSFNS LITATOM ((DEF (STANDARD GETD FAST FGETD)
(STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect. use FGETD for fetching. if UNDOABLE. use

3.8

()

0
THE RECORD PACKAGE

0

/ PUTD for saving.

Tne ACCESSFNS fcrJicy allows the use of data-strUctures not specified by one of the built-in record
types. For example. one possible representation of a data-strUcture is to store the fields in parallel arrays.
especially if the number of instances required is known. and they. do not need to be gar:t,age collected.
Thus. to implement a data stn1cture called LIHK with two fields FROM and TO. one would have two
arravs FROMARRAY and TOARRAY. Toe representation of an "instance" of the record would be an integer
which is used to index into the arrays. This can be acco::nplished with the declaration:

., -
(ACCESSFNS LINK

((FROM (ELT FROMARRAY DATUM)
(SETA FROMARRAY DATUM NEWVALUE))

(TO (ELT TOARRAY DATUM)
(SETA TOARRAY DATUM NEWVALUE)))

(CREATE (PROGl (SETQ lINKCNT {ADOl LINKCNT))
· (SETA FROMARRAY LIHKCNT FROM}

{SETA TOARRAY LINKCNT TO)))
!INIT {PROGN (SETQ FROMARRAY {ARRAY 100))

{SETQ FROMARRAY (ARRAY 100))]

. To CREATE a new LINK. a counter is incremented and the new elements stored (although the CREATE
form given the declaration should actually include a test for overflow).

0

RECORD-TAJI. !s optional. It may contain expressions of the form:

FIELD-NAME ~ FORM

(CREATE FORM)

{ !NIT FORM}

(TYPE? FOR.\£)

Allows the user to specify within the record declaration the default value to be
stored in FTELD-NAME by a CREATE (if no value is given within the CREATE
expression itself). Note that FORM is evaluated at CREATE time. not when the.
declaration is made.

Defines the manner in which CREATE of this record shoufd be ·performed. Tnis
provides a way of specifying how ACCESSFNS should be created or overriding the
usual definition of CREATE. If FORM contains the field-names of the declaration as
variables. the forms given in the CREATE operation will be substituted in. If the
word DA TUM 2.ppe~ in the create form, the original CREA TE definition is insened..
This effectively allows the user to .. advise .. the create.

Note: (CREATE FOR..\!) may also' be specified as .. R.ECORD-NA.\!E 0 ~ FORM", e.g.
C .. (CONS A D).

Specifies that FORM should be evaluated when the record is declared. FORM will
also be dumped by the INITRECOROS file pack.age command (page ll.2$).

For example. see the example of an ACCESSFNS ·record declaration above. In this
example. FROMARRAY and TOARRAY are initialized with an INIT form.

Defines the manner in which TYPE? expressions are to be translated. FOR.\{ may
either be an expression in terms of DA TUM or a function of one argument.

Note: (TYPE? FORM) may also be specified as .• RECORD-NAME @ FOP_\!'', e.g.
C @ LISTP.

3.9

' ' I
I

(SUBRECORO NAME

· Defining New Record Types

• DEFAUI.TS)
NAME must be a field that appears in the current declaration and the name of
another record. 1bis says th'B.t. for the purposes of translating CREA TE expressions,
substitute the top-level declaration of NAME for the SUBRECORO form. adding on
any defaults specified.

n

Forexample:Given(RECORO B (E F G)).(RECORO A (BC 0) (SUBRECORO
B)) would be treated like (RECORD A (8 C D) { RECORD B (E F G))) for
the purposes of translating CREATE expressions.

a subdeclaration (Le-. a record declaration.)
The RECORD-NAME of a· subdeclaration must be either the RECORD-NAME of its
immediately superior declaration or one of the superior's field-names. Instead of
identifying the declaration as with top level declarations, the record-name of a ~
subdeclaration identifies the parent field or record that is being described by the ()

,.. subdeclaration. Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaration (RECORD NAME1 NAME2) is a simple way of defining a
synonym for the field NAME1•

Note that. in a few cases, it makes sense for a given field to have more than one
subdeclaration. For example, in

(RECORD (A'. B) (P~OPRECORD 8 (FOO FIE FUM)) (HASHLINK B C))

B is elaborate~ by both a PROPRECORD and a HASHLIHIC. Similarly,

(RECORD (AB) (RECORD A (C 0)) (RECORD A (FOO FIE)))

is also acceptable, and essentially "overlays" (FOO FIE) and (C O), Le. (fetch
FOO of X) and (fetch C of X) would be equivalent. In such cases, ihe first
subdeclaration is the one used by CREATE.

3.6 DEFINING NEW RECORD TYPES

In addition to the built-in record types, users can declare their own record types by performing the
following steps:

(1) Add the new record-type to the value of CLISPRECORDTYPES:.

(2) Perform (MOVD 'RECORD RECORD-T'YPE}. i.e. give the record-type the same definition as that of
the function RECORD;

(3) Put the name of a function which will return the translation on the property list of RECORD-TYPE. as
the value of the property USERRECORDTYPE. Whenever a record· declaration of type RECORD-TYPE is
encountered. this function will be passed ihe record declaration as irs argument. and should return a new
record declaration which the record package will then use in its place.

()

(~)
3.10

0 THE RECORD PACKAGE

3.7 RECORD MANIPULATION FlJNCTIONS

The user may edit (or delete) global record declarations with the function:

(EOITREC NAME COM1 ... COMN) [NLambda. NoSpread Function]
Nospread nlambda function timilar to EOITF or ED ITV. EDITREC calls the ~tor
on a copy of all declarations in wbich NAME is the record-name or a field name.
On exit. it redeclares those that have changed and undeclares any that have been
deleted. If NAME is NIL. all declarations are edited.

cou1 • • • couN are (optional) edit commands.

When the user redeclares a global record. the translations of all expressions involving that record or any
of its fields are automacically d~leted from CLISPARRAY, and thus will be recomputed using the new

0 ~ ·.information. If the user changes a local record declaration. or changes some other CUSP declaration. e.g.,
. - STANDARD to FAST, and wishes the new information to affect record expressions already translated., he

0

0

must make sure the corresponding tranSlations are removed, usually either by CLISPIFYing or applying
the ? ow ed!t macro.

(RECLOOK RECORDNAME - - - -) [Function]
Returns the entire declaration for the record named RECOR.ON.A.ME; H IL if
no record declaration with name RECOIWNAME. Note that the record package
maintams internal state about current record declarations. so performing destructive
operations (e.g. NCONC) on the value of RECLOOK .may leave the record package
in an inconsis.ant state. To change a record declaration. use EDITREC.

(FIELDLOOK FIE'I.DNAMZ) [Function]
Returns the list of declarations in which F!ELDNAME is the name of a field.

(RECORDFIELDNAMES RECORDNAME) [FunctionJ
Returns the list of fields declared in record RECOIWNAMB. RECORDNAME may
either be a name or an entire declaration.

(RECOROACCESS FIZI.D DATUM DEC TYPE N'EWVALDE) [FunctionJ
TtPE is one of FETCH. REPLACE. FFETCH. FREPLACE. /REPLACE or their
lowercase equivalents. TYPE=NIL means FETCH. If TYl'E corresponds to a fe!.c!l
operation. i.e. is FETCH. or FF ETCH. RECOROACCESS performs (TYPE F-:ZLD
OF DATJM). If TYPE corresponds to a replace. RECORDACCESS performs (TY?E
FIEI..D OF DATilM WITH .NEWVALCJZ) .• DEC is an optional declaration: if given.
F'IELD is incerpreted as a field name of that declaration.

Note that RECORDACCESS is relatively inefficient. although it is better than
constructing the equivalent form and performing an EVAL.

3.8 CHANGETRAN

A very common programming construction consists of assigning a new value to some datum that is a
function of the current value of that da.run,_ Some examples of such read-modify-write sequences include:

3.11

... •

(SETQ X (IPLUS X 1))

(SETO X (CONS Y X))

(PROGl (CAR X) {SETQ X {CCR X)))

Changetran

Incrementing a counter

Pushing an item on the front of a list

Popping an item off' a list

0

It is easier to express such computations when the datum in question is a simple variable as above than
when it is an element of some larger data structure. For example. if the datum to be modified was (CAR
X) • the above examples would be:

(CAR (RPLACA X (IPLUS (CAR X) 1)))

(CAR (RPLACA X (CONS Y {CAR X))}

r-; (PROG1 (CAAR X) (RPLACA X (COAR X)))

and if the datum was an element in an array, (EL T A N). the examples would be:

(SETA AN (IPLUS {ELT AN) 1)))

(SETA AN (CONS Y (ELT AN))))

(PRO~l (CAR (ELT AN)) (SETA AN {CDR (ELT AN))}) .

n

The difficulty in expressing (and reading) modification idioms is in part due to the well-known assymmetry
-of setting versus accessing operations on structures: RPLACA is used to smash what CAR would return.
SETA corresponds to ELT, and so on.

The 0Changetran .. facility is designed to provide a more satisfact0ry notation in which to express i:ertain
common (but user-extensible) structure modification operations. Changetran defines a set of CLISP words
that e:icode the kind of modification that is to take place, e.g. pushing on a list, adding to a number ..
etc. More impor..ant. the expression that indicates the datum whose value is to be mod.iiied needs to be
stated only once. Tnus, the "change word" ADO is used to increase the value of a datum by the sum oy­
a set of numbers. Its arguments are an expression denoting the datum. and a set of items to be added tc'-)
its current value. Toe datum expression must be a variable or an accessing expression (envolving fetch.
CAR. LAST. EL T. etc) that can be translated to the appropriate setting expression.

For example. (ADD { CAODR X) (FOO)) is equivalent to:

(CAR (RPLACA (COOR X)
(PLUS (FOO) (CAODR X)))

If the datum expression is a complicated form·involving subsidiary function calls. such as (EL T (FOO X)
(F IE Y))) • Changetran goes to some lengths to make sure that those subsidiary functions are evaluated
only once (it binds local variables to save the results). even though they logically appear· in both the
setting and accessing parts of the translation. Thus. in thinking about both efficiency and possible side
effects. the user can rely on the fact that the forms will be evaluated only as often as they appear in the
expression.

For ADO and all other changewords. the lower-case :version (add. etc.} may also be specified. Like other
CUSP words. change words are translated using all CUSP declarations in effect (see page 16.9).

l',

.-._ The'following is a list of those change words recognized by Changetran. Except for POP. ?1e value of all Q
3.12

0

0

THE RECORD PACKAGE

built-in changeword forms is defined to be the new value of the datum.

(AOC DATUM , ITEM1 ITEM2 • • •) [Change Word]
Adds the specified items to the current value of the datum. stores the result back
in the datum location. The translation will use IPLUS. PLUS. or FPLUS according
to the CUSP declarations in effect.

(PUSH DAT'O'M ZTEM1 ITEM2 ...) [Change Word]
CONSes the items onto the front of the current value of the datum. and stores the
result back in the datum location. For example. (PUSH X A B) would tra:lSlate

. as (SETQ X (CONS A (CONS B X))).

(PUSHNEW DA.T'O'M ITEM) [Change Word]
Like PUSH (with only one item) except that the item is not added if it is already
FMEMS of the datum's value.

Note that. whereas (CAR (PUSH X ' FOO)) will always be FOO. (CAR (PUSHN EW
X 'FOO)) might be something else if FOO already existed in the middle of the
list.

(PUSH LIST DATUM ZTEM1 rrEM2 • • ·) [Change Word}

(POP DA.TUM)

Similar to PUSH, except that the items are APPENDed in.front of the current value
of the datum. For example, (PUSH LIST X A B) would translate as (SETQ X
(APPEND AB X)).

[Change Word)
Rerurns CAR of the current value of the datum after storing its CDR into the dacum.
The current value is computed only once even though it is referenced twice. Note
that this is the only built-in changeword for which the value of the form is not the
new value of the datum.

(SWAP DATUM1 DATT.t"M2) · [Change Word)
Sets DATTJM1 to DATUM2 and vice versa.

Q(CHANGE DATUM FORM) [Change Word]
Tnis is the most 'flexible of all change worc.s. since it enables the user to provide a:i

arbitrary form describing what the new value should be. but it still highlights the
fact that structure modification is to occur. and still enables the datum expression
to appear only once. CHANGE sets DATUM to the value of FOFJ,!·. where FORM· is
constructed from FORM by substituting the datum expression for every occurrence
ofthelitatomOATUM.Forexample.(CHANGE (CAR X) (!TIMES DATUM 5))
translates as (CAR (RPLACA X (IT IMES (CAR X) 5 >')).

0

CHANGE is useful for expressing modifications that are not built·in and are not
sufficiently common to justify defining a user-changeword. As for other changeword
expressions. the user need not repeat the datum-expression and need not worry
about multiple evaluation of the accessing form.

It is possible for the user to define new change words. To define a change word. say sub. that
subu.--acts items from the current value of the datum. the user must put the property CLISPWORD. value
(CHANGE TRAN . sub) on both the upper and lower·case versions of sub:

3.13

---.

...... '-·-- -···

User Defined Data Types

(PUTPROP 'SUB 'CLISPWORO '{CHANGETRAN. sub))
(PUTPROP 'sub 'CLISPWORD '(CHANGETRAN. sub)}

(')

. Then. the user must put (on the lower-case version of sub only) the property CHANGEWORO, with value
FN. FN is a function that will be applied to a single argument, the whole sub fonn. and must return a
form that Changetran can translate into an appropriate expression. Tnis form should be a list strucrure
with tbe atom DA TUM used whenever the user wants an accessing expression for the current value of the
datum to appear. Toe form (DATUM.,. FORM) (note that DATUM+- is a single atom) should occur once ill
the expression: this specifies that an appropriate stori..ng expression into the datum should occur at that
point. For example, sub could be defined with:

(PUTPROP 'sub 'CHANGEWORO
'(LAMBDA (FORM)

(LIST 'DATUM+-
--~ ··(LIST '!DIFFERENCE n

'DATUM
{CONS 'IPLUS (COOR FORM))))))

If the expression (sub (CAR X) A B) were encountered. the arguments to SUB would fi...-st be
dwimified.. and then the CHANGEWORO function would be passed the list (sub { CAR X) A B), and
return (DATUM .. (IO!FFERENCE DATUM (IPLUS AB})}, whichChangetranwouldconvento (CAP.
(RPLACA X {!DIFFERENCE (CAR X) (IPLUS AB)))).

Note: Toe sub changeword as defined above will always use IOIFFERENCE and IPLUS: add uses the
correct addition operation depending on the current CUSP declarations.

3.9 · .USER DEFINED DATA TYPES -
Note: The most convenient way to define new user data typeS is via DATATYPE record declarations (see
~m . n
In addition to · built-in data·cypes such as atoms. lists, arrays. etc.. Interlisp provides a way of defining
completely new classes of objects, with a fixed number of fields determined by the definition of t..i.e data
type. Facilities are provided for declaring the name and type of the fields for a given class. creating
objectS of a· given class. accessing and replacing the contents of each of the fields of such an object. as
well as interrogating such objects.

In order to define a new class of objects. the user must supply a name for the new data cype and
specifications for each of its fields. Each field may contain either a. pointer (i.e .• any arbitrary Interlisp
datum). an integer. a floating point number, or an N·bit integer. This is done via the function
OECLAREDATATYPE: .

(DECLAREDATATYPE TYPENAME FIEI..DSPECS) • [Function]
TYPENAME is a literal atom. which specifies the name of the data type. F1ELDS?ECS
is a list of "field specifications ... Each field specification may be one of the following:

POINTER

FIXP

Field may contain any Interlisp datum.

Field contains an integer.

3.14

n

0

--o,,..-
- ~-

0

0.

FLOATP

(BITS N)

THE RECORD PACKAGE

Field contains a floating point number.

Field contains a non-negative integer less than 2r-r.

DECLAREDATATYPE returns a list of .. field descriptors", one for each element of
FIELDSPECS. A field descriptor contains information about where within the datum
the field is actually stored.

If TYPENAME is already declared a datatype, it is re-declared. If F'IELDSPECS is
NIL, TYPENAME is '"unde--...lared".

(FETCHFIELD DESCRIPTOR DATUM) [Function}
Returns the contents of the field described by DESCRIPTOR from DATtJU.
DESCRIPTOR must be a 0 field descriptor'' as retumed by OECLAREOATATYPE.·
If DATUM is not an instance of the datatype of which DESCRIPTOR is a descriptor.
causes error DATUM OF INCORRECT TYPE.

In ·rnterlisp-10. if DESCRIPTOR is quoted, FETCHFIELO compiles open. This
capability is used by the record package.

(REPLACE FIELD DESCRIPTOR DATVM' N'EWV.AI..UE) [Function}
Stare NEWVALu'Z into the field of DATUM described by DESCRIPTOR. DESCP..IPTOR
must be a field descriptor as returned by OECLAREDATATYPE. If DATUM is not.an
instance of the datatype of which DESCRIPTOR is a descriptor, causes error 0A TUM
OF INCORRECT TYP~ Value is N'EWVALUE.

(NCREATE rtPENAME FROM) [Function}
Creates and returns a new instance of datacype TYPENAME.

If FROM is also a datum of datatype TYPENAME, the fields of the new object are
initialized to the values of the corresponding fields in FROM. ·

NCREATE will not work for built·in datatypes, such as ARRAYP, STRINGP, etc. If
TYPENAME is not the type name of a previously declared user data type, generates
an error, ILLEGAL CATA TYPE.

(GET F IELOSPECS TYPENAME) [Function]
Returns a list which is EQUAL to the F!ELDSPECS argument given to DECLAREOATATYPE
for TYPENAME: if TYPENAME is not a currently declared data·type. returns NIL.

{ GETDESCRIPTORS TYPENAME) [Function]

(USERDATATYPES)

Returns a list of field descriptors. EQUAL to the value of OECLAREDATATYPE for
TYPENAME.

[Function}
Returns list of names of currently declared user data types.

Note that the user can define how user da~ types are to be printed via OEFPRINT {page 6.23). how they
are to be evaluated by the interpreter via DEFEVAL (page 5.11), and how they are to be compiled by the
compiler via COMP ILETYPELST (page 12.9).

The DAT A TYPE facility in Incerlisp-O is an extension of that found in Interlisp-1'8. Interlisp-O also
accepts BYTE. WORD. and SIGUEDWORO as datatype field descriptors equivalent to BITS a. BITS 16.

3.15

.....

0
User Defined Data Types

and BETWEEN -215 and 215.1 respectively. Interlisp·D will not move fields around in a user declaration
if they pack into words and pointers as specified. POINTER fields take 24 bits and must be 32-bit
right-justified.

.... -

3.16

n

()

()

o--

o-·

CHAPTER4

CONDmONALS Al'.'D ITERAID"E STATEMENTS

In order to do any but the simplest computations. it is necessary to test values and execute expressions
conditionally. and to execute expressions repeatedly. Interlisp supplies a large number of useful condition.al
and iterative constructs.

{ COND G'LAL"SE1 G'LACTSE2 • • • Cl.Au-SEK) [NLambda NoSpread Function]
The conditional function of Interlisp, COND, takes an indefinite number of
arguments, called clauses. Each CI...AUSEi is. a list of the form (P; cil · · · Cm) •
where P; is the predicate. and C;1 "/, • ciN are the consequents. The operation of
co~o can be paraphrased as:

IF P1 THEN Cu .. • Cz.N El.SEIF P2 TiiEN c21 .. • Cm El.SEIF P3 • ..

The clauses are considered in sequence as follows: the predicate Pl of the clause
CLAUSE; is evaluated. If the value of P1 is "true" (non-NIL). the consequents cil
• • • C;N are evaluated in order. and the value of the COND is the value of ciN, the
last expression in the clause. If Pl is .. false .. (EQ to NIL), then the remainder of

• CLAUSE; is ignored. and the next clause, CLA.USE;+i• is considered. If no P; is true
for any clause, the value of the COND is NIL

Note: If a clause has no consequents, and has the form (P;), then if P; evaluates
to non·N IL, it is returned as the value of the CONO. It is only evaluated once.

Example:

+- (DEFINEQ (DOUBLE (X)

(DOUBLE)
.. (DOUBLE
10
+- {DOUBLE
"FOOFOO"
+- (DOUBLE
BARBAR
+- {DOUBLE
"unknown"
(ABC)

5}

(CONO ((NUMBERP X) (PLUS XX)}
((STRINGP X) (CONCAT XX))
{{ATOM _X) (PACK• XX))
(T (PRINT "unknown") X)
({HORRIBLE-ERROR))]

"FOO")

'BAR)

I (A B C))

A few points about this exampie: Notice that 5 is both a number and an atom.
but it is "caught" by the NUMB ERP clause before the A TOM clause. Also notice
the predicate T. which is always true. This is the normal way to indicate a CONO

4.1

·---· -

clause which will always be executed (if none of the preceeding clauses are true).
{HORRIBLE-ERROR) will never be executed.

Note: The IF statement (page 4.4) provides an easier and more readable way of
coding conditional expressions than CONO.

(ANO Xz X2 • • • XN) [NLambda NoSpread Function]
Takes an indefinite number of arguments (including zero). that are evaluated . in
order. If any argument evaluates to NIL. Ano· immediately remms NIL (without
evaluating the remaining arguments). If all of the arguments evaluate to non-HI L.
the value of the last argument is returned. (ANO) = > T.

[NLambda NoSpread Function]
Takes an indefinite number of arguments (including zero). that are evaluated in
oraer. If any argument is non-NIL. the value of that argument is returned by OR
(without evaluating the remaining arguments).· If all of the arguments evaluate to
NIL. NIL is returned. {OR) => NIL.

AHO and OR can be used as simple logical connectives. but note that they may not evaluate all of their
arguments. This makes a difference if the evaluation of some of the arguments causes side-effects. Another
result of this implementation of AND and OR is that they can be used as simple conditional statements.
For example: (ANO (LISTP X) (COR x)) returns the value of { CCR x) if xis a list cell.· .otherwise
it returns NIL without evaluating (COR x). In general. this qse of ANO and OR should be avoided in
favor of more explicit conditional statements in order to make programs more readable.

(SELECTQ X C"...AUSE1 CI.AUSE2 • • • CLAUSE IC DEF.AVLT) [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of. its first argument x.
Each clause CLA.USEi is a list of the form { si ci1 • • • Cm) where si is the selection
key. The operation of SELECTQ can be paraphrased as:

IF x = s1 TiffiN Cu··· CzN ELSEIF x = s2 THEN··· ELSE DEFAUI.T.

If si is an atom. the value of x is tested to see if it is EQ to si (which is not

(j ... ,
· .. ,

n . _.-,

evaluated). If so, the expressions C;1 • • • ciN are evaluated in sequence, and the '.,-.-\
value of the SELECTQ is the value of the last expression evaluated. i.e •• ciN·)

If si is a list. the value of xis compared with each element (not evaluated) of si,
and if xis EQ to any one of them, then cil · • • ciN are evaluated as above •

. If CI.AUSEi is not selected in one of the two ways described. CLA.TJSEi..L.l is tested.
etc .. until all the clauses have been tested. If none is selected. DEF.4.ULT is evaluated.
and its value is returned as the value of the SELECTQ. DEFAULT must be present.

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))
((APRIL JUNE SEPTEMBER NOVEMBER) 30)
31]

If the value of MONTH is the litatem FEBRUARY, the SELECTQ returns 28 or 29
(depending on (LEAPYEARP)): otherwise if MONTH is APRIL. JUNE. SEPTEMBER.

4.2
(J

0

()

C)

0

CONDmONALS AND ITERATIVE STA TEMENI'S

or NOVEMBER. the SELECTQ returns 30; otherwise it remrns 31.

SELECTQ compiles open, and is therefore very fast; however. it will not work if
the value of xis a list. a large integer, or floating point number, since SELECTQ
uses E Q for all comparisons.

Note: Toe function SELCHARQ (page 2.13) is a version of SELECTQ that recognizes CHARC0DE litatoms.

(SELECTC X C'LA'CTSEz CL.AtTSE:z ••• C'LAUSEic DEFAt1LT) [NLambda NoSpread Function]
.. SELECTQ·on·Constant." Similar to SELECTQ except that the selectio:i. keys are
evaluated, and the result used as a SELECTQ·style selection key.

SELECTC is compiled as a SELECTQ. with the selection keys evaluated at compile­
time. Therefore, the selection keys act like compile-time constants (see page 12.5).
For example:

[SELECTC NUM
((for X from 1 to 9 collect (TIMES XX)) "SQUARE")
"HIP"]

compiles as:
'

[SELECTQ NUM
((1 4 9 16 25 36 49 64 81) "SQUARE")
"HIP"]

(PROGl x1 x2 ••· XN) [NLambda NoSpread Function].
EvaluateS its arguments in order. and returnS the value of its first argument x!. For
example. (PROGl X (SETQ X Y)) sets X to Y. and returns X's original value.

(PR0GZ Xz X:z ••• XN) [Function]
Similar to PR0G1. Evaluates its arguments in order, and returns the value of its
second argument X:z-

{ P R0G N x1 x2 ••• xN) [NLambda NoSpread Function]
PR0GH evaluates each of its arguments in order. and returns the ..,.alue of its las:
argument. PROGN is used to specify more than one computation where the syntax
allows only one. e.g .• { SELECTQ ... { PR0GN ...)) allows evaluation of several
expressions as the default condition for a SELECTQ.

(PROG VARLST E1 E2 · · · EN) [NLambda NoSpread Function]
This function allows the user to write an ALGOL-like program containing Interlisp

. expressions (forms) to be executed. Toe first argument. VARLST, is a list of loccl
variables -(must be NIL if no variables are used). Each atom in VARLST is treated
as the name of a local variable and bound to NIL. VARLST can also contain lists
of the form (atom form). In this case. a tom is the name of ¢e variable and is
bound to the value of form. The evaluation takes place before any of the bindings
are performed. e.g., (P ROG { (X Y) (Y X)) ••• } will bind local variable X to
the ·value of Y (e..,.aluated outside the PR0G} and local variable Y to the value of
X (outside the PR0G). An attempt to use anything other than a literal atom a.s a
PR0G variable will cause an error. ARG NOT LIT A TOM. An attempt to use NIL
or T as a PROG variable will cause an error. ATTEMPT TO BIND NIL OR T.

4.3

(GO X)

(;RETURN X)

The IF Statement

The rest of the PROG is a sequence of non-atomic statements (forms) and litatoms
(labels). The forms are evaluated sequentially; the labels serve only as markers.
Toe two special functions GO and RETURN alter this flow of control as described
below. The value of the PROG is usually specified by the function RETURN. If 110
BETURN is executed before the PROG .. falls off the end," the value of the PROG is
NIL.

[NLambda NoSpread FunC"JonJ
GO is used to cause a transfer in a PROG. (GO L) will cause the PROG to evaluate
forms s-..arting at the label L (GO does not evaluate its argument). A GO can be
used at any ievel in a PROG. If the label is not found, GO will search higher p:-ogs
wilhin thesamef,,mction. e.g., (PROG ···A··· (PROG ···(GOA)}). If the
label is not found in the function in which the PROG appears. an error is generated.
UNDEFINED OR ILLEGAL GO. .

[Function]
· A RETURN is the normal exit for a PROG. Its argument is evaluated and is

immediately returned the. value of the P ROG in which it appears.

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG. the GO or RETURN
will be executed in the last interpreted PROG entered if any. otherwise cause an error.

GO or RETURN inside of a compiled function that is not a PROG is not allowed. and will cause an· error
at compile time.

As a corollai-y, GO or RETURN in a functional argument. e.g.. to SORT. will not work compiled. Also. •
since NLSETQ's and ERSETQ's compile as separate functions. a GO or RETURN cannot be used inside of a
compiled NLSETQ or ERSETQ if the corresponding PROG is outside. i.e.. above. the NLSETQ or ERSETQ.

4.1 THE IF STA1L'1ENT

. The IF S-w!tement provides a way of way of specifying conditional expressions that is much easier and
readable than using the COND function directly. CLISP translates expressions employing IF, THEN.
ELSEIF, or ELSE into equivalent CONO expressions. In general. statements of the form:

(IF AAA THEN BBB ELSEIF CCC THEN DDD ELSE EEE)

are translated to:

(CONO (AAA BBB)
. (CCC DDD)

(T EEE))

The segment between IF or ELSE IF and the next THEN corresponds to the predicate of a COND clause.
and the segment between THEN and the next ELSE or ELSE IF as the c::onsequent(s). ELSE is the same as
ELSE IF T THEN. These words are spelling corrected using the spelling list CL ISP I FWORDSPLST. Lower
case versions (if. then. elseif. else) may also be used.

If there is nothing following a THEN. or THEN is omitted entirely. then the resulting CONO clause has a

4.4

n,
\ /

()

n

0 ...

0

0

0

CONDITIONALS AND ITERATIVE STATEMENTS

predicate but no consequent. For example. (IF X THEN ELSEIF ···) and (IF X ELSEIF ...) both
translate to (CONO (X) ···). which means that if Xis not NIL. it is rerumed as the value of the COHO.

CLISP considers IF, THEN. ELSE. and ELSEIF to have lower precedence than all infix and prefix
opera.tors, as well as Interlisp forms. so it is sometimes possible to omit parentheses around predicate or
consequent forms. For example, (IF FOO X Y THEN ···) is equivalent to (IF (FOO X Y) THEN
.. ,), and (IF X THEN FOO X Y ELSE ···) as equivalent to {IF X THEN {FOO X Y) ELSE ···).
Essentially. CLISP determines whether the segment between THEN and the next ELSE or ELSEIF
corresponds to one form or several and ac--..s accordingly, occasionally interacting with the user to resolve
?lllbiguous cases. Note that if FOO is bound as a variable. (IF FOO THEN · · ·) is translated as (COND
(F 00 • • •)) , so if a call to the fanczion F 00 is desired, use (I F (F 00) THEN · • •) •

4.2 TIIE ITERATIVE ST A TEMENT

Toe iterative statement {Ls.) in its various forms permits the user to specify complicated iterative
statements in a straightforward and visible manner. Rather than the user having to perform the mental
transformations to an equivalent Interlisp form using PROG. MAPC, MAPCAR, etc_ the system does it for
him. The goal was to provide a robust and tolerant facility which could .. make sense" out of a wide class
of iterative statements. Accordingly, the user should not feel obliged to read and understand in detail the
description of each operator given below in order to use iterative statements.

An iterative statement is a form consisting of a nimiber of special words (known as Ls. . operators or
i.s.oprs}. followed by operands. Many i.s.oprs (FOR, DO. WHILE, etc.} are similar to iterative statements
in other programming languages; other Ls.oprs (COLLECT. JOIN, IN, etc.) specify useful operations in a
Lisp environment. Lower case versions of Ls.oprs (do, co 11 ect. etc.) can also be used. Here are some
examples of iterative statements:

~ (for X from 1 to 5 do (PRINT 'FOO)}
FOO
FOO
FOO
FOO
FOO
NIL
~ (for X from 2 to 10 by 2 collect (TIMES XX))
(4 16 36 64 100)
~ {for X in '(AB 1 C 6.5 NIL (45)) count (NUMBERP X))
2

Iterative statements are implemented through CLISP. which translates the t"orm into the appropriate
PROG. MAPCAR. etc. Iterative statement forms are translated using all CLISP declarations in effect
(standard/fast/unc!.oable/ etc.): see page 16.9. Misspelled i.s.oprs are recognized and corrected using the
spelling list CLISPFORWORC_SPLST. Toe order of appearance of operators is never important: CUSP
scans the entire statement before it begins to construct the equivalent Interlisp form. New i.s.oprs can be
defined as described on page 4.13.

lf the user defines a function by the same name as an Ls.opr (WHILE. TO. etc.). the i.s.opr wili no longer
have the CUSP interpretation when it appears as CAR of a form. although it will continue to be treated

4.5

(

I.s.types

as an i.s.opr if it appears in the interior of an iterative statement. To alert the user, a warning message is
printed. e.g.. (WHILE DEFINED. THEREFORE DISABLED n, CLISP).

4.2.l I.s.types

The following i.s.oprs are examples of a certain kind of iterative statement operator called an Ls.type. The
i.s.type specifies what is to be done at each iteration. Its operand is called the "body'" of the iterative
statement. Each iterative statement must have one and only one i.s.cype.

00 FOR.\!

COLLECT FORM

JOIN FORM

SUM FORM

[I.S. Operator]
Specifies what is to be done at each iteration. DO with no other operator specifies
an infinite loop. If some explicit or implicit terminating condition is specified. the
value of the i.s. is NIL. Translates to MAPC or MAP whenever possible.

[LS. Operator]
Specifies that the value of FORM at each iteration is to be collectf'!d in a list. which
is returned as the value of the i.s. when it terminates. Translates to MAPCAR.
MAPL!ST or SUBSET whenever possible.

When COLLECT translates to a PR0G (e.g.. if UNTIL WHILE, etc. appear in the
i.s.). the trarislation employs an open TC0NC using two pointers si:nilar to that
used by the compiler for compiling MAPCAR. To disable this translation. perform
(CLDISABLE 'FC0LLECT).

[I.S.' Operator]
Similar to COLLECT, except that the values of FORM at each iteration are NC0NCed.
Translates to MAPC0NC or MAPC0N whenever possible. /NC0NC, /MAPC0NC, and
/MAPC0N are used when the CUSP declaration UND0ABLE is in effect.

[I.S. Operator}
Specifies that the values of FORM at each iteration be added together and returned

-"' (/·

as the value of the i.s .. e.g.. (FOR I FROM 1 TO 5 SUM I -r2) is equal to
1+4+9+16+25. I PLUS, FPLUS. or PLUS will be used in the translation dependir1g Q
on the CUSP declarations in effect.

COUNT FORM

ALWAYS FOR..\!

NEVER FOR.\!

[I.S. Operator]
Counts the number of times that FORM is true. and returns that count as its value.

[I.S. Operator]
Returns T if the value of FORM is non-NIL for all iterations. (Note: returns NIL
as soon as the value of FO&.\l is NIL).

[I.S. Operator]
Similar to ALWAYS, except returns T if the value of FORM is never true. (Note:
returns NIL as soon as the value of FORM is non-NIL).

The following i.s.types explicitly refer to the iteration variable (i.v.) of the iterative statement. which is a
·. variable set at each iteration. This is explained below under FOR.

THERE IS FOR..\! [I.S. Operator]
Returns the first value of the L v. for which FORM is non-N IL e.g.. (FOR X IN Y

4.6
r­
_).

o·

- .

0

0

CONDmONAIS AND ITERAID"E STATEMENTS

THERE IS (NUMB ERP X)) returns the first number in Y. (Note: returns the value
of the i. v. as soon as the value of FORM is non-NIL).

LARGEST FORM [I.S. Operator]
SMALLEST FORM [I.S. Operator]

Returns the value of the i.v. that provides the largest/smallest value of FORM.
SSEXTREME is always bound to the current great~smallest value, SSVAL to t.~e
value of the i.v. from which it came • .. -

4.l.2 Iteration Variable l.s.oprs

FOR VAR

FOR VARS

FOR OLD VAR

BIND VAR

· BIND- VARS

[I.S. Operator]
Specifies the iteration variable (i.v.} which is used in conjunction with IN, ON,
FROM, TO, and BY. Toe variable is rebound within the i.s., so the value of the
variable outside the i.s. is not effected. Example:

.. (SETQ.X 55)
55
... {for X from 1 to 5 collect (TIMES XX)}
{ 1 4 9 ,16 25)
.. X
55

[LS. Operator}
VARS a list of variables. e.g.. (FOR { X Y Z) IN . · •) • The first variable is the
i.v., the rest are dummy variables. See BIND below.

[I.S. Operator]
Similar to FOR, except that VAR is not rebound within the i.s •• so the value of t.'le
i.v. outside of the i.s. is changed. Example:

.. (SETQ X 55)
55
.. (for old X from 1 to 5 collect (TIMES XX))
(1 4 9 16 25)
.. X
6

[I.S. Operator]
[I.S. Operator]

Used to specify dummy variables. which are bound locally within the i.s.

Note: FOR. FOR OLD, and BIND variables can be initialized by using the form VAR+-FORM:

(FOR OLD (X ... FORM) Brno (Y+-FORM) ···)

IN FORM [I.S. Operator]
Specifies that the Ls. is to iterate down a list with the· i. v. being reset to the
corresponding element at each iteration. For example. { FOR X IN Y DO · · ·)
corresponds to { MAPC Y { FUN CT ION (LAMBDA { X) · · ·))) . If no i.v. has
been specified. a dummy is supplied. e.g .. (IN Y COLLECT CADR) is equivalent

4.7

..

ON FOR.V

Iteration Variable I.s.oprs
.....

\

to {MAPCAR Y (FUNCTION CA0R)).

[I.S. Operator]
Same as IN except th.at the i. v. is reset to the corresponding tail at each iteration.
Thus IN corresponds to MAPC, MAPCAR, and MAPC0NC, while OH corresponds to
MAP, MAPLIST, and MAPC0N.

Note: for both IN and ON, FORM is evaluated before the main part of the i.s. is entered. i.e. ouZS:,de of
the scope of any of the bound variables of the i.s. For example, (FOR X BI ND (Y .. • (1 2 3 }) IN Y
·. ·) will map down the list which is the value of Y evaluated outside of the i.s.. not (1 2 3).

IN OLD VAR [I.S. Operator]
Specifies that the i.s. is to iterate down . VAR, with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (FOR X IN OLD L 00 ••• u:lTIL
· • ·) finishes, L will be some tail of its original value.

IN OLD (VAR!-FORM) [I.S. Operator]

ON OLD VAR

Same as IN OLD VAR, except VAR is first set to value cf FORM.

• [I.S. Operator)
Same as IN OLD VAR except the i.v. is reset to the current value of VAR at each
iteration, instead of to (CAR VAR).

ON OLD { VAR .. FORM} [I.S. Operator]

INSIDE FOP.M

..
FROM FORM

Same as ON OLD VAR, except VAR is first set to value of FORM.

[I.S. Operator}
Similar to IN, except treats first non-list. non·NIL tail as the last element of the
iteration. e.g., INS IO E ' { A B C D • E) iterates five times with the i. v. set to
Eon the last iteration. INSIDE 'A is equivalent to INSIDE '(A), which will
iterate once •

[I.S. Operator}

n

Used to specify an initial value for a numerical i.v. Toe i.v. is automatically
incremented by l after each iteration (unless BY is specified). If no i.v. has been (j
specified, a dummy i.v. is supplied and ir...itialized, e.g., (FROM 2 TO 5 COLLECT

TO FOP.M

SQ RT) returns (1. 414 1. 7 3 2 2 • 0 2 . 2 3 6) .

[I.S. Operator}
Used to specify the final value for a numerical Lv. If FROM is not specified. the
i.v. is initialized to l. If no i.v. has been specified. a dummy i.v. is supplied
and initialized.. If BY is not specified.. the i.v. is automatically incremented by l
after each iteration.1 When the i.v. is definitely being incremented. i.e .• either BY is
not specified.. or its operand is a positive number. the i.s. tenninates when the i. v.
exceeds the value of FORM e.g .• (FOR X FROM 1 TO 10 --) is equivalent to
(FOR X FROM 1 UNTIL (X GT 10) --).Similarly,whenthei.v.isdefinitely

1except when both the operands to TO and FROM are numbers. and T0's operand is less than FR0M's
operand, e.g .. FROM 10 T~ 1. in which case the i.v. is decremented by l aft.er each iteration. [n t.l'lis
case. the i.s. terminates when the i.v. becomes less than the value of FORM.

4.8
()

0

0

0

0

CONDffiONALS AND ITERATIVE STATEMENTS

being decremented the Ls. terminates when the Lv. becomes less than the value of
FORM (see description of BY).

Note: FORM is evaluated only once. when the Ls. is first entered. and its value
bound to a temporary variable against which the Lv. is checked each interation. If
the user wishes to specify an Ls. in which the value of the boundary condition is
recomputed each iteration. he should use WHILE or UNTIL instead of TO.

BY FORM {with IN/ON) .. • .. . [I.S. Operator]
If IN or ON have been specified. the value of FORM determines the tail for
the next iteration. which in turn determines the value for the i. v. as described
earlier. Le .. the new i.v. is CAR of the tail for IN. the tail itself for ON. In
conjunction with IN. the user can refer. to the current tail within FORM by using
the i.v. or the operand for IN/ON, e.g., (FOR Z IN L BY (COOR Z) ~-·)
or (FOR Z IN L BY (COOR L) ···). At translation time, the name of the

· internal variable which holds the value of the current tail is substituted for the i. v.
throughout FORM. For example. (FOR X IN Y BY (CCR (MEMB 'F0O (CCR
X))) Co LL E CT X) specifies that after each iteration. CD R of the current tail is
to be searched for the atom FOO. and (CDR of) this latter tail to be used for the
next iteration.

BY FORM {without IN/ON) [1.S. Operator]

AS VAR

If IN or ON have not been used. BY specifies how the i.v. itself is reset at each
iteration. If FROM or TO have been specified. the Lv. is known to be numerical.
so the new i.v. is comp.,11ted by adding the value of FORM {which is reevaluated
each iteration) to the current value of the i.v., e.g., (FOR N FROM 1 TO iO BY
2 COLLECT N) makes a list of the first five odd numbers.

If FORM is a positive number,2 the i.s. terminates when the value of the Lv. exceeds
the value of TO's operand. If FORM is a negative number. the Ls. terminates when
the value of the i.v. becomes less than T0's operand, e.g.. (FOR I FROM N TO M
BY - 2 u NT IL (I LT M) •.•) . Otherwise., the terminating condition for each
iteration depends on the value of FORM for that iteration: if FoRM<0. the test is
whether the i.v. is less than T0's operand. if FORM>O the test is whether the i.v.
exceeds TO's operand, otherwise if FORM=0. the i.s. terminates unconditionally.

If FROM or TO have not been specified and FORM is not a number, the i.v. is
simply reset to the value of FORM after each iteratio~ e.g .• (FOR I FROM N BY
M •••) is equivalent to (FOR I+-N BY { !PLUS I M) •••).

[I.S. Operator]
Used to specify an iterative statement involving more than one iterative variable.
e.g .• (FOR X IN Y AS U IN V DO --) corresponds to MAP2C. The Ls. ter·
minates when any of the terminating conditions are met. e.g .. (FOR X IH Y AS
I FROM 1 TO 1 O COLLECT X) makes a list of the first ten elementS of Y, or
however many elements there are on Y if less than 10.

The operand to AS. VAR. specifies the new i.v. For the remainder of the i.s ..
or until another AS is encountered. all operators refer to the new i.v. Far

2 FORM itself. not itS value. which in general CLISP would have no way of knowing in advance.

4.9

OUTOF FORM

0
Condition Ls.oprs

example. { FOR I FROM 1 TO Nl AS J FROM 1 TO N2 BY 2 AS K FROM
N3 TO 1 BY -1 --) terminates when I exceeds N 1. or J exceeds NZ. or K
becomes les., than L After each iteration. I is incremented by 1. J by 2. and K by
·L

[LS. Operator]
For use with generators (page 7.13). On each iteration. ·the i.v. is set to successive
values returned by the generator. Toe i.s. terminates when the generator runs out.

.....

4.2.3 Condition I.s.oprs

WHEN FORM

UNLESS FORM

WHILE FORM

. UNTIL FORM

[I.S. Operator]
Provides a way of excepting certain iterations. For example. (FOR X IN Y ()
COLLECT X WHEN (NUMB ERP X)) collects only the elements of Y that are ·
numbers.

[I.S. Operator]
Same as WHEN except for the difference in sign. i.e •• WHEN Z is the same as UNLESS
(NOT Z).

[I.S. Operaterl
Provides a way of terminating the i.s. WHILE FORM evaluates FORM before each
iteration. · and if the value is NIL. exits.

[I.S. Operator]
Same as WHILE except for difference in sign. i.e .. WHILE Xis equivalent to UNTIL
(NOT X).

UNTIL N (Na number) [LS. Operator]
Equivalent to UNTIL (LV. GT N).

REPEATWHILE FORM [I.S. Operator] ~
Same as WHILE except the test is performed after the evalucion of ~e body, but \) _
before the Lv. is reset for the next iteration.

REPEATUNTIL FORM [I.S. Operator]
Same as UNTIL. except the test is perrormed after the evaluation of the body.

REPEATUNTIL N (Na number) [I.S. Operator]

4.2.4 Other I.s.oprs

FIRST FORM

FINALLY FOR.\!

Equivalent to REPEATUNTIL (r.v. GT N).

[I.S. Operator]
FORM is evaluated once before the first iteration. e.g .. (FOR X Y Z IN L FIRST
(FOO Y Z} . ·.). and F 00 could be used to initialize Y and Z.

[I.S. Operator}
FORM is evaluated after the i.s. terminates. For example. (FOR X IN

4.10

..

0

0

CONDITIONALS AND ITERATIVE STATEl\1DffS

L BIND Y+-0 DO (IF ATOM X THEN Y+-Y+l) FINALLY (RETURN Y)) will
return the number of a~ms in L. ·

EACHT IME FORM [I.S. Operator]

DECLARE: DECL

DECLARE DEr:::L

FORM is evaluated at the beginning of each iteration before, and regardless of. any .
testing. For example. consider,

(FOR I FROM 1 TON
DO (• · • (FOO IY · · ·)
UNLESS (··· (FOO I) ···)
UNTIL (··· (FOO I) ···))

The user might want to set a temporary variable to the value of (FOO I) in order
to avoid computing it three times each iteration. However. without knowing the
translation. he would not know whether to put the assignment in the operand to
DO, UNLESS. or UNTIL, Le .. which one would be executed first. He can avoid ti.'lis
problem by simply writing EACHT IME (SETQ J { FOO I)) .

[LS. Operator]
Inserts the form (DECLARE DECL) immediately following the PROG variable list in
the translation. or. in the case that the translation is a mapping function rather than
a P ROG, immediately following the argument list of the lambda expression in the
translation. This can be used to declare variables bound in the iterative Statement
to be compiled as local or special variables (see page 12.4). For example (FOR X
IN Y DECLARE: (L0CALVARS X) ···). Several DECLARE:s-can apppear in
the same Ls.; the declarations are inserted in the order they appear.

[I.S. Operator]
Same as DECLARE:.

Note chat since DECLARE is also the name of a function. DECLARE cannot be used
as an hs. operator when it appears as CAR of a form. i.e. as the first Ls. operator
in an iterative statement. However, declare (lower-case version) can be the first
Ls. operator.

ORIGINAL LS;OPR OPERA.ND [I.S. Operator}
I.S.OPR will be translated using its original. built·in interpretation. independent of
any user defined Ls. operators. See page 4.13.

There are also a number of i.s.oprs that make it easier to create iterative statements th.at use the clock.
looping for a given period of time. See Timers, page 14.11.

4.2.5 Miscellaneous

• Lowercase versions of all i.s. operators are equivalent to the uppercase. e.g.. (for X in Y · · ·).

• Each i.s. operator is of lower precedence than all Interlisp forms. so parentheses around the operands
can be omitted. and will be supplied where necessary. e.g.. 8 I NO (X Y Z) can be written B IND X Y
z. OLD (X4-FO.P .. \!) as OLD X+-FORM. WHEN (NUMB ERP X) as WHEN NUMB ERP x. etc. ,,
• RETURN or GO may be used in any operand. (In this case. the translation of the iterative statement will

4.11

f

Miscellaneous .. •.
\

always be in the form of a PROG. never a mapping function.) RETURN means return from the i.s. (with
the indicated value), not from the function in which the i.s appears. GO refers to a label elsewhere in
the function in which the i.s. appears. except for t.i.e labels SSLP, SSITERATE, and SSOUT which are
reserved. as described below.

• In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the Ls.types. e.g.. DO, COLLECT,
SUM. etc .. the operand can consist of more than one fcrm. e.g .. COLLECT (PRINT X: 1) X: 2, in which
case a PROGN is supplied.

.. • ...
• ~ operand can be the name of a function. in which case it is applied to the (last) i.v., e.g.. (FOR X
IN y DO PR I Ni WHEN NUMB ERP) is the same as { FOR X IN y DO { PRINT X) WHEN (NUMBERP.
X)). Note tllat the i.v. need not be explicitly specified. e.g .. (IN Y DO PRINT WHEN NUMB ERP) will
work.

__ For i.s.fypes. e.g.. DO. COLLECT, JOIN, the function is always applied to the first Lv. in the i.s.. whether () .
explicicynamedornot. For example, {IN Y AS I FROM 1 TO 10 00 PRINT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR. OLD, BIND, IN, or ON, since they "operate" ·
before the loop StartS. when the i.v. may not even Qe bound.

In the case of BY in conjunction with IN, the function is applied to the current tail e.g., FOR X IN Y
BY COOR ••• is the same as FOR X IN Y BY (COOR X) .• ..

• While the exact form of the cranslation of an iterative statement depends on which operators are present.
~ P ROG will always be used whenever the Ls. specifies dummy variables. i.e .. if a BI ND operator appears.
or there is more than one variable specified by a FOR operator. or a GO, RETURN. or a reference to the
variable SSVAL appears in any of the operands. When a PROG is used. the form of the translation is:

(P ROG VARIABLES
{initialize}

SSLP {eachtime}
{test}
{body}

... SSITERATE
{aftertest}
{update}
(GO SSLP)

SSOUT {finalize}
(RETURN SSVAL))

where {test} corresponds to that portion of the loop that tests for tennination and also for those·
iterations for which {body} is not going to be executed. (as indicated by a WHEN or UNLESS): {body}
corresponds to the operand of the Ls.type. e.g .• DO. COLLECT. etc.: {aftertest} corresponds to those
tests for termination specified by REPEATWHILE or REPEATUNTIL: and {update} corresponds to that
par: that resets the tail, increments the counter. etc. in preparation for the next iteration. {in it i al i ze },
{finalize}, and {eachtime} correspond to the operands of FIRST. FINALLY. and EACHTIME. if
any.

Note that since {body} always appears at the top level of the PROG. the-user can insert labels in {body}.
and GO to them from within {body} or from other i.s. operands. e.g.. (FOR X. IN Y F IRS T (GO A)
DO {FOO) A (FIE)). However. since {body} is dwimified as a list of forms. the label(s) should be

4.12

0

0

0

CONDITIONALS AND ITERATIVE Sf ATEMENTS

added to the durr.my variables for the iterative sr.atement in order to prevent their being dwimified and
possibly "corrected''. e.g .. { FOR X IN Y BIND A FIRST (GO A) · DO (F 00) A (FIE)). Toe user
can also GO to SSLP. SSITERATE. or SSOUT, or explicitly set SSVAL.

4.2.6 Errors in Iterative Statements

Afl error will be generated and an appropriate ·diagnostic printed if any of the following conditions hold:

1. Operator with null operand. i.e .• two adjacent operators. as in FOR X IN Y UNTIL DO --

2. Operand consisting of more than one form (except as operand to FIRST. FINALLY. or one of the

3.

4.

s.
6.

Ls.types). e.g.. FOR X IN Y (PRINT X) COLLECT --.

IN; ON. FROM. TO, or BY appear twice in same Ls.

Both IN and ON used on same i.v.

FROM or TO used with IN or ON on same Lv.

More than one i.s.cype. e.g.~ a DO and a SUM.

In 3, 4, or 5, an error is not generated if an intervening AS occurs.

If an error oc:curs, the Ls. is left unchanged.

If no DO, COLLECT. JOIN or any of the other Ls.types are specified. CUSP will first attempt to find an
operand consisting of more than one form. e.g., FOR X IN Y (PRINT X) WHEN ATOM X, and in this
case will insert a DO after the first form. (In this case. -condition 2 is not considered to be met. and an
error is not generated.) If CLISP cannot find such an operand. and no WHILE or UNTIL appears in the
Ls.. a warning message is printe~ NO DO, COLLECT, OR JOIN: followed by the i.s.

Similariy, if no terminating condition is detected. Le., no IN, ON, WHILE, UNTIL, TO, or a RETURN or GO.
a warning message is printed:3 POSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed
by the iterative sr.a:ement. However. since the user may be planning to temrlnate the Ls. via an error.
control·E. or a RETFROM from a lower function. the i.s. is still translated.

4.2. 7 Defining New Iterative Statement Operators

The following function is available· for defining new or redefining existing iterative statement operators:

(!.S.OPR NA.MB FORM OTHERS EVALFLG)° [Function]
NAME is the name of the new Ls.opr. If FORM is a list. NAME will be a new
i.s.Lype (see page 4.6). and FORM its body.

OTHERS is an (optional) list of additional i.s. operators and operands which will
be added to the i.s. at the place where NAME appears. If FORM is NIL NAME is
a new i.s.opr defined entirely by OTHERS.

3unless the value ofCLISPI.S.GAG is T (initially NIL).

4.13

Defining New Iterative Statement Operators

In both FORM and OTHERS, the atom SSVAL can be used to reference the value to
be returned by the i.s.. I. V. to reference the current i.v .• and BODY to reference
NAME'S operand. In other words. the current i.v. will be substiruted for all
instances of I • V. and NAMES operand will be substiruted for all instances of
BODY throughout FOR.\! and OTl':IE&S.

If EVALFI.G is T. FOP.M and OTBERS are evaluated at translation time. and their
values used as described above. LSTVARS is a list of dummy variable names
used by the iterative statement translator. If the· user· wishes· to obtain a dummy
variable for use in translation. and be sure it does not clash with a dummy variable
already used by some ether i.s. operators. he can use CAR of .LSiVARS, and reset
LSTVARS to (CDR LSTVARS).

.f\
\. /:._

· ... l

I

If NAME was previously an i.s.opr and is being redefined. the message (NAME
REDEFINED) will be printed (unless DFNFLG=T). and all expressions using the 0-
i.s.opr NA.ME that have been translated will have their translations discarded. __)

'·

For example, for COLLECT. FORM would be (SETQ SSVAL (NCONCl $$VAL BODY)).

For SUM. FORM would be {SSVAU•SSVAL+BOOY),4 OTBERS would be {FIRST SSVAL+-0).

For NEVER. FORM would be (IF .BODY THEN SSVAL .. NIL (GO $$OUT))).5

For THERE IS, FORM would be (IF BODY THEN SSVAL+-I. V. {GO SSOUT)).

Examples:

To define RCOLLECT, a version of COLLECT which uses CONS instead of NCONC1 and then reverses the
list of values:

(I.S.OPR 'RCOLLECT
'(SSVAL•(CONS BOOY SSVAL))
'{FINALLY (RETURN {OREVERSE SSVAL)))]

· -- To define TCOLLECT. a version of COLLECT which uses TCONC:

. (I.S.OPR 'TCOLLECT
'(TCONC SSVAL BODY)
'(FIRST SSVAL .. (CONS} FINALLY (RETURN (CAR SSVAL)))J

To define PRODUCT:

(I.S.OPR 'PRODUCT
'(SSVAL•SSVAL•BQOY)
'(FIRST SSVAL•l)]

To define UPTO, a version of TO whose operand is evaluated only once:

"SSVAL+B00Y is used instead of (I PLUS SSVAL BODY) so that the choice of function used in the
translation. i.e .. IPLUS. FPLUS. or PLUS. will be determined by the declarations then in effect. .
5 (IF BODY THEN RETURN NIL) would exit from the i.s. immediately and therefore not execute the
operations specified via a FINALLY (if any).

4.14

,,,..--....._
v.':

......

o.

CONDmONALS AND ITERATIVE STATEMENTS

(I.S .OPR 'UPTO
NIL
'(BIND SSFoo~aooY TO SSFOO)J

To redefine TO so that instead of recomputing FORM each iteration. a variable is bound to the value. of
FORM. and then that variable is used:

{ I.S. OPR 'TO
NIL ·' •
'(SINO $SEND.FIRST SSEND~BODY ORIGINAL TO SSEND)]

Note the use of ORIGINAL to redefine TO in terms of its original definition. ORIGINAL is intended
~or use in redefining built·in operators. since their definitions are not accessible, and hence not di.-ectly
modifiable. Thus if the operator had been defined by the user via I. S .OPR. ORIGINAL would not
obtain its original definition. In this case. one presumably would simply modify the i.s.opr definition.

I. S .. OPR can also be used to define synonyms for already defined i.s. operators by calling I. S. OPR
with FOP.Man atom. e.g .. {I.S.OPR 'WHERE 'WHEN) makes WHERE be the same as WHEN. Similarly,
following {I.S.OPR 'ISTHERE 'THEREIS), one can write {ISTHERE ATOM IN Y}, and following
{ I. S. OPR 'FIND 'F'OR) and (I. S. OPR 'SUCHTHAT 'THERE IS), one can write {FIND X IN Y
SUCHTHA T X MEMS ER Z). In the current system. WHERE is synonymous with WHEN. SUCHTHA T and
ISTHERE with THE REIS, FIND with FOR, and THRU with TO.

If FOR.\! is the atom MOD IFIE R, then NAME is defined as an Ls.opr which can immediately follow another
Ls. operator (Le .. an error will not be generated.. as described previously). NAME will not terminate the
scope of the previous operator, and will be stripped off when DWIMIFY is called on its operand. OLD
is an example of a MODIFIER type of operator. The MODIFIER feature allows the user to define i.s.
operators similar to OLD, for use in conjunction with some other user defined Ls.opr which will produce
the appropriate translation.

The file package command I. S. OPRS(page 11.25) will dump the definition of ~.oprs. (I. S. OPRS
PRODUCT UPTO) as a file package command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.

4.15

Defining New Iterative Statement Operators
r_!
_ i ·\

.... -

()-

n-

4.16
n~-
- _/"

0

0

0

0

CHAPTERS

FUNCTION DEFINITION, MANIPULATION, AND EV ALUA"nON

The Interlisp programming system is designed .. to help the user define and debug functions. Developing
an applications program in Interlisp involves defining a number of functions in terms of the system
primitives and other user-defined functions. Once defined. the user's functions may be referenced exactly
fil:e Interlisp pr..mitive functions. so the progra:mming process can be viewed as extending the Interlisp
language to include the required functionality. ·

The user defines a function with a list expressions known as an EXPR. An EXPR specifies if the function
has a fixed or variable number of arguments. whether these arguments are evaluated or not. the function
argument names, and a series of forms which define the behavior of the function. For example:

(LAMBDA (X Y) (PRINT X) (PRINTY))

A function defined with this EXPR would have two evaluated arguments. X and Y. and it would execute
(PRINT X) and (PRINT Y) when evaluated. Other types of EXPRs are described below.

A function is defined by putting an EXPR in the function definition cell of a Uta.tom. There are a number
of functions for accessing and setting function definition cells. but one usually defines a function with
DEFI"NEO (page 5.9). For example:

~ {DEFINEQ (FOO (LAMBDA (X Y} (PRINT X) (PRINTY))
{FOO)

.
The expression above will define the function FOO to have the EXPR definition (LAMBDA (X Y) (PRINT
X) { PR I NT Y) } • After being defined. tnis function may be evaluated just like any System function:

~ (FOO 3 (IPLUS 3 4))
3
7
7

All function definition cells do not contain EXPRs. The compiler (page 12.1) translates EXPR definitions
into compiled code objects. which execute much faster. In Interlisp· 10, many primitive system functions
are defined with machine code objects known as SUBRs. Interlisp provides a number of "function type
functions"' which detennine how a given function is defined (EXPR/compiled code/SUBR). the number
and names of function arguments. etc. See page 5.6.

Usually, functions are evaluated automatically when they appear within another function or when typed
into Interlisp. · However. sometimes it is useful to envoke the Interlisp interpreter explicitly to apply a
given ''functional argument,. to some data. There are a number of functions which will apply a given
function repeatedly. For example. MAPCAR will apply a function {or an EXPR) to all of the elements of
a list. and reru:n L'1e values returned by the function:

• (MAPCAR '(1 2 3 4 5) '(LAMBDA (X) (ITIMES XX))

5.1

/
t

Function Types

(l 4 9 16 ZS)

Whe;i using functional arguments. there are a number of problems which can arise. related with accessing
free variables from witbin a function argument. Many times these problems can be solved using the
function FUNCTION to create a FUNARG object (see page 5.15).

The macro facility provides another way of specifying the behavior of a function (see page 5.17). Macros
are very .useful when developing code which should run very quickly, which should be compiled differently
than it is interpreted. or which should run diiferently in different implementations of Interlisp.

5.1 FUNCTION TYPES

· Interlisp functions are defined using list expressions called EXPRs. An EXPR is a list of the form
{ I.AMBD.A.-WO.P..D ARG-LZ'ST FORM I • • • FO.P.M N). LAMBDA-WORO determines whether the arguments to
this function "!ill be evaluated or not. ARG-LIST determines the number and names of arguments. and
FORM1 • • • FOR..\lN are a series of forms to be evaluated after the arguments are bound to the local
variables in ARG-LIST. •

If LAMBDA-WORD is the lit.atom L'AMBOA, then the arguments to the function are evaluated. If LA.MBDA-
. WORD is the lit.atom NLAMBDA. then the arguments to the function are not evaluated. Functions which
evaluate or don't evaluate their arguments are therefore known as "lambda" or "nlambda" functions.
respectively.

If ARG-UST is NIL or a list of lit.atoms. this indicates a function with a fixed number of arguments. &ch
litatom is the name of an argument for the function defined by this expression. The process of binding
these litatoms to the individual arguments is called "spreading" the arguments. and the function is called
a "spread" function. If the argument list is any lit.atom other than N IL. th.is indicates a function with a
variable number of arguments. known as a "nospread" function.

n
'·· /·

_ If ARG-LIST is anything other than a litatom or a list of lit.atoms. such as (LAMBDA "FOO" ..•).
attempting to use th.is EXPR will generate an ARG NOT LITATOM error. In addition. if NIL or Tis used· 0-

•-.._.. as an argument name. the error ATTEMPT TO Brno NIL OR T is generated. '· /

These two parameters (lambda/nlambda and spread/nospread) may be specified independently, so there
are four main fanction types. known as lambda-spread. nlambda-spread. lambda·nospread. and nlambda·
nospread functions. Each one has a different form. and is used for a different purpose. These four
function types are described more fully below.

Note: The Lambdatran lispusers package provides facilities for creating new function types which
evaluate/spread their arguments in different ways than those provided by Interlisp. See page 23.16.

5.1.1 Lambda-Spre:id Functions

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common function
type. A lambda-spread EXPR has the form:

(LAMBDA (ARG 1 ·· · ARG~,{) FORM1 ··· FORMN)

5.2

o~

0

,o

-
0

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

Toe argument list (ARG 1 • • • ARGM) is a list of litatoms that gives the number and names of L;,e formal
arguments to the function. If the argument list is () or NIL, this indicates that the function takes no
arguments. When a lambda-spread function is applied to some arguments. the arguments are evaluated.
and bound to the local variables ARGz • • • ARGM. Then. FORM1 • •• FORMN are evaluated in order, and
the value of me function is the value of FORMN.

~ {OEFINEQ (FOO {LAMBDA {X Y) (PRINT X) {PRINTY))))
{ FOO)
~ (FOO 99 (PLUS 3 4)} .,-
99
7
7 ..
In the above example. the function FOO defined by (LAMBDA {X Y) (PRINT X) (PRINT Y)) is
applied to the arguments 99 and (PLUS 3 4). these arguments are evaluated (giving 99 and 7). the local
variable X is bound to 99 and Y to 7, (PR I NT X) is evaluated. printing 99. (PR I NT Y) is eval.uated.
printing 7. and; (the value of (PRINT Y)) is returned as the value of the function.

A S".andard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called 'with too many arguments. the extra arguments are
evaluated but ignored. If a function is called with too few arguments. the unsupplied ones will be delivered
as NIL. In fact. a spread function cannot distinguish between being given NIL as an argument. and not
being given that argument. e.g., (F 00) and (F 00 NIL) are exactly the same for spread functions. If it
is necessary to distinguish between these two cases. use an nlambda function and explicitly evaluate the
arguments with the EVAL function (page 5.11). ·

5.1.2 Nlambda·Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread EX~R has
the form: ·

(NLAMBOA (ARG1 · · · ARGu} FORM1 • · • FORMN)

Nlambda-spread functions are evaluated similarly to lambda-spread functions. except that the arguments
are not evaluated before being bound to the variables ARG1 • • • ARGM.

~ (OEFINEQ (FOO (NLAMBOA (X Y) (PRINT X) (PRINT Y)J))
(FOO)
~ (FOO 99 (PLUS 3 4))
99
(PLUS 3 4)
(PLUS 3 4)

In the above example. the function FOO defined by (NLAMBOA (X Y) (PRINT X) (PRINT Y)) is
applied to the arguments 99 and (PLUS 3 4). these arguments are bound unevaluated to X and Y.
(PRINT X) is evaluated. printing 99. (PRINTY) is evaluated. printing (PLUS 3 4). and the list
(PLUS 3 4) is returned as the value of the function.

Note: Functions can pe defined so that all of their arguments are evaluated (lambda functions) or none

5.3

i

Lambda·Nospread Functions

are evaluated (nlambda functions). If it is d~Jable to write a function which only evaluates some of its
arguments (e.g. SETQ). the function should be defined as an nlambda.. with some arguments explicitly
evaluated using the function EVAL (page 5.11). If this is done. the user should put the litatom EVAL on
the property list of the function under the property INFO. This infonns various system packages such as
DWIM. CUSP, and Masterscope that 'this function in fact does evaluate its arguments. even though it is
an nlambda.

S.1.3 Lambda.;Nospread Functioas . " -.

I..ambda-nospread functions take a variable number of evaluated· arguments. A lambda·nospread EXPR
has the form:

,,---~.(LAMBDA VAR FOR.Vi ·•· FORMN)
(
t .
\- · VAR may be any litatom. except NIL and T. When a lam.bda·nospread function is applied to some

argumeni:s. each of these arguments is evaluated and the values stored on the pushdown list. VAR is
then bound to the number of arguments which h~ve been evaluated. For example. if FOO is ciefined by
(LAMB CA X •••), when { FOO A B C) is evaluated. A. B. and C are evaluated and X is bound· to 3.
VAR should never be reset.

The following functions are used for accessing the arguments of lambda-nospread functions:

(ARG VA.R M) [NLambda Function]
Rerums the Mth argument for the lambda·nospread function whose arg,.llilent list
is VAR. VAR is the name of the atomic argument list to a lambda·nospread function.
and is not evaluated: M is the number of the desired argument. and is evaluated.
The value of ARG is undefined for M less than or equal to O or greater than the
value of VAR.

! · (SET ARG VAR M X) [Nl.ambda Function]

n
'· /"'-

·. i

Sets the Mth argument for the lambda·nospread function whose argument list is
VAR to x. VAR is not evaluated: M and x are evaluated. M should be between 1
~~~~~ 0 

ln the example below, the ftmction FOO is defined to print all of the evaluated argumencs it is given. and 
return NIL (the value of the for statement). 

• (OEFINEQ (FOO 
(LAMBDA X 

(for ARGNUM from 1 to X do (PRINT {ARG X ARGNUM))))) } 
(FOO} 
• (FOO 99 (PLUS 3 4)) 
99 
7 
NIL 
• (FOO 99 (PLUS 3 4) (TIMES 3 4)) 
99 
7 
12 
NIL 

5.4 

-~ 



0 

-
0. 

FUNCTION DEFINITION. MANIPULATION. AND EVALUATION 

5.1.4 Nlambda·Nospread Functions 

Nlambda·nospread functions take a variable number of unevaluated arguments. An nlambda·nospread 
EXPR has the form: 

·( NLAMBOA VAR FORM1 ··· FOR.MN) 
....... 

VAR may be any lit.atom. except N IL and T. Though similar in form to lambda·nospread EXP Rs. an 
nlambda·nospread is evaluated quite differently. When an nlambda-nospread function is applied to some 
arguments. VAR is simply bound to a list of the unevaluated arguments. Toe user may pick apart this list, 
and evaluate different arguments. . 

In the example below, FOO is defined to print (and then retum) the reverse of list of arguments it is given 
(unevaluated): 

~ (OEFINEQ (FOO (NLAMBOA X (REVE~SE X)))) 
(FOO) 
~ (FOO 99 (PLUS 3 4)) 
((PLUS 3 4) 99) 
((PLUS 3 4) 99) 
~ (FOO 99 {PLUS 3 4) (TIMES 3 4)) 
((TIMES 3 4) (PLUS 3 4) 99) 
((TIMES 3 4) (PLUS 3 4) 99) 
~ 

5.1.5 Compiled Functions 

Functions defined by EXPRs can be compiled by the Interlisp compiler (page 12.1), which produces 
compiled code objects. which execute more quickly than the corresponding EXP R code. Functions defined 

· by com;,iled code objects may have the same four types as EXPRs (lambda/nolambda. spread/nospread). 
Functions created by the compiler are referred to as compiled functions. 

5.1.6 SUBRs 

In Interlisp-10, basic built-in functions such as CONS. CAR. and CONO are handcoded in machine language. 
These functions are known as 0 SUB Rs:· Functions defined as SUB Rs can be lambda/nolambda or 
spread/nospread. the same four function types as EXPR functions. 

SUBRs are called in a special way, so their definitions are stored differently than those of compiled 
or interpreted functions. GETO of a SUBR returns a doned pair. CAR of which is an encoding of the 
ARGTYPE and number of arguments of the SUBR. and CDR of which is the address of the first instn1ction. 
Note that each GETD of a subr performs a CONS. Similarly. PUTD of a definition of the form ( NUMBER • 
ADDRESS). where NUMBER and ADDRESS are in the appropriate ranges. stores the definition as a SUBR. 

5.5 



,,.,~· -

t 

Function Type Functions 

5.1.7 Function Type Functions 

There are a variety of functions used for examining the type. .argument list. ere. of functions. These 
functions may be given either a Uta.tom. in which case they obtain the function definition from the 
Uta.tom's definition cell or a function definition itself. 

(FNTYP FN) 

(EXPRP FN) 

[Function] 
Returns NIL if FN is not a ·function definition or the name of a defined function. · 
Otherwise FNTYP returns one of the following twelve litat0ms: 

Expressions Compiled Built-In 

Lambda-Spread EXPR CEXPR SUBR 

Nlambda·Spread FEXPR CFEXPR FSUBR 

Lambda-Nospread EXPR• CEXPR• SUBR• 

Nlambda-Nospread FEXPR• CFEXPR• FSUBR• 

The types iii. the first colwnn are all defined by EXPRs. The types in the second 
column are compiled versions of the cypes in the first column. as indicated by t.ile 
prefix C. In the third column are the pa..-allel types for built-in subroutines ( only 
in Interlisp-10). Functions of types in the first two rows have a. fixed number of 
arguments. Le .. are spread functions. Functions in the third and fourth rows have 
an indefinite ·number of arguments. as indicated by the suffix •. Toe prefix F 
indicates unevaluated arguments. Thus. for example. a CFEXPR• is a com;:,iled 
nospread-nlarnbda function. 

FNTYP returns the litatOm FUNARG if FN is a FUNARG expression. See page 5.15. 

n-··· - ) ; 

n· '·-. J_. 

[Function] 
Returns T if ( FNTYP FN) is either EXPR. FEXPR, EXPR•. or FEXPR•, i.e .. first 
column of FNTYPs: NIL otherwise. However. ( EXPRP FN) is also true if F'N is (). 
(has) a list definition that is not a SUBR. even if it does not begin with LAMBDA or 
NLAMBOA. In other words, EXPRP is not quite as selective as FNTYP. 

(CCOOEP FN) 

(SUBRP FN) 

(ARGTYPE FN) 

. [Function] 
Returns T if ( FNTYP FN) is either CEXPR. CFEXPR. CEXPR•. or CFE.XPR•. i.e .• 
second column of FNTYPs; NIL otherwise. 

[Function] 
Returns T if (FNTYP FN) is either SUBR, FSUBR. SUBR•, or FSUBR•, i.e .• the 
third column of FNTYPs: NIL otherwise. 

[Function] 
FN is the name of a function or its definition.· ARGTYPE rerurns 0, l. 2. or 3. or 
NIL if FN is not a function. The interpretation of this value is: 

0 lambda-spread functions (EXPR. CEXPR. SUBR) 

5.6 () 



0 

0 

0 

--·~ 

0 

(NARGS FN} 

(ARGLIST FN) 

. -- -- -- -- . ·-·-

FUNcnON DEFINITION. MANIPliLA TION. AND EVALUATION 

l nlambda-spread functions (FEXPR. CFEXPR. FSUBR) 

2 lambda-nospread functions (EXPR•. CEXPR•. SUBR•) 

3 nlambda·nospread functions {FEXPR•. CFEXPR•, FSUBR•) 

i.e.. ARGTYPE corresponds to the rows of FNTYP"s. 

[Function] 
Returns the number of arguments of FN. or NIL if FN is not a function. If FN is 
a nospread function. the value of NARGS is l. 

(Function] 
Returns the .. argument list" for FN. Note that the "argument list" is a litatom 
for nospread functions. Since NIL is a possible value for ARGLIST, an error is 
generated. ARGS NOT AVAILABLE, if FN is not a function. 

If FN is a compiled function. rhe argument list is constructed. Le.. each call to 
ARGLIST requires making a new list. For EXPRs. whose definitions are lists 
beginning with LAMBDA or NLAMBDA. the argument list is simply CADR of GETD. 
If FN h2S a list definition. an1 CAR of the definition is not LAMBDA or NLAM8DA. 
ARGLIST will check to see if CAR of rhe definition is a member of LAMBDASPLST 
(page 15.12). Ifit is. ARGLIST presumes this is a function object the user is defining 
via DWIMUSERF0RMS (page 15.10), and simply returns CADR of the definition as 
its argument list. Otherwise ARGLIST generates an error as described above. 

(lnterlisp-10) If FN is a spread SUB R, rhe ARG LI ST returns ( U). ( U V). { U V 
W}, ere. depending on the number of arguments: if a· nospread SUBR. it returns 
U. This is merely a .. feature" of ARGLIST; SUB Rs do not actually store the names 
of their arguments(s) on rhe stack. 

{ SMART ARGLIST FN EXPLAINFLG TA.IL) [Function] 
A .. smart" version of ARGLIST that tries various strategies to get the arglist of FN. 

If FN is not defined as a function. SMARTARGLIST attempts spelling correction 
on FN by calling FNCHECK (page 15.19). p2SSing T.AZL to be used for the call to 
FIXSPELL. If unsuccessful. an error will be generated. FN NOT A FUNCTI0rt 

If FN is known to the file package (page 11.1) but not loaded in, SMART ARGLI ST 
will obtain the arglist information from the file. 

[n lnterlisp-10, if the HELPSYS help system is installed. SMARTARGLIST may 
use it to look up the argumentS to FN in the Interlisp· manual files. Specifically. 
HELPSYS will be used if EXPLAINFLG=T and FN is a nospread function. or 
if FN is a spread SUB R. regardless of the value of EXPLAINFLG. For all other 
cases. and when HELPSYS is undefined or unsuccessful in finding the arguments. 
SMART ARGUST ·simply returns ( ARGLIST FN). 

In order to avoid repeated calls to HELPSYS. and also to provide the user with an 
override, SMARTARGLIST stores the argumentS returned from HELPSYS on the 
propercy list of FN under the property ARGNAMES and checks for this property 
before calling HELPSYS. For spread functions. the argument list itself is stored. 

5.7 



Function Definition 

For nospreacL the form is ( NIL ARGLISTl • A.RGLIST2) where A.RGLISTl is the 
value of SMARTARGLIST when EXPL.AINFLG=T. and ARGLIST2 the value when 
ra'LAIN7LG=NIL.Forexample. (GETPROP 'OEFINEQ 'ARGNAMES) = (NIL 
{X1 XI ... XN) . X). 

SMARTARGLIST is used by BREAK (page 10.4) and ADVISE (page 10.9) with .E:XPLA.ZNFLG= NIL for 
constructing equivalent EXPR definitions. and by the programmer's assistant command?= (page 9.5)~ with 
EXPLAINFLG= T • 

. ., 
5.2 FUNCTION DEFINITION 

Function definitions are stored in a "function definition cell" associated with each litatom. This cell is n _ 
directly accessible via the two functions PUTD and GETO, but it is usually easier to define functions with 
OEFINEQ (page 5.9). 

• {GETD FN) 

(FGE~O FN) 

[Function] 
Returns the function definition of FN. Returns NIL if FN is not a litato~ or has 
no definition. 

GETO of a compiled function constructs a pointer to the definition. with the result 
that two successive calls do not produce EQ results. EQP or EQUAL must be used 
to compare compiled definitions. , 

(Interlisp-10) GETD of a SUBR performs a CONS. 

[Function} 
Faster version of GETO. Interpreted. generates an error, BAO ARGUMENT -
FGETO. if FN is not a litatom. 

FGETD is intended primarily to check whether a function has a definition. rather 
than to obtain the definition. Therefore. in [nterlisp-10. F G ETD of a SUS R rerums (') 
just the address of the function definitio~ not the dotted pair returned by G ETD. 
thereby saving the CONS. 

(PUTO FN DEF -) [Function] 
Puts DEF into FN's function cell. and returns DEF. Generates an error. ARG NOT 
LITA TOM. if FN is not a litatom. Generates an error, ILLEGAL ARG. if DEF is a 
string, number, or a lit.atom other than NIL. 

( PUTOQ FN DEF) [NLambda Function I 
Nlambd.a version of PUTO; both arguments are unevaluated. Returns FN. 

( PUTOQ? FN DEF} [NLambda Function] 
If FN is not defined. same as PUTDQ. Otherwi~e. does nothing and returns NIL. 

( MOVO FROM TO COPYF"LG) [Function] 
Moves r...1-ie definition of FROM co TO, i.e .. redefines TO. If COPYFI..G = T. a CO PY 
of the definition of FRO,\'( is used. COPYFI..G = T is only meaningful for EX? Rs. · 
although MOVD works for compiled functions and SUB Rs as well. MOVO rerurns 

5.8 



0 

0 

0 

0. 

FUNCI10N DEFINITION, MANIPULATION, AND EVALUATION 

TO. 

( MOVO? FROM TO COP1'TLG) [Function] 
If TO is not defined. same as ( MOVD FROM TO COPY.F'LG). Otherwise, does 
nothing and returns NIL. 

( DEFINEQ x1 x2 • •• XN) [NLambda NoSpread Function] 

(DEFINE X -) 

OEFINEQ is the function normally used for defining functions. It takes an indefinite 
nu..-nber of arguments which are not evaluated. Each xi must be a list defini:ig one 
function, of the form ( NAME DEF!NITlON). For example: 

(DEFINEQ (DOUBLE {LAMBDA {X) (IPLUS XX))) ) 

The above expression will define the function DOUBLE with the EXPR definition 
{ LAMBDA ( X) { I PLUS X X )). Xi may also have the form { NAME A.RCS • 
DEF-BODY), in which case an appropriate Lambda EXPR will be constructed. 

· Therefore. the above expression is exactly the same as: 

(DEFINEQ (DOUBLE ~X) (IPLUS XX)) ) 

Note that this alternate form can only be used for Lambda functions. Toe first 
form must be used to define an Nlambda function. 

DEF INEQ returns a list of the names of the functions defined. 

[Function] 
Lambda-spread version of DEF INEQ. Each element of the list xis itself a list either 
of the form {NAME DEFINITION) or {NAME ARGS • DEF-BODY). DEFINE will 
generate an error, INCORRECT DEFINING FORM, on encountering an atom where 
a defining list is expected. · 

Note: OEM:NE and OEFINEQ will operate correctly if the function is already defined and BROKEH. 
AOVISED,orSROKEN-IL 

For eXi)ressions involving type-in only, if the time stamp facility is enabled (page 17.60), both DEFif~E 
and DEFIHEQ will stamp the definition with. the user's initials and date. 

DFNFLG 

(SAVEOEF FN) 

[Variable} 
DFNFLG is a global variable that effects the operation of DEFINE (and DEFHZEQ, 
which calls DEFINE). If OFNFLG=NIL. an attempt to redefine a function FN 

will cause DEFINE to print the message (FN REDEFINED) and to save the 
old definition of FN using SAVEDEF before redefining it. except if the old and 
new definitions are the same (Le. EQUAL). the effect is simply a no-op. If 
OnffLG=T. the function is simply redefined. ffDFNFLG=PROP or ALLPROP. the 
new definition is stored on the property list under the property EXPR. ALLPROP 
affectS the operation of RPAQQ and RPAQ (page 11.37). OFNFLG is initially NIL. 

DFNFLG is reset by LOAD (page 11.4) to enable various ways of handling the 
defining of functions and setting of variables when loading a file. For most 
applications. the user will not reset DFNFLG directly. 

. [Function! 
Saves the definition of FN on itS property list under the property EXPR. CODE. 

5.9 



0 Function Evaluation 

or SUBR depending on itS FNTYP. Returns the property name used. If (GETO 
FN) is non-NIL, but ( FNTYP FN) = NIL. SAVEOEF saves the definition on the 
propeny name LIST. Tnis situation can arise when a function is redefined which 
was originally defined with LAMBDA misspelled or omitted. 

If FN is a list, SAVEOEF operates on each function in the list. and returns a list of 
the individual values. 

(UNSAV~DEF FN PROP) ,Y • [Function} 
Restores the definition of FN from its property list under property PROP (see 
SAVEDEF above). Returns PROP. If nothing is saved under PROP, andFN is c!efined, 
returns (PROP NOT FOUND). otherwise generates an error. NOT A FUNCTION. 

o· 
If PROP is not given. i.e .. NIL. UNSAVEOEF looks under the properties EXPR, 
CODE. and SUBR, in that order. Toe value of UNSAVEDEF is the property name. 
or if nothing is found and FN is a function. the value is ( NOTHING FOUND): 
otherwise generates an error. NOT A FUNCTION. 

If OFNFLG=NIL. the current definition of FN, if any, is saved using SAVEDEF. 
Thus one can use UNSAVEDEF to switch back and forth between two definitions 
of the same function. keeping one on itS property list and the other in the function 
definition cell. 

If FN is a list. UNSAVEDEF operates on each function of the list, and its value is a 
list of the individual values.. 

Both SAVEDEF and UNSAVEDEF are redefined in more general terms (see page 11.18) to operate on 
typed definitio~ of which a function definition is but one example. Tnus. their actual argument lists in 
Inter~p are diiferent than given here. However. when their extra arguments are defaulted to NIL. they 
operate as descrtbed above. 

,,,--.._ 5.3 FUNCTION EVALUATION u 

Q_ 

Us-..ially. function application is done automatically by the Interlisp interpreter. If a form is typed into 
Interlisp whose CAR is a function. chis function is applied to the arguments in the CCR of the form. These 
arg,..L.ilentS are evaluated or not. and bound to the function parameters. as determined by the cype of the 
function. and the body of the function is evaluated. This sequence is repeated as each fonn in t..'1.e body 
of the function is evaluated. 

There are some situations where it is necessary to explicitly call the evaluator. and [nterlisp supplies a 
number of functions that will do this. These functions take ·'functional arguments··. which may eiti.11er be 
litatoms with function definitions. or EXPR fonns such as ( LAMBDA ( X) ••• ), or FUNARG expressions 
(see page 5.15). 

The following functions are useful when one wants to supply a functional argument which will always 
rerurn NIL. T. or 0. 

(NILL) [NoSpread Function] 
Returns NIL. 

5.10 

--~ I •. 

,-..... 
\ ........ 



t 

' 

,-. 
: .... 

-

-· 

F1JNCTION DEFINITION~ MANIPULATION, AND EVALUATION 

(TRUE) [NoSpread Function] 
Returns T. 

(ZERO) . [NoSpread Function] 
Rewrns O. 

Note: When using EXPR expressions as functional arguments, they should be enclosed within the function 
FUNCTION (page 5.15) rather than QUOTE. so that they will be compiled as separate functions. FUNCTION 
can also be used to create FUNARG.expressions, which can be used to solve some problems with referencing 
free variables. or to create functional arguments which carry .. state .. along with them. 

(EVAL X -) 
,, 

• [Function] 
EVAL evaluates the expression x and rewrns this value. Le .. EVAL provides a way 
of calling the Interlisp interpreter. Note that EVAL is itself a lambda function. so 
its argument is first evaluated. e.g.. 

.. (SETQ FOO '(AOOl 
(AODl 3) 
.. (EVAL FOO) 
4 
.. (EVAL 'FOO) 
(AOOl 3) · 

. . 

3)) 

Interlisp functions can either evaluate or not evaluate these arguments. For those cases "'here it is 
desirable to specify arguments unevaluated. one may use the QUOTE function: 

(QUOTE X) [NLambda NoSpread Function]. 
Tb.is is a: function that prevents its arguments from being evaluated. Its value is x 
itself. e.g.. .(QUOTE FOO) is FOO. . 

Note: Since giving QUOTE more than one argument is almost always a parentheses 
error. and one that would otherwise go undetected. QUOTE itself generates an error 
in this case. PARENTHESIS ERROR. 

n 

(KWOTE X) [Function] (J 
Value is an expression which when evaluated yields x. If x is NIL or a number. ., 
this is x itself. Otherwise. { LIST ( QUOTE QUOTE) x). For example. if the 
value of X is A and the value of Y is B. then ( KW0TE ( CONS X Y) ) = ( QUOTE 
{A . B)). 

(OEFEVAL TYPE FN) [Function} 
Specifies how a datum of a particular type is to be evaluated.1 Intended pl"h-narily 
for user defined data types. but works for all data types except lists. literal atoms •. 
and numbers. Tn'E is a type name. FN is a function object. i.e. name of a 
function or a lambda expression. Whenever the interpreter encounters a datum of 
the indicated type. FN is applied co the datum and its value returne~ as the result 
of the evaluation. DEFEVAL returns the previous evaling function for this type. If 
FN=NIL, DEFEVAL returns the current evaling function without changing it. If 

J. COMP I LETYPE LST (page 12.9) permits the user to specify how a dawm of a particular type is to be 
compiled. 

5.11 



0 

Function Evaluation . 

FN= T. the evaling function is set bac:k to the system default (which for all data 
types except lists is to return the datum itself). 

(APPLY FN ARGUST -) [Function] 
Applies the function FN to the argtmtents in the list ARG.LZST, and returns its value. 
APPLY is a lambda function. so its arguments are evaluated. but the individual 
elements of ARGUST are not evaluated. Therefore. lambda and nlambda functions 
are tteated the same by APPLY; lambda functions take their arguments from 
ARGI.IST without evaluating them. Note that FN may still explicitly evaluate one 
or more of its arg-.m1ents itself. as SETQ does. Thus. (APPLY 'SETQ ' ( FOO 
(ADOl 3))) will set FOO to 4, whereas (APPLY 'SET '(FOO {AOOl 3))) 
will set F 00 to the expression ( AOC 1 3 ) • 

. APPLY can be used for manipulating EXPRs. for example: 

~(APPLY '(LAMBDA {X Y) {ITIMES X Y)) 
'{3 4)) 

12 

{ APPL y• FN ARG1 ARG2 ARGN) [NoSpread Function] 

(EVALA X A) 

~ Nospread version of APPLY. equivalent to {APPLY FN ( LIST ARG1 ARG2 • • • 

ARGN)). 

[Function] 
Simulates a-list evaluation as in USP 1.5. x is a form. A is a list of the form: 

( (NAME1 • VAL1) (NAME2 • VAL2) ••• (NAMEN • VALN) ) 

Toe variable names and values in A are "spread" on the stack. and then x is 
evaluated. Therefore. any variables appearing free in x that also appears as CAR 
of an element of A will be given the value in the COR of that element. 

Toe functions below are used to evaluate a form or apply a function repeatedly. RPT, RPTQ. and FRPTQ 
... evaluate a given form a specified number of times. MAP. MAPCAR. MAPLIST, etc. apply a given function 

10; :epeatedly to different elements of a list. possibly constructing another list. These functions allow efficient 
iterative computations. but they are difficult to use. For programming iterative computations. it is usually 
better to use the CUSP Iterative Statement facility (page 4.5). which provides a more general and complete 
facility for expressing iterative statemencs. Whenever possible. CLISP translates iterative statements into 
expressions using the functions below. so there is no efficiency loss. 

{ RPT N FORM) [Function) 
Evaluates the expression FORM. N times. Returns the value of the last evaluation. 
If N ::;; O. FORM is not evaluated. and RPT returns NIL. 

Before each evaluation. the local variable RPTN is bound to the number of 
evaluations yet to take place. This variable can be referenced within FORM. For 
example. ( RPT 10 ' (PRINT RPTN)) will print the numbers 10. 9. · · · 1. and 
return 1. 

( RPTQ N FORM1 FOR]·-<2 · •• FORMN) . [NLambda NoSpread Function] 
Nlambda·nospread version of RPT: N is evaluated. FOR.Mi are not. Returns ti.'le 
value of the last evaluation of FOR..'vlN. 

5.12 

·--

.... ... 



-

n 
FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 

( FRPTQ N FORM1 FORM2 • •• FORMN) [NLambda NoSpread Function) 
Faster version of RPTQ. Does not bind RPTN. 

( MAP MA.PX MA.PFNl MAPFm} • [Function] 
If MAPFN:l is NIL. MAP applies the function MAPFNl to successive tails of the 
list MA.PX. That is. first it computes ( MAPFNl MA.PX), and then { MA.PFNl { CCR 
MA.PX) )., etc.. until MA.PX becomes a non·lisL If MAPFm is provided. { MAPFN2 
MA.PX) is used instead of -c COR MA.PX) for the next call for MAPFN1. e.g.. if. 
MAPFN:l were COOR. alternate elements of the list would be skipped. MAP returns 
NIL. 

{ MAPC M.APX MA.PFNl MAPFN2) [Function] 
Identical to. MAP, except that (MA.PFNl (CAR MA.PX)) is computed at each 
iteration instead of {MAPFNl MA.PX), i.e., MAPC works on elements, MAP on 
tails. MAPC returns NIL. () 

(MAPLIST MA.PX MAPFNi MAPFm) [Function] 
Successively computes the same values that MAP would compute, and returns a list 
consisting of those values. 

{ MAPCAR MA.PX MAPFNl MAPFN:l) [Function I 
Computes the same values that MAPC would compute, and returns a list consisting 
of those values, e.g .. {MAPCAR X 'FNTYP) is a list of FNTYPs for each element 
on X. 

"(MAPCON MAPX ~FNl MAPFN2) [Function] 
Computes the same values as MAP and MAPLIST but NCONCs these values to form 
a list which it returns. · 

( MAPCONC MA.PX MAPFNI MA.PFN2} . [Function} 
Computes the same values as MAPC and MAPCAR. but NCONCs the values to form 

- a list which it returns. · 

Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the newo 
list is the result of applying a function to the corresponding element on the original list. MAPCO NC is used _ 
when there are a variable numb.er of elements (including none) to be insened at each iteration. Examples: 

(MAPCONC '(A 8 C NIL D NIL) 
'(LAMBDA {Y) {if (:NULL Y) then NIL else (LIST Y)))) 

==> (A 8 C D) 

This MAPCONC returns a list consisting of MA.PX with all NI Ls removed. 

{MAPCONC '{(AB) C (DEF) (G) HI) 
'{LAMBDA (Y) {if (LISTP Y) then Y else NIL))) 

==> (AB DEF G) 

This MAPCONC returns a linear list consisting of all the lists on M.AP.X. 

Since MAPCONC uses NCONC to string the corresponding lists together. in this example the original list will 
be altered to be ( ( A B D E F G) C ( D E F G) ( G ) H I ) . If this is an undesirable side effect. the 
functional argument to MAPCONC should return instead a top level copy of the lists. i.e. ( LAMB CA ( Y) 

_ (if (LISTP Y) then (APPEND Y) else NIL))). 

5.13 
_() 



0 Function Evaluation 

{MAP2C MA.PX MAPY M.APFNl M.APFm) [Function} 
Identical to MAPC except MAPFNl is a function of two arguments. and { MAPFNl 
( CAR MAPX) ( CAR MA.PY) ) is computed at each. iteration. Terminates when 
either MAPX or MA.PY is a non-list. 

M.APFN:l is still a function of one argument. and is applied twice on each iteration: 
(MAPFm MA.PX) gives the new MA.PX, (MAPFN:l MAPY) the new MAPY. COR is 
used if MAPFN:Z is not sup~lied. Le .. is NIL. 

{MAP2CAP. MA.PX MAPY M.APFNZ MAPFm) [Function] 
Identical to MAPCAR except MAPFN1 is a function of two arguments and ( MAPFNl 
( CAR MA.PX) ( CAR MA.PY) ) is used to assemble the new list. Terminates when 
either MA.PX or MA.PY is a non-list. · 

( SUBSET MA.PX M.APFNl MAPFN:Z) [Function} 
Applies MAPFNl ·co elements of MA.PX and returns a list of those elements for 
which this application is non·N IL. e.g.. 

(SUBSET '(AB 3 C 4) 'NUMBERP) = (3 4). 

MAPFN:Z plays the same role as with MAP, MAPC. et al. 

( EVERY EVE1n'X BVERYFNl EVEm"Fm) [Function} 
Returns T if the result of applying EVERYFNl to each. element in EV!.'RYX is uue. 
otherwise ff IL. For example, {EVERY ' ( X Y Z) 'ATOM) => T. .. 
EVE RY operates by evaluating ( EVERYFNl ( CAR EVERYX) EVERYX). The 
second argument is passed to EVERYFNI so that it can look at the next element 
on EVERYX if necessary. 1f EVERYFNl yields NIL. EVERY immediately returns 
NIL. Otherwise, EVERY computes (EVERYFN.2 EVZ.RYX), or (CDR EVERYX) if 
EVERYFN2= NIL, and uses this as the .. new" EVERYX. and the. process continues. 
For example, ( EVERY x 'ATOM 'COOR) is uue if every other element of xis 
atomic. 

0 (SOME u SOMEX SOMEFNI SOMEFN2) [Function} 
Returns the tail of soMEX beginning with the first element that satisfies SOMEFNl. 
i.e .• for which SOMEFNZ applied to that element is true. Value is NIL if no such 
element exists. ( SOME X ' ( LAMBDA ( Z) ( EQUAL Z Y) ) ) is equivalent to 
(MEMBER y X ). SOME operates analogously to EVERY. At each stage. ( SOMEFNI 
(CAR SOMEX) SOMEX} is computed. and if th.is is not NIL. SOMEX is returned as 
the value of SOME. Otherwise. ( SOMEFN2 SOMEX) is computed. or ( CDR SOMEX) 
if SOMEFN2 = NIL. and used for the next SO MEX. 

0 

( NOT ANY SOMEX SOMEFNI SOMEFN2) [Function} 
( NOT ( SOME SOMEX SOMEFNl SOMEFN2)) 

( NOTEVERY EVE.RY.X' EVERYFNI EVE'RYFN2} . (Function} 
( NO! ( EVERY EVERY.X' EVERYF'NZ EVERYF'N2)) 

(MAPRINT I.ST FILE I.EFT RIGHT SEP PF'N I.ISPXPRINTFLG) [Function] 
A general printing function. [t cycles through I.ST applying PFN ( or PR IN 1 if PFN 
not given) co each element of I.ST. Between each application. MAPRlNT performs 

5.14 

.--



-· , ......... 
..,_, FUNCTION DEFINITION. MANIPULATION. AND EVALUATION 

PRINl of SEP (or .... if SEP=NIL). If LEFT is given. it is printed (using PRINl) 
initially: if RIGHT is given it is printed (using PRINl) at the end. 

For example, (MAPRINT X NIL '%( '~)) is equivalent to PRINl for lists. To 
print a list with commas between each element and a final .. . .. one could use 
(MAPRINT X T NIL 'X. 'X, }. 

If LJSPXPR.INTFLG=T. LlSPXPRINl (page 8.20) is used instead of PRINl. 

5.4 FUNCTIONAL ARGUMENTS 

n 

.• - When using functional arguments, the following function is very useful: 
() 

( FUNCTION FN ENV) fNLambda Function! 
lf ENV=NIL, FUNCTION is the same as QUOTE, except that it is treated differently 
when compiled. Consider the function definition: 

(DEFINEQ (FOO ... 
(FIE LST (FUNCTION (LAMBDA (Z) (ITIMES Z Z))}l 

) ) 

FOO calls the function FIE with the value of LST and the EXPR expression 
.(LAMBDA (Z) (LIST (CAR Z)) ). 

If FOO is run interpreted. it doesn't mnke any difference whether FUNCTION or· 
QUOTE is usc:d. However, when FOO is compiled. if FUNCTION is used the compiler 
will define and compile the EXPR as an auxiliary function (See page 12.8). The 
compiled EXPR will run considerably faster, which can make a big difference if it 
is applied repeatedly. 

Note: Compiling FUN CT I ON will not create an auxiliary function if it is a functional n 
.argument to a function that compiles open. such as most of the mapP.ing functions. 
(MAP CAR, MAPL I ST~ etc.). 

If :eNV is not NIL. it can be a list of variables that are (presumably) used freely by 
FN. In ·this case. the value of FUNCTION is an expression of the form ( FUNARG F'N 

POS). where POS is a stack pointer to a frame that contains the variable bindings 
for those variables on ENV. ENV can also be a st.1ck pointer itself. in which c::i.<.c 
the value of FUNCTION is ( FUNARG FN ENV). Finally, ENV can be an atom. in 
which case it is evaluated. and the value interpreted as described above. 

As explained above, one of the possible values that FUNCTION can return is the form ( FUNARG FN 

POS). where FN is a function and POS is a stack pointer. FUNARG is not a function itself. Like LAMBDA 
and NLAMBDA. it has meaning and is specially recognized by [nter.lisp only in the context of applying a 
function to arguments. In other words. the expression ( FUNARG FN POS) is used exactly like a function. 
When. a FUNARG expression is applied or is CAR of a fonn being EVAL'ed. the APPLY or EVAL takes 
place in the access environment specified by ENV (see page 7.1}. Consider the following example: 

• (OEFINEQ (DO.TWICE {FN VAL) 

5.15 

(~) 



0 
Functional Arguments 

(APPLY• FN (APPLY• FN VAL))) ) 
(DO.TWICE) 
.. (DO.TWICE [FUNCTION (LAMBDA (X) ( IP LUS X X)) J 

5) 
20 
.. (SETO VAL 1) 
1 
.. {DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL))] 

6) 
20 
.. (CO.TWICE [FUNCTION (LAMBDA (X) {IPLUS X VAL)) (VAL)] 

5) 
7 

0. DO. TWICE is defined to apply a function FN to a value VAL. and apply FN again to the value returned: 
in other word, it cnlculatcs { FN ( FN VAL)). Given the EXPR cxpr~-.ion ( LAMBDA ( X) ( I PLUS X 
X)). whu.:h douhlc:s n given v:duc, It cnn·c-ctly calcul:itc:1 ( FN ( F N 5) ) • ( F N 1 0) • 20. However. 
when i,tivt'.n ( LAMUIJA ( X) ( I PLUS X VAL)), whkh :thould .uJd Lhc vnluo uf Lhe )lloh:d vnrlahlc VAL to 
the .ugumcnt X, It lln~ ,n111c1hing 1111cxpcctct!, relmntn11 W .11,t1tln, rnth<"r lhnn S ·+· I +-1 :9 7, ·11,c r,rnhlc:-m 
b Lhul when Lhc (XPR Is cvalu,llcd, It Is cv;1lu:1Lcd In tho cmucxt of DO.TWICE, where VAL 1:t buund 
to the st.-cond argument of DO. TWICE, namely S. ln this c:;ise, one solution is to use the ~NV Jrgumcnt 
to FUNCTION to construct a FUNARG expression which contains the value of VAL at the time that the 
FUNCTION is executed. Now. when ( LAMBDA ( X) { I PLUS X VAL)) is evaluated. it is evaluated in 
an environment where the global value of VA-L is accessable. Admittedly. this is a somewhat contrived 
example (it would be easy enough to change the argument names to 00 • TWICE so there would be no 
conflict). but this situation arises occasionally with large systems of programs that construct functions. and 
pass them around. 

Note: System functions with functional arguments (APPLY, MAPCAR, etc.) are compiled so that their 
ari:nimenls arc loc::11, and not acccs.'k1hlc (sec pa~c l2.4). This reduces problem:; with conflicts with free 
v,1ri:1blcs 11scd in functional argumcnL'l. 

f UNAIHi cxpressiomi can be used t'or more th.m just circumventing the clll-~hinR of variables. For example. 

0 :1 FtJrlAHG expression can be returned as Lhc vulue of a cmnputaliun, and then usC'd "h11;hcr up", 
Funh1:rmorc. if the t\mction in a FUNARG expression .sets any of the variables cont .. tin1:d in the tr.unc, 
only lh!! tr:ime would be changed. For example. consider Lhe following function: 

0 

(MAKECOUNTER (CNT) 
(FUNCTION (LAMBDA NIL 

(PROGl CNT (SETQ CNT ,{AODl CNT] 
(CNT))) 

The function MAKECOIINTER returns a FUNARG that increments and returns the previous value of the 
counter CNT. However, thi,; is done within the e~vironment of the call to MAKECOUNTE R where FUNCTION 
w;1s ex~cuu:d. which u,e F UNI\HG -expression "carries around" with 1t. even .11\er MAKE COUNTER has 
n11i!ih<'d t'X~Cllling. Nole lh.,t t'm.:h c;1II [I) MAK(COUNrf.H cre;1tes a FUNI\IU'i exrHc:'iSIOll Wtlh .I new. 
t1hl<'pt'n<knt c:nv1mnmcnt. ,u t.hal m11l11plc: i.:uun1cr'i c:111 he: yencratclf .111d uscu: 

.. (SETO Cl (MAKECOUNTER 1)) 
(FUNARG (LAMBDA NIL (PROGl CNT (SETO CNT (ADOl CNT)))) #1,13724/•FUNARG) 
.. (APPLY Cl) . 
l 

S.16 



. .--

. .,,.~ ... ,_ 

+- (APPLY Cl) 
2 

FUNCI10N DEFINITION, MANIPULATION, AND EVALUATION 

+- (SETQ C2 (MAKECOUNTER 17)) 
(FUNARG (LAMBDA NIL (PROGl CNT (SETO CNT (A001 CNT)))) #1,13736/•FUNARG) 
'4:' (APPLY C2) 
17 
• (APPLY C2) 
18 
• {APPLY Cl) 
3 
• (APPLY C2) 
19 

By creating a FUNARG expression with FUNCTION, a program can create a function object which has 
updatcable binding(s) associated with the object which last between calls to it. but arc only .icccssiblc 
through that instance of the function. For example, using the FUNARG device, a program could 
maintain two different instances of the same random number generator in different states. and run them 
independently. · 

' 
Nocc·: l.n lntcrlisp·lO, environment switching is expensive because it is a shallow-binding system (see p.:ige 
7.1), so this may restrict the applications of FUNARG expressions. 

5.5 MACROS 

Macros provide an alternative way of specifying the action of a function. Whereas function definitions arc 
evaluated with a "function call". which involves binding variables and other housekeeping tasks, maCl'Os 
are evaluated by translating one Interlisp f.orrn into another. which is then e...-aluated.. 

n 

0 

A liutom may have both a function definition and a macro definition. When a form is evaluated by 
the interpreter. if the CAR has a function definition, it is used (with a function call). otherwise if it has () 
a macro definition, then that is used. However. when a form is compiled.. the CAR is checked for a 
macro definition first. and only if there isn't one is the function definition compiled. This allows functions 
that behave differently when compiled and interpreted. For example, it is possible to define a function 
that. when interpreted. has a function definition that is slow and has a lot of error checks. for use when 
debugging a system. This function could also have a macro definition that defines a fast version of the 
function. which is used when the debugged system is compiled.. 

Macro definitions are represented by lists that are stored on the property list of a litatom. Macros are 
often used for functions that should be compiled differently in different Interlisp implementations. and 
the exact property name a macro definition is stored under detennines whether it should be used in a 
panicular implementation. The global variable MACROPROPS contains a list of all possible macro propeny 
names which should be saved by the MACROS file package command. . Typical macro property names 
are 10MACRO for Interlisp-10, OMACRO for Interlisp·D,2 and MACRO for "'implementation independent" 
macros. The global -variable COMP I LE RMACROPROPS is a list of macro property names. Interlisp 
detcnnines whether a litatom has a macro definition by checking these property names. in order. and 

·:- " .. 
2also VAXMACRO for Interlisp-VAX, and JMACRO "for Interlisp-Jerico . 

5.li 

() 



0 

0 

0 

Macros 

using the first non-NIL property value as the macro definition. In Interlisp-D this list contains OMAC RO :md 
MACRO in that order so that DMACROs will override the implementation-independent MACRO properties;. 
In general. use a OHACRO property for macros that are to be used only in Interlisp·D, use lOMACRO for 
macros that are to be used only in Interlisp-IO, and use MACRO for macros that are to affect both systems. 

Macro definitions can take the following forms: 

( LAMB.DA ••• ) or ( NLAMBOA ••• ) 
A function c.in be made to compile open by giving It a m.:u:ro definition of the form ( LAMBDA 
···) or {NLAMBOA .. ,), e.g.. (LAMBDA (X) (CONO ({GREATERP X 0) X) (T (MINUS 
X) ) ) ) for ABS. The effect is. as if the m:u:ro definition were written in pl.ice of the function 
wherever it appears in a function being compiled. i.e.. it compiles as 3 lilmbd.l or nl.imhda 
expression. This saves the time necessary to c:ill the function at the price of more compiled code 
generated in-line. 

EXPRESSION) or (UST EXPRESSION) 
.. Substitution" macro. Each argument in the fonn being evaluated or compiled is substituted for 
the corresponding atom in UST. and the result 'Jf the substitution is used instead of the form. For 
example.ifthemacrodefinitionofADDl is ((X) {IPLUS X 1)). then. (AOOl (CARY)) is 
compiled as ( I PLUS ( CAR Y) 1). 

Note that ABS could be defined by the substirution macro ((X} (COND ((GREATERP X 0) 
X) ( T (MINUS X)) )), In this c.ise, however, ( ABS ( FOO X)) would compile as 

{CONO ((GREATERP (FOO X) 0) 
( FOO X)) 

(T (MINUS (FOO X)))) 

and ( FOO X) would be evaluated two times. (Code to evaluate ( FOO X) would be generated 
three times.) 

(OPENLAMBOA ARGS BODY) 

T 

Tnis is a cross between substitution and LAMBDA macros. When the compiler processes an 
OPE NLAMBDA. it attempts to substitute the actual arguments for the formals wherever this preserves 
the frequency and order of evaluation chat would have resulted from a LAMBDA expression. and 
produces a LAMBDA binding only for those that require it. 

When a macro definition is the atom T. it means that the compiler should ignore the macro. and 
compile the function definition: this is a simple way of turning off other macros. For e:cample. 
the user may have a function that runs in both lnterlisp-D and Interlisp· 10. but has a macro 
definition that should only be used when compiling in Interlisp· 10. If the MACRO property has • 
the macro specification. a DMACRO of T will cause it to be ignored by the lntcrlisp-D compiler. 
Note that this DMACRO would not be necessary if the macro were specified by a 1 OMACRO instead 
of a MACRO. . 

( = , OTHER.,F'UNCTION) 
A simple way co cell the compiler to compile one function exactly as it would compile another. 
For example. when compiling in Incerlisp·O. FRPLACAs are treated as RPLACAs. This is achieved 
by having FRPLACA have a DMACRO of ( = • RPLACA). 

( !.!TATOM EXPRESSION} 

S.15 



C) 
FUNCI10N DEFINITION, MANIPULATION, AND EVALUATION 

If a macro definition begins with a litatom other th.in those given above. this allows computation 
of the Interlisp expression to be evaluated or compiled in place of the form. Z.lTATOM is bound 
to the CDR of the calling form, EXPRESSION is eval"uated. and the result of this evalu.ition is 
evaluated or compiled in place of the fonn. For example. LI ST could be compiled using the 
computed mncro: 

(X (LIST 'CONS 
(CAR X) 
(AND {CDR X) 

{CONS 'LIST 
(COR XJ 

'Thiswouldcausc(LIST X Y Z)toeompileas(CONS X (CONS Y (CONS Z NIL))).Note n_ 
the recursion in the macro expansion. _ 

If the ro;ult of the evaluation is the litatom IGNOREMACRO. the macro is ignored and the 
cmnpi!aUun of th~ i:xpr~~mn proceed~ D!I tr tht"re were no mncro deflniuon. If the litntmn in 
question is nonn.illy treated sp<.-cially by the compiler (CAR, CDR, CONO, ANO, etc.). and i!lso has 
a macro, if the macro expansion returns IGNOREMACRO, the lit.atom will still be treated specially. 

In Intcrlisp-10. if the result of the evaluation is the atom INSTRUCTIONS~ no code will be 
generated by the compiler. It is then assumed the evaluation was done for effect and the: 
necessary code. if any, has been added. This is a way of giving direct insuuctions to the compiler· 
if you understand ic. 

'Note: It is often useful. when constructing complex macro expressions, to use the BQU0TE facility (see 
page 6.39). 

The following function is quite useful for debugging macro definitions: 

{ EXPANOMACRO FORM QClmTrLO -) [Function} 
Takes a fnnn whose CAR has a macro definition and expands the form as it would 
be compiled. The result is prcttyprinted. unless QUmTFLG = T. in which c:isc the 
result is simply returned. 

S.S.l MACROTRAN 

Interpreted macros are implemented by the function MACROTRAN. When the interpreter encounters a 
form CAR of which is an undefined function.3 MACROTRAN is called. If CAR of the fonn hilS a macro 
definition. the macro is expanded. and the result of this expansion b; evaluated in place of the original 
fonn. CL I SPT RAN (page 16.19) is used to save the result of this expansion so that the expansion only has­
to be done once. On subsequent occasions. the translation (expansion) is retrieved from CLI SPAR RAY 
the same as for other CLISP constructs: MACROTRAN never even has to be invoked. 

Sometimes, macros contain calls to functions th.it assume that the macro is being compiled. The 
variahlc SH0ULDC0MPILCMACR0AT0MS is a list of functil>ns t.hat' should be compiled to work correctly 
(initi;11ly (OPCODES) in lntcrlisp·D. (ASSEMBLE L0C) in lmcrlisp·IO). UNSAFEMACROATOMS is a list 

=1ln other words, if you have a macro on FOO. then typing ( FOO 'A 'B) wm work. but FOO( A B) will 
not work.. 4 

5.19 

0 

() 



0 MACROTRAN 

of functions which effect the operation of the compiler. so such macro fonns shouldn't even be e:x:pa.-ided 
except by the compiler(initially NIL in Interlisp-O, (C2EXP STORIN CEXP COMP) in Interlisp-10). If 
MACR0TRAN encounters a macro containing calls to functipns on these two lists. instead of the m.:icro 
being e:cpanded. a dummy function .is created with the fonn as its definition. and the dummy function is 
then compiled. A form consisting of a call to this dummy function with no arguments is then cvalu:itcd 
in plru:e of the original fonn. and CLISPTRAN is used to save the translation as described above. There 
arc some situations for which this procedure is not amenable, e.g. a GO inside the fonn which is being 
compiled will cause the compiler to give an UNDEFINED TAG error message because it is not compiling 
the entire function. just a pan of it. 

Note: MACROTR/\.N is :in entry on OW!MUSERFORMS (page 15.10) illld thus will not work if DWIM is not 
enabled. 

-o'.:_ 
-· 

0 

0 5.20 

"· .... 



a - ,, 

0 

(J 

CHAPTER 6 

INPUT /OUTPUT 

6.1 FILFS 

All input/output functions in Interlisp can specify their source/destination file with an optional extra 
argument. which is the name of the file. given as a litatom. These functions generally require that the file 
be open. Files are opened and manipulated by the functions described below. The name T designates 
terminal input and output. and is always considered open. It is also possible to supply a string as an 
input .. file", without needing to open iti input operations remove successive characters from the string. 
Note that because of this feawre, file names must always be specified as litatoms. not strings. 

( OPEN FILE FILE A.CCESS RECOG BYTESIZE MA.CHINE.DEPENDENT .PARAMETERS) [Function] 
Opens FILE with access rights as specified by ACCESS, one of INPUT, OUTPUT, 
BOTH. or APPEND, and remrns the full name of the file. Causes error FILE NOT 
FOUND if FILE is not recognized by the file system. or other errors if FILE is 
-recognized but cannot be opened. e.g. FI LE WON ' T O'P EN. if the file is already 
opened by someone else or is protected against the operation, FILE SYSTEM 
RESOURCES EXCEEDED if there is no more room in the file system . 

. For ACCESS= INPUT, only input operations are permitted on the file: for 
ACCESS=OUTPUT or ACCESS=APPEND, only output operations are permitted. 
Note: in Interlisp-10 and Interlisp-D, ACCESS=OUTPUT implies that one intends 
to write a new or different file, even if a version number was specified and 
the corresponding file already exists. Thus any previous contents of the file are 
discarded. and the file is empty immediately after the OPENFILE. If it is desired 
to write on an already existing file while preserving the old contents. the file must 
be opened for access BOTH or APPEND. 

RECOG specifies the recognition mode of FILE, as described on page 6.4. If 
RECOG=NIL. it defaults according to the value of ACCESS: for ACCESS= INPUT. 
RECOG=OLD is used: for ACCESS=OUTPUT, RECOG= NEW is used: for the other 
values of ACCESS, RECOG=OLD/NEW is used. 

BYTESIZE, if supplied. is the byte size in which to open the file. If BYTESIZE =NIL. 
the bYtesize used is the default for the implementation (8 for lnterlisp-O. 7 for 
Interlisp-10). · 

,\!ACHINE.DEPENDENT.PAR.A.,.\!ETERS is a list specifying additional opening parameters. 
In Interlisp· 10. this list may contain the following litaroms: 

WAIT Wait if file is busy. 

DON'T.CHANGE.DATE 

6.1 



: J 

Files 

Don't change the\ access dates. 

THAWED Open file in "thawed .. mode. 

In Interlisp-D, M.ACH!NE.DE:i,ENDENT.PARAMETBRS should be a list of pairs 
( .ATTlUB VA.I.OE), where ATT.RLB is any file attribute that the file system is willing 
to allow the user to set (see SETFILEINFO, page 6.7). 

If the FILE argument to an input ( output) function is not given (has value NIL), the file specified as 
.. primary" for input ( output) is used. Normally· these are both T. for terminal input and output. However. 
the primary input or output file may be changed with the functions below. 

(INPUT ra.E) 

(OUTPUT FII.E) 

(INFILE FILE) 

(OUTFILE F'ILE) 

(IOFILE FrLE) 

[Function} 
Sets FILE as the primary input file; returns the name of the old primary input 
file. FILE must be open for input. INPUT can also be given a string as argument. 
interpreted as described above~ 

! 

( IN PUT ) rerurn.s the current primary input file, which is not changed. 

. [Function] 
Sets F'ILE as the primary output file; returns the name of the old primary output 
file. Frt.E must be open for output. A string -cannot be used as an output file. 

(OUTPUT) rerums the currenc:primary output file. which is not changed. 

.. [Function] 
Opens F'ILE for input. and sets it as the primary input file. Equivalent to ( INPUT 
(OPENFILE FILE 'INPUT 'OLD)) 

[Function] 
Opens FILE for output. ~d sets it as the primary output file. Equivalent to 
{OUTPUT (OPENFILE F'ILE :OUTPUT 'NEW)). 

{Function] 
(OPENFILE FILE 'BOTH 'OLD); opens FrI..E for both input and output. Does 
not affect the primary input or output file. 

( OPE NP FILE ACCESS) [Function] 

( CLOSEF FZZ.E) 

If ACCESS= NIL. returns the full name of Frt.E if FILE is open either for input or 
for output: otherwise NIL. 

If ACCESS is INPUT, OUTPUT or BOTH, returns the full name of F'ILE if it is open 
in that access mode; otherwise N IL. 

Note: If FILE is not recognized. OPENP returns NIL without generating an error. 

(OPENP) returns a list of all files open for input or output. excluding T and the 
current typescript ( dribble) file. ff any (page 6.12). 

[Function] 
Closes FILE. Generates an error. FILE NOT OPEN. if FILE is not open. If F'lI.E is 
NIL. it attempts co cfose the primary input file if other than tenninal. Failing that. 
it attempts co close the primary output file if other than cenninal. Failing both, it 

6.2 

() 
( 

() 
·e·· 

() 
(>-)-~ . 

\...:·· 



. (::]<.) 

1· '·. 

0 

(CLOSEF? FZLB) 

INPUT /OUTPUT 

returns NIL.- If it closes any file, it returns the name of that file. If it closes either 
of the primary files, it resets that primary file to terminal. 

WHENCLOSE (page 6.11) allows the user to "advise" CLOSEF to perform various 
operations when a file is closed. 

[Function} 
Closes FILE if it is open, otherwise does nothing. RetumS FII.E. 

( CLOSEALL ALLFLG) [Function} 

(OELFILE FlLE) 

Closes all open files, except T and the current typescript file, if any. Returns a list 
of the files closed. 

WHENCLOSE (page 6.11) allows certain files to be "protected" from CLOSEALL. 
( CLOSEALL T) overrides this protection. 

[Function] 
Deletes FILE if possible. Returns FII.E if deleted, else NIL. 

( RENAME FILE OLDFILE NEWF.ILE} [Function} 
Renames OLDFJLB to be NEWFILE. Returns NEWF1I..E if successful. else NIL. 

6.1.1 File Naming and Recognition 

In Interlisp. a file name is a literal atom composed of one or more fields. separated by suitable 
punctuation. The precise fields and their interpretation is dependent on the implementation; the functions 
PACKFILENAME and UNPACKFILENAME (page 6.6) are used to construct and take apan filenames in an 
implementation-independent way:-

Depending on the file system implementation. file names given to input/output functions may be 
incompletely specified. with the file system handling the task of obtaining a specific file from a partial 
name, or recognizing the file. For example. in file systems that suppon version numbers. one can call 
OPENFILE giving a file name without a version number. and the file system will supply a default version 
number based on the context (opening a new file for output vs. an old file for input). Internally, however. 
each open file has associated with it a completely-specified filename. one that uniquely identifies the file 
to the file system in any context. It is this ··full" file name that is returned from OPENFILE and other 
functions that return names of open files. For example, ( OPEN FILE 'FOO 'OUTPUT) might return 
<LISP> F 00 . : 3. Any time that an input/ output function is called with a file name other than the full 
file name. Interlisp must perform recognition on the partial file name in order to determine which open 
file is intended. Thus if repeated operations are to be performed. it is considerably more efficient to use 
the full file name returned from OPENFILE than to repeatedly use the possibly incomplete name that 
was used to open the file. 

In Interlisp-10. filenames follow the conventions of the operating system (either TENEX or TOPS-20). 
i.e .• FILE can be prefixed by a directory name enclosed. in angle brackets. can contain <esc>s or control· 
F's. and can include suffixes and/or version numbers. When a file is opened for input and no version 
number is given. the highest existing version number is used. Similarly. when a file is opened for 
output and no version number is given. a new file is created with a version number one higher than the 
highest one currently in use with that file name. The full filename in lnterlisp· 10 consists of directory. 
name. extension. and version. In lnterlisp·D. it also includes a device or host name in brackets. Le. 

6.3 



File Naming and Recognition 

{PHYLUM}<LISP>F00.:3i 

The following functions can be used to perform file recognition without opening a file: 
: 

Warning: In some implementations of Interlisp (such as: Interlisp--D), it may nol be possible to detennine 
the fall name of a new file without trying to open iL In this case. OUTFILEP and FULLNAME may not 
always return lize con-ect value. These junctions s~ould not be used in general. because the idea "what a file 
would be named if it were opened'" is not well defined in some file systems. 

(INFILEP FILE) [Function] 
Returns full file name of FILE if :FILE is recognized as specifying the name of an 
existing file that could potentially be opened for input. NIL otherwise. Recognition 
is in input .context, Le .. in Interlisp-10, if no version number is given. the highest 
existing version number is rerumed. 

.. \OUTFILEP FILE) . [Function] 

............. 

Similar to INFILEP, except recognition is in output context, i.e., in Interlisp-10. if 
no version number is given. a version number one higher than the highest existing 
version number is remrned. Roughly speaking, OUTFILEP remrns the full name 
of the file that would be created if OUTF ILE were called with the same argument 

A more general version of INFILEP and OUTFILEP is provided by the function FULLNAME: 

{FULLNAME X RECOG) ' [Function]_ 
If x is recognized in the recognition mode speci:fieii by RECOG as an abbreviation 
for some file. remrns the file's full name, otherwise NIL. RECOG can be OLD. 
meaning choose the (newest) existing version of the file; NEW. meaning make the 
full file · name one which does not yet exist (version number one higher than 
highest existing version); OLDEST, meaning choose the existing file with the lowest 
version number, or OLD/NEW. meaning t0 recognize an existing version if possible. 
otherwise a new version (useful only for writing a file). RECOG =NIL defaults to 
OLD. For all other values of RECOG. generates an error ILLEGAL ARG. If xis not 
a literal atom. generates an error. ARG NOT LITATOM. 

For example. ,INF I LE P could be defined as ( FU L LNAME FILE ' 0 LO ) and 
OUTFILEP as ( FULLNAME FILE 'NEW). 

The RECOG argument is used only for defaulting unspecified parts of the filename 
(in Interlisp-10 and Interlisp-D. the version). not to pass judgment on the specified 
parts. In particular. RECOG= NEW does not require that the file be new. For 
example. ( FULLNAME 'FOO.: 2 'NEW) may return <MASINTER>FOO.: 2 if that 
file already exiscs. even though { FULLNAME 'FOO 'NEW} would default the 
version to a new number. perhaps returning <MASINTER>FOO.: 5. 

Note that I_NFILEP, OUTFILEP and FULLNAME do not open any files. or change the primary files: they 
are pure predicates. In general they are also only hints. as chey do not necessarily imply that the caller 
has access rights to the file. For example. INF I LE P might return non-NIL. but OP EN FI LE might fail for 
the same file because the file is read·procected against che user. or che file- happens to be open for output 
by another user at che time. Similarly. OUTFILEP could return non-NIL. but OPENF!LE could fail with 
a FILE SYSTEM RESOURCES EXCEEDED error. Note also chat in a multi-user file system. intervening 
file operations by anocher user could contradict che information returned by recognition. For example. 
a file that was INFILEP might be deleted. or between an OUTFILEP and che subsequent OPENFILE. 

6.4 

n 
(·:-

~() 

c.:n 



0 
C 

Q 

0 

0 

INPUT /OUTPUT 

another user .might create a new version or delete the highest version, causing the names rerumed by 
OUTFILEP and OPENFILE to have different version numbers. Thus. in general, the "truth" about a file 
can only be obtained by acrually opening the file: in particular, cteators of files should rely on the name 
rerumed from OPENFILE. not from OUTFILEP. 

If the file system does not successfully recognize an incomplete file name, a FILE NOT FOUND error 
is generated (except for INFILEP, OUTFILEP, FULLNAME and OPENP, which in this case return NIL). 
As described on page 9.16. before a FILE NOT FOUND error occurs. it is intercepted via an entry on 
ERRORTYPELST, which causes SPELLFILE (page 15.20) to be called. SPELLFILE will search alternate 
directories and possibly attempt spelling correction on the file name. Only if SPELLFILE is unsuccessful 
will the e1TOr acrually occur. · 

Note that recognition is performed on the user's entire directory, not just the open files. which can result 
in certain anomalies. Thus, even if only one file is open, say FOO. : 1, the name F $ (F<esc>) will not 
be recognized if the user's directory also contains the file FIE • : 1. Similarly, it is· possible for a file 
name that was previously recognized to become ambiguous. For example, a program performs (INFILE 
•FOO), opening FOO.: 1, and reads several expressions from FOO. Then the user interrupts the program, 
creates a FOO. ; 2 and reenters his program. Now a call to READ giving it FOO as its FILE argument will 
generate a FILE NOT OPEN error. because FOO will be recognized as FOO. :2. 

6.1.2 Manipulating File Names 

Different operating systems have different conventions for naming files. However. it is desirable· for 
Interlisp to be as implementation independent as possible. Therefore. all programs that need to reference 
pans of a filename. or construct new file names from existing ones. should use the functions described 
below. The implementation of these functions obviously is dependent on the operating system they will 
run under. but as far as th~ programs that use them are concerned. they permit expressing operations 
that are implementation independent.1 

Every file name is composed of a collection of fields which have different semantic interpretations. A 
field name is a literal atom which is the name of a file-name field. Interlisp assumes th.at NAME and 
EXTENSION are valid field names: the implementor is free to allow other fields. In Interlisp-10. allowable 
field names are: DEVICE. DIRECTORY, -NAME. EXTENSION. VERSION. PROTECTION, ACCOUNT, and 
TEMPORARY. Interlisp-D allows HOST. DIRECiORY, NAME, EXTENSION. and VERSION. 

(FILENAMEFIELD FILENAME FIELDNAME) 
Rerurns the contents of the F'IELDNAME field of FILENAME. 

(UNPACKFILENAME FILENAME-) 
Returns a list of alternating field names and field contents. 

Examples from Interlisp-D: 

~ {UNPACKFILENAME 'FOO.BAR} 
(NAME FOO EXTENSION BAR) 

[Function] 

[Function] 

~ (UNPACKFILENAME '{PHYLUM}<SANNELLA>LISP>IMTRAN.OCOM:21) 

11n particular. the [merlisp-10 implementation recognizes file names in both Tenex and TOPS-20 format. 
and builds new names as appropriate. 

6.5 



File Attributes 

(H(}ST PHYLUM DIRECTORY SANNELLA>LISP NAME IMTRAN 
EXTENSION OCOM VERSION 21) 

Examples from Interlisp-10 on Tenex: 

~ (UNPACKFILENAME '<LISP>MAC.COM;3) 
(DIRECTORY LISP NAME MAC EXTENSION COM VERSION 3) 
~ (UNPACKFILENAME 'WORK.:T) 
(NAME WORK EXTENSION NIL TEMPORARY T) 

Note: In Interlisp-10. (UNPACKFILENAME 'OSK: FOO) returns {DEVICE OSK: 
NAME FOO), i.e. the: is left in. This is so {DEVICE NIL:) may be distinguished 
from {DEVICE NIL). 

{ PACKFILENAME FIELDNAME1 FIE1..DCONTENTS1 ·· · FlELDNAMEN FlBLDCO~NTSN) 
· · [NoSpread Function] 

Takes a list of alternating field names and field contents (atoms or strings}, 
and returns the corresponding file name. For example. { PACKFILENAME 
'DIRECTORY 'LISP 'NAME 'NET) returns <LISP>NET. 

If the same field name is given twice. the jirsz OCCUI?'ence is used. 

If the "field name .. BODY is given. this means that the operand to BODY should 
itself be unpacked and spliced into the argument list at that point. This is useful 
_for providing. default field nam~ or to change just one field in an existing name. 

For example, to take a -file name F'lI.E and change the DI RECTORY field. perform 
{PACKFILENAME 'DIRECTORY NEWDIRECTOR.Y 'BODY F'ILE). Alternatively, 
to provide a default for the EXTENSION field. perform (·PACK FILENAME 'BODY 
FILE 'EXTENSION DEFAULT). This uses DEFAULT as the extension unless one is 
already specified in F1LE. 

Note that a null field is a field that has been specified, e.g., if FILE= FOO: 1 in the 
above example. the default extension will be used, but if F1LE= FOO. ; 1, it will 
not. because a null extension has been specified. 

If the first argument to PACKFILENAME is a list. PACKFILENAME is called on th.at 
argument. Thus PACKF ILENAME! and UNPACKFILENAME operate as inverses. 

' 

6.1.3 File Attributes 

Any fiie has a number of .. file attributes". such read da~e. prote~tion. and bytesiZe. The exact attributes 
that a file can have is implementation-dependent. The functions GETFILEINFO and SETFILEINFO 
allow the user co conveniently access file attributes: 

(GETFILEINFO FILE ATTR!B} [Function] 
Returns the current setting of the ATTRlB attribute of nu:. In Interlisp- LO. F'ILE 
may also be a JFN as returned by GTJFN (page 22.22). 

[n Incerlisp-10. GET FILE INFO takes an optional third argument. SCR..4..TCH. which 
is analogous to the third argument of GOA TE (page 14.10): a string pointer to reuse 

6.6 

0 
(-· 



..• ·o c·· -~· ... 

, 
. ' 0. ""~ 

INPtIT /OUTPUT 

for those ATTRIB's which return string values. 

(SETFILEINFO FILE ATTRIB VALVE) [Function] 
Sets the attribute ATTRIB of FILE to be VALUE. SETFILEINFO returns T if it 
is able to change the attribute ATTRIB, and NIL if Ull.11"1.lccessful (some attributes 
cannot be changed. e.g. it doesn't make sense to change the SIZE of a file without 
writing something on it}. 

GETFILEINFO and SETFILEINFO currently recognize the following values for ATTRIB: 

ACCESS 

BYTESIZE 

LENGTH 

SIZE 

The current access mode of FILE (e.g. INPUT, OUTPUT, BOTH. APPEND) or NIL 
if FILE is not open. 

The byte size of the file. 

The byte position of the end-of-file. Like { GETEOFPTR FILE), but FILE does not 
have to be open. 

The size of FILE in pages. 

WRITEDATE, READDATE, CREATIONDATE 
The date (and time) aS a string that FILE was respectively last written. last read. 
and originally created. · 

IWRITEDATE. IREADDATE, ICREATIONDATE 

TYPE 

OPENBYTESIZE 

PROTECTION 

The respective date in integer form. as IDATE (page 14.10) would return. 

(Interlisp-D) Either TEXT or BI NARY. 

(Interlisp-10) [tis possible that the byte size for the "opening" of a file might differ 
from the "permanent" bytesize. For example. a 7-bit text file can be opened in 
36-bit mode. To obtain the "open" bytesize, use attribute OPENBYTESIZE. 

(Interlisp-10) The "protection code" of FILE, as an integer. 

Q ) ·. ·oELETED (lnterlisp-10) T if FILE is the name of a deleted file. NIL otherwise. 

' ( .. 

0 

Additional amibuteS which are available for Interlisp-10 on TOPS-20 systems (DEC release 4 or later) 
are: 

I NV.IS IBLE T if FILE has the invisible attribute. NIL otherwise. 

ARCHIVED T if FILE has been archived.. NIL otherwise. 

OFF-LINE T if the contents of FILE are off-line (i.e. FILE has been archived and its contents 
flushed). N IL otherwise. 

( POSITION FILE N) [Function! 
Returns the column number at which the next character will be "read or printed. 
After a end of line. the column number is 0. If N is nori·N IL. resets the column 
number to be N. 

Note that (POSITION FILE) is not the same as (GETFILE?TR FZI..E) which 
gives the position in che file, not on the line. 

6.7 



Randomly Acc~ible Files 

I 
( LINE LENGTH N FILE) [Function] 

Sets the length of the print line for the oucpuc file FILE to ~ returns the former 
setting of the line length. FILE defaults to the primary output file. (LINELENGTH 
NIL FILE) rerums the current setting for FILE. When a file is first opene~ its 
linelength is set to the value of the variable FILELINELEflGTH. 

Whenever printing an atom or string would increase a file's position beyond the 
line length· of the file. an end of line is automatically inserted first. This action can 
be defeated by using PRIN3 and PRIN4 (page 6.17). 

( SETLINELENGTH N) 1 • [Function] 
If N is NIL; interrogates the operating system for the line length of the terminal 
device, and sets the variable TTYLINELENGTH to this value. If N is not NIL. 
insttucts the operating system to set the terminal line length to N, and also sets 
TTYLINELENGTH to N. Then. ,in either case. SETLINELENGTH performs (and 
returns as its value) ( LINE LENGTH TTYLINELENGTH T}. 

Both AFTERSYSOUTFORMS and RESET FORMS (page-8.19) contain a { SETLINELENGTH) so that when 
the user first runs a SYSOUT, or types control-D. the system obtains the latest information about the 
terminal. 

6.1.4 Randomly Accessible Files 

For most applications. files are read starting at their beginning and proceeding sequentially, Le.. the 
next character read is the one immediately following the last character read. Similarly, files are written 
sequentially. However. it is also possible co read/write characters at arbitrary positions in a file. essentially 
treating the file as a large bloc.k of auxiliary storage. For example. one application might involve writing 
an expression at the beginning of the file. and then reading an expression from a specified point in its 
middle. This particular example requires the file be open for both input and oucpur. However. random 
file input or output can also be p~onned on files that have been opened for only input or only oucpur. 

Associated with each file is a .. file pointer" that points to the location where the next character is tO be 
read from or written tQ. The file pointer to a file is automatically advanced after each input or output 
operation. This section describes functions which can be used to reposizion the file pointer on those flies 
that can be randomly accessed. A file used in this fashion is much like an array in that it has a certain 
number of addressable locations that characters can be put into or taken from. However. unlike arrays. 
files can be enlarged. For example, if the file pointer is positioned at the end of a file and anything is 
written. the file "grows." It is also possible co position the file pointer beyond the end of file and then 
to write. (If the program attempts co read beyond the end of file. an END OF FILE error occurs.) {n 
this case. the file is enlarge~ and a ··hole" is create~ which can lacer be written into. Nace that this 
enlargement only takes place at the end of a file: it is not possible to make more room in the middle of 
a file. In other words. if expression A begins at position 1000. and expression B ar 1100. and the progmm 
attempcs to overwrite A with expression C. which is 200 characters long, part of B will be altered. 

The address of a character (byte) is the number of characters (bytes) ·that precede it in the file. i.e .. 0 is 
the address of the beginning of the file. However. the user should be careful about computing the space 
needed for an expression. since end·of-line may be represented by a different number of characters in 
different implementations. even though NCHARS only councs it as one: e.g .. end-of-line in [ncerlisp-10 
files is represented as the cwo characters carriage-return. line-feed. Output functions may also introduce 
end·of·line·s as a result of LINELENGTH considerations. · 

6.8 

0 
0 

() 
C·~ .:~ 



.oc·~ 

0. ~-y 
- , . 

0-> 

,· /, 
u. 

INPlIT /OUTPUT 

( GETFILEPTR FILE) [Function] 
Returns the current position of the file pointer for FXLE, Le., the byte address at: 
which the next input/output operation will commence. 

( SETFILEPTR FILE ADR) [Function} 

(GETEOFPTR FII.E) 

(EOFP FILE) 

Sets the file pointer for FILE to the position .A.DR: returns ADR. Toe special value 
.A.DR= -1 is interpreted to mean the address of the end· of file. 2 

[Function] 
Returns the byte address of the end of file, i.e., the number of bytes in the file. 
Equivalenttoperfonning (SETFILEPTR F1LB -1) and returning (GETFILEPTR 
FILE) except that it does not change the current file pointer. 

[Function] 
Returns T if the file pointer to FILE is pointing to the end of file: NIL otherwise. 
FILE must be open for (at least) input, or an error is generated, FILE NOT OPEN. 

("RANDACCESSP FILE) [FUIJ.CtionJ 
Returns FILE if FILE is randomly accessible. NIL otherwise. The file T is noc 
randomly accessible, nor are the files LPT : , NIL : in Interlisp· 10, or certain network 
file connections in Interlisp·D. FILE must be open or an error is generated, FI LE 
NOT OPEN. 

( COPYBYTES SR.CFIL DSTFIL ST.ART END) ' [Function} 
Copies byteS (characters) from SRCFIL to DSTFIL. starting from position ST.ART 
and up to but not including position END. Both SRCFIL and DSTFIL must be open. 
Returns T. 

If END= NIL, ST.ART is interpreted as the number of byteS co copy (starting at the 
current position). If START is also NIL. bytes are copied until the end of the file 
is reached. · 

( FILEPOS PATTERN FILE STA.RT END SKIP TA.lL CASE.ARRAY) [Function] 
Analogous to STRPOS {page 2.31). but searches a file rather than a string. FILEPOS 
searches FILE for the string PATTERN. Search begins at START ( or the current 
position of the file pointer. if ST.ART=NIL), and goes to END (or the end of FILE. 
if END= NIL). Returns the address of the Stan of the match. or NIL if not found. 

SKIP can be used to specify a character which matches any character in the file. If 
TAir. is T, and the search is successful the value is the address of the first character 
after the sequence of characters corresponding to PATTERN. 'instead of the starting 
address of the sequence. In either case. the file is left so that the next i/o operation 
begins at the address rerumed as the value of FILEPOS. 

2Note: If a file is opened for output only. the end of file is initially zero. even if an old file by the same 
name had existed (see OPENFILE. page 6.1). If a file is opened for both input and oucpuc. the initial file 
pointer is the beginning of the file. buc {SET FILE PT R FILE - 1 ) will sec it co the end of the file. If 
the file had been opened in append mode by ( OPE NF ILE FILE 'APPEND). the file pointer right after 
opening would be sec to the end of the existing file. in which case a SETFILEPTR to position the file at 
the end would be unnecessary. 

6.9 



·/'", 

·-· 

Rando~ly Accessible Files 

CASBARRAY should be a "casearray" that specifies that certain characters should 
be transformed to other characters before matching. Casearrays are returned by 
CASEARRAY or SEPRCASE below. CASEA.RRAY=NIL means no transformation 
will be performed. 

A casearray is an implementation-dependent object that is logically an array of 
character codes with one entry for each possible character. FILEPOS maps 
each character in the file .. through" CASEA&RAY in the sense that each character 
code is transformed into the corresponding character code from CASEA.RRAY 
before matching. Thus if two characters map into the same value. they are 
treated as equivalent by FILEPOS. CASEARRAY and SETCASEARRAY provide an 
implementation-independent interface to casearrays. 

For example~ to search without regard to upper and lower case diff'erences. 
CASEARRA.Y would be a casearray where all characters map to themselves. except 
for lower case characters. whose corresponding elements would be the upper case 
characters. To search for a delimited atom. one could use" ATOM" as the pattern. 
and specify a CASEA..RRAY in which all of the break and separator :haracters 
mapped into the same code as space. 

For applications calling for extensive file searches. the function FFILEPOS is often faster than F ILEPOS. 

( FFILEPOS PATTERN FlI.E START END SKIP T.A.ZI. CASE.ARRAY) . [Function] 
Like FILEPOS, except much faster in most applications.3 · FFILEPOS is an 
implementation of the Boyer·Moore fast string searching algorithm. This algorithm 
preprocesses the string being searched for and then scans through the file in Steps 
usually equal to the length of the string. Thus. FFILEPOS speeds up roughly in 
proportion to the length of the string, e.g .• a string of length 10 will be found twice 
as fast as a string of length 5 in the same position. 

Because of certain fixed overheads. it is generally better to use FILEPOS for short 
searches or short strings. 

( CASEARRAY OLDA.RRAY) [Function] 
Creates and rerurns a new casearray, with all elements set to themselves, to indicate 
the identity mapping. 

(Interlisp·D) If OLDARRAY is given. it is- reused. 

( SETCASEARRAY CASEAJU?AY FROMCODE TOCODE) . [Function} 
Modifies the casearray CASEARRAY so that character code F'ROMCODE is mapped 
to character code TOCODE. 

( SEPRCASE CI.FLG) [Function} 
Returns a new casearray suitable for use by FILEPOS or FFILEPOS in which all 
of the break/separators of FI LE RO TB L are mapped into character code zero. [f 
CI.FLG is non-NIL. then all CLISP characters will be mapped into this character as 
well. This is useful for finding a delimited atom in a file. For example. if PATTERN 

·1In lnterlisp-10. a speedup of 10 to 50 times is typical. ln [nterlisp·D c.he speedup is much smaller. 

6.10 

n 



------~~~~. --~-... ~ ..•. -- .. - --·-···· .. ··-- ·-· ···- --·-··--- . 

0 

. ,.,-..... ',,,....., ,- . 
V'~. 

.. - ') o-·· 

I · ... 

Q. 

INPtrr /OUTPUT 

is" FOO ", and (SEPRCASE T) is used for C.ASEA.RR.A.Y, then FILEPOS will 
find " (FOO+-". 

6.1.S Closing and Reopening Files 

The function WHENCLOSE permits the user to associate certain operations with open files that govern how 
and when the file will be closed, and how the file's status will be restored when a SYSOUT is started up. 
The user can specify that certain functions will be executed before CLOSEF closes the file and/or after 
CLOSEF closes the file. Toe user can make a particular file be invisible to CLOSEALL. so that it will 
remain open across user invocations of CLOSEALL. Finally, the user can associa~a status-saving function 
with a file which will be called before SYSOUT and which can specify what to do when a SYSOUT is 
restarted. 

(WHENCLOSE F1L.E PROPi VAL1 .. • PROPN VALN') [NoSpread Function} 
FILE must specify the name of an open file other ~ T (NIL defaults to the 
primary input file, if other than T. or primary output file if other than T). The 
remaining arguments specify propenies to be associated with the full name of FILE. 
WHENCLOSE rerurns the full name of FILE as its value. 

WHENCLOSE recognizes the following property names: 

BEFORE 

AFTER 

STATUS 

CLOSEALL 

EOF 

VAL is a function that CLOSE F will apply to the full name of FILE just before it is 
closed. This. might be used. for example. to copy information about the file from an 
in-core data strucrure to tlie file just before it is closed. 

VAL is a function that CLOSEF will apply to the full name of FILE just after it is 
closed. This capability permirs in-core data structures that know about the file to be 
cleaned up when the file is closed. 

BEFORE and AFTER differ in their behavior with respect to SYSOUT. If a file that 
was open before SYSOUT does not have a STATUS function associated with it that 
causes the file to be successfully restored after the SYSOUT is started. then ¢e file 
is considered to have been .. closed" by the SYSOUT, and its AFTER function will be 
executed after the SYSOUT starts. 

This property provides a way of restoring the starus of files when a SY SOUT is 
resumed. VAL is a function that will be applied to the full name of F'ILE just before 
a SYSOUT. VAL is expected to return a list. CAR of which is a function which will 
be APPL Y'd to the COR when the SYSOUT is started up and which will restore the 
status of FILE. If the value of the APPLY is NIL. it is assumed the file could not be 
successfully restored. a warning message is printed. and then any AFTER functions 
associated with the file are executed. 

The function PERMSTATUS (page 23.li) produces an expression for re-opening a file 
after SYSOUT and restoring as many of irs attributes as possible. 

VAL is either YES or NO and determines whether FILE will be closed by CLOSEALL 
(YES} or whether CLOSEALL will ignore it (NO). CLOSEALL uses CLOSEF. so that 
any AFTER functions will be .executed if the file is in fact closed. 

VAL is a function that will be applied to the full name of FILE when an end-of-file 

6.11 

\ 
I 
! 

I 
I 
i 
! 
I 

I 
\ 



Dribble Files 

error occurs. and the ERRORTYPELST enr.ry for that error. if any, returns NIL. The 
function can examine the context of the error, and can decide whether to close the 
file, RETFROM some function, or perform some other computation. If the function 
supplied returns normally (i.e. does not RETFROM some function}, the normal errqr 
machinery will be invoked (but FILB will not be automatically closed if the EOF 
function did not close it}. · 

Note that multiple AFTER and BEFORE functions may be associated with a file: they are executed 
in sequence with the most recently associated function executed first. However. a second STATUS 
specification will supercede an earlier one. The CLOSEALL and EOF values will also override earlier 
values. so only the last value specified will have an effect. Files are initialized with CLOSEALL - YES. 
EOF - CLOSEF. 

6.1.6 r Dn"bble Files 

A dribble file is a "transcript" of all of the input and output on a terminal. The following function 
enables dribble files for Interlisp: 

(DRIBBLE FILENAME A.PPENDFLG THAWEDFLG) [FunctionJ 

(ORIBBLEFILE) 

Opens Fi:r..BNAMB and begins recording the typescripc. Returns the old dribble 
file if any, otherwise NIL. [f APPENDFLG = T, the typescript will be appended to 
the end of FILENAME. If THAWE.DFLG = T, the file will be opened in .. ~wed" 
mode. for those implementations that support it. (DRIBBLE) closes the dribble 
file. Only one dribble file can be active at any one time, so ( DRIBBLE FII.El) 
followed by (DRIBBLE FII.E2) will cause FII.El to be closed. 

In Interlisp-D, DRIBBLE opens a dribble file for, the current process. recording the 
input and output for that process. Multiple processes can have separate dribble 
files open at the same time .. 

[Function} 
Returns the name of the current dribble file. if any. otherwise NIL. 

(l 

n 

() 
Terminal input is echoed to the dribble file a line buifer at a time. Thus. the typescript produced is f 
somewhat neater than that appearing on the user's terminal. because it does not show characters that were 
erased via control-A or control-Q. Note that the typescript file is not included in the list of files returned 
by {OPENP ), nor will it be closed by a call to CLOSEALL or CLOSEF. Only {DRIBBLE} closes the 
typescript file. 

6.2 ~'PUT FUNCTIONS 

Most of the functions described below have an argument FILE. which specifies the name of the file on 
which the OP,eration is to take place. [f FILE is N t L. the primary input file will be used. If the file 
argument is a string, input will be taken from that string (and the string poincer reset accordingly). 

Most input functions also have a RDTBL argument. which specifies· the readrable to be used for input. If 
RDTBL is NIL, the primary readrable will be use9-. Readrables are described on page 6.J2. , 

6.12 



o-

.. 

0 

INPUT/OUTPUT 

Note: in all Interlisp-10 symbolic files. end-of-line is indicated by the characters carriage-return and 
line-feed in that order. Accordingly, on input from files, Interlisp-10 skips all line-feeds that immediately 
follow carriage-returns. On input from the terminal, Interlisp echos a line-feed whenever a carriage-return 
is input. 

When reading from the terminal, the input is buffered a line at a time (unless buffering has been inhibited 
by (CONTROL T), or the input is being read by READC or PEEKC) and can be backed up over using 
specified editing characters. The user can erase a character at a time. the whole line. or, in Interlisp-D, a 
word at a time. Toe keys that perform these editing functions are assignable via the SET SYNTAX function 
(page 6.34), with the intial settings chosen to be those most nat11ral for the given operating system: 
characters are deleted one at a time by control-A under Tenex, Delete under Tops20. and BackSpace in 
Interlisp-D; the whole line is erased by control-Q under Tenex and in Interlisp-O, and control-U under 
Tops20: words are erased by control-Win Interlisp-D. 

The character-deleting action on normal terminals is to _echo a\ followed·by the erased character: on the 
lnterlisp-D display the character is physically erased from the screen (this action can also be specified for 
display terminals in other Interlisps; see page 6.43). Toe line-deleting action is normally to print ## and 
start over on a new line. Neither will back up beyond the previous carriage-return. 

When reading from a file. and an end of file is encountered, all input functions close the file and generate 
an error, ENO OF FILE (unless WHENCLOSE has been used to alter this behavior. see page 6.11). 

( READ FILE RDTBL FLG) [Function] 
Reads one expression from FILE. Atoms are delimited by the break and separator 
characters as defined in RDTBL. To include a break or separator character in an 
atom. the character must be preceded by the input escape character %, e.g., AB% ( C 
is the atom AB ( c. %% is the acom %. "I.control-A is the atom control-A. For input 
from the terminal, an atom containing an interrupt character can be input by typing 
instead the corresponding alphabetic character preceded by control-V, e.g., 1'VC for 
control-C. 

Saings are delimited by double quotes. To input a string containing a double 
quote or a%, precede it by%. e.g., "AB%"C" is the string AB"C. Note that% can 
always be typed even if next character is not ··special", e.g .. %A%B%C is read as 
ABC. 

If an atom is interpretable as a number. READ creates a number. e.g .• 1E3 reads as 
a floating point number. 103 as a literal atom. 1. O as a number. 1, o as a literal 
atom. etc. An integer can be input in octal by terminating it with a Q, e.g .• 17Q 
and 15 read in as the same integer. The setting of RADIX (page 6.19) determines 
in which base integers are printed. 

When reading from the terminal, all input is line-buffered to enable the action 
of the backspacing control characters (unless inhibited by ( CONTROL T} (page 
6.45)). Thus no characters are actually seen by the program until a c:irriage-return is 
typed."' However. for reading by READ. when a matching right parenthesis is 
encountered. the effect is the same as though a carriage-return were typed. i.e .. the 

~Actually. the line buffering is terminated by the character with terminal synwc class EOL (see page 6.33). 
which in most cases is carriage-return . 

6.13 



• 

Input Functions 

characters are transmitted.5 To indicate this, Interlisp also prints a carriage-return 
line-feed on the tenninal. 

In Interlisp-IO, the character control·W is defined as an IMMEDIATE read macro 
that erases the last expression read. echoing a \ \ and the erased expression. e.g .. 
(NOW IS THE TIME-r-W \\ TIME) returns (NOW IS THE). Control·W can be 
used repeatedly, and can also back up and erase expressions on previous lines. 
However, since control·W is implemented as an IMMEDIATE read-macro character. 
{page 6.36), once it is typed. then individual characters typed before it cannot be 
deleted by control-A or control-Q, since they will already have passed through the 
line buffer • 

In Interlisp-D, control-W is instead defined as an editing character that deletes tlle 
last "word" of input, i.e .. back to the first non-OTHER character preceding the first 
non·SEPR character. essentially a repeated BackSpace. The character performing 
this function is assignable using the WORDOELETE syntax (page 6.34). 

n.a= T suppresses the carriage-return normally typed by READ following a 
matching right parenthesis. (However. the characters are still given to READ: 
i.e.. the user does not have to type the carriage-return.} 

(RATOM FILE RDTBL) [Function] 
Reads in one atom from FILE. Separation of atoms is defined by R.OTBL. ¼ is 
also an escape character for RA TOM, and the remarks concerning line-buffering and 
editing concrol characters also apply. · 

If the characters comprising the atom would normally be interpreted as a number 
by READ, that number is returned by RA TOM. Note however that RA TOM takes no 
special action for " whether or not it is a break character. i.e •• RA TOM never makes 
a string. 

( RSTRING FILE RDTBL) [Function] 
Reads characters from FlLE up co. but not including. the next break or separator 
character. and returns them as a string. Control·A. conttol-Q, concrol-V, and % 
have the same effect as with READ. · 

Note chat the breaj( or separator character that terminates a call to RATOM or RSTRING is not read by 
chat call. but remains in the buffer to become the first character seen by the next reading function that is 
called. If that function is RSTRING, it will return the null string. This is a common source of program 
bu,gs. 

(RAT OMS A FXLE RDTBL ) [Function) 

( RATEST FLG) 

Calls RA TOM repeatedly until the arom A is read: Returns a list of the atoms read. 
not including A. 

[Function) 
[f FLG = T, RATEST returns T if a separator .was encountered immediately prior 
to the last atom read by RA TOM. NIL otherwise. 

5The line· burrer is also transmitted to READ whenever an IMM ED IA TE read-macro character is cyped 
( page 6.36). · 

6.14 

() 

( 



0 C:: 

O r 
·---

INPUT/OUTPUT 

If FLG = NIL. RATEST returns T if last atom read by RATOM or READ was a . 
break character. NIL otherwise. 

If FLG = 1, RA TEST returns T if last atom read (by READ or RATOM) contained 
a % (as an escape character, e.g., %[ or %A%8%C), NIL otherwise. 

( READC FILE RDTBL) [Function] 
Reads and returns the next character, including %. ", etc, Le.. is not affected 
by break. separator. or escape character. The action of READC is subject to line­
buffering, Le •• REAOC does not return a value until the line has been terminated 
even if a character has been typed. Thus. the editing control characters have their 
usual effect. RDTBL does not directly affect the value returned. but is used as usual 
in line-buffering, e.g .. determining when input has been terminated. If { CONTROL 
T) has been executed (page 6.45), defeating line-buffering, the &OTBL argument is 
irrelevant, and READC returns a value as soon as a character is typed (even if the 
character typed is one of the editing characters, which ordinarily would never be 
seen in the input buffer). 

(PEEKC FILE RDTBL} . [Function] 

(LASTC FILE) 

Returns the next character. but does not actually read it and remove it from the 
buffer. If RDTBL=NIL. PEEKC is not subject to line-buffering,6 i.e., it returns 
a value as soon as a character has been typed. Otherwise. PEEKC waits until the 
line has been terminated before returning its value. This means that control-A. 
control-Q, and control·V will be able to perfonn their usual editing functions. 

[Function} 
Returns the last character read from FILE. 

READ, RA TOM, RA TOMS. PEE KC, REAOC all wait for input if there is none. The only way to test whether 
or not there is input ~ to use READP: 

( REAOP FILE FLG) [Function} 
Returns T if there is anything in the input buffer of F1LE, NIL otherwise. Note 

O_/- that because of line-buffering, REAOP ~Y return T, indicating there is input in 
\;:,.,,,..- the buffer. but READ may still have to wait. 

O ·:i) 
i . ,:, 

Frequently, the terminal's input buffer contains a single EOL character left O\'er 
from a previous input. For most applications. this situation wants to be treated 
as though the buffer were empty, and so ( RE ADP T) returns NIL in this case. 
However. if FLG=T. REAOP also returns Tin this case, i.e., (REAOP T T) returns 
T if there is any character in the input buffer. · 

(WAiiFORINPUT FII.:E) [Function] 
Waits until input is available from F1LE or from the tenninal. i.e. from T. 
WAITFORINPUT is functionally equivalent to (until (OR (READP T) (READP 

tilf reading from the terminal. the character is echoed as soon as PEEKC reads it. even though it is then 
··put back"' into the system buffer. where a subsequent del (or control-Z on TOPS-20) before the character 
is read can clear it. and where subsequent line buffer backspacing could change iL Thus it is possible for 
the value returned by PEEKC to "'disagree" in the first character with a subsequent READ. 

6.15 



Output Functions 

FILE)) do NIL). except that it does not use up·machine cycles while waiting. 
Returns the device for which input is now available. i.e. F'JLE or T. 

FILE can also be an integer. in which case WAITFORINPUT waitS until there is 
input available from th~ terminal. or until FILE milliseconds have elapsed. Value 
is T if input is now available. NIL in the case that WAITFORINPUT timed OUL 

In Interlisp•l0. WAITFORINPUT operates by dismissing, checking for. a~ailable 
input. and then. if there is none. dismissing again. each time for an increasingly 
larger interval. The initial interval is OISMISSINIT milliseconds (initially 
500), .and the interval grows by 1/16 for each dismissal, up to a maximum of 
OISMISSMAX milliseconds (initially 19,000). 

( SKREAD FILB RER.EA.OST.RING) [Function] 
"Skip Read'·. It moves the file pointer for-FILE ahead as if one call to READ had 
been performed, without paying the storage and compute cost to really read in the 
strucrure. REREADSTRING is for the case where the user has already performed 
some REAOC's and RATOM's before deciding to skip this expression. In this case. 
REREADSTRING should be the material already read (as a string), and SKREAO 
operates as though it had seen that material first. thus getting itS paren-count. 
double-quote count, etc. sec up properly. 

SKREAD always uses FILERDTBL for itS ieadtable. SKREAD may have difficulties if 
unusual read-macros have been added to FILERDTBL. SKREAD will not recognize 
read-macro characters in REP..EADSTRING, nor SPLICE or INFIX read macros. 
This is only a problem if the read-macros are defined to parse subsequent input in 
the file which does not follow the normal parenthesis and string-quote conventions 
in FILERDTBL 

SK READ rerurns % ) if the read terminated on an unbalanced closing parenthesis: 
%] if the read terminated on an unbalanced %], i.e •• one Which also would have 
closed any extant open left parentheses: otherwise NIL. 

6.3 OUTPUT FUNCTIONS 

Most of the functions described below have an argument FILE. which specifies the name of the file on 
which the operation is to take place. If FILE is tl IL. the primary output file is used. Some of the 
functions have a R.DT:SL argument. which specifies the readtable co be used for output. If RDTEL is NIL. 

. the primary readtab.le is used. 

Unless otherwise specified by 0EFPRINT (page 6.23). pointers other than lists. strings. atoms. or numbers. 
are printed in the form { DATAT'Y.PE} followed by the octal representation of the address of the pointer 
(regardless of radix). For example. an array pointer might print as {ARRAYP}#43. 2760. This printed 
representation is for compactness of display on the user's terminal. and will not read back in correctly; if 
the form above is read, it will produce the atom .. {ARRAYP}#43. 2760". 

Note: the term end-of line appearing in the description of an output function me:ins the character or 
characters used co terminate a line in the file system being used by the given implemencation of lncerlisp. 
For example. in Interlisp-10 end-of-line is indicated by the characters carriage-return and line-feed in that 

6.16 

(; 

C 

(l 
( ~.,. 

;_'.1 _,, 

(J 
~ 



0 (· .. · ... 
::.~ 

0 

INPUT/OUTPUT 

order. 

( PRINl X FILE} [Function] 
Prints x on FILE. 

( PRIN2 x FILE RDTBL} [Function] 
. Prints x on FILE with %'s and "'s insened where required for it to read back in 

properly by READ. using RDTBL. 

Both PRIN1 and PRIN2 print lists as well as atoms and strings; PRINl is usually used only for explicitly 
printing formatting characters, e.g., ( PRIN1 (QUOTE %[)} might be used to print a left square bracket 
(the % would not be printed by PRINl). PRINZ is used for printing S-expressions which can then be 
read back into Interlisp with READ; i.e .. break and separator characters in atoms will be preceded by %'s. 
For example. the atom"() .. is printed as%(%} by PRIN2. If RADIX=8 (page 6.19}. PRIN2 prints a 
Q after integers but PRINl does not (but both print the integer in-octal). 

( PRIN3 x FILE} [Function} 
( PRIN4 X FILE RDTBL) [Function} 

PRIN3 and PRIN4 are the same as PRIN 1 and PRINZ respectively, except that 
they do not increment the horizontal position CO\lllter nor perform any linelength 
checks. They are useful primarily for printing control characters. 

{ PRINT X FILE RDTBL) [Function] 
Prints the expression x using PRIN2 followed by an end-of-line. Returns. x. 

(SPACES N FILE) [Function] 
Prints N spaces. Returns NIL. 

(TERPRI FILE) [Function.] 
Prints an end-of-line. Returns NIL. 

{TAB POS MINSPACES FILE) [Function] 
· Prints the appropriate number of spaces to move to position Pos. MINSPACES 

indicates how many spaces must be printed (if NIL. 1 is used}. If the current 
position plus MINSPACES is greater than POS. TAB does a TERPRI and then 
( s p ACE s POS). If MINSPACES is T. and the current position is greater ehan POS. 
then TAB does nothing. 

Note: A sequence of PRINT, PRIH2, SPACES, and TERPRI expressions can often be more conveniently 
coded with a single-PRINTOUT statement (page 6.25). 

( SHOWPRIN2 X FILE lWTBL) [FunctionJ 
Like PRIN2 except if SYSPRETTYFLG=T. prettyprints x instead. Returns x. 

( SHOWPRrnT X FILE lWTBL) [Functionl 
Like PRINT except if SYSPRETTYFLG=T, prettyprints x instead. followed by an 
end-of-line. Returns x. · 

SHOWPRIUT and SHOWPRIN2 are used by the programmer's assistant (page 8.1} for printing the values 
of expressions and for printing the history list. by various commands of the break package (page 9.1). 
e.g. ? = and 8 T commands. and various other system packages. The idea is that by simply seming or 
binding SYSPRETTYFLG to T (initially NIL). the user instructs the system when interacting with the user 

6.17 



Printlevel 

to PRETTYPRINT expressions (page 6.47) instead of printing them. 

(PRINTBELLS) 

(DOSE) 

6.3.1 Printlevel 

[Function] 
Used by DWIM (page 15:1) to print a sequence of bells to alert the user to stop 
typing. Can be advised or redefined for special applications. e:g .• to flash the screen 
on a display terminal. 

[Function] 
(Interlisp-10) Dismiss until Output Buffer is Empty, i.e •• until all of the characters 
that have been printed by Interlisp functions have actually been printed on the 
user's terminal. For example, it is important to perform a DOB E after printing 
an error message before clearing. the input buffers to make sure that the user has 
actually seen the error message. · 

In systems that do not handle output- to the display asynchronously with user 
computation, such as Interlisp-D, DOBE is a no-op. 

When using Interlisp one often has to handle large, complicated lists, which are difficult to understand 
when printed ouL PRINTLEVEL allows the user to specify in how much detail lists should be printed. 
Toe print functions PRINT, PRINl. and PRIN2 are all affected by level parameters set by: 

{ PRINTLEVEL CA.RV.AL C.ORVAL) [Function} 
Sets the CAR ·print level to CA.RV.AL, and the CDR print level to C.ORVAL. Returns a 
list cell whose CAR and CDR are the-old settings. PRINTLEVEL is initialized with 
the value ( l O O O • -1 ) • 

In order that PRINTLEVEL can be used with RESETFORM or RESETSAVE. if 
CA.RYAL is a list cell it is equivalent to {PRINTLEVEL (CAR CA.RV.AL) (CCR 
CA.RV.AL)). 

( PRINTLEVEL N NIL) changes the CAR printlevel without affecting the CCR 
printlevel. { PRINTLEVEL NIL N) changes the COR printlevel with affecting the 
CAR printleveL ( PRINT LEVEL) gives the current setting without changing eicher. 

The CAR printlevel specifies how '"deep" to print a list. Specifically, it is the number of unpaired left 
parentheses which will be printed. Below that level all liscs will be printed as &. For example. suppose 
X = (A (B C (D (E F) G) H) K). If CARVAL=3, (PRINT X) would prim (A (8 C (0 & G) 
H) K ) . if CA.RYAL= 2. ( A { B C & H) K). if CA.RYAL= 1. { A & K), and if CARVAL = 0. just &. 

If the CAR printlevel is negative. the action is similar except that an end-of-line is insened after each right 
parentheses that would be immediately followed by a left parenthesis. 

The COR printlevei specifies how "long" to print a lisL It is the number of top level list elementS that 
will be printed before the printing is cenninated with --. For example, if C.ORVAL=2. ( A 8 C D E) 
will prim as ( A B --). For subliscs. the number of list elements primed is also affected by the depc.11 
of printing in the CAR direction: Whenever the sum of the depth of the sublist (i.e. J,he number of 
unmacched left parentheses) and the number of elementS is grear.er than the CCR printlevel. -- is printed. 
This gives a .. triangular·· effect in that less is printed the farther one goes in either CAR or CDR direction. 
For example, if CDRYAL=2. then {A (8 C {O (E F) G) H) K L) will prim as (A (8 --) --) 

6.18 

0 
tf-t'w w 

CJ 
r~­
\,..;" 



0 (.:: 

Q_, 

( 

0 

--- .. - - . -- ··- - ---- ...... ---'-· --· -- ··. 

INPUT/OUTPUT 

andifCDRVAL=3,as(A (BC--) K --). 

If the CCR printlevel is negative, then it is the same as if the COR printlevel were infinite. 

The printlevel setting can be changed dynamically, even while Interlisp is printing, by typing control·P 
followed by a number, i.e., a string of digits, followed by a period or exclamation point. As soon as 
control·P is typed. Interlisp clears and saves the input buffer, clears the output buffer, rings the bell 
indicating it has seen the control·P, and then waits for input, which is terminated by any non-number. 
Toe input buffer is then restored and the program continues. If the input was tetminated by a period or 
an exclamation point, the CAR printlevel is immediately set to this number; otherwise, the input is ignored. 
Characters cleared from the output buffer will have been lost in either case, and printing continues with 
the (possibly new} pri.ntleveL If the print routine is currently deeper than the new level. all unfinished 
lists above that level will be terminated by .. __ )". Thus. if a circular or long list of atams. is being printed 
out, typing "control-PO." will cause the list to be terminated immediately. 

If the string of digits following a control-P is terminated by a comma. another number may be typed 
terminated by a period or exclamation point. The CAR printle:vel will then be set to the first number, the 
CDR printlevel to the second number. 

In either case. if a period is used to terminate the printlevel setting. the printlevel will be returned to 
its previous setting after the current printaut has finished. If an exclamation point is used. the change is 
permanent and the printlevel is not restored (until it is changed again). 

PLVLFILEFLG [Variable] 
Normally,. PRINTL£VEL only affects tenninal output. Output to all other files 
acts as though the print level is infinite. However. if PLVLFILEFLG is T (initially 
NIL), then PRINTLEVEL affects output tO files as well. 

6.3.2 Printing numbers 

How the ordinary printing functions (PRIHl. PRINZ. etc.) print numbers can be affected in several ways. 
RADIX influences the printing of integers. and FLTFMT influences the printing of floating point numbers. 
The setting of the variable PRXFLG determines how the symbol-manipulation functions handle numbers. 

· Toe PRINTNUM package permits greater controls on the printed appearance of numbers. allowing such 
things as left-justification, suppression of trailing decimals. etc. 

( RADIX N) [Function] 
Resets the output radix for integers to the absolute value of N. If N is neg~tive. 
integers are interpreted by the print routines as unsigned numbers: i.e .• the actual 
two·s complement representation of the integer in the integer size of the panicular 
implementation is interpreted as if it were a positive number on a machine of 
infinite integer size. Thus. numeric output under a negative radix varies with the 
implementation. and numbers printed in this way by one implementation will not 
read correctly in an implementation whose integers are of a different size. 

For example. in Interlisp· 10. whc:is~ integer size is 36 bits .• 9· will prtnt as shown 
with t.'le following radices: 

6.19 



__ ..., 

{RADIX) 

10 

8 

-10 

-8 

Printing numbers 

{PRINT -9) 

-9 

-11Q 

68719476727 {i.e. 236.9) 

777777777767Q 

... -- ·-- _.,,· -

The value of RAO IX is its previous setting. ( RAO IX ) gives the current setting 
without changing it. The initial setting is 10. 

Note that RAO IX affects output only. There is no input radix; on .input. numbers 
are interpreted as decimal unless tliey end in Q. in which case they are interpreted 
as octal. Thus READ and PRINT are inverses, independent of any radix setting. 
RADIX also does not affect the behavior of UNPACK. etc •• unless the value of 
PRXFLG (below) is T; e.g., with ( RADIX 8 ). the value of ( UNPACK 9) is ( 9 ). 
not ( i 1). 

( FLTFMT FORM.AT) . [Function] 
Resets the output format for floating point numbers to the FLOAT format FORMAT 
{see PRINJNUM below for a description of FLOAT formatS). FORMAT=T specifies 
the default .. free" formatting: some number of significant digits (a function of 
the implementation) are printed. with trailing zeros suppressed; numbers with 
sufficiently large or small exponentS are instead printed in exponent notation. 

FL TFMT returns its current setting. ( FL TFMT) returns the current setting without 
changing it. Toe initial setting is T. 

In Interlisp· 10. FORMAT may also be a machine-dependent FLOAT format-code as 
returned by NUMFORMATCOOE (page 6.23). 

Whether print name manipulation functions (UNPACK, NCHARS, etc.) use the values of RADIX and 
FL TFMT is determined by the variable PRXFLG: 

PRXFLG . [Variable] 
If PRXFLG=NIL (the initial setting), then the .. PRIN1" name used by PACK, 
UNPACK, MKSTRING, etc •• is computed using base 10 for integers and the system 
default floating format for floating point numbers. ind~pendenc of the current 
setting of RADIX or FLTFMT. If PRXFLG=T. then RADIX and FLTFMT do dictate 
the ' 0 PRINl" name of numbers. Note that in this case. PACK and UNPACK are noz 
inverses. 

Examples with (RADIX 8). (FLTFMT '(FLOAT 4 2) ): 

With PRXFLG=NIL. 

{UNPACK 13) => {1 3) 

(PACK '(A 9)) => A9 

6.20 

0 

n 
( 



Q('.· 

( -

0-

INPUT/OUTPUT 

(UNPACK 1.2345) => (1 %. 2 3 4 5) 

With PRXFLG=T, 

(UNPACK 13} => (1 5) 

(PACK '(A 9)) => All 

(UNPACK 1.2345) => (1 %. 2 3) 

- --· .-w-._.-.------~.' • --·-~~--•·•·'-,.·-•-.. 

Note that PRXFLG does not effect the radix of "PRIN2" names. so with ( RADIX 
8), (NCHARS 9 T), which uses PRIN2 names, would return 3, (since 9 would 
print as llQ) for either setting of PRXFLG. 

Warning: Some system functions will not work correctly if PRXFLG is not NIL. 
Therefore. resetting the global value· of PRXFLG is not recommended. It is much 
better to rebind PRXFLG as a SPECVAR for that part of a program where it needs 
to be non-NIL. · · 

The basic function for printing numbers under format control is PRINTNUM. Its utility is considerably 
enhanced when used in conjunction with the PRINTOUT package (page XXX), which implements a 
compact language for specifying complicated sequences of elementary printing operations. and makes 
fancy output formats easy to design and simple to program. 

( PRINTNUM FORMAT NUMBER FILE) [Function] 
Prints NUMBER on FILE according to the format FORMAT. FORMAT is a list structure 
with one of the forms described below. FORMAT can also be a machine dependent 
format-code as returned by NUMFORMATCODE (page 6.23). 

(Interlisp· 10) If NUMBER does not tit in the field specified by FORMAT. the full 
print name is printed. Then a TAB is executed so that the line position of the file 
after PRINTNUM is always the position prior to printing plus the indicated widtli. 

If FORMAT is a list of the form ( FIX WIDTlI RADIX PADO LEFTFLUSB). this specifies a FIX 
format. NUMBER is rounded to the nearest integer. and then printed in a field WIDTH characters long with 
radix set to RADIX ( or 10 if P..ADIX·= NIL: note that the setting of RADIX is not used as the default). If 
PADO and LEFTFLUSII are both NIL. the number is right-justified in the field. and the padding characters 
to the left of the leading digit are spaces. If PADo is T, the character "O" is used for padding. If 
LEFTFLtTSI: is T, then the number is left-justified in the field. with trailing spaces to fill out WIDTH 
characters. 

The following examples illustrate the effects of the FIX format options (the vertical bars indicate the field 
width): 

6.21 



FOB.MAT 

( FIX 2) 

(FIX 2 NIL T) 

(FIX 12 8 T) 

Printing numbers 

PRINTNUM prints 

I 3f 

{FIX 5 NIL NIL T) 

3 

7 

14 

2 

I o1 I 

10000000000161 

12 

If FORMAT is a list of the form (FLOAT wmm DBCPART EXPPART PA.DO ROUND}, this specifies a 
FLOAT format. NUMBER is printed as a decimal number in a field WIDTH characters wide, with DECPA.RT' 
digits to the right of the decimal point. If _EXPPA.RT is not O ( or NIL), the number is printed in exponent 
notation. with the exponent occupying E:X:?PART characters in the field. EX?PA.RT should allow for the 
character E and an optional sign to be printed before ·the exponent digits. As with FIX format, padding 

-- on the left is with spaces, unless PA.Do is T. If ROUND is given. it indicates the digit position at which 
' rounding is to take place, counting from the leading digit of the number.7 

FLOAT format examples: 

FORMAT NtJ'MBER PRINTNUM prints 

{FLOAT 7 2) 27.689 27.691 

(FLOAT 7 2 NIL T) 27. 689 , 10027.691 

(FLOAT 7 2 2) 27.689 2.77E1l 

( FLOA_T 11 2 4) 27,689 2.77E+01l 8 

(FLOAT 7 2 NIL NIL 1) 27.689 30.001 

(FLOAT 7 2 NIL NIL 2} 27.689 28.001 

NILNUMPRINTFLG [Variable} 
If PRINTNUM's NUMBER argument is not a number and not NIL. a NON-NUMERIC 
ARG error is generated. If NUMBER is NIL. the effect depends on the setting of the 
variable NILNUMPRINTFLG. If NILNUMPRINTFLG is NIL. then the error occurs as 
usual. If it is non-NIL. then no error occurs. and the value of N rLNUMPRINTFLG 
is printed right-justified in the field described by FORMAT. This option facilitates 
the printing of numbers in aggregates with missing values coded as N I L. 

. . 

:-The interpretation of WIDTH= NIL and DECPART= NIL are not specified.. and are currently a function 
of the implementation. Interlisp-10 prohibits WIDTH= NIL. and treats DECPART= NIL as equivalent to 
DECPA.RT = O; lntertisp-0 interprets WIOTji =NIL to mean no padding, i.e .• to u·se however much space 
the number needs. and interpretS DEC-PART= NIL to mean as many decimal places as needed. 

s As of this writing. the [nterlisp-10 implementation actually does something less intuitive with the :EXPPAF..T 
field: the placement of the decimal point is affected by DECPART. and padding never occurs. These cwo 
examples in Interlisp-10 would actually print as I. 28E+02 I and j 27. 69E+OOOO I-

6.22 

... ----

() 

n 



0 (.· 

I ' 8 ,,,..._ 
i • 

INPUT /OUTPUT 

In some implementations. formatted printing of numbers receives assistance from the operating system. 
provided that the format is specified in some sort of special code. PRINTNUM works by converting the 
machine-independent format specifications described above into machine-dependent codes the exact form 
of which may vary from implementation to implementation. This conversion process takes place on each 
call to PRINTNUM. For efficiency purposes, if the user is going to be performing a panicular call to 
PRINnmM frequently, he may wish to separate the conversion from the actual printing, performing the 
conversion process just once and saving the result. Toe function NUMFORMATCOOE is available for this 
purpose: NUMFORMA TCODE takes a format. performs the conversion and returns a machine dependent 
format-code. which can be given to PRINTNUM in place of a list structure format as described above. In 
this case, PRINTNUM will not have to perform the conversion. but can simply use the machin~dependent 
format code directly. 

( NUMFORMATCOOE FORMAT SMASHCODE) [Function] 
Converts the FIX or FLOAT format FORMAT to a machine-dependent format· 
code. If SMASIICODE is recognized as a format-code data-strucmre, then the 
new format-code is smashed into that structure instead of allocating new storage. 
(NUMFORMATCOOE) returns an uninitialized ~Dlm that can later be smashed. 

In Interlisp·D. this function is a no-op, as there is no special internal representation 
for number formats. 

6.3.3 User Defined Printing 

{DEFPRINT TYPE FN) . [Function] 
TYPE is a type name (see page 2.1). Whenever a printing function (PRINT, PRINl. 
PR I N2. etc.) encounters an object of the indicated type, FN is called with the item 
to be printed as its argument. If it returns NIL. the datum is printed in the manner 
the system defaults: for user data types. it is printed as {datatype}#nnnnnn. If 
FN wishes to specify how the datum should be printed. it should return a list of 
the form {ITEMl • ITEM2). ITEMl is printed using PRIN1 (unless it is NIL). and 
then ITEM2 printed using PRIN2 with no spaces between the two items. (Typically. 
ITEMl is a read macro character.) 

In Interlisp·lO, TYPE may also be a type number (see page 22.2). Note that the 
user can specify different action for type names ARRAYP, HARRAYP. TERMTABLEP. 
READTABLEP, and CCOOEP, even though they all have the same type number. 

Note that OEFPRINT also affects internal calls to print from PACK. COMCAT. etc .• i.e. any operation that 
involves obtaining a print name (see page 2.8}. A consequence of this fact is that in implementations 
that do not have reentrant printing code (in particular, Interlisp-10), the user's DEFPRINT function must 
not call any print name manipulating functions itself. or the results of the whole printing operation are 
undefined. 

6.3.4 Dumping Unusual Data Structures 

HPRHH (for 0 Horrible Print") and HREAO provide a mechanism for printing and reading back in general 
data structures that cannot normally be dumped and loaded easily. such as (possibly l{e·encranc or circular) 
structures containing user datatypes. arrays. hash tables. as well as list structures. HPRINT will correctly 

,· .. prim and read back in any structure containing any or all of the above. chasing all pointers down to the 

0 6.23 



READFILE and WRITEFILE 

level of literal atoms. numbers or strings. HPRINT cumntly c~ot handle compiled code arrays, stack 
positions, or arbitrary unboxed numbers. 

HPRINT operates by simulating the Interlisp PRINT routine for nonnal list suuctures. When it encounters 
a user datacype (see page 3.14), or an array or hash array, it prints the data contained therein. suITOunded 
by special characters defined as read-macro characters (see page 6.36). While chasing the pointers of a 
structure, it also keeps a hash table of those items it encounters., and if any item is encountered a second 
time, another read-macro character is inserted before the first occurrence (by resetting the file pointer with 
SETFILEPTR} and all subsequent occurrences are printed as a back reference using an appropriate macro 
character. Thus the inverse function. HijEAO merely calls the Interlisp READ routine with the appropriate 
readtable. • 
( HPRHff EXPR FILE UNCIRCULAB DAT.A.T'l'PESEE.N) [Function] 

Prints EXPR on FILB. If t1NCIRct7I.A.R is non-NIL. HPRINT does no checking for n 
any circularities in .EXPR (but is still useful for dumping arbitrary struaures of ' 

( ·~ .- arrays, hash arrays. lists, user data types. etc., that db not contain circularities). ( 
Specifying UNCIRCULAR as non·N IL results in a large. speed and internal-storage 
advantage. 

(HREAD FILE) 

{HCOPXALL x) 

Normally, when HPRINT encounters a user data cype for the first time. it outputs 
a summary of the data type's declaration. When this is read in. the data type is 
redeclared. If DA.T.ATYPESEEN is non-NIL. HPRINT will assume that the same data 
cype declarations will be in force at read time as were at HPRINT time, and not 
output declarations. 

HPRINT is-intended primarily for output to disk files. since the algorithm depends 
on being able to reset the file pointer. If Frz.z is not a disk file (and UNC!R.CULAR 
= NIL), a temporary file, HPRINT .SCRATCH, is opened. EXPR is HPRINTed on 
it. and then that file is copied to the final output file and the temporary file is 
deleted. 

[Function] 
Reads and returns an HPRINT-ed expression from FTLE. 

[Function] 
Copies data structure x. x may contain circular pointers as well as arbitrary 
structures. 

Note: HORRIBLEVARS and UGL YVARS (page 11.25) are two file package commands for dumping and 
reloading circular and re-entrant data structures. They provide a convenient intertace to HP RI NT and 
HREAO. 

6.4 READFILE AND WRITEFILE 

For those applications where the user simply wants to simply read all of the expressions on a file. and 
not evaluate them. the function READF ILE is available: 

( READF ILE FILE} . . [Function) 
Reads successive expressions from file using READ {with F ILERDTBL as readtable) 

6.24 



O r._ .. 

'. INPlIT /OUTPUT 

until the single atom STOP is read. or an end of file encountered. Returns a list 
of these expressions. · 

(WRITEFILE X F.tr.E) . [Function] 

( ENO FILE F.tI.E) 

Inverse of READFILE. Writes a date expression onto F.tr.E. followed by successive 
expressions from x. using FILERDTBL as a readtable. If xJs atomic. its value is 
used. If FILE is not open. it is opened. If FILE is a list, ( CAR FILE) is used and 
the file is left opened. Otherwise, when xis finished, a STOP is printed on F.tr.E 
cq:id it is closed. Returns F.tr.E. 

[Function] 
Prints STOP on F.tI.E and closes it. 

' (;1 6.5 PRINTOUT 

( 

0 

Interlisp provides many facilities for controlling the format of printed output. By executing various 
sequences of PRIN1. PRIN2. TAB, TERPRI, SPACES. PRINTNUM. and PRINTDEF, almost any effect can 
be achieved. PJUNTOUT implements a compact language for specifying complicated sequences of these 
elementary printing functions. It makes fancy output formats easy to design and simple to program. 

PRINTOUT is a CLISP word (like for and if) for interpreting a special printing language in which 
the user can describe the kinds of printing desired. Toe description is translated by OWIMI FY to the 
appropriate sequence of PRHH, TAB, ere., before it is evaluated or compiled. PRINTOUT printing 
descriptions have the following general form: 

( PRINTOUT FI::r..E PRINTCOM1 PRINTCOM2 • · • PRINTCOMN) 

FILE is evaluated to obtain the name of the file to which the output from this specification is directed. 
The PRINTOUT commands are strung together. one after the other without puncruation. after FlLE. Some 
commands occupy a single position in this list. but many commands expect to find arguments following the 
command name in the list. The commands fall into several logical groups: one set deals with. horizontal 
and vertical spacing, another group provides controls for certain formatting capabilities (font changes and 
subscripting), while a third set is concerned with various ways of actually printing items. Finally, there is 
a command that permits escaping to a simple Lisp evaluation in the middle of a PRINTOUT form. The 
various commands are described below. The following examples give a general flavor of how PRINTOUT 
is used: 

Example 1: -Suppose the user wanted to print out on the terminal the values of three variables. X. Y, and 
Z. separated by spaces and followed t:zy a carriage return. This could be done by: 

(PRIN1 X T) 
(SPACES 1 T) 
(PRIN1 YT) 
{SPACES 1 T} 
(PRINl Z T) 
(TERPRI T) 

or by the more concise PRINTOUT form: 

6.25 

.. 



,,--

Horizontal Spacing Commands 

(PRINTOUT TX , Y , Z T) 

Here the first T specifies output to the terminaL the commas cause single spaces to be printed. and the 
final T soecifies· a TERPRI. The variable names are not recognized as special PRINTOUT commands. so 
they are ·printed using PR IN 1 by default. 

Example 2: Suppose the values of X and Y are to be pretty-printed lined up at position 10. preceded by 
identifying strings. If the output is to go to the primary output file. the user could write either. 

(PRINl "X =") 
(PRINTDEF X 10 T) 
(TERPRI ) 
( PRIN1 "Y =") 
( PRINTDEF Y 10 T) 
{TERPRI) 

or the equivalent: 

(PRINTOUT NIL "X =" -10 .PPV X T "Y =" 10 .PPV YT) 

Since strings are not recognized as special comm.an~ "X =" is also printed with PR IN 1 by default. 
The positive integer means TAB to position 10, where the . P PV command causes the value of X to be 
prercyprinted as a variable. By convention., special atoms used as PRINTOUT commands are prefixed with 
a period. The T causes a carriage return, so the Y information is printed on the next line. 

Example 3. As a final example, suppose that the· value of X is an integer and the value of Y is a 
floating-point number. X is to be printed right-flushed in a fieid of width 5 beginning at position 159 
and Y is to be printed in a field of width 10 also staning at position 15 with 2 places to the right of the 
decimal point. Funhermore. suppose that the variable names are to appear in the font named BOLD FONT 
and the values in font SMALLFONT. The program in ordinary Lisp that would accomplish these effects is 
too complicated to include here. With PRINTOUT. one could write: 

(PRINTOUT NIL 
.FONT BOLDFONT "X =" 15 
.FONT SMALLFONT .IS X T 
.FONT BOLOFONT "Y =" 15 
.FONT SMALLFONT .F10.2 YT 
.FONT BOLDFONT) 

The . FONT commands do whatever is necessary to change the font on a multi-font output device. The 
. I5 command sets up a FIX format for a call to the function PRINTNUM (page 6.21) to print X in the 
desired format. Toe . F 1 0 . 2 specifies a FLOAT form.at for PR I NT NUM. 

6.5.1 Horizontal Spacing Commands 

The horizontal spacing commands provide convenient ways of callirig TAB and SPACES. In the following 
descriptions. N stands for a literal positive integer. 

N Used for absolute spacing. It results in a TAB to position N (literally, a ( T AS 
N) ). If the line is currently at position N or beyon~ the file will be positioned at 
position N on the next line. 

6.26 

(--) 

() 
l-. 



O r-• 
I .. '" ,, 

• TAB POS 

.TABO POS 

-N 

. ,, ''' 

INPlJT /OUTPUT 

Specifies TAB to position (the value of) POS. This is one of several commands 
whose effect could be achieved by simply escaping to Lisp, and executing the 
corresponding form. It is provided as a separate command so that the PRINTOUT 
fo:rm is more concise and is prettyprinted more compactly. Note that • TAB N and 
N, where N is an integer, are equivalent 

Like • TAB except that it can result in zero spaces (Le. the call to TAB specifies 
MINSPACES= 0). . 

Negative integers indicate relative (as opposed to absolute) spacing. TranslateS as 
(SPACES INI ). 

Provides a shcm·hand way of specifying 1. 2 or 3 spaces. i.e .. these commands are 
equivalent to -1, -2, and -3, respectively. 

• o- ~: . SP DIST.A.Nc:E Translates as {SPACES DISTANCE). Note that .SP N and -N. where N is an 
integer, are equivalent 

r RESET Resets the current line by causing a carriage-return to be printed without a line­
feed. Useful for overprinting, or for regaining control of a line on which characters 
have bC""..n printed in a variable pitched font · · 

6.5.2 Vertical Spacing Commands 

Vertical spacing is obtained by calling· TERP RI or printing form-feeds. Toe relevant commands are: 

T 

.SKIP LINES 

Q.J .PAGE 

Translates as ( TERP RI ) . This command is functionally equivalent to the integer 
command O: they both move to position O ( = coiumn 1) of the next line. To print 
the letter T, use the string " T " • 

Equivalent to a sequence of LINES ( TERP RI )'s. Toe • SK.IP command allows for 
skipping large constant distances and for computing the distan~e to be s~ipped. 

Puts a form-feed (control-L) out on the file. Care is taken to make sure that 
Interlisp:s view of the current line position is correctly updated. 

6.5.3 Special Formatting Controls 

There are a small number of commands for invoking some of the formatting capabilities of multi-font 
output devices. The available commands are: 

• FONT FONTSP'EC 

.SUP 

Puts cut a control sequence that causes a change to font FONTSP'EC (the association 
between FONTSPEC and a specific font must be defined in the user's font profile. as 
described in page 6.55). FONTSPEC may be a font-name variable or an, expression 
th~t evaluates to the value of a font-name variable. FONTSPEC may also be a 
positive integer N. which is taken as an abbreviated reference to the font named 
FONTN (e.g. l = > FONT 1). . 

Specifies ~uperscripting. All subsequent characters are printed above the base of 
the current line. Note that chis is absolute. not relative: a . SUP following a . SUP 

6.27 



i 

...... ·-·- . _ _..,,. _____ ~ ---- ------

Printing Specifications 

is a no-op . 

• SUB Specifies subscripting. Subsequent printing is below the base of the current line. 
As with superscripting, the eifect is absolute. · 

• BASE Moves printing back to the base of the current line. Un-does a previous • SUP or 
· • SUB; a no·op, if printing is currently at the base. 

6.S.4 Printing Specifications 

The value of any expression in a PRINTOUT form that is not recognized as a command itself or as a 
command argument is printed using PRIN1 by default. For example, title strings can be printed by 
~ply including the string as a separate PRINTOUT command. and the values of variables and forms can 
!' ?rinted in much the same way. Note that a literal integer, say 51, cannot be printed by.including it~ 
a· command. since it would be interpreted as a TAB; the desired effec.t can be obtained by using instead 
the string specification "51", or the form ( QUOTE 51 ). 

For those instances when PRIN1 is not appropriate. e.g., PRIN2 is required. or a list structures must be 
prettyprinted. the following commands are available: 

• P2 THING 

• PPF TBING 

• PPV THING 

.PPFTL THING 

'--; PPVTL THING 

Causes THING to be printed using PR IN 2: translates as ( PR IN 2 THING} . 

Causes THING to be prettyprinted at the current line position via PRINTDEF (page 
6.49). Toe call to PRINTDEF specifies that THING is to be printed as if it were part 
of a fun~on definition. That is. SELECTQ, PROG. etc .. receive special treatment. 

Prettyprints THING as a variable: no special interpretation is given to SELECTQ, 
PROG, etc. 

Like • PP F, but pretr:yprints THING as a tail, that is. without the initial and final 
parentheses if it is a list. Useful for prenyprinting sub-lists of a list whose other 
elements are formatted with other commands. 

Like . P_PV, but prettyprints. 'PHING as a tail. 

6.5.4.1 Paragraph Format 

Interlisp's prettyprint routines are designed to display the structure of expressions. but they are not really 
suitable for formatting unstructured cexL If a list is to be printed as a textual paragraph: its internal · 
structure is less important than controlling its left and right margins. and the indenr.ation of its first line. 
The . PARA and . PARA2 commands allow these parameters to be conveniently speciiied. 

• PARA I.MARG R.MARG LIST 

Prints LIST in paragraph format. using PR.INl. Translates as (PRHHPARA 
I.MARG R.MARG LIST) {see page 6.31). Example: ( PRINTOUT T 10 . PARA 
5 -5 LST) will print the elements of LST as a paragraph -with Ien margin at 5. 
right margin at (LINELENGTH}-5. and the first line indenced to 10. · 

• PARA2 I.MARG RMARG LIST 

6.28 

\ () 
·c 

c. 

() 
(~ 



0 
'· . 

u ,_ 

·, 

-· 

INPUT /OUTPUT 

Print as paragraph using PRIN2 instead of PRINl. Translates as ( PRINTPARA 
LMARG RMARG LIST T). 

6.S.4.2 Right•Flushmg 

Two commands are provided for printing simple expressions flushed-right against a specified line position. 
using the function FLUSHRIGHT (page 6.31). They take into account the current position. the number 
of characters in the print-name of the expression, and the position the expression is to be flush against. 
and then print the appropriate number of spaces to achieve the desired effect. Note that this might entail 
going to a new line before printing. Note also that right-flushing of expressions longer than a line ( e.g. a 
large list) makes little sense. and the appearance of the output is not guaranteed. 

• FR POS EXPR 

• FR2 POS EXPR 

6.5.4.3 Centering 

Flush-right using PR I N 1. Toe value of POS detennines the position that the 
right end of EXP.R will line up at. Af:. · with the horizontal spacing commands. 
a negative position number means I POS I columns from the current position. a 
positive number specifies the positiGn absolutely. Pos=O specifies the right-margin, 
Le. is interpreted as ( LINELENGTH ). 

Flush-right using PRIN2 instead of PRIN1 • 

Commands for centering simple expressions between the current line position and another specified 
position are also available. As with right flushing, centering of large expressions is not guaranteed. 

. CENTER POS EXPR 
Centers E:XP.R between the current line position and the position specified by 
the value of POS. A positive POS is an absolute position number. a negative POS 
specifies a position relative to the current position, and O indicates the right-margin. 
Uses PRINl for printing. 

0· · .CENTER2 POS EXP.R 

0 

Centers using PRIN2 instead of PRIN1. 

6.5.4.4 Numbering 

The following commands provide FORTRAN-like formatting capabilities for integer and floating-point 
numbers. Each command specifies a printing format and a number to be printed. The format specification 
translates into a format-list for the function PRINTNUM (see page 6.21) . 

. !FORMAT NUMBER 
Specifies integer printing. Translates as a call to the function PR I NTN UM with 
a FIX format-list constructed from FORMAT. The atomic format is broken apart 
at internal periods to form the format-list. For example. . I 5 . -8. T yields the 
format-list (FIX 5 -8 T). and the command-sequence (PRINTOUT T .15.-
8 . T F 00 ) will translate as ( PRINT NUM • ( FIX 5 -8 T) F 00). ft will cause 
the value of FOO to be printed with radix -8 right-flushed in a field of widLl-i 5. 

6.29 

.. . .. 



. FFORMAT NflMBER 

Escaping to LISP 

with O's used for padding on the left. Internal NI L's may be omitted. e.g. the 
commands • I 5 •• T and . I 5 • N IL . T are equivalent. 

Specifies floating-number printing. Like the • I format command. except translates 
with a FLOAT format-list. · 

• N FORMAT NUMBER 

6.5.5 

Toe . I and • F commands specify calls to PRINTNUM with quoted format 
specifications. The . N command translates as ( PRINTNUM FOR.MAT NUMBER), 
Le~ it permits the forinat to be the value of some expression. Note that. unlike 
the . I and . F commands. FORMAT is a separate element in the command list. not 
pan of an atom beginning with . N. 

Escaping to LISP 

There are many reasons for taking control away from pqrNTOUT in the middle of a long printing expres­
sion. Common situations involve temporary changes to system printing parameters (e.g. LINELENGTH). 
conditional printing ( e.g. print F 00 only if FIE is T), or lower-leyel iterative printing within a higher-level 
print speciiication. · 

# FORM Toe escape command. FORM is an arbit.--ary Lisp expression that is evaluated 
within the context established by the PRINTOUT form. i.e .• FORM can assume that 
the primary output file has been set to be the F'ILE argument to PR I NT OUT. Note 
that nothing is done with the vtilue of FORld, any printing desired is accomplished 
by FORM itself. and the value is discarded. 

Note: Although PRINTOUT logically encloses its translation in a RESETFORM (page 9.20) to change the 
primary oucput file to the FILE argument (if non-NIL), in most cases it can acrually pass F'ILE ( or a locally 
bound variable if FILE is a non-trivial expression) to each printing function. Thus. the RE SET FORM is oniy 
generated when the# command is used. or·user-defined commands (below) are used. If many such occur 

· in repeated PRINTOUT forms. it may be more efficient to embed them all in a single RESET FORM which 
.:hanges the primary output file, and then specify FILE=NIL in the PRINTOUT expressions themselves. 

6.5.6 User· Defined Commands 

The collection of commands and options outlined ab0ve is aimed at fulfilling all common pnncmg 
needs. However. cena.in applications might have other. more specialized printing idioms. so a facility is 
provided whereby the user can define new commands. This is done by adding entries co the global list 
PR INTOUTMACROS co define how the new commands are to be translated. 

PRINTOUTMACROS (Variable] 
PR INTOUTMACROS is an association-list whose elements are of the form ( COMM 

FN). Whenever COMM appears in command position in the sequence of PRINTOUT 
commands ( as opposed to an argument position of another command). FN is applied 
to the tail of the command-list ( including the command). 

After~inspecting as much of the r.ail as necessary, the function must return a list 
whose CAR is the translation of the user-defined command and its arguments. and 

6.JO 

() 
(-



0 

0 

0 

0 

INPUT /OUTPUT 

whose CCR is the list of commands still remaining to be translated in the nonnal 
way. 

For example. suppose the user wanted to define a command"?", which will cause its single argument to be 
printed with PRINl only ifit is not HIL. This can be done by entering (? ?TRAN) on PRINTOUTMACROS, 
and defining the function ?TRAN as follows: 

(LAMBDA (COMS) 
(CONS (SUBST (CADR COMS) 'ARG 

'(PROG ((TEMP ARG)) 
(COND (TEMP (PRINl TEMP))))) 

(COOR COMS))) 

Note that ?TRAH does not do any printing itself: it returns a form which, when evaluated in the proper 
context. will perform the desired action. This form should direct all printing to the pFi.mary output file. 

6.S. 7 Special Printing Functions 

Toe paragraph printing commands are translated into calls on the function PRINTPARA, which may also 
be called directly: 

( PRINTPARA !.MARG RMARG LIST P2FLAG PARENFI.AG FILE) [Function] 
Prints LIST on FILE in line-filled paragraph format with its first element beginning a.t. 
the current line position and ending at or before RMARG, and with subsequent line~ 
appearing between LMARG and RMA.RG. If P2FLA.G is non-NIL, prints elements 
using PRIN2, otherwise PRINl. If PARENFLAG is non-NIL. then parentheses will 
be printed around the elements of LIST. 

If LMARG is zero or positive. it is interpreted as an absolute column position. 
If it is negative, then the left margin will be at I LMARG I+ (POSITION). If 
LMARG=NIL. the left margin will be at (POSITION), and the paragraph will 
appear in block format. 

If RMARG is positive, it also is an absolute column position (which may be greater 
than the current { LINELENGTH)). Otherwise, it is interpreted as relative to 
( LINELENGTH }, i.e., the right margin will be at ( LINE LENGTH)+ I RMA.RG j. 
Example: (TAB 10) (PRINTPARA 5 -5 LST T) will PRIN2 the elements of 
LST in a paragraph with the first line beginning at column 10. subsequent lines 
beginning at column 5. and all lines ending at or before ( LINELENGTH )-5. 

Toe current ( LINE LENGTH ) is unaffected by PR I NTP A RA, and upon completion. 
FILE will be positioned immediately after the last character of the last item of LIST; 
PRINTPARA is a no-op if LIST is not a list. 

The right-flushing and centering commands translate as calls to the function FLUSH RIG HT: 

{FLUSHRIGHT POS X MIN P2FLAG CENTERFLA.G FILE) [Function} 
If CENTERF!.AG =NIL. prints X right-flushed against position POS on FII.Z: 
otherwise. centers x between the current line position and POS. Makes sure that it 
spaces over at least MIN spaces before printing by doing a TE RPR I if necessary; 
MIN= NIL is equivalent to MIN= L A positive POS indicates an absolute position. 

6.31 



Readtables 

while a negative POS signifies the position which is I POS I to the right of the 
current line position. POS=0 is interpreted as { LINE LENGTH), the right marroi,n. 

6.6. READT ABLES 

Many Interlisp input functions treat cenain characters in special ways. For example. READ recognizes that 
the right and l_eft parenthesis characters are used to specify list structures. and that the quote character is 
used to delimit text strings. Toe Interlisp input and (to a cenain extent) output routines are table driven 
by readtables. Readtables are objects that specify the syntactic properties of characters for input routines. 
Since the input routines parse character sequences into objects. the readtable in use determines which 
sequences are recognized as literal atoms. strings. list structures, etc. 

fast Interlisp input functions take an optional readtable argument. which specifies the readtable to use 
wheu reading an expression. If NIL is given as the readtable. the .. primary readtable" is used. If T is 
specified. the syste_m terminal readtable is used. Some functions will also accept the atom ORIG (not the 
value' of ORIG) as indicating the .. original,. system readtable. Some output functions also take a readtable 
argument. For example. PRIN2 prints an expression so that it would be read in correctly using a given 
readtable. 

The Interlisp system uses three readtables: T for input/output from terminals. the value of FILERDTBL for 
input/output from files. and the value of EDITRDTBL for input from terminals while in the editor. These 
three tables are initially copies of the ORIG readtable. with changes made to some of them to provide 
read macros (page· 6.36) chat are specific to terminal input or file input. Using the functions described 
below, the user may further change, reset. or copy these tables. Toe user can also create new readubles. 
and either explicitly pass them to input/output functions as arguments. or install them as the primary 
readtable, via SET R EADT AB LE. ~d then not specify a RDTBL argument. Le .• use N r L. 

6.6.l Readtable Functions 

. 'REAOTABLEP RDT.BL) [Function] 
Returns RDT.BL if RDTBL is a real readtable (not T or ORIG), otherwise NIL. 

( GETREADTABLE RDT.BL) [Functionj 
If RDTBL = NI L. returns the primary read tab le. If RDTBL = T. returns the system 
terminal readtable. ff RDT.BL is a real readtable. returns RDTBL. Otherwise. 
generates an ILLEGAL REACT ABLE error. 

(SETREAOTABLE RDTBL FLG) [Functionj 
Sets the primary readrable to R.DTBL. If FLG=T. SETREADTABLE sets the system 
terminal readtable. T. Note chat the user can reset the other system readtables with 
SETQ, e.g., (SETQ FILEROTBL (GETREAOTABLE)). 

Generates an ILLEGAL READTABLE error if RDTBL is not NIL. T. or a 
real readtable. Returns the previous setting · of the primary readtable. so 
SETREAOTABLE is suitable for use with RESETFORM (page 9.20). 

6.32 

(·() 

f-.~n ~~. __ . 

l () 



0 

0 

0 

b 

INPUT/OUTPUT 

( COPYREADT ABLE RDTBL) [Function) 
Returns a copy of RDTBL. RDTBL can be a real readta.ble, NIL, T, or ORIG (in 
which case COPY REACT ABLE returns a copy of the original system readta.ble), 
otherwise COPYREADTABLE generates an ILLEGAL READTABLE error. 

Note that COPYREADTABLE is the only function that creates a readta.ble. 

(RESETREAOTABLE RDTBL FROM) . . [Function] 
Copies (smashes} FROM into RDTBL. FROM and RDTBL can be NIL, T, or a real 
readta.ble. In addition, FROM can be ORIG, meaning use the system's original 
readta.ble. 

6.6.2 Syntax Classes 

A readta.ble is an object that contains information about the "syntax class" of each character. There are 
nine basic syntax classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, STRINGDELIM, 
ESCAPE, BREAKCHAR, SEPRCHAR, and OTHER, each associated with a primitive syntactic propeny. In 
addition. there is an unlimited assortment of user-defined syntax classes. known as "read-macros". Toe 
basic syntax classes are interpreted as follows: 

LEFTPAREN 

RIGHTPAREN 

LEFTBRACKET 

RIGHTBRACKET 

STRINGDELIM 

ESCAPE 

BREAKCHAR 

SEPRCHAR 

OTHER 

(normally left parenthesis} Begins list strucmre. 

(normally right parenthesis} Ends list structure. 

(normally left bracket) Begins list structure. Also matches RIGHTBRACKET 
characters. 

(normally left bracket) Ends list strucmre. Can close an arbitrary numbers of 
LEFTPAREN lists, back to the last LEFTBRACKET. 

'Q 

(normally double quote} Begins and ends text strings. Within the string. all 
characters except for the one(s) with class CSC.!,PE are treated as ordinary, i.e .• 
interpreted as if they were of syntax class o·rHE:i.. To include the string delimiter 
inside a string, prefix it with the ESCAPE character. 

(normally percent sign) Inhibits any special interpretation of the next character, i.e .• 
the next character is interpreted to -be of class OTHER. independent of its normal 
syntax class. 

(None initially) Is a break character. i.e.. delimits atoms, but is otherwise an 
ordinary character. 

(space, carriage renirn. etc.) Delimits atoms. and is otherwise ignored. 

Characters that are not otherwise special belong to the class OTHER. 

Characters of syntax class LEFTPAREN. RIGHTPAREN. LEFTBRACKET. RIGHTBRACKET. and STRINGOELIM 
are all break characters. That is. in addition to their interi,retation as delimiting list or string strucrures. 
tbey also terminate the reading of an atom. Characters of class B REAKCHAR serve onlv co terminate atoms. 
with no other special meaning. In addition. if a break character is the first non-separator encountered by 
RA TOM. it is read as a one-character atom. In order for a break character to be included in an atom. it ~ 

6.33 



Syntax Oasses 

must be preceded by the ESCAPE character. 

Characters of class SEPRCHAR also terminate atoms, but are otherwise completely ignored: they can be 
thought of as logically spaces. As with break characters., they must be preceded by the ESCAPE character 
in order to appear in an atom. 

For example, if S were a break character and • a separator character, the input stream ABC• 0 DE FSGH--SS 
would be read by 6 calls to RATOM returning respectively ABC., DEF, S, GH, S, S. 

Although normally there is only one character in a readtable having ~h of the list- and string-delimiting 
syntax classes (such as LEFTPAREN}, it is perfectly acceptable for any character to have any syntax class, 
and for more than one to have the same class. 

Note that a "syntax class" is an abstraction: there is no object referencing a collection of characters called 
-- a syntax class. Instead. a readtable provides the associalion between a character. and its syntax class, and 

the input/ output routines enforce the abstraction by using readtables to drive the parsing. 

The functions below are used to obtain and set the syntax class of a character in a readtable. CH can 
either be a character code (a number}, or a character (a singlt:-eharacter atom): those Interlisp objects 
that happen to be both. viz •• one-digit numbers., are interpreted as character codes. For example, in 
Interlisp-10, 1 indicates control-A. and 49 indicates the character 1. 

Note: Terminal tables. described in page 6.40, also associate characters with syntax classes. and they can 
also be manipulated with the functions below. 'The set of readtable and terminal table syntax classes are 
disjoint. so there is never any ambiguity about which type of table is· being referred to. -

( GETSYNT AX CH TABLE) [Function] 
Returns the synr.ax class of CH. a character or a character code. with respect to 
TABLE. TABLE can be NIL. T, ORIG. or a real readtable or terminal table. 

CH can also be a syntax class. in which case GET SYNTAX returns a list of the 
character codes in TABLE that have that syntax class. 

( SET SYNTAX CHAR CLASS TABLE) [Function] 
Sers the synr.ax class of CHAR, a character or character code. in TABLE. TABLE can 
be either NIL. T. or a real readtable or terminal table. SET SY NT AX rerums the 
previous syntax class of CHAR. CL.ASS can be any one of the following: 

• Toe name of one of the basic syntax classes. 

• A list. which is interpreted as a read macro (see page 6.36). 

• NIL. T. ORIG. or a real readtable or terminal table. which means to give CHAR 
the syntax class it has in the table indicated by CLASS. For example. (SET SYNTAX 
'%_( 'ORIG TABLE) gives the left parenthesis character in TABLE the same syntax 
class that it has in the original system readtable. · 

• A character code or character. which means to give CHAR the same syntax class 
as the character CHAR in TABLE. For example. ( SETSYNT AX • { '%[ TABLE) 

gives the left brace character the same symax class as the left bracket. 

( SYNT AXP CODE CLASS TABLE) [Function] 
CODE is a character code: TABLE is tUL. T, or a··real readtable or terminal table. 

6.34 

n 
C· 

/~ 

(~.) 



INPUT/OUTPUT 

Rerurns T if CODE has the syntax class c::1.0-SS in TABLE; NIL otherwise. 

CLASS can also be a read-macro type (MACRO, SPLICE. INFIX}, or a read-macro· 
option (FIRST, IMMEDIATE. etc.}, in which case SYNTAXP returns T if the syntax 
class is a read-macro with the specified property . 

. 
Note: SYNTAXP will not accept a character as an argument. only a character code. 

For convenience in use with SYNTAXP, the atom BREAK may be used to refer to all break characters. 
Le .. it is the union of LEFTPAREN. RIGHTPAREN. LEFTBRACKET, RIGHTBRACKET, STRINGOELIM. 
and BREAKCHAR. For purely symmetrical reasons. the atom SEPR corresponds to all separator characters. 
However, since the only separator characters are those that also appear in SEPRCHAR, SEPR ac.d 
SEPRCHAR are equivalent. 

0-- -_ ;l_. Note that GETSYNTAX never returns BREAK or SEPR as a value although SE.1:SYNTAX and SYNTAXP 
- , accept them as arguments. Instead. GETSYNTAX returns one of the disjoint basic syntax classes that 

comprise BREAK. BREAK as an argument to SETSYNTAX is interpreted to mean BREAKCHAR if the 
character is not already of one of the BREAK classes. Thus. if%( is of class LEFTPAREN. then ( SET SYNTAX 
'%{ 'BREAK) doesn't do anything, since %( is already a break ch~acter. but (SETSYNTAX '%( 
'BREAKCHAR) means make %{ be just a break character, and therefore disables the LEFTPAREN 
function of%(. Similarly, if one of the format characters is disabled completely, e.g., by ( SET SYNTAX 
'%( 'OTHER), then (SETSYNTAX" '%( 'BREAK) would make%( be only a break character; it would 
nol restore %( as LEFTPAREN. 

The following functions provide a way of collectively accessing and setting the separator and break 
characters in a readtable: 

( GETSEPR .R.DTBL} [Function} 
Returns a list of separator character codes in RDTBL. Equivalent to ( GET SYNTAX· 
I SEPR RDTBL). 

(GETBRK RDTBL) [Function] 
Returns a list of break character codes in RDTBL. Equivalent to (GETSYNTAX 
I BREAK RDTBI, ). 

()J 
\.....>" ( SET SE PR LST FLG RDT.BL) [Function} 

0 

Sets or removes the separator characters for RDTBL. LST is a list of characters or 
character codes. FLG determines the action of SETS E-P R as follows: If FLG = N IL. 
makes RDTBL have exactly the elements of LST as separators. discarding from 
RDTBL any old separator characters not in LST. If FLG=O, removes from RDTBL 
as separator characters all elements of LST. This provides an "UNSETSEPR... If 
FLG = 1. makes each of the characters in -LST be a separator in RDT:SL. 

If LST= T. the separator characters are reset to be those in the system's readtable 
for tenninals. regardless of th~ value of FLG, i.e .• ( SETSEPR T) is equivalent to 
( SET SE PR ( GET SE PR T) ). If RDTBL is T, then the characters are reset to those 
in the original system table. · 

Returns NIL 

(SETBRK LST FLG RDTBL) [Function] 
Sets the break characters for RDTBL. Similar to -SETSEPR. 

6.35 



··.,-, 

. 
Read-Macros 

As with SETSYNTAX to the BREAK class. if any of the list· or string-delimiting break characters are 
disabled by an appropriate SETBRK (or by making it be a separator character}, itS special action for READ 
will not be restored by simoly making it be a break character again with SETBRK. However, making these 
characters be break characters when they already are will have .no effect. 

Toe action of the ESCAPE character (normally %) is not affected by SETSEPR or SETBRK. It can be 
disabled by setting itS synwc to the class OTHER. and other characters can be used for escape on input 
by assigning them the class ESCAPE. As of this_ writing, however. there is no way to change the output 
escape character; it is "hardwired" as %. That is. on output. characters of special synr.ax that need to 
be preceded by the ESCAPE character will always be preceded by%. independent of the syntax of¼ or 
which. if any characters. have syntax ESCAPE. 

The following function can be used for defeating the action of the ESCAPE character or characters: 

( ESCAPE .FLG &OT.BL) [Function] 

6.6.3 Read-Macros 

If FLG=NIL. makes characters of class ESCAPE behave like characters of class 
OTHER on input. Normal setting is (ESCAPE T). ESCAPE returns the previous 
setting. 

Read-macros are user-de.fined syntax classes that can cause complex operations when certain characters 
are read. Read-macro characters are defined by specifying as a syntax class an expression of the form: 

( T'l'l'E OPTIONz • • · OPTIONN FN} 

where T'l'l'E is one of MACRO. SPLICE. or INFIX. and FN is the name of a function or a lambda 
expression. Whenever READ encounters a read-macro character. it calls the associated function. giving it 
as argumentS th.e input file and readtable being used for that call to READ. Toe interpretation of the value 
remmed depends on the type of read-macro: 

MACRO 

SPLICE 

INFIX 

This is the simplest cype of read macro. The result recumed from the macro is 
treated as the expression to be read. instead of the read-macro character. Often 
the macro reads more input itself. For example. in order to cause -EXPR to be 
read as ( NOT EXP R ). one could define ~ as 

(MACRO (LAMBDA (FL ROTBL) (LIST 'NOT (READ FL RDTBL] 

The result (which should be a list or NIL) is spliced into the input using NCONC. 
For example. if S is defined by: 

(SPLICE {LAMBDA NIL (APPEND FOO})) 

and the value of FOO is { A B C). then when the user inputs ( X S Y). the result 
will be ( X A 8 C Y ) . 

The associated function is called with a third argument. which is a lisi. in TCONC 
fonnat ( page 2.17). of what has been read ac the current level of list nesting. The 
function·s value is taken as a new TCONC list which replaces the old one. For 
example. + could be defined by: 

6.36 

0 

() 
C 

() 
{r~ ... .,. 



0 -·, 

0 

(INFIX (LAMBDA 

INPUT /OlJTPUT 

(FL RDTBL Z) 
(RPLACA (C0R Z) 

Z)) 

(LIST (QUOTE IPLUS) 
{CADR Z) 
{READ FL RDTBL))) 

If an INFIX read-macro character is encountered not in a list. the t.l]ird argument to 
its associated function is NIL. If the function returns NIL. the read-macro character 
is essentially ignored and reading continues. Otherwise, if the function returns a 
TC0NC list of one element. that element is the value of the READ. If it returns a 
TC0NC list of more than one element. the list is the value of the READ. 

The specification for a read-macro character can be augmented to specify various options OPTION1 • • • 
OPTIONN• e.g .. {MACRO FIRST. IMMEDIATE FN). The following three disjoint options specify when 
the read-macro character is to be effective: · 

ALWAYS 

FIRST 

ALONE 

The default The read·macro character is always effective ( except when preceded 
.by the escape character). and is a break character. i.e., a member of (GETSYNTAX 

1 BREAK RDTB.t). 

The character is interpreted as a read-macro character only when it is the first 
character seen after a break or separator character: in all other situations. the 
character is treated as having class OTHER. Toe read-macro character is not a break 
character. For example. the quote character is a FIRST read-macro character. so 
that DON• T is read as the single atom DON'T. rather than as DOtl followed by 
(QUOTE T ). 

The read-macro character is nol a break character. and is interpreted as a read· 
macro character only when the character would have been read as a separate atom 
if it were not a read-macro character. i.e .• when its immediate neighbors are both 
break or separator characters. For example, • is an ALONE read-macro character 
in order to implement the comment pointer feature (see page 6.51). 

Making a FIRST or ALONE read-macro character be a break character (with SETBRK) disables the 
read-macro interpretation. i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS read-macro 
character be a break character is a no-op. · 

The following two disjoint options control whether the read-macro character is to be protected by the 
ESCAPE character on output: 

ESCQU0TE or ESC The default. When printed with PRIN2. the read-macro character will be preceded 
by the output escape character(%). 

N0ESCQU0TE orN0ESC 
Toe read-macro character will be printed without an escape. e.g.. ' is a 
N0ESCQU0TE character.- Unless you are very careful what you are doing. read· 
macro characters in FILERDTBL should never be N0ESCQU0TE. since symbols 
that happen to contain the read-macro character will not read back in correctly. 

The following two disjoint options control when che macro·s function is actually executed: 

6.37 



Read-Macros 

IMMEO IA TE or IMM ED 
The read-macro character is immediately activated. i.e.. the . current line is 
terminated. as if an EOL had been typed. a carriage-return line-feed is printed. and 
the entire line (including the macro character} is passed to the inpu: functioz;. 

IMMEDIATE read-macro characters enable the user to specify a character that will 
take effect immediately, as soon as it is encountered in the input. rather than 
waiting for the line to be terminated. Note that this is not necessarily as soon as 
the character is typed. Characters that cause action as soon as they are typed are 
intemipt characters (see page 9.17). · 

Note that since an IMMEDIATE macro causes any input before it to be sent to the 
reader, characters typed before an IMMEDIATE read-macro character cannot be 
erased by conttol·A or control-Q once the IMMEDIATE character has been typed. 
since they have already passed through the line buffer. However, an INFIX read 
macro can still alter some of what has been typed earlier. via its third argument. 

NONIMMEDIATE or NONIMMED 
The default. The read-macro character is a normal character with respect to the . 
line buffering, and so will not be activated until a carriage-return or matching right 
parenthesis or bracket is seen. 

Making a read-macro character be both ALONE and IMMEDIATE is a contradiction. since ALONE requires 
that the next character be input in order to see if it is a break or separator character. Thus. ALONE 
read-macros are always NON IMMEDIATE. regardless of whether or not IMMEDIATE is specified. 

Read-macro characters can be "nested... For example. if = is defined by 

(MACRO (LAMBDA (FL ROTBL) (EVAL (READ FL ROTBL)))) 

and ! is defined by 

(SPLICE (LAMBDA (FL ROTBL) JREAO FL RDTBL})) 

0 

() 

then if the value of FOO is ( A B C). and ( X = FOO Y) is input. ( X ( A B C) Y) will be returned. If (_ ""'\_ 
( X ! = F 00 Y ) is input. ( X A B C Y ) will be returned. ~ ) 

If a read-macro's function calls READ, and the READ returns NIL. the function cannot distinguish the 
-case where a RIGHTPAREN or RIGHTBRACKET followed the read-macro character. (e.g. ··cA B • )'"). 
from the case where the atom NIL ( or ·• ( ) ") actually appeared. Therefore. in Incerlisp-10. reading a 
single RIGHTPAREN or RIGHTBRACKET via a READ inside of a read-macro function is disallowed. [f t.¼iis 
occurs. the paren/bracket is puc back into the input buffer. and a READ-MACRO CONTEXT ERROR is 
generated. The following two functions are useful for avoiding this error: 

( INREAOMACROP) [Function] 
Returns NIL if currently not under a read-macro function. otherwise the number 
of unmatched left parentheses or brackets. 

( SETREAOMACROFLG nc) _ [Function] 

-· ··;.,·· .. _:·, .. 

Resets the ··read-macro·· flag, i.e .. the internal system flag thac informs READ 
that it is under a read macro function. and causes it to generate a READ-MACRO 
CONTEXT ERROR. if an unmacched ) or ] is encountered. Returns the previous 

6.38 

:· • • : •• •••• ·.~ ....... '6 •• _ .. • •• ••.• , . ·-:~:.~. . .. "'.~-=-. ~ ... . •.. -~·.;._.... .... ...-•. ¥ ··~ •••. ·-.:. ~ ··<'. 

______ ,.._ ........ ~ .... _;, ... ·.-----·~· "4.,.:,i.ari ·~ ------------....:.,,;..,.:.····· •.... , 
·- ·;,;. . 



0 
(.-

(-:-,, 

INPUT/OUTPUT 

value of the flag. Toe main use for this is when debugging read-macro functions: to 
avoid spurious READ-MACRO CONTEXT error messages when typing into breaks. 
the user can put ( SETREADMACROFLG) on BREAKRESETFORMS .(page 9.13). 

The READ-MACRO CONTEXT error does not occur in Interlisp-0; a READ inside of a read-macro when 
the next input character is a RIGHTPAREN or RIGHTBRACKET eats the character and returns NIL, just 
as if the READ had not occurred inside a read-macro. 

If a call to READ from within a read-macro encounters an unmatched RIGHTBRACKET within a list. the 
bracket is simply put back into the buffer to be read (again) at the higher leveL Thus. inputting an 
expression such as ( A B ' { C DJ works correctly. 

( REAOMACROS FLG RDTBL) [Function] 
If FLG=NIL, turns off action of read-macros. If FLG=T, turns them on. Returns 
previous setting. 

In Interlisp-D, turns off/on action of read-macros in readtable ROT.SL. 

The following read macros are standardly defi:ned in Interlisp: 

' (single-quote) 

control-Y 

Currently defined only in T and EDITROTBL. Returns the next expression. wrappedi 
in a call to QUOTE: e.g., 'FOO reads as (QUOTE FOO). Toe macro is defined as 
a FIRST read macro. so that the quote character has no effect in the middle of a 

· symbol. The rnac:ro is also ignored if the quote character is immediately followed 
by a separator character. 

Defined in T and ED ITROTBL. Returns the result of evaluating the next expression. 
For example. if the value of FOO is ( A B ), then { LIST 1 conzrol-YFOO 2) is, 
read as ( 1 ( A B) 2-), but note that no structure is copied: the CAOR of that 
input expression is still EQ to the value of FOO. Control-Y can thus be used to read 
sauctures that ordinarily have no read syntax.. For example. the value returned 
from reading {KEY! contro/-Y{ARRAY 10)) has an array as its second element. 
Control-Y can be thought of as an "un-quote" character. The choice of character 
to perform this function is changeable with SETTERMCHARS (page 17.59). 

Q · (back-quote) Back·quote makes it easier to write programs to construct complex data structure~ 
Back·quote is like quote, except that within the back-quoted expression. forms can 
be evaluated. The general idea is that the back-quoted expression is a "template·· 
containing some constant parts (as with a quoted form} and some parts to be filled 
in by evaluating something. 

c ·-. 
0 

Within the back-quoted expression. the character "." (comma) introduces a form 
to be evaluated. A form preceded by ", @" is· to be spliced in. using APPEND. anc:1 
a farm preceded by ··, • ·• is to be spliced in. using NCONC. Unlike with control-Y. 
however. the evaluation occurs not at the time the form is read. but at the time 
the back-quoted expression is evaluated. That is. the back-quote macro returns an 
expression which. when evaluated. produces. the desired structure. 

For example. if the value of F 00 is ( 1 2 3 4). then the form · ( A • ( CAR F 00) 
,@( COOR FOO) 0 E) evaluates to { A 1 3 4 D E): it is logically equivalent to 
writing (CONS 'A (CONS {CAR FOO) (APPEND (COOR FOO) '(DE)))). 
Back·quoce is particularly useful for writing compiler macros. For example. 

6.39 

------------=-------- _____ __,,__ _________ _ 

I 

I 
\ 
I 
i 

i 



? 

• 

control-W 

I (vertical bar) 

Terminal Tables 

'(CONO 
( ( FIX P , ( CAR X )) 

, (CADR X)) 
(T ,@(COOR X))) 

is equivalent to writing 

(LIST 'CONO 
(LIST {LIST 'FIXP (CAR X)) 

(CAOR X)) 
(CONS 'T {COOR X))) 

Note that comma does not have any special meaning outside of a back".'quote 
. context. · 

For users without a back-quote character on their keyboards, back-quote can also 
be written as I • (vertical-bar, quote). In Interlisp·D, back-quot~ is typed as 
shift-linefeed. 

. Defined in T and EDITRDTBL. Implements the ?= command for on-line help 
regarding the function currently being ''called,. in the typein (see page 9.5). 

Defined in FILEROTBL only. Implements the comment pointer feature for saving 
space by keeping the text of comments outside memory (page 6.51}. 

Defined in T and EDITROTBL. Interlisp-10 only. An IMMEDIATE read macro that 
. deletes the previous expression. In Interlisp-D. control-W is an editing character 

that deletes the previous "word". · 

When followed by • (quote}. is a synonym for back-quote: followed by certain 
other characters. it is used by HPRINT and HREAO to print and read in unusual 
expressions: otherwise is ignored. i.e., treated as a separator character, enabling the 
editor's CHANGECHAR feature (page 6.55). 

6.7 TER.'\1INAL TABLES 

A readtable contains input/output information that is media~independent. For example. the action of 
parentheses is the same regardless of the device from which the input is being performed. A terminal 
table is an object that contains information that pertains co terminal input/output operations only, such 
as the character to type to delete the last character or to delete the last line. In addition. terminal tables 
contain such information as how line-buffering is to be performed. · how control characters are to be 
echoed/printed. whether lower case input is to be convened co upper case, etc. 

Using the functions below. the user may change. reset. or copy terminal tables. or create a new terminal 
table and install it as the primary terminal table via SETTERMTABLE. However. unlike readtables. terminal 
tables cannot be passed as arguments co inpur/outpuc functions. 

6.40 

-··- -- --

() 

----) ( / 

\.. 

0 



Oc_.,: 
INPUT /OUTPUT 

6.7.1 Terminal Table FUDctions 

(TERMTABLEP TTBL) [Function] 
Returns TTBL, if TTBL is a real tenninal table, NIL otherwise. 

(GETTERMTABLE TTBL) [Function] 
If TTBL = NIL. returns the primary (i.e., current) terminal table. If TTBL is a 
real terminal table, return TTBL. Otherwise, generates an ILLEGAL TERMINAL 
TAB LE error. 

(SETTERMTABLE TT.BL) [Function] 
Sets the primary terminal table to be TTBL. Returns the previ(?US TTBL. Generates 
an ILLEGAL TERMINAL TABLE error if TTBL is not a real terminal table. a: (COPYTERMTABLE TTBL) . [Function] 
Returns a copy of TTBL. TTBL can be a real terminal table, NIL, or ORIG. in 
which case it returns a copy of the original system terminal table. Note that 
COPYTERMTABLE is the only function that creates a terminal table. 

.. ' -o·~ 

b 

(RESETTERMTABLE TT.BL FROM) [Function] 
Copies (smashes) FROM into TTBL. FROM and TTBL can be NIL or a real terminal 

·table. In addition. FROM can be ORIG. meaning to use the system's original 
terminal table. 

6.7.2 Terminal Syntax Classes 

A terminal table associates with each character a single "terminal syntax class'', one of CHARDELETE. 
LINEDELETE. WORDDELETE (lnterlisp-D only), RETYPE. CTRLV, EOL. and NONE. Unlike readtable 
classes, only one character in a panicular temiinal table can belong to each of the classes ( except for the 
default class NONE). When a new character is assigned one of these syntax classes by SETSYNTAX. the 
previous character is disabled (i.e., reassigned the syntax class NONE). and the value of SETSYNT AX is the 
code for the previous character of that class, if any, otherwise NIL. 

The terminal syntax classes are interpreted as follows: 

CHAROELETE or OELETECHAR 
{Initially control-A under Tenex. del under Tops20. BackSpace in Interlisp-D) 
Typing this character deletes the previous character typed. Repeated use of this 
character deletes successive characters back to the beginning of the line. 

LINEDELETE or DELrTELINE 

WOROOELETE 

RETYPE 

(Initially control·Q in Interlisp-10 under Tenex and in lnterlisp-D. control-U under 
Tops20) Typing this character deletes the whole line: ic cannot be used repeatedly. 

(Interlisp·D only: initially control·W} Typin.g this character deletes the previous 
··word", i.e .• sequence of non-separator characters. 

(Initially control-R) Causes the line to be retyped as interlisp sees it (useful when 
repeated deletions make it difficult to see what remains). 

6.41 



Terminal Control Functions 

CTRLV or CNTRLV (Initially control·V) When followed by A, B, · •• Z. inputs the corresponding control 
character control-A, concrol-B, · · · control·Z. 1bis allows interrupt characters to be 
input without causing an interrupt; 

EOL On input from a terminal. the EOL character signals to the line buffering routine 
to pass the input back to the calling function. It also is used to terminate inputs to 
REAOLINE (page 8.30). In general., whenever the phrase carriage-return linefeed 
is used. what is meant is the character with terminal syntax class E O L. 

NONE The terminal syntax class of all other characters. 

GETSYNTAX, SETSYNTAX, and SYNTAXP all work on terminal tables as well as readtables (see page 
6.34). When given NIL as a TABLE argument, GETSYNTAX and SYNTAXP use the primary readtable or 

n 

primary terminal table depending on which table contains the indicated CLASS argumenL For example. 
{SfiETSYNTAX CH 'BREAK) refe1rs Into the primary freadta~le;, and (SETSYNTAX CH 'CHARDELETE) LJ 

... ,,... re ers to the primary terminal tab e. the absence o such m.1.ormation, all three functions default to the C 
primary readtable; e.g .• ( SET SYNTAX ' { '%() refers to the primary read table. If given incompatible 
CL.ASS and table arguments. all three functions generate errors. For example. ( SETSYNTAX CH 'BREAK 
TTBL ), where TTBL is a terminal table; genmites an ILLEGAL REACT ABLE error, and (GETSYNTAX 
'CHA:lDELETE RDTBL) generates an ILLEGAL TERMINAL TABLE error. 

6.7.3 Terminal Control Functions 

( E CHOCONTROL CHAR MODE TTBL) . . [Function] 
Used to indicate how control characters are to be echoed or printed. CHAR is 
a character or character code. MODE may be one of the atoms IGNORE. REAL. 
SIMULATE, or INDICATE.9 which specify how the control character should be 
printed: 

IGNORE 

REAL 

·SIMULATE 

INDICATE 

CHAR is never printed. 

CHAR itself is printed: i.e.. the raw control character is 
sent to the terminal. Some terminals. particularly displays. 
respond to certain control characters in interesting ways. 

Output of CHAR is simulated. For example. control-I (tab) 
may be simulated by printing spaces. Toe simulation is 
machine-specific and beyond the control of the user. 

CHAR is printed as 1" followed by the corresponding al· 
phabetic character. 

The value of ECHOCONTROL is the previous outpuc·mode for CHA&. If MODE= NIL. 
ECHOCONTROL returns the current output mode without changing iL 

Note that although the name of this function_ suggests echoing only, it affects tlf/ 

output of the control character. both echoing of input and printing qf · output. 

ciu PAR ROW is an obsolete synonym of I ND I CATE. 

6.42 

·, 

....,.__.__,__ ..... __ ____,:,_.--...,._~-:,;..,;.:.·.::.~...,;,...;..~. - __ ,.._ ~:. ·-- - .. ·-·,; - ---.- .. ,._ ...... :... ....... ~ . 

,0 
V 

cO 



-O~_-= 

o--

o~ 

0 

~"Pl:JT /OUTPUT 

The two cannot be specified independently, which can lead to some trickiness in 
DELETECONTROL messages (below). 

In Interlisp-10, echoing information can be specified only for control characters 
(although all echoing can be disabied using ECHOMODC:, below). Therefore: if Cl?AP. 
is an alphabetic character (or code), it refers to the corresponding control character. 
e.g .. (ECHOCONTROL 'Z 'IHDICATE) makes control-2 echo as 1'2. All other 
values of CHAE. generate ILLEGAt ARG errors. In Interlisp-D and lnterlisp-V AX. 
it is possible to specify echoing information for all characters, using the function 
EC HOC HAR. 

(ECHO CHAR CXARCODE MODE TTBL} [Function] 
(Interlisp-0, Interlisp-VAX only) Like ECHOCONTROL. but CXA.RCODE must be a 
character code. and can specify any character-no coercions are performed. The 
IND !CATE mop.e for "meta .. characte~ i:.e •• characters whose codes are in the 
range 200Q through 377Q, causes the character to be printed following a#. For 
example, meta-A would print as #A, meta-control-Bas #1'B. 

· CHAR.CODE can also be a list of characters. in which case ECHOCHAR is applied to 
each of them· with arguments MODE and TTBL. 

( ECHOMODE FLG TTBL) [Function} 
If FLG = T. Wms echoing for terminal table Tl5L on. If FLG =NIL. wms echoing 
off'. Returns the previous setting. 

(GETECHOMODE TTBL) [Function] 
Returns the current echo mode for TTBL. 

( DEL:ETECOHTROL TYPE MESSAGE TTBL) [Function] 
Specifies the output protocol when a CHARDELETE or LINEDELETE is typed. In 
the case of character deletion. Interlisp-10 is initially set up for hardcopy terminals: 
it echos the characters being deleted,· preceding the first by a \ and following the 
last by a \, so that it is easy to see exactly what was deleted. viz.. the characters 
between the \'s. Interlisp-D and Interlisp-VAX are initially set up to physically 
erase the deleted characters from the display, backing up over them. Toe various 
values of TYPE specify different phases of the deletion. as follows: 

1STCHOEL 

NTHCHDEL 

POSTCHDEL 

EMPiYCHDEL 

ECHO 

MESSAGE is the message printed the first time CHARDELETE 
is typed. Iniri~ly '"\" in Interlisp· 10. 

MESSAGE is the message printed on subsequent CHARDELETE"s 
(without intervening characters). Initially .... in Interlisp-10. 

MESSAGE is the message printed when input is resumed 
following a sequence of one or more CHARDELETE 's. 
Initially "\" in Interlisp· 10. 

MESSAGE is the message printed when a CHAROELEiE is 
typed and there are no characters in the buffer. [nitially 
·• ## =~" in Incerlisp-10. 

Toe characters deleted by CHARDELETE are echoed. .\!ESSACZ 

6.43 



Terminal Control Functions 

NOECHO 

LINEDELETE 

is ignored. 

Toe characters deleted by CHAROELETE are not echoed 
MESSAGE is ignored. 

MESSAGE is the message printed when LINEDELETE charac­
ter is typed. Initially .. ,#er". 

Note: In Interlisp-10. the LINEDELETE, lSTCHDEL. NTHCHOEL. POSTCHDEL. 
and EMPTYCHOEt. messages must be 4 characters or fewer in length. 

OELETECONTROL returns the previous message as a string. If MESSAGE=NIL. 
the value returned is the previous message without changing it. For ECHO and 
NOE CHO. the value of DELETE CONTROL is the previous echo mode, i.e., ECHO or 
NOECHO. . 

(GETOELETECONTROL TYPE TTBL) {Function] 
Rerurns tb.e current OELETECONTROL mode for TYPE in TTBZ:.. 

If the user's terminal is a display, DELETECONTROL and ECHOCONTROL can be used to make it really 
delete the last character by performing the following: 

(ECHOCONTROL 8 'REAL) 
8 is the code for cono-ol·H. which is backspace; we want the terminal to really 
backspace when we send 1"H. 

(DELETECONTROL 'NOECHO) 
Do not ~ho the deleted characters. 

(OELETECONTROL 'lSTCHDEL "1"H 1"H") 
(OELETECONTROL 'NTHCHOEL "1"H 1"H") 

Erase each character by backspacing over it. printing a space. then backspacing 
again to put the carriage in the right place. 

0 

(; 
(_ -

The following functions manipulate the RAISE mode, which determines whether lower case characters n 
are converted to upper case when input from the terminal. (There currently is no .. raise" mode for input G · 

. , from files.) · · 

( RAISE FI.G TTBL) [Function] 
Sers the RAISE mode for terminal table TTBL. [f Ft.G=NIL. all characters are 
passed as typed. If FLG = T. input is echoed as typed. but lowercase letters are 
converted to upper case. [f FI..G = O. input is converted to upper case before it is 
echoed. Returns the previous setting. 10 

10In [ncerlisp-10, both (RAISE) and ·c RAISE T) execute Tenex/Tops20 JSYS calls corresponding to the 
Executive command NO RAISE. while {RAISE O) executes the JSYS calls corresponding co the Executive 
command RAISE. Thus with (RAISE T). the conversion to uppercase is performed by !ncerlisp. while 
with (RAISE O) the conversion is performed at the operating system level. i.e .. before lnterlisp- LO e\·en 
sees the characters. Tne initial setting of RA I SE in Interlisp-LO is determined by the terminal mode at 
the time the user first staru up the system. When a SYSOUT is started. the RAISE mode is restored to 
whate'l(er it was prior co the SYSOUT. 

6.44 
ell \;;...;,.. 



INPUT/OUTPUT 

(GETRAISE TT.BL) [Function] 
Returns the current RAISE mode for TT.BL. 

6.7.4 Line-Buffering 

Characters typed at the terminal are stored in two buffers before they are passed to an input function. All 
characters typed in are put into the low-level .. system buffer", which allows -type-ahead. When an input 
function is entered. characters are transferred to the "line buffer" until a character with terminal syntaX 
class EOL appears (or, for calls from READ, when the count of unbalanced open parentheses reaches 0).11 

Until this time, the user can delete characters one at a time from the line buffer by typing the current 
CHARDELETE character, or delete the entire line buffer back to the last carriage-return by typing the 
current LINEDELETE. 

a·:: Note that thjs_line editing is not performed by READ or RATOM, but by Interlisp, ie., it does not matter 
(nor is it necessarily known) which function will ultimately process the characters. only that they are still 
in the Interlisp line buffer. However, the function that is requesting input at the tim;; the buffering starts 
does determine whether parentheses counting is observed. For example, if a program performs ( PROGN 
(RATOM) (READ}} and the user types in .. A (8 C O)", the user must type in the carriage-return 
following the right parenthesis before any action is taken. because the line buffering is happening under 
RAT OM. If the program had performed ( PROGN (READ) (READ)). the line-buffering would be under 
READ, so that the right parenthesis would terminate line buffering, and no terminating carriage-return 

_ would be required. 

Once a carriage-return has been typed. the entire line is "available" even if not all of it is processed by the 
function initiating the request for input. If any characters are "left over", they are returned immediately 
on the next request for input. For example. (LIST { RAT OM) ( READC) ( RAT OM) ) when the input is 
"A B Cf'" returns the three-element list ( A % B) and leaves the carriage-return in the buffer. 

If a carriage-return is typed when the input under READ is not 0 complete" (the parentheses are not 
balanced or a string is in progress}. line buffering continues. but the lines completed so far are not 
available for editing with CHARDELETE or LINEDELETE. 

0 The function CONTROL is available to defeat line-buffering: 

0 

( CONTROL MODE TT.BL) {Function] 
If MODE= T. eliminates Interlisp ·s notmal line-buffering for the terminal table TTBI.. 
If MODE= NIL. restores line-buffering (normal). When operating with a terminal 
table in which ( CONTROL T) has been performed. characters are returned to the 
calling function without line-buffering as described below. 

CONTROL returns its previous setting. 

(GETCONTROL TTBL) [Function] 
Returns the current control mode for TTBI.. 

The function that initiates the request for input determines how the line is treated when { CONTROL T) 
is in effect: 

4 
11 PEE KC is an exception: it returns the character immediately when its second argument is NIL. 

6.45 



READ 

RATOM 

READC or ~EEKC 

Line-Buffering 

If the expression being typed is a list. the effect is the same as though done with 
( CONTROL NIL). Le •• line-buffering continues until a carriage-return or matching 
parentheses. If the expression being typed is not a list. it is returned as soon 
as a break or separator character is encountered. e.g .. (READ} when the input 
is ··AaC<space)" immediately returns ABC. CHARDELETE and LINEDELETE are 
available on those characters still in the buffer. Thus. if a program is performing 
several reads under {CONTROL T), and the user types .. NOW IS THE TIME .. 
followed by conuol-Q. only TIME is deleted. since the rest of the line has already 
been transmitted to READ and processed. 

An exception to the above occurs when the break or separator character is an 
opening parenthesis. bracket or double-quote. since returning at this point would 
leave the line buffer in a .. funny" state. Thus if the input to (READ) is ··ABC(". 
the ABC is not read until a carriage-return or matching parentheses is encountered. 
In this case the user could LINE0ELETE the entire line. since all of the characters 
are still in the buffer. 

Characters are returned as soon as a break or separator character is encountered. 
Until then. LINEDELETE and CHARDELETE may be used as with READ. For 
example. ( RA TOM) followed by "ABC<control-AXspace>" returns AB. ( RAT OM) 
followed by " ( <control-A>" returns ( and types ## indicating that control-A was 
attempted with nothing in the buffer, since the ( is a break character and would 
therefore already have been read. 

The character is returned immediately; no line editing is possible. In particular •. 
(READC} is perfectly happy to return the CHARDELETE or LINEDELETE 
characters. or the ESCAPE character(%}. 

The system buffer and line buff er can be directly manipulated using the following functions. 

{ CLEARtlUF FII.E FLG) [Function! 

(SYSBUF FLG) 

Oears the input buffer for FILE. If FILE is T and FLG is T. the contenrs of Interlisp's 
system buffer and line buffer are saved {and can be obtained via SYSBUF and 
LINBUF described below). 

When control-D or concrol-E is typed. or any of the interrupt characters that 
require terminal interaction is typed (control-H. control-P. or concrol-S). Interlisp 
automatically performs { CLEARBUF T T). For control-P. control-S. and. when 
the break is exited normally, concrol-H, Interlisp restores the buffer after the 
interaction. 

The action of (CLEA RB U F T). i.e .• clearing of typeahead. is also available .iS the 
RUBOUT interrupt character. initially assigned to the del key in [nterlisp-D and in 
Interlisp-10 under Tenex. concrol-2 under Tops20. Note that this interrupt clears 
both buffers at the time it is typed. whereas the action of the CHARDELETE and 
LINEDELETE character occur at the time they are read. 

[Functionj 
lf FLG=T. returns the concencs of the system buffer (as a string) that was saved ac 
the last (CLEARBUF T T). If FLG=NIL. clears this internal burrer. 

6.46 

() 
C 

() 
Q., . 

' -



Q,-._ 
\. ,,· 

o. 

0 

INPUT /OUTPUT 

( LINBUF FLG) [Function] 
S_ame as SYSBUF for the line buffer. 

If both the system buffer and Interlisp's line buffer are empty, the internal buffers associated with LINBUF 
and SYSBUF are not changed by a (CLEARBUF T T). 

(BKSYSBUF X FLG RDTBL) [Function] 

(BKLINBUF STR) 

BKSYSBUF sets the syStem buffer to the PRINl·name of x. The effect is the same 
as though the user typed x. Some implementations have a limit on the length of 
x. in which case characters in x beyond the limit are ignored. Returns x. 

If FLG is T, then the PRilJ2-name of xis used. computed with respect to the· 
readtable ROT.BI.. · · 

Note that if the user is typing at the same time as the BKSYSBUF is being perfo:rmed, 
the relative order of the cype-in and the characters of xis unpredictable. 

Compatibility note: Some implementations of B~SYSBUF (Interlisp-IO) use a 
"syStem" buffer. from which keyboard interrupts are also processed. In this 
case, BKSYSBUF of an interrupt character actually invokes the interrupt at some 
(asynchronous} time after the BKSYSBUF is initiated. [n other implementations 
(Interlisp·D), the characters are not processed for interrupts, and it is possible to 
BKSYSBUF charac~ers which would otherwise be impossible to type. 

~ [Function} 
STR is a string. BKLINBUF sets Interlisp's line buffer to STR. Some implementations 
have a limit on the length of sm, in which case characters in STR beyond the 
limit are ignored. Returns ~TR. 

BKLINBUF, BKSYSBUF. LINBUF, and SYSBUF provide a way of .. undoing" a CLEARBUF. Thus to 
"peo..k" at various-characters in the buffer. one could perform ( CLEARBUF T T }, examine the buffers. 
via LINBUF and SYSBUF, and then put them back. · 

The more common use of these functions js in saving and restoring typeahead when a program requires 
some unanticipated (from the user's standpoint) input. The function RESETBUFS provides a convenient 
way of simply clearing the input _buffer, performing an interaction with the user, and then restoring the 
input buffer. 

( RESEiBUF S FORM1 FORM2 • • • FORMN) [NLambda NoSpread Function! 
Clears any typeahead (ringing the terminal's bell if there was. indeed. typeahead)~ 
evaluates FORM1, FORM2, · · FORMN, then restores the typeahead. Returns the. 
value of FORMN. Compiles open. 

6.8 PREITYPRINT 

The standard way of printing out function definitions (on the terminal or into files) is to use P RETTYPRINT. 

( PRETTYPRINT FNS PRETTYDEFLG -) [Function! 
FNS is a list of functions. If FNS is atomic. its value is used). ·The definitions of 

6.47 



Prettyprint 

the functions are printed in a pretty· format on the primary output file using the 
primary readtable. For example, if FACTORIAL were defined by typing 

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND ((ZEROP N) 1) 
(T (!TIMES N (FACTORIAL (SUBl NJ 

( PRETTYPRINT ' (FACTORIAL)) would print out 

(FACTORIAL 
[LAMBDA (N) 

(COND 
((ZEROP N) 

1) 
(T (!TIMES N (FACTORIAL (SUBl NJ) 

. PRETTYDEFLG is T when called from PRETTYDEF (and hence MAKEFILE}. Among 
other actions taken when this argument is true. PRETTYPRINT indicates its progress 
in writing the current output file: whenever it starts a new function. it prints on 
the terminal the name of that function if more than 30 seconds (real time} have 
elapsed since the last time it printed the name of a function. 

PRETTYPRHJT operates correctly on functions that are BROKEN. BROKEN-IN, ADVISED. or have been 
compiled with their definitions saved on their property lists: it prints the original. pristine definition. but 
does not change the current state of the function. If a function is not defined but is known to be on 
one of the file:; noticed by the file package. PRETTYPRINT loads in the definition (using LOADFNS) and 
prints it (except when called from PRETTYDEF). If PRETTYPRINT is given an atom which is not the 
name of a function. but has a value. it prettyprints the value. Otherwise. PRETTYPRINT attempts spelling 
correction. If all fails. PRETTYPRINT returns (FN NOT PRINTABLE). 

[NLambda NoSpread Function] 
For prettyprinting functions to the terminal. PP calls PRETTYPRINT with the 

,primary output file set to T and the primary read table set to T. The primary 
output file and primary readtable are restored after printing. 

(PP FOO) is equivalent to (PRETTYPRINT '(FOO}); (PP FOO FIE) is 
equivalent to ( PRETTYPRINT ' ( FOO FIE)). 

As described above, when PRETTYPRINT, and hence PP. is called with the name of a function that is 
not defined. but whose definition is on a file known to the file package. the definition is automatically 
read in and then prenyprinted.. However. if the user does not intend on editing or running the definition. 
but simply wantS to see the definition. the function PF described below can be used co simply copy the 
corresponding characters from the file to the terminal. This results in a savings in both space and time. 
since it is not necessary to allocate storage to actually read in the definition. and it is not necessary to 
re-prettyprint ic (since the function is already in prettyprinc format on the file). 

{ PF FN FROMFrr..ES TOF!t.E) [Nlambda NoSpread Function) 
Copies the definition of FN found on each of the files in FROMFILES to TOFILE. 
If TOFlLE =NIL. defaults co T. If FROMF!t.ES =NIL. defaultS [0 (WHERE IS F'N 
NIL T) (see page 11.10}.-The cypicil usage of PF is simply co type .. PF FN'·. 

When priming co the terminal. PF performs several transformations on the characters in the file that 
comprise the definition for F'N: ( 1) font information (page 6.55) is stripped out (except in Imerlisp-0. 

6.48 

0 
c~-



0 

0 

0 

0 

INPUT/OUTPUT 

whose display suppons multiple fonts): (2) occurrences of the CHANGE CHAR (page 6.55) are not printed: 
(3) since functions typically tend to be printed to a file with a larger linelength than when printing to 
a terminal the number of leading spaces on each line is cut in half: 12 and (4) comments are elided. if 
••COMMENT••FLG is non-NIL (see page 6.50). 

While the function PRETTYPRINT prints entire function definitions. the function PRINTDEF can be used 
to print parts of functions. or arbitrary Interlisp strUctures: 

( PRINTDEF EXPR LEFT DEF T.AlLFLG FNSLST FILE) [Function] 
Prints the expression EXPR in a pretty form.at on FILE using the primary readtable. 
LEFT is the left hand margin (LINELENGTH determines the right hand margin.)13 

DEF=T means EXPR is a function definition. or a piece of one. If DEF=NIL. 
no special action is taken for LAMBDA'S. PROG's. COND's. comments, CLISP, ete. 
DEF is NIL when PRETTYDEF calls PRETTYPRINT to print variables and property 
lists, and when PRINTDEF is called from the editor via ti"l.e command PPV. 

T.AlLFLG = T means EXPR is interpreted as a tail of a list. to be printed without 
parentheses. 

FNSLST is for use with the Font package (page 6.55). PRINTDEF prints occurrences 
of any function in the list FNSLST in a different font. for emphasis. MAKEFILE 

· passes as FNSLST the list of all functions on the file being made . 
• 

6.8.1 Comment Feature 

A facility for annotating Interlisp functions is provided in PRETTYPRIHT. Any expression beginning with 
the atom • is interpreted as a comment and printed in the right margin. Example: 

(FACTORIAL 
(LAMBDA (N) 

{COND 
{(ZEROP N) 

1) 
{T 

(ITIMES N (FACTORIAL {SUB! NJ) 

(• COMPUTES N!) 

(• 0!=1) 

(• RECURSIVE DEFINITION: 
N!=N•N-1!) 

These comments actually form a part of the function definition. Accordingly, • is defined as an nlambda 
nospread function that returns its argument. similar t0 QUOTE. When running an interpreted function. * is 
entered the same as any other Interlisp function. Therefore. comments should only be placed where they 
will not harm the computation, Le .• where a quoted expression could be placed. For example. writing 

(ITIMES N (FACTORIAL (SUB! N)) (• RECURSIVE DEFINITION)) 

12Unless PFDEFAULT is T. PFDEFAULT is initially tlIL. 
13PRINTDEF initially performs (TAB LEFT T). which means to space to position LEFT. unless already 
beyond this position, in which case it does nothing. 

6.49 



Comment Feature 

in the above function would caUSe'an error when IT IMES attempted to multiply N, N-11, and RECURSIVE. 

For compilation purposes, • is defined as a macro which compiles into no instructions {unless the comment 
has been placed where it has been used for value, in which case the compiler prints an appropriate error 
message and compiles • as QUOTE). Thus, the compiled form of a function with comments does not use 
the extra atom and list structure storage required by the comments in the source (interpreted) code. This 
is the way the comment fearure is intended to be used. 

A comment of the form ( • E x) causes x to be evaluated at prectyprint ti.me, as well as printed as a 
comment in the usual way. For example, { • E { RADIX 8)) as a comment in a function containing 
octal numbers can be used to change the radix to produce more readable printout. 

The comment character• is stored in the variable COMMENTF.LG. The user can set it to some other value, 
e.g. " ; ., , and use this to indicate comments. 

.:OMMENTFLG [Variable] 
If CAR of an expression is EQ to COMMENTFLG, the expression is treated as a 
comment by PRETTYPRINT. COMMENTFLG is initialized to •. Note that whatever 
atom is chosen for COMMENTFLG should also have an appropriate function definition 
and compiler macro, for example, by copying those of •. 

Comments are designed mainly for documenting listings. Therefore, when prettyprinting to the terminal, 
comments are suppressed and printed as the string ••COMMENT••. The value of ••COMMENT••FLG 
determines the action. 

"••COMMENT**FLG [Variable] 
. If ••COMMENT••FLG is NIL. comments are printed. Otherwise, the value of 

••COMMENT••FLG is printed. Initially " ••COMMENT•• ". 

The functions PP• and PF* are provided to easily print functions. including their comments. 

( pp• X) [NLambda NoSpread Function] 
PP• operates exactly like PP except it first sets ••COMMENT••FLG to NIL. so 
comments are printed in full 

( PF• FN FROMFILES TOFILE) fNLambda NoSpread Function) 
PF• operates exactly like PF except it first sets --cOMMENr••F LG to NIL. so 
comments are printed in full 

( COMMENT 1 L - ) [Function] 
Prints the comment r.. COMMENT 1 is a separate function 14 to permit the user co 
write prettyprint macros (page 6.54) that use the regular comment primer. For 

. example. to cause comments to be printed at a larger than normal linelength.. one 
could put an ena-y for • on PRETTYPRINTMACROS: 

(• LAMBDA (X) (RESETFORM (LINELENGTH 100) {COMMENTl X))) 

1-icOMMENTl is an entry to the PRETTYPRINT block. However. it is called internally bv PRETTYPRINT 
so that advising or redefining it will not affect the action of PRETTYPRINT. COMMENTl should not be 
called when not under a PRINTDEF. · · 

6.50 

n 
(· . 



0 

( .o 

INPUT /OUTPUT 

This macro resets the line length. prints the comment, and then reStores the line 
length. 

COMMENT 1 expects to be called from within the environment established by 
PRINTDEF, so ordinarily the user should call it only from within prettyprint macros. 

6.8.2 Comment Pointers 

For a well-commented collection of programs, the list strucmre, atom, and pname storage required to 
represent the comments in core can be significant. If the comments already appear on a file and are 
not needed for editing, a significant savings in storage can be achieved by simply leaving the text of the 
comment on the file when the file is loaded. and instead retaining in core only a poimer to the comment. 
This feature has been implemented by defining • as a read-macro in FILEROTBL which. instea~ of 
reading in the entire text of the comment. constructs an expression containing (1) the name of the file in 
which the text of the comment is contained. (2) the address of the first character of the comment. (3) the 
number of characters in the comment. and ( 4) a flag indicating whether the comment appeared at the right 
hand margin or centered on the page. For cutput purposes.• is defined on PRETTYPRINTMACROS (page 
6.54) so that it prints the comments represented by such pointers by simply copying the corresponding 
characters from one file to another. or to the terminal. Normal comments are processed the same as 
before. and can be intermixed freely with comment pointers. 

The comment pointer feature is controlled by the value of NORMALCOMMENTSFLG. 

NORMALCOMMENTSFLG [Variable] 
The comment pointer feature is enabled by setting NORMALCOMMENTSFLG to NIL. 
NORMALCOMMENTSFLG is initially T. 

NORMALCOMMENTSFLG can be changed as often as desired. Thus. some files can be 
loaded normally. and others with their comments convened to comment pointers. 

For convenience of editing selected comments. an edit macro, GET•. is included. which loads in the 
text of the corresponding comment. The editor's PP• command. in contrast. prints the comment without 
reading it by simply copying the corresponding characters to the terminal. GET• is defined in terms of 
GETCOMMEHT: 

(GETCOMMENT X DESTFL -) [Function] 
If x is a comment pointer. replaces x with the actual text of the comment. which 
it reads from its file. Returns x in all cases. If DESTFL is non-NIL. it is the 
name of an open file. to which GETCOMMENT copies the comment: in this case. 
x remains a comment pointer. but it has been changed to point to the new file 
(unless NORMALGOMMENTSfLG = DONTUPDATE). 

( PRINTCOMMENT X) [Function] 
Defined as the prettyprint macro for •: copies the comment to the primary output. 
file by using GETCOMMENT. 

( READ COMMENT FL ROT.BL LST) [Function] 
Defined as the read macro for. in F ILERDTBL: if ~~ORMALCOMMENT SFLG is NIL. 

6.51 



Converting Comments to. Lower Case 

it constructs a comment pointer.15 

Note that a certain amount of care is required in using the comment pointer feature. Since the text of the 
comment resides on the file pointed to by the comment pointer, that file must remain in existence as long 
as the comment is needed. GETC0MMENT helps out by changing the comment pointer to always point 
at the most recent file that the comment lives on. However, if the user has been performing repeated 
MAKEFILE's (page 11.6) in which differing functions have changed at each invocation of MAKEFILE, it is 
possible for the comment pointers in memory to be pointing at several versions of the same file, since a 
comment pointer is only updated when the function it lives in is preuyprinted, not when the function has 
been copied verbatim to the new file. This can be a problem for file systems, such as Tenex and Tops20. 
that have a built-in limit on the number of versions of a given file that will be made before old versions 
are expunged. In such a case. the user should set the version retention count of any directories involved 
to be infinite. GETC0MMENT prints an error message if the file that the comment pointer points at has 
·disappeared. 

Similarly,· one should be cognizant of comment pointers in SYSOUTs. and be sure to retain any files thus 
pointed to. · 

When using comment pointers., the user .should also not set PRETTYFLG (page G.54) to NIL or call 
MAKEF Il.E with option FAST. since this will prevent functions from being prenyprinted. and hence not 
get the text of t..i.e comment copied into the new file. 

If the user changes the value of COMMENTFLG but still wishes to use the comment pointer feamre. 
the new C0MMENTFLG should be given the same read-macro definition in FILERDTBL as • has. and r 

the same .entry be put on PRETTYPRINTMACROS. For example. if C0MMENTFLG is reset to be .. ; ... 
then (SETSYNTAX '; '• FILER0TBL) should be performed, and (; • PRINTC0MMENT) added to 
PRETTYPRINTMACROS. . 

6~8.3- Converting Comments to Lower Case 

This section is for users operating on terminals without lower case. e.g. model 33 teletypes. who 
1 • ,evertheless would like their comments to be converted to lower case for more readable line-printer 

_ .iStings. If the second atom in a comment is %%. the text of the comment is converted to lower case so 
,·- that it looks like English instead of LISP. Note that comments are converted only when they are actually 

written to a file by PRETTYPRINT. 

The algorithm for conversion to lower case is the following: If the first character in an atom is f', do not 
change the atom (but remove the 1'). If the first character is%, convert the atom to lower case.L 6 If the 
atom (minus any trailing punctuation marks) is an Interlisp word,L7 do not change iL Otherwise. convert 
the atom to lower case. Conversion only affects the upper case alphabet. i.e .• atoms already convened 
to lower case are not changed if the comment is convened again. When convening, the first character 
in the comment and the first character following each period are left capitalized. After conversion. the 
comment is physically modified to be the lower case text minus the %% flag. so that conversion is thus 

L5Unless it believes the expression beginning with • is not actually a commenL e.g .. if the next atom is 
·•. ·• or E. -
i-;user must type %% as % is the escape character. 
17i.e .. is a bound or free variable for the function containing the comment. or ill.as a top level value. or is 
a defined function. or has a non·N IL property list. . 

6.52 

n 
(· / 

c-0 



0 
\. .. -· INPUf /OUTPUT 

only performed once (unless the user edits the comment inserting additional upper case text and another 
%% flag). 

LCASELST 

UCASELST 

[Variable] 
Words on LCASELST will always be converted to lower case. LCASELST is 
initialized to contain words which are Interlisp functions but also appear frequently 
in comments as English words (ANO, EVERY, GET, GO, LAST, LENGTH, LIST, etc.). 
Therefore. if one wished to type a comment including the lisp fuction GO. it would 
be necessary to type 'l"GO in order that it might be left in upper case. 

[Variable} 
Words on UCASELST (that do not appear on LCASELST) will be left in upper 
case. UCASELST is initialized to NIL. 

O· ABBREVLST ~ariable] 
ABBREVLST is used to distinguish between abbreviations and words that end in 
periods. Normally, words that end in periods and occur more than halfway t6 the 
right marflll cause carriage-rerurns. Furthermore, during conversion to lowercase. 
words ending in periods, except for those on ABBREVLST, cause the first character 
in the next word to be capitalized. ABBREVLST is initialized to the upper and 
lower case forms of ETC., I.E., and E.G •• 

o· 

0 

6.8.4 Special Prettyprint Controls 

PRETTYTABFLG 

#RPARS 

FIRSTCOL 

PRETTYLCOM 

#CAREFULCOLUMNS 

[Variable] 
In order to save space on files, tabs are used instead of spaces for the inital spaces 
on each line. assuming that each tab corresponds to 8 spaces. This results in a 
reduction of file size by about 30%. Tabs are not used if PRETTYTABFLG is set to 
NIL (initially T). ,o 

[VariableJ 
Controls the number of right parentheses necessary for square bracketing to 
occur. If #RPARS=tlIL. no brackets are used. #RPARS is initialized to 4. 

[Variable} 
The starting column for comments. Initial setting is 48. Comments run between 
FIRSTCOL and LIHELEHGTH. If a word in a comment ends with a "." and 
is not on the list ABBREVLSi, and the position is greater than halfway between 
FIRSTCOL and LINELENGTH, the next word in the comment begins on a new 
line. Also. if a list is encountered in a comment. and the position is greater than 
halfway, the list begins on a new line. 

[Variable I 
If a comment is bigger (using COUNT) than PRETTYLCOM in size. it is printed 
starting at column 10. instead of F IRSTCOL. PRETTYLCOM is initialized to· 14 
(arrived at empirically). Comments are also printed starting at column 10 if their 
second element is also a •. i.e .• comments of the fom1 ( • • -- ) . 

. [Variabie] 
In the interests of efficiency. PRETTYPRHff approximates the number of characters 

6.53 



'-·" 

(WIDEPAPER FLG} 

PRETTYFLG 

Special Prettyprint Controls 

in each atom, rather than calling NCHARS, when computing how much will fit on 
a line. This procedure works satisfactorily in most cases. However, users with 
unusually long atoms in their programs, e.g .• such as produced by CLISPIFY, may 
occasionlly encounter some glitches in the output produced by PRETTY PRINT. Toe 
value of #CAREFULCOLUMNS tells PRETTYPRINT how many columns (counting 
from the right hand margin) in which to actually compute NCHARS instead of 
approximating. Setting #CAREFULCOLUMNS to 20 or 30 will eliminate the glitches, 
although it will slow down PRETTYPRINT slightly. #CAREFULCOLUMNS is initially 
a. 

[Function} 
(WIDE PAPER T) sets FILELINELENGTH to 120, FIRST COL to 80. and PRETTYLCOM 
to 28. These are useful settings for· prettyprinting files to be listed on wide paper. 
(WIOEPAPER) restores these parameters to their initial values. The value of 
WIDE PAPER is its previous setting. 

· [Variable] 
If PRETTYFLG is NIL. PRINTOEF uses PRIN2 instead of prettyprinting. This is 
useful for producing a fast symbolic dump (see FAST option of MAKEFILE. page 
11.6}. Note that the file loads the same as if it were prettyprinted. PRETTYFLG is 
initially set to T. PRETTYFLG should not be set to NIL if comment pointers (page 
6.51} are being used. 

CLISPIFYPRETTYFLG [Variable] 
Used to inform PRETTYPRINT to call CL ISP I FY on selected function definitions 
before printing them (see page 16.20). 

PRETTYPRINTMACROS [Variable] 
An association-list that enables the user to control the formatting of selected 
expressions. CAR of each expression being PRETTY?RINTed is looked up on 
PRETTYPRINTMACROS, and if found. CDR of the corresponding· entry is applied 
to the expression. If the result of this application is NIL. PRETTYPRINT ignores 
the expression: i.e.. it prints nothing. assuming that the prettyprintmacro has 
done any desired printing. If the result of applying the prettyprint :nacre is 
non-NIL. the result is prenyprinted in the normal fashion. This gives the user 
the option of computing some other expression to be pretcyprinted in its place. 
PRETTYPRINTMACROS is initially NIL. 

Note: .. prenyprinted in the normal fashion" includes processing pretcyprint macros. 
unless the prettyprint macro returns a structure E Q to the one it was handed. in 
which case the potential recursion is broken. 

PRETTYPRINTYPEMACROS (Variable} 
A list of elements of the form ( TYPENAME • FN). For types other than lists 
and atoms. the type name of each datum to be prettyprinted is looked up on 
PRETTYPRINTYPEMACROS. and if found. the corresponding function is applied 
to the datum about to be printed. instead of simply printing it with PRINZ. 
PRETTYPRINTYPEMACROS is initially NIL. 

PRETTYEQUIVLST [Variable! 
An association-list that tells PRETTY PR INT to treat a CAR-of·fonn the same 
as some other CAR-of-form. For example. if (QLAMBDA . LAMBDA) appe~ 

6.54 

() 
( .. 

. (; 
( .. ' .:-



0 
'-···· 

CHANGE CHAR 

INPUT/OUTPUT 

on PRETTYEQUIVLST, then expressions beginning with QLAMBDA are pret·. 
typrinted the same as LAMBDAS. PRETTYEQUIVLST is initially NIL. Currently, 
PRETTYEQUIVLST only allows (Le., supports in an interesting way) equivalences 
to forms that PRETTYPRINT internally handles. Equivalence to foims for which 
the user has specified a prettyprint macro should be made by adding further entries 
toPRETTYPRINTMACROS 

. [Variable] 
If non-NIL, and PRETTYPRINT is pr-..nting to a file or display tenninal, PRETT·YPRIH.T 
prints CHANGECHAR in the right hand margin while printing those expressions 
marked by the editor as having been changed (see page 17.22). CHANGECHAR is 
initially 1-

Q,- 6.8.S Font Package 

PRETTYPRINT contains a facility for printing elements of various classes (user functions. system functions. 
clisp words. comments. etc.) in different fonts to emphasize (or deemphasize} their imponance. and in 
general to provide for more pleasing printout when printing to a file. Of course, in order to be useful. 
this facility requires that the user has access to a printer which supports multiple fonts, such as an XGP. 

Prettyprint signals font changes by inserting a user-defined escape sequence, e.g. 1'F1"C meaning change 
to font 3, 1-F-tA change back to font l, etc. It is convenient if these sequences can consist of control 
characters. because by making these characters. be separator characters in FILERDTBL, a file with font 
changes in it can also be loaded back in. Otherwise, the user would have to dump two files, one for 
listing, and one for loading. 

Currently, the user can specify fonts for each of the following eight classes. each different. or the same 
for several classes. 

LAMBDAFONT 

0 CLISPFONT 

COMMENT Fern 

USERFONT 

The font for printing the name of the function being prettyprinted, before tb.e 
actual definition (usually a large font). 

If CLISPFLG is on, the font for printing any clisp words, i.e. atoms with propercy 
CLISPWORD. 

The font for everything inside of a comment. 

Toe font for the name of any function in the file. or any member of the list 
F.ONTFNS. 

0 

SYSTEMFONT 

CHANGE FONT 

PRETTYCOMFOHT 

OEFAULTFONT 

The font for any other (defined) function. 

The font for anything in an expression marked by the editor as having been 
changed. 

Toe font used in printing the operand of a file package command. 

The font for everything else. or any of the above classes for which a font is not 
specified. 

Note: the output primitives PRINT. PRINl. etc .. currently do not know about variable width fonts. so 

6.55 



Font Package 

the user may have to experiment to find a compatible (pleasing) set of fonts. Note also that the user does 
not set· LAMBDAFONT, CLISPFONT, et al. but indicates what font to be used by including an appropriate 
entry in FONTPROFILE. FONTSET will then set LAMBOAFONT, CLISPFONT, et al. to a data strucrure 
that contains the necessary information for perfomring the font change. · 

FONTPROFILE [Variable] 
A list of elementS of the form ( FONTCLASS NIL FONT#). ts where FONTCLA.SS 
is one of the eight font classes and FONT# is the font number for that class. it is 
assumed that the user has some way of communicating to the printing device the 
correspondence between font numbers and fonts. For each fontclass. the escape 
sequence consistS of FONTESCAPECHAR followed by the character code for the 
font number, i.e. for font number 1. -tA, for font number 2. -tB, etc. 

If FONT# is NIL for any fontc~ the DEFAULTFONT is used. Note that the 
OEFAULTFONT must be specified or an error is generated. 

The operation of the font package is affected by a large number of parameters. e.g. FILELINELENGTH. 
LISTF ILESTR. etc. plus the various fontnames themselves. To facilitate switching back and forth between 
various configurations. the font package allows the user to set the various parameters to their desired 
values. and then use the.function FONTNAME to package up and save this configuration. Subsequently, 
the user invokes this configuration by performing ( FONTSET NAME). 

Note that the user may also want to reset FILELINELENGTH (page 23.14), PRETTYLCOM (page 6.53), 
and FIRSTCOL (page 6.53) as a pan of various font configurations. . 

(FONTNAME NAME) 

(FONTSET NAME) 

[Function} 
Performs some processing on FONTPROFILE. and then collectS names and values · 
of variables on FONTDEFSVARS, and saves them on FONTOEFS. 

[Function] 
Restores font c.infiguration for NAME. Generates an error if NAME not previously 
defined. 

CQ 

t:QNTDEFSVARS . {Variable] ('\ 
The list of variables to be packaged by a FONTNAME. -Initially FONTCHANGEFLG. f:Z.--~. ) 

FONTESCAPECHAR 

FONTCHANGEFLG 

FILELINELENGTKCOMMENTLINELENGT~FIRSTCO~PRETTYLCO~LISTFILESTR~' 
and fONTPROF ILE. 

[Variable] 
Toe character or string used to signal the start of a font escape sequence. 

[Variable) 
If T. enables fonts, if NIL. disables fontS. Le. no font changes are performed when 
prettyprinting. 

L8The NIL is a place marker. FONTNAME replaces (RPLACA) CADR when the font configuration is 
defined. 

6.56 

. (\ 
l·'\) 



0 

0 

0. 

LISTFILESTR 

INPUT/OUTPUT 

[Variable] 
Passed to the operating system by LISTFILES (page 11.9). Can be used to specify 
subcommands to the LIST command, e.g. to establish correspondance between 
font number and font name. 

COMMENTLINELENGTH [Variable] 
Since comments are usually printed in a smaller font, COMMENTLINELENGTH is 
provided to •offset the fact that Interlisp does not know about font widths. When 
FONTCHANGEFLG=T, CAR of COMMENTLitJELENGTH is the linelengtb. used to 
print short comments. Le. those printed in the right margin. and CD R is the 
linelength used when printing full width comments. 

( CHANGE FONT FONTCLASS) [Function} 

FONTDEFS 

6.9 ASA'USER 

Prints the font escape sequence to change to FONTCLASS. Note that FONTCL.ASS 
is not a font name, so one should use (CHANGEFONT LAMB-DAFONT}, not 
( CHANGE FONT 'LAMBDA FONT). For use in PRETTYPRINTMACROS. 

[Variable] 
Toe dictionary of font configurations. FONTDEFS is a list of elements of form 
(NAME • PARAMETER-PAZRS). To save a configuration on a file after performing 
a FON-TNAME to define it, the user could either save the entire valu.e of FONTDEFS • 

. or simply use an ALISTS file package command (page 11.23) to dump out just the 
one configuration. · 

DWIM, the compiler, the editor, and many other system packages all use ASKUSER. an extremely general 
user interaction package, for their interactions with the u~r at the terminal. ASK USER takes as its principal 
argument KEYI..ST which is used to drive the interaction. KEYLST specifies what the user can cype at 
any given point. how ASKUSER should respond to the various inputs, what value should be returned by 
ASKUSER. and is also used to present the user at any given point with a list of the possible responses. 
ASKUSER also takes other arguments which permit specifying a wait time. a default value. a message 
to be printed on encry. a flag indicating whether or not typeahead is to be permitted. a flag indicating 
whether the ~tion is to be stored on the history list (page 8.1), a default set of options. and an 
(optional) input file/string. 

6.9.1 Startup Protocol 

Interlisp permits and encourages the user to typeahead: in actual practice, the user frequently does this. 
This presents a problem for ASKUSER. When ASKUSER is entered and there has been typeahead. was 
the input intended for AS KUSER. or was the interaction unanticipated. and the user simply typing ahead 
to some other program. e.g. the programmer's assistant? Even where there was no typeahead. i.e .. the 
user starts typing afier the call to AS KUSER. the question remains of whether the user had time to see 
the message from AS KUSER and react to it. or simply began typing ahead at an inauspicious moment. 
Thus. what is needed is an interlock mechanism which warns the user to stop typing, gives him a chance 
to respond to the warning, and then allows him to begin typing to ASKUSER. 

6.Si 



1·~. 

Startup Protocol 

Therefore, when ASKUSER is first entered. and the interaction is to take place with a terminal and 
typeahead to ASKUSER is not permitted. the following protaeol is observed: 

(1) If there is typeahead. ASKUSER clears and saves the input buffer.; and rings the bell to warn the user 
to stop typing. The buffers will be restored when ASKUSER completes operation and returns. 

(2) If MESS, the message to be printed on entry. is not NIL (the typical case). ASKUSER then prints MESS · 
if it is a string, otherwise CAR of MESS, if MESS is a list. 

(3) After printing MESS or CAR of MESS, ASKUSER wairs until the output has actually been printed on the 
terminal to make sure that the user has actually had a chance to see the output. This also give the user 
a chance to react. ASKUSER then checks to see if anything additional has been typed in the intervening 
period since it first warned the user in (1). If something has been typed, ASKUSER clears it out and 
again rings the bell. This latter material. i.e., that typed between the entry to ASKUSER and this point. 
;s discarded and will not be restored since it is not certain whether the user simply -reacted quickly to 
the first warning (bell) and this input is intended for AS KUSER. or whether the user was in the process 
of typing ahead when the call to AS KUSER occurred, and did not stop typing at the -first warning. and 
therefore this input is a continuation of input intended for another program. 

Anything typed after (3) is considered to be intended for ASKUSER, i.e •• once the user sees MESS or CAR 
of MESS, he is free to respond. For example. UNDO (page 8.11) calls ASKUSER when the number 
of undosaves are exceeded for an event with MESS= ( LIST NTJMBER-UNDOSAVES "undosaves, 
cont i nu e s av i n g " ) • Thus. the user can type a response as soon as NTJMBER-UNDOSAVES is typed. 

{4) ASKUSER then types the rest of MESS, if any, 

(5) Then ASKUSER goes into a wait loop until something is typed. If WAIT, the wait time. is not NIL. 
and nothing is typed in WAJ'T seconds. ASKUSER will type " .•• •• and treat the elements of DEFAULT, 

the default value, as a list of characters. and begin processing them exactly as though they had been 
typed. If the user does type anything within WAJ'T seconds, he can then wait as long as he likes. i.e., once 
something has been typed. ASKUSER will not use the default value specified in DEFAULT. 

If the user wanrs to consider his response for more than WAIT seconds. and does not want ASKUSER to 
default. he can type a carnage return or a space, which are ignored if they are not specified as acceptable 

<~- inpucs by KEYLST (see below) and they are the first thing typed. 

If the calling program knows that the user is expecting an interaction with ASKUSER. e.g. another 
interaction preceded this one. it can specify in the call to ASKUSER that typeahead is pennitted. In this 
case. ASKUSER simply notes whether there is any cypeahead.19 then prinrs 1-.IEss and goes into a wait 
loop as descrtbed above. 

(6) Finally. if the interaction is not with the terminal i.e .• the optional input file/string is specified. 
ASKUSER simply prints MESS and begins reading from the file/string. · • 

191n chis case. if che typeahead cums out co contain unacceptable input. ASKUSER will assume that che 
typeahead was not intended for ASKUSER. and will restore the typeahead when it completes operation 
and returns. 

6.58 

.... . .. 

(.CJ 
jF / 

r:-() 
\._-



<J (_.-

Q ..__.• 

0 

INPUT/OUTPUT 

6.9.2 Operation 

All input operations are executed with the terminal table in the variable ASKUSERTTBL.. in which (1) 
( CONTROL T) has been executed. so that ASKUSER can interact with the user after eaeh character 
is typed; and (2) ( ECHOMOOE NIL) has been executed. so that ASKUSER can decide after it reads a 
character whether or not the character should be echoed. and with what, e.g. unacceptable inputs are 
never echoed. 

As each character is typed, it is matched against KEYLST, and appropriate echoing and/ or prompting is 
performed. If the user types an unacceptable character, ASKUSER simply rings the bell and allows him 
to try again. 

At any point. the user can type ? and receive a list of acceptable -responses at that point (generated from 
KEY.LST), or type a control-A, control-Q, control-X, or <deI>, which causes ASKUSER. to reinitialize, and 
stan over . 

Note that ?, Control-A, Control-Q, and Control-X will not work if they are acceptable inputs. i.e .• they 
match one of the keys on KEYLST. <del> will not work if it is an interrupt character, in which case it is 
not seen by ASKUSER. 

When an acceptable sequence is completed. ASKUSER returns the indicated value. 

6.9.3· Format of KEYLST 

KEYLST is a list of elements of the form ( KEY PROMPTSTRING • OPTIONS). where KEY is an atom 
or a string ( equivalent), PP..OMPTSTP.mG is an atom or a string, and OPTIONS a list · of options in 
property list format. Toe following options are recognized and explained below: KEYLST, CONFIRMFLG. 
PROMPTCONFIRMFLG.NOCASEFLG.RETURN.EXPLAINSTRING,NOECHOFLG,KEYSTRING,PROMPTON, 
COMPLETE ON, AUTOCOMPLETEFLG. If an option is specified in OPTIONS. the value of the option is the 
next element. Otherwise, if the option is specified in OPTIONSLST (the seventh argument to ASKUSER). 
its value is the next element on OPTIONSLST. Thus. OPTIONSLST can be used to provide default options 
for an entire KEYLST. rather than having to include the option at each leveL If an option does not appear 
on either OPTIONS or OPTIONSLST. itS value is NIL. 

. . 
For convenience, an entry on KEYI.ST of the form (KEY • ATOM/STRING). can be used as an 
abbreviation for (KEY ATOM/STP.ING CONFIRMFLG T). and an entry of just the form KEY.- i.e .. a 
non-list. as an abbreviation for (KEY NIL CONFIRMFLG T). 

As each character is read. it is matched against the currently active keys • .A character matches a key if it 
is the same character as that in the corresponding position in the key, or. if the character is an alphabetic 
character. if the characters are the same without regard for upper/lower case differences, i.e. ··A" matches 
"a" ~d vice versa.20 In other words. if two characters have already been input and matched. the third 
character is matched with each active key by comparing it with the third character of that key. If the 
character matches with one or more of the keys. the entries on KE;(LST corresponding co the remaining 
keys are discarded. If the character does not match with any of the keys. the character is not echoed. and 
a bell is rung instead. · 

20 Unless the ~IOCASEFLG option (page 6.62) is T. 

6.59 



Format of KEYLST 

When a key is complete. PROMPTSTRING is printed (NIL is equivalent to .... , the empty string, i.e .• nothing 
will be printed). Then. if the value of the C0NFIRMFLG option is T, ASKUSER waits for confumation of 
the key by acr2·1 or space. Otherwise. the key does not require confirmation. 

Then. if the value of the KEYLST option is not NIL. its value becomes the new ICE:YLST. and the process 
recurses. Otherwise. the key is a "leaf." i.e •• it terminates a particular path through the original. top-level 
KEYI.ST, and AS KUSER returns the result of packing all the keys that have been matched and completed 
along the way (unless the RETURN option is used to specify some other value. as described below). 

For example, the following ICE:YLST is the default KEYE.ST, Le .. is used when ASKUSER is called with 
KEYI.ST= NIL: {( Y "es c,." ) { N "o c,." ) ) 

This ICEYI.ST specifies that if(as soon as) the user types Y (or y). ASKUSER'echoes with Y, prompts with 
_ "escr'', and retumS Y as its value. Similarly. if the user types N. ASKUSER echoes the N, prompts with 

,::, c"", and recurns N. If the user types ? • ASKUSER prints: 

Yes 
No 

to indicate his possible responses. All other inputs are unacceptable, and ASKUSER will ring the bell and 
not echo or print anything. 

Here is a more complicated example, the KZYLST used for the compiler questions (page 12.1): 

((ST "ore and redefine" KEYLST {"~ (F. "orget exprs")) 
(S "ame as last time") 
(F • ~File only") 
(T • "o terminal") 
1 
2 
(Y .· "es") 
(N • "o")) 

·· When ASKUSER is called with this KEYLST, and the user types an S, two keys are marched: ST and S . 
.. the user can then type a T. which marches only the ST key, or confirm the S key by typing ac:" or space. 
If the user confirms the S key. ASKUSER prompts with .. ame as last time", and returns S as its 
value. (Nace that the confirming character is not included in the value.) If the user types a T, ASKUSER 
prompts with "ore and redefine··. and makes ( "" ( F . "o rget exp rs")) be the new KEYI.ST. 
and waits for more input. The user can then type an F. or confirm the .... (which essentially starts out 
with all of its characters matched). If he confirms the "", ASKUSER returns ST as its value the result of 
packing ST and ..... Cf he types F. ASKUSER prompts with ''orget exp rs". and waits for confirmation 
again. If the user then confirms. ASKUSER returns STF. the result of packing ST and F. 

As mentioned earlier. at any point the user- can type a ? and be prompted with the possible responses. 
For example, if the user types S and then ? . ASKUSER will type: 

STore and redefine Forget exprs 
STore and redefine 
Same as last time 

zic.- is used throughout the discussion to denote carriage return. 

6.60 

·n 
(, .. . 

. (~) 
( •.;>,· ... 



0 

INPUT /OUTPUT 

6.9.4 Completing a Key 

The decision about when a key is complete is more complicated than simply whether or not all of its 
characters have been matched. In the example above. all of the characters in the S key are matehed as 
soon as the S has been typed., but until the next character is typed. ASKUSER does not know whether the 
S completes the S key. or is simply the first character in the ST key. Therefore. a key is considered to 
be complete when: 

(1) All of its characters have been matehed and it is the only key left, i.e .. there are no other keys for 
which this key is a substring; or 

(2) All of its characters have been matched and a con.firming character is typed; or 

(3) All of its characters have been matched., and the value of the C0NFIRMFLG OP.tion is NIL. and the 
value of the KEYLST option is not NIL. and ·the next character matches one of the keys on the value of 
the KEY LST option; or · 

(4) There is o4lly one key left and a confuming character is typed. Note that if the value of C0NFIRMFLG 
is T. the key still has to be confirmed, regardless of whether or not it is complete. For example. if the 
first entry in the above example were instead 

(ST "ore and _redefine" C0NFIRMFLG T KEYLST ("" (F . "orget exprs")) 

and the user wanted to specify the STF path. he would have to type ST. then confirm before typing F. 
even though the ST completed the ST key by the rule. in case (1). However. he would be prompted with 
"ore and redefine" as soon as he typed the T. and completed the ST key. 

Case (2) says that confirmation can be used to complete a key in the case where it is a substring of another 
key, even where the value ofC0NFIRMFLG is NIL. In this case, the comirming character doubles as both 
an indicator that the key is complete. and also to confirm it. if necessary. This situation corresponds to 
typing S er in the above example. 

Case (3) says that if there were another entry whose key was STX in the above example, so that after 
the user typed ST. two keys. ST and STX, were still active. then typing F would complete the ST key, 
because F matches the (F • "orget exprs") entry on the value of the KEYLST option of the ST 
entry. In this case ... ore and redefine" would be printed before the F was echoed. 

Fmally, case (4) says that the user can use confumation to specify completion when only one key is left, 
even when all of its characters have not been matched. For example. if the first key in the above example 
were STORE. the user could type ST and then confirm, and ORE would be echoed., followed by whatever 
prompting was specified. In this case, the confirming character also confirms the key if necessary. so that 
no further action is required. even when the value of C0NFI~MFLG is T. 

Case ( 4) permits the user not to have to type every character in a key when the key is the only one left. 
Even when there are several active keys, the user can type type S (the ESC key. or on some terminals. 
the key labelled ALT) to specify the next N>O common characters among the currently active keys. The 
effect is exactly the same as though these characters had been typed. lf there are no common characters 
in the active keys at th.'.il poinl i.e. N=O. the S is treated .as an incorrect input. and the bell is rung. 
For example. if KZYLST is (CLISPFLG CLISPIFYPACKFLG CLISPIFTRANFLG), and the user types 
C followed by S. ASKUSER will supply the L, I, S. and P. Toe user C.lil then type F followed byc:r or 
space to complete and confum CLISPFLG. as per case (4). or type I. followed by S. and ASKUSER will 
supply the F. ete. Note that the characters supplied do not have to correspond to a terminal segment of 

6.61 



,- .... --. 

Options 

any of the keys. Note also that the S does not confirm the key, although it may complete it in the case 
that there is only one key active. 

If the user types a confi.miing character when several keys are left. the next N>O common characters are 
still supplied. the same as with S. However, ASKUSER assumes the intent was to complete a key. i.e., 
case (4) is being invoked. Therefore, after supplying the next N characters. the bell is .rung to indicate 
that the operation was not completed. In other words, typing a con.finning character has the same effect 
as typing an S in that the next N common characters are supplied. Then, if there is only one key left. 
the key is complete ( case 4) and confirmation is not required. If the ~ey is not the only key left. the bell 
is rung. 

6.9.5 Options 

/---· 
' ) ,__ . 

C 

KEYLST When a key is complete, if the value of the KEYLST option is not NIL. this value (· __ (_) 
becomes the new KEYL.ST and the process recurses. Oth~e. the key terminates 
a path through the original. top-level ICEYI.ST, and ASKUSER rerums the indicated 

C0NFIRMFLG 

PR0MPTC0NFIRMFLG 

N0CASEFLG 

RETURN 

value. 

If T, the key must be confumed with either a'"' or a space. If the value of 
C0NFIRMFLG is a list. the confirming character may be any member of the list. 

If T, whenever confirmation is required, the· user is prompted with the string .. 
[confirm] ... · · 

If T. says do not perform case independent matching on alphabetic characters. If 
NIL. do perform case independent matching, i.e. .. A" matches with "a" and vice 
versa. 

If non-NIL. EVAL of the value of the RETURN option is returned as the value 
of ASKUSER. Note that different RETURN options can be specified for different 
keys. The variable ANSWER is bound in ASKUSER to the list of keys that have 
been matched. In other words, RETURN { PACK ANSWER) would be equivalent r\ 
to what ASKUSER normally does. (j/ ) 

EXPLAINSTRING If the value of the EXPLAIPJSTRING option is non-NIL. its value is printed when 
the user types a?. rather than KEY+ PROMPTSTIUNG. EXPLAitJSTRING enables 
more elaborate explanations in response to a ? than what the user sees when he 
is prompted as a result of simply completing keys. See example below. 

N0ECH0FLG . If non-NIL. characters that are matched (or automatically supplied as a result of 
typing S or confirming) are not echoed. nor. is the confirming character. if any. 
The value of N0ECH0FLG is automatically NIL when ASKUSER is reading from a 
file or string. Toe decision about whether or not to echo a character that marches 
several keys is determined by the value of the N0ECH0FLG option for the first key. 

Example: one of the entries on the KEYLST used by A0DT0FILES? (page 11.8) is: 

(] "Nowhereff" N0ECH0FLG T 
EXPLAINSTRING "] - nowhere, item is marked as a dummyc~") 

" 
6.62 

' -. ) 
l ( __ / 



INPUT /OUTPUT · 

When the user types ], ASKUSER just prints .. Nowherec"", i.e., the ] is not echoed. If the user types ? , 
the explanation corresponding to this entry will be: 

J - nowhere. item is marked as a dummy 

KEYSTRIHG 

PROMPTON 

COMPLETE ON 

If non·N IL. characters that are matched are echoed as though the value of 
KEY STRING were used in place of the key. KEYSTRING is also used for computing 
the value rerumed. Toe main reason for this feature is to enable echoing in 
lowercase. 

If non·N IL. PROMPTSTRING is printed only when the key is confumed with a 
member of the value of PROMPTON. See example below. 

When a con.fuming character is typed, the N characters that are automatically 
supplied, as specified in case (4), are echoed only when the key is confirmed with 
a member of the value of PROMPTON. 

The PROMPTON and COMPLETEON options enable the user to construct a KEYLST which will cause 
ASKUSER to emulate the action of the TENEX exec. The prot0eol followed by the 1ENEX exec is 
that the user can type as many characters as he likes in specifying a command. The coml;Iland can be 
completed with ac" or space, in which case no further output is forthcoming, or with a S. in which case 
the rest of the characters in the command are echoed. followed by some prompting information. The 
following KEYLST would handle the TENEX COPY and CONNECT comands: 

((COPY" (FILE LIST)" 
• PROMPTON($) 

COMPLETEON {$) 
CONF IRMFLG { S)) 

(CONNECT ff {TO DIRECTORY) ff 

PROMPTON($) 
COMPLETEON ($) 
CONFIRMFLG (S))) 

~~ AUTOCOMPLETEFLG 

MAC ROCHA RS 

EXPLAINOELIMITER 

If the value of the AUTOCOMPLETEFLG option is not NIL. ASKUSER will 
automatically supply unambiguous characters whenever it can. i.e.. AS KUSER acts 
as though $ were typed after each character ( except that it does not ring the bell 
if there are no unambiguous characters}. 

value is a list of dotted pairs of fonn ( CHARACTER • FORM). When CH.A.RACTER 
is typed. and it does not match any of the current keys. FORM is evaluated and 
nothing else happens, i.e. the matching process stays where it is. For example. ? 
could have been implemented using this option. Essentially MACROCHARS provides 
a read macro facility while inside of ASKUSER (since ASKUSER does REAOC's. read 
macros defined via the readt.able are never invoked). 

value is what is printed to delimit explanation in response to ? . Initially "er" but 
can be reset. e.g. to ·• • .. . for more linear output. 

6.63 



·~·--·· 

.. 

Special Keys 

6.9.6 Special Keys 

& can be used as a key to match with any single character. provided the character does not match with 
some other key at that level. For the purposes of echoing and returning a value. the effect is the same as 
though the character that were matched actually appeared as the key. 

S (esc) can be used as a key to match with the result of a single call to READ. For example. if the first 
entry in the TENEX KEYLST above were: 

{COPY" (FILE LIST)" 
PROMPTON (S) 
COMPLETEON (S) 
CONFIRMFLG {S) 
KEYLST ((S NIL RETURN ANSWER))) 

then if the user typed COP FQOc", { COPY FOO) would be returned as the value of ASKUSER. One 
advantage of using s. rather than having the calling program perform the READ, is that the call to READ 
from inside ASKUSER is ERRORSET protected. so that the t;Ser can back out of this pacn and reinidalize 
ASKUSER. e;g. to change from a COPY command to a CONNECT command. simply by typing control·E. 

SS can be used as a key to match with the result of a single call to R£ADLINE. 

A list can be used as a key, in which case the list/form is evaluated and its value "matches" the key. 
This fearu.re is provided priir.arily as an escape hatch for including arbitrary input operations as pan of 
an ASKUSER _sequence. For example. the effect of SS could be achieved simply by using (READLINE T) 
as a key.22 

.... can. be used as a key. Since .it has no characters. all of its characters are automatically matched. 

.... essentially functions as a place marker. For example. one of the entries on the KEYLST used by 
AOOTOFILES? is: . 
("" "File/list: " 

EXPLAINSTRING "a file name or name of a function list" 
KEYLST ($)) 

Thus. if the user types a character that does not match any of the other keys on the KEYI.ST, then the 
character completes the .... key, by virrue of case (4). since the character will match with the $ in the 
inner KEYL.ST. ASKUSER then prints .. File/1 ist: •• before echoing the character. then calls READ. 
The character will be read as pan of the READ. Toe value returned by AS KUSER will be the value of the 
READ. 

( ASKUS ER WAIT DEFAUJ..T MESS KEYI.ST TYPE.A.BEAD LISPXPRNTFLG OPTIONSLST FII.E) 
[Function) 

WAIT is either NIL or a number (of seconds). DEFAULT is a single character or 
a sequence (list) of characters to be used as the default inputs for the case when 
WAIT is not NIL and more than WAIT seconds elapse without any input. In this 

22For S. SS. or a list. if the last character read by the input operation is a separator. the character is 
treated as a confirming character for the key. However. if the last character is a break character. it will 
be matched against the next key. 

6.64 

( ) . C- ----



.. - -" 
(_ ) 
~-

. --....... r . ·. ) 
..... -· 

(MAKEKEYLST 

·INPUT/OUTPUT 

. case, the character(s) from DEFAULT are processed exactly as though they had been 
typed. except that ASKUSER first types " ••• ". 

MESS is the initial message to be printed by ASKUSER, if any, and can be a string, 
or a list. In the latter case, each element of the list is printed. separated by spaces, 
and terminated with a " ? ". KEYL.ST and OPTIONSLST were described earlier. 
TYPEABE.A.D is T if the user is permitted to typeahead a response to ASKUSER. NIL 
means any typeahead should be cleared and saved. LISPXPRNTFLG determines 
whether or not the interaction is to be recorded on the history list. FILE can be 
either NIL (in which case it is set to T}, the name of a file, or a string. 23 All input 
operations take place from F?LE until an unacceptable input is encountered. i.e .. 
one that does not conform to the protocol defined by KEYLST. At that point. FII..E 
is set to T, DEFAULT is set to N IL. the input buffer is cleared, and a bell is rung. 
Unacceptable inputs are not echoed. 

Toe value of ASKUSER is the result of packing all the keys that were matched. 
unless the RETURN option is specified (page 6.62). 

LST DEFAULTK.EY LCASEFLG - ) [Function] 
LST is a list of atoms or str.uigs. MAKEKEYLST returns an ASKUSER KEYI..ST which 
will permit the user to specify one of the elements on LST by either cyping enough 
characters to make the choice unambiguous, or else typing a number between l 

· and N, where N is the length of LST. 

· For example. if ASKUSER is called with KEYLST = .(MAKEKEYLST '(C0NNECT 
SUPPORT COMPILE)}, then the user can type C-0-M, s. C-0-M, 1, 2, or .3 to 
indicate one of the three choices. 

If LCASEFLG = T. then echoing of upper case elements will be in lower case (but 
the value returned will still be one of the elements of !.ST). If DEFAULTKEY is 
non-NIL, it will be the last key on the KEYL.ST. Otherwise, a key which permics 
the user to indicate "'No • none of the above" choices. in which case the value 
returned by ASKUSER will be NIL . 

:.? 3If F'ILE is a string. and all of its characters are read before ASKUSER finishes. FILi will:o.ibe reset to T. 
and the interaction will continue with ASKUSER reading from the terminal. 

6.65 



Special Keys 

6.66 

,· .. :·. 
~--· 

\ 
/ 



0 

CHAPTER 7 

VARIABLE BINDINGS AND TIIE INTERLISP STACK 

A number of schemes have been used in different implementations of LISP for storing the values of 
variables. These include: 

(1) Storing values on an association list paired with the. variable names. 

(2) Storing values on the property list of the atom which is the name of the variable. ,,,.---.. _ 

U,.3} Storing ;alues in a special value cell associated with the atom name, putting old values on a pushdown 
· list. and res~ring these values when exiting from a function. 

(4) Storing values on a pushdown list. 

Interlisp-IO uses the third scheme, so called "shallow binding". When a function is entered, the value 
of each variable bound by_ the function (function argument) is stored in a value cell associated with that 
variable name. The value that was in the value cell. is stored in a block of storage called the basic 
frame for this function call. In addition. on exit from the function each variable must be individually 
unbound: that is, the old value saved in the basic frame must be restored to the value cell. Thus there is a 
higher cost for binding and unbinding a variable than in the fourth scheme, "deep binding". However, to 
find the current value of any variable. it is only necessary to access the variable's value cell, thus making 
variable reference considerably cheaper under shallow binding than under deep binding, especially for free 
variables. However, the shallow binding scheme used does require an additional overhead in switching 
contexts when doing "spaghetti stack" operations. · 

- Interlisp-D uses the forth scheme, "deep binding." Every time a function is entered, a basic frame 
containing the new variables is put on top of the stack. Therefore. any variable reference requires 

, , - ~earching the stack for the first instance of that variable, which makes free variable use somewhat more 
8:xpensive than in a shallow binding scheme. On the other hand, spaghetti stack operations are considerably 

faster. Some other tricks involving copying freely-referenced variables to higher frames on the stack are 
also used to speed up the search. · 

The basic frames are allocated on a stack or pushdown list: for most user purposes. these frames should 
be thought of as containing the variable names associated with the function call. and tl;.e cun-em values 
for that frame. The descriptions of the stack functions in below are presented from this viewpoint. Both 
interpreted and compiled functions store both the names and values of variables so that interpreted and 
compiled functions are compatible and can be freely intermixed, i.e.. free variables can be used with 
no SPECVAR declarations necessary. However. it is possible to suppress storing of names in compiled 
functions. either for efficiency or to avoid a clash. via a LOCALVAR declaration (see page 12.4). The 
names are also very useful in debugging. for they make possible a complete symbolic backtraee in case 
of error. . 

In addition to the binding information. additional information is associated with each function call: access 
information indicating the path to search the basic frames for variable bindings. control information. and 
temporary results are also stored on the stack in a block called the frame extension. The interpreter also 
stores information about partially evaluated expressions as described on page 7.10. 

0 7.1 

. (. 

C-

C'<\ ' 
I_. 

·'' .. -



c .. 

/'. 

The Spaghetti Stack 

7.1 THE SPAGHETI1 STACK 

The Bobrow /Wegbreit paper, .. A Model and Stack Implementation for Multiple Environments", 1 describes 
an access and control mechanism more general than the simple pushdown stack. Toe access and control 
mechanism used by Interlisp is a slightly modified version of the one proposed by Bobrow and Wegbreit. 
This mechanism is called the "spaghetti stack." 

The spaghetti system presents the access and control stack as a data structure composed of .. frames." The 
functions described below operate on this structure. These primitives allow user functions to manipulate 
the stack in a machine independent way. Backtracking, coroutines. and more sophisticated control schemes 
can be easily implemented with these primitives. 

The evaluation of a function requires the allocation of storage to hold the values of its local variables 1 
during .the computation. In addition to variable bindings, an activation of a function requires a rerurn ,_ ) 
link (indicating where control is to go after the completion of the computation)-and room for temporaries 
needed during the computation. In the spaghetti system, one "stack" is used for storing all this information. 
but it is best to view this stack as a tree of linked objects called frame extensions (or simply frames). 

A frame extension is a variable sized block of storage containing a frame name, a pointer to some variable 
bindings (the BLINK}, and two pointers to other frame extensions (the ALINK and CLil'll'K). In addition 
to these components, a frame extension contains other information (such as temporaries and reference 
counts) that does not interest us here. 

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially 
an array of pairs, each of which contains a variable name and its value. The reason frame extensions 
point to basic frames (rather than just having them "built in") is so that two frame extensions can share 
a common basic frame. This allows two processes to communicate via shared variable bindings. 

The chain of frame extensions which can be reached via the successive ALINKs from a given frame is 
called the "access chain" of the frame. TIie first frame in the access chain is the starting frame. The chain 
through successive CLINKs is called the "control chain". 

A frame extension completely specifies the variable bindings and control information necessary for the n 
evaluation of a function. Whenever a function (or in fact, any form which generally binds local variables) - 1 

is evaluated, it is associated with some frame extension. 

In the beginning there is precisely one frame extension in existence. This is the frame in which the 
top-level call to the interpreter is being run. This frame is called the "top-level" frame. 

Since precisely one function is being executed at any instant. exactly one frame is distinguished as having 
the "control bubble'' in it. This frame is called the active frame. lnitially, the top-level frame is the active 
frame. If the computation in the active frame invokes another function. a new basic frame and frame 
extension are built. The frame name of this basic frame will be the name of the function being called. 
The ALINK. BLINK. and CLINK of the new frame all depend on precisely how the function is invoked. 
The new function is then run in this new frame by passing control to that frame, i.e., it is made the active 
frame. 

· 1Communications of 1he ACM, Vol. 16. 10, October 19i3. 

7.2 



0 
VARI.IBLE BINDINGS AND THE INTERLISP STACK 

Once the active computation has been completed. control normally returns to the frame pointed to by 
the CLINK of the active frame. That is. the frame in the CLINK becomes the active frame. 

In most cases, the storage associated with the basic frame and frame extension just abandoned can be 
reclaimed. However, it is possible to obtain a pointer to a frame extension and to "hold on" to this 
frame even after it has been exited. This pointer can be used later to run anoch.er computation in that 
environment. or even "continue" the exited computation. · 

A separate data type, called a stack pointer. is used for this purpose. A stack pointer is just a cell that 
literally points to a frame extension. Stack pointers print as #ADRIFRAMBNAME, e.g., #1, 13636/C0NC. 
Stack pointers are returned by many of the stack manipulating functions described below. Except for 
cenain abbreviations (such as "the frame with such·and·such a name"), stack pointers are the only way 
the user can reference a frame extension. As long as the user has a stack pointer which references a frame 

.---: extension. that frame extension (and all those that can be reached from it) will not be garbage collected. 

V Note th~ two stack pointers referencing the same frame extension are not nece~y EQ, i.e., { EQ 
( STl<POS- 'FOO) ( STKPOS ' FOO))= NIL. However. EQP can be used to test if two different stack 
pointers reference the same frame extension (page 2.3). 

It is possible to evaluate a form with respect to an access chain other than the current one by using a stack 
pointer to refer to the head of the access chain desired. Note. however. that this can be very expensive 
when using a shallow binding scheme such as that in Interlisp· 10. When evaluating the form. since all 
references to variables under the shallow binding scheme go through the variable's value cell. the values 
in the value cells must be adjusted to reflect the values appropriate to the desired access chain. This 
is done by changing all the bindings on the current access_ chain (all the namc:,-1,'.alue pairs} so that they 
contain the value current at the time of the call. Then along the new access path, all bindings are made 
to contain the previous value of the variable, and the current value is placed in the value cell. For that 
pan of the access path which is shared by the old and new chain. no work has to be done. Toe context 
switching time, i.e. the overhead in switching from the current. active. access chain to another one. is 
directly proportional to the size of the two branches that are not shared between the access contexts. This 
cost should be remembered in using generators and coroutines (page 7.13). 

07.2 STACK FUNCTIONS 

0 

In the descriptions of the stack functions below, when we refer to an argument as a stack descriptor, we 
mean that it is either a stack pointer or one of the following abbreviations: 

• NIL means the active frame; that is. the frame of the stack function itself. 

• T means the top-level frame. 

• Any other literal atom is equivalent to ( STKPOS ATOM -1) . 

• A number is equivalent to ( STKNTH NUMBER). 

In the stack fllnctions described below. the following errors can occur: The error ILLEGAL STACK 
ARG occurs when a stack descriptor is expected and the supplied argument is either not a legal stack 
descriptor (i.e.. not a stack pointer. licatom. or number). or is a licacom or number for which there 
is no corresponding stack frame, e.g.. ( STKNTH -1 'FOO) where there is no frame named FOO 

7.3 

(,, 

(':, 
'-.:'· 



Stack Functions 

in the active control chain or ( STKNTH -10 'EVALQT). The error STACK POINTER HAS BEEN 
RELEASED occurs whenever a released stack pointer is supplied as a stack descriptor argument for any 
purpose other than as a stack pointer to re-use. 

Note: Toe creation of a single stack pointer can. result in the retention of a large amount of stack space. 
Therefore, one should try to release stack pointers when.they are no longer needed. See page 7.10. 

( STKPOS NAME N POS OLDPOS) [Function] 
Returns a stack pointer to the Nth frame witfl frame name NAME. Toe search 
begins with (and includes) the frame specified by the stack descriptor POS. Toe 
search proceeds along the control chain from POS if N is negative, or along the 
access chain if N is positive._ If N is NIL, -1 is _ used. Remrns a stack pointer to 
· the frame if such a frame exists, otherwise returns NIL. If OLDPOS is supplied and 

() 

is a stack pointer, it is reused. If OLDPOS_ is supplied and is a stack pointer and ()_ 
STKPOS returns NIL, OLDPOS is released. If OLDPOS is not a stack pointer it is 

- ignored. 

( STKNTH N POS 

{ STKNAME POS) 

Note: ( STKPOS 'STKPOS) causes an error, ILLEGAL STACK ARG; it is not 
permissible to create a stack pointer to the active frame. 

OLDPOS) [Function] 
. Returns a stack pointer to the Nth frame back from the frame specified by the 
stack descriptor POS. If N is negative, the control chain from POS is followed. If 
N is positive the access chain is followed. If N equals 0, STKNTH returns a stack 
pointer to POS (this provides a way to copy a stack pointer). Returns NIL if there 
are fewer than N frames in the appropriate chain. If OLDPOS is supplied and is a 
stack poµiter, it is reused. If OLDPOS is not a stack pointer it is ignored. 

Note: ( STKNTH O) causes an error, ILLEGAL STACK ARG; it is not possible to 
create a stack pointer to the active frame. 

[Function] 
Returns the frame name of the frame specified by the stack descriptor POS. 

( SETSTKNAME POS NAME) [Function] 
Changes the frame name of the frame specified by POS to be NAME. Returns NAME. 

{ STKNTHNAME N POS) [Function] 
Returns the frame name of the Nth frame back from POS. Equivalent to ( STKr~AME 
( STKNTH N POS)) but avoids creation of a stack pointer. 

In summary, STKPOS convertS function names to stack pointers, STKNTH convens numbers to stack 
pointers. STKNAME convera stack pointers to function names, and STKNTHNAME" convens numbers to 
function names. 

( OUMMYFRAMEP POS) [Function} 
Returns T if the user never wrote a call to the· function at POS, e.g. in Interlisp· 10. 
DUMMYFRAMEP is T for •PROG•LAM, •ENV•, and FOOBLOCK frames (see block 
compiler. page 12.13). 

REALFRAMEP and REALSTKNTH can be used to write functions which manioulate the stack and work on 
either interpreted or compiled code: · 

7.4 

() 



0 
VARIABLE BINDINGS AND THE INTERLISP STACK 

(REALFRAMEP POS !1fTER.PFLG) [Function] 
Rerurns POS if POS is a .. real.. frame, i.e. if POS is not a dummy frame and POS 

is a frame that does not disappear when compiled (such as COND): otherwise NIL. 
If LNTERPFLG=T, returns POS if Pos is not a dummy frame. For example, if 
(STKNAME POS)=COHD, (REALFRAMEP POS) is tUL, but (REALFRAMEP POS 

T) is POS. 

( REALSTKNTH N POS INTERPFLG OLDPOS) [Function] 
Rerurns a stack pointer to the Nth (or ·Nth) frames for which ( REALFRAMEP POS 

INTERPFLG) is POS. 

Toe following functions are used for accessing and changing bindings. Some of functions take an 
argument. N, which specifies a particular binding in the basic frame. If N is a literal atom, it is assumed 
· to be the name of a variable bound in the basic frame. If N is a number, it is. assumed to reference the 

0 Nth binding in the basic frame. Toe first binding is 1. If the basic frame contains no bindmg with the 
_ given name or if the number is too large or too small. the error ILLEGAL ARG occurs. 

( STKSCAN VAR IPOS OPOS} [Function] 
Searches beginning at IPOS for a frame in which a variable named VAR is bound. 
The search follows the access chain. Returns a stack pointer to the frame if found. 
otherwise returns NIL. If OPOS is a stack pointer it is reused, otherwise it is ignored. 

( FRAMESCAN ATOM POS) [Function] 
Returns the relative position of the binding of ATOM in the basic frame of POS. 
Rerurns NIL if ATOM is not found. . 

{ STKARG N POS -) [Function] 
Rerurns . the value of the binding specified by N in the basic frame of the frame 
specified by the Stack descriptor POS. N can be a literal atom or number. 

( STKARGNAME N POS} [Function] 
Rerurns the name of the bindmg specified by N, in the basic frame of the frame 
specified by the stack descriptor POS. N can be a literal atom or number. 

O c SETSTKARG N POS VALUE) . [Function] 
Sets the value of the binding specified by N in the basic frame of the frame specified 
by the stack descriptor POS. N can be a literal atom or a number. Returns value. 

0 

(SETSTKARGHAME N POS NAME) [Function] 
Sets the NAME of the binding specified by N in the basic frame of the frame 
specified by the stack descriptor POS. N can be a literal atom or a number. Returns 

. NAME. 

( STKNARGS POS -) [Function] 

{~ARIABLES POS) 

·~ 

Returns the number of arguments bound in the basic frame of the frame specified 
by the stack descriptor POS. 

[Function] 
Returns a list of the variables bound at POS. 

As an example of the use of STKNARGS and STKARGNAME. VARIABLES could be 
defined by: 

7.5 

C 

C:.· . ' 



{STKARGS POS -) 

Stack Functions 

(VARIABLES 
(LAMBDA· {POS) 

(for N from 1 to (STKNARGS POS) 
collect (STKARGNAME N POS]) 

Returns a list of the values of variables bound at Pos. 
[Function] 

The following functions are used to evaluate an expression in a different environment. and/or to alter the 
flow of control 

{ ENVEVAL FORM A.POS CPOS AFLG CFLG) [Function] 
Evaluates FORM in the enviromnent specified by APOS and CPOS. That is. a new 

0 

· active frame is created with the frame specified by the stack descriptor APOS as i~ Q 
ALlNK. and the frame specified by the stack descriptor CPOS as i~ CLINK. Then .... _ _ 
FORM is evaluated. If AFLG is not NIL, and APOS is a stack pointer. then APOS 
will be released. Similarly. if CFLG is not NIL. and CF'OS is a stack pointer. then 
CPos will be released. 

( ENVAPPLY FN ARGS APOS CPOS AFLG CFLG) [Function] 
APPLYs FN to ARGS in the environment specified by APOS and CPOS. AFLG and 
CFLG have the same interpi:etation as with ENVEVAL 

( STKEVAL POS FORM FLG - ) . [Function] 
Evalu1tes · FORM in the access environment of the frame specified by the stack 
descriptor POS. If FLG is not NIL and POS is a stack pointer. releases POS. The 
definition of STKEVAL is ( ENVEVAL FORM POS NIL FLG). 

( STKAPPL Y POS FN ARCS FLG - ) [Functioil] 
Similar to STKEVAL but applies FN to ARGS. 

( RETEVAL POS FORM FLG -) [Function] 
Evaluates FORM in the access environment of the frame specified by the stack 
descriptor Pos. and then rerums from POS \-,ith :hat value. If FLG is not NI L () 

,_ ____ J and POS is a stack pointer. then POS is released. Toe definition of RETEVAL is -
equivalent to (ENVEVAL FORM POS (STKNTH -1 POS) FLG T). except that 
RETEVAL does not create a stack pointer_ 

/ 

( RET APPLY POS FN ARGS FLG -) [Function] 
Similar to RETEVAL except applies FN to AR.GS. 

( RETFROM POS VAL FLG) [Function] 
Return from the frame specified by the stack descriptor POS. with the value VAL. 

If FLG is not N IL. and POS is a stack pointer. then POS is released. An attempt to 
RETFROM the top level (e.g.. (RETFROM T)) causes .an error. ILLEGAL STACK 
ARG. RETFROM can be written in terms of ENVEVAL as follows: 

(RETFROM 
(LAMBDA (POS VAL FLG) 

(ENVEVAL (LIST 'QUOTE VAL) 
NIL 

· (if (STKNTH -1 POS (if FLG then POS)) 

7.6 

() 



0 
V ARl.-\BLE BINDINGS AND THE INTERLISP STACK 

else (ERR0RX (LIST 19 ~OS))) 
NIL 
T))) 

(RETT0 POS VAL FLG) 
Ll.ke RETFR0M. except returDS to the frame specified by POS. 

[Function} 

( EVALV VAR POS) [Function] 
Evaluates VAR. where VAR is assumed to be a litatom. in the access environment 
specifed by the stack descx:iptor Pos. If VAR is unbound. EVALV returns 
NOBIND and does not generate an error. ·While EVALV could be defined as 
( ENVEVAL VAR POS) it is in fact a SUBR which is somewhat faster. EVALV 
compiles open when POS=NIL • . 

() The following functions and variables are used t~ manipulate stack pointers. 

. (STACKP X) . [Function] 

0 

0 

( RELSTK POS) 

(RELSTKP X) 

Returns x if x is a stack pointer. otherwise returns NIL. 

[Function} 
Release the srac.k. pointer POS (see page 7.10). If POS is not a stack pointer. does 
nothing. Returns POS. 

[Function] 
Returns· T is x is a released srac.k. pointer. ti I L otherwise. 

( CLEARSTK .FLG) [Function] 
If na is NIL. releases all active stack pointers. and returns N r L. If FLG is T. 
returns a list of all the active (unreleased) stack pointers. 

CLEARSTKLST 

NOCLEARSTKLST 

[Variable] 
A variable used by top-level EVALQT. Every time EVALQT is· re-entered (e.g .• 
following errors, or control-D). CLEARSTKLST is checked. If its value is T. all 
active stack pointers are released using CLEARSTK. If its value is a list. then all 
stack pointers on that list are released. If its value is H IL. nothing is released. 
CLEARSTKLST is initially T. . 

[Variable] 
A variable used by top-level EVALQT. If CLEARSTKLST is T (see above) all active 
stack pointers except those on N0CLEARSTKLST are released. N0CLEARSTKLSi 
is initially N IL. 

Thus if one wishes to use multiple environments that survive through control·D. either CLEARSTKLST 
should be set to NIL. or else those stack pointers to be retained should be explicitly added to 
N0CLEARSTKLST. 

( COPYSTK POSl POS2) [Function) 
(lnterlisp-10) Copies the stack. including basic· frames. from the frame specified 
by the stack descriptor POSI to the frame specified by the stack descriptor Pos2. 

That is. copies the frame extensions and basic frames in the access chain from 
Pos2 to POS1 (inclusive). Pos1 must be in the access chain of POS2, i.e .... above·· 
Pos2. Returns the new ;,0s2. This provides a way to save an entire environment 

7.7 

.. ( ... 

(.' 



( .. · 

.. 

Stack Functions 

· including variable bindings. 

(MAPDL MAPDLFN MAPDLPOS) [Function] 
Scans at MAPDLPOS and applies MAPDLFN. a function of two arguments, to the 
function name at each frame. and the frame (sr.ack pointer) itself, until the top of 
the sr.ack is reached. Returns NIL. For example. 

(MAPDL (FUNCTION (LAMBDA (X POS) 
(if (IGREATERP (STKNARGS POS) 2) 
then (PRINT X)] 

will print all functions of more than ~o arguments. 

() 

( SEARCH POL SRCHFN SRCHPOS) [Function] () 
Similar to MAPDL. except searches the pushdown list starting at position SRCHPOS _. 
until it finds a frame for which SRCHFN, a function of two arguments applied to the 
name of the frame and the frame itself. is not NIL. Returns ( NAME • FRAME) 
if such a :rame is found. otherwise NIL. · 

( BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) [Function] 
Performs a backtrace beginning at the frame specified by the stack descriptor IPos. 
and ending with the frame specified by the stack descriptor EPOS. FLAGS is a 
number in which the options of the BACKTRACE are encoded. If a bit is set. the 
corresponding information is included in the b~ktrace. 

bit O - print arguments of non-SUB Rs. 

bit 1 - print temporaries of the interpreter. 

bit 2 - print SUBR arguments and local variables. 

bit 3 • omit printing of UNTRACE: and function names. 

bit 4 • follow access chain instead of control chain. 

bit 5 • print temporaries. Le. the blips. 

.. 

For example: if FLAGS=47Q, everything is printed; if FLAGS=21Q, follows the 
access chain. prints argumentS. 

FILE is the file that the backtrace is printed to. FILE must be open. PRINTFN is 
used when printing the values of variables, temporaries. blips, etc. PRINTFN= NIL 
defaults to PRINT. 

( BAK TRACE IPOS EPOS SKIPFNS FLA.GS FlLE) [Function] 
Prints a backtrace from IPOS to EPOS onto FILE. FLAGS specifies the options of 
the backtrace. e.g., do/don't print arguments, do/don't print temporaries of the 
interpreter, etc., and is the same as for BACKTRACE.2 

2BAKTRACE calls BACK TRACE with a P.RINTFN of SHOWPRINT (page 6.17), so that if SYSPRETTYFLG=T. 
r. _. \ the values will be prettyprinted. 
t;:;J 

7.8 

.. . ... 

/\ 
\ __ / 

() 



0 

O· 
BAKTRACELST 

VARIABLE BINDINGS AND nIE INTERLISP ST ACK 

SKIPFNS is a list of functions. As BAK TRACE scans down the stack. the stack name 
of each frame is passed to each function in SKIPFNS. and if any of them return 
non·N IL. POS is skipped (including all variables). 

BAKTRACE collapses the sequence of several function calls CDx:re5Ponding to a call 
to a system package into a single "function" using BAKTRACELST as described 
below. For example. any call to the editor is printed as ••EDITOR••, a break is 
printed as 0 •BREAK••, etc. 

BAKTRACE is used by the BT. BTV, BTV+, BTV•, and BTV l commands, with 
FLAGS=O. 1, 5, 7, and 47Q respectively. 

[Variable] 
Used for _telling BAKTRACE (therefore, the BT, BTV. etc. commands) to abbreviate 
various sequences of function calls on the stack by a single key. e.g. ••BREAK••, 
••EDITOR••, etc. 

The operation of BAKTRACE and format of BAKTRACELST is described so that the user can add his 
own entries to BAKTRACELST. Each encry on BAKTriACELST is a list of the form (FRAME.NAME KEY 
• PATTERN) or (FRAMENAME (KE'Y1 • PATTER.Ni) ... (K'EYN • PATTERNN) ), where a pattern . 
is a list of elements that are either atoms. which match a single frame. or lists, which are interpreted 
as a list of alternative patterns. e.g. ( PR0GN ••BREAK•• EVAL (( ERRORS ET BREAKlA BREAK!) 
(BREAK!))) 

BAKTRACE operates by scanning up the stack and. at ~h point. comparing the current frame name. with 
the frame names on BAKTRACELST. Le. it does an ASSOC. If the frame name does appear. BAKTRACE 
attempts to match the stack as of that point with (one oO the patterns. If the match is successful 
BAKTRACE prints the corresponding key, and continues with where the match left off. If the frame name 
does not appear. or the match fails. BAK TRACE simply prints the frame name and continues with the next 
higher frame (unless the SKIPFNS applied to the frame name are non-NIL as described above). 

Matching is performed by comparing atoms in the pattern with the current frame name. and matching 
.. lists as patterns. i.e. sequences of function calls. always wor!'Jng up the stack. For example. either of 

0 the sequence of function calls".·· BREAKl BREAK1A ERRORS ET EVAL PR0GN ·· ... or" .. · BREAK1 
EVAL PR0GN · · ... would match with the sample entry given above. causing ••BREAK•• to be printed. (;'.; _ 

(,........__,_; 

l) 

Special features: 

• The litatom & can be used to match any frame. 

• .The pattern .. - " can be used to match nothing. - is useful for specifying an optional match. e.g. the 
example above could also have been written as ( PR0GN ••BREAK•• EVAL ( ( ERRORS ET BREAK1A) 
-) BREAK1). 

o It is not necessary to provide in the pattern for matching dummy frames. i.e. frames for which 
0UMMYFRAMEP (see page 7.4) is true, e.g. in-Interlisp-10. •PR0G•LAM, *ENV•, N0LINKDEF 1. etc. When 
working on a mac.ch. the matcher automatically skips over these frames when they do not mar.ch. 

• If a match succeeds and the K--='Y is NIL. nothing is printed. For example. ( *PR0G*LAM NIL EVALA 
• E NV). This sequence will occur following an error which then causes a break if some of the function ·s 

7.9 

... ~: .. • 



---: 
,(:i;, 

Releasing and Reusing Stack Pointers 

arguments are LOCAL VARS. 

7.3 RELEASING AND REUSING STACK POINTERS 

The creation of a single stack pointer can result in the retention of a large amount of stack space. 
Furthermore. this space will not be freed until the next garbage collection, even if the stack pointer is no 
longer being used, unless the stack pointer is explicitly released or reused. If there is sufficient amount 
of stack space tied up in this.fashion. a STACK OVERFLOW condition can occur, even in the simplest of 
computations. For this reason. the user should consider releasing a stack pointer when the environment 
referenced by the stack pointer is no longer needed. 

The effects of releasing a stack pointer are: 

(1) The link between the stack pointer and the stack is broken by setting the contents of the stack pointer 
to the "released mark" (currently unboxed 0). A released stack pointer prints as #ADR/#o . . 
(2) If this stack pointer was the last remaining reference to a frame extension: that is. if no other stack 
pointer references the frame extension and the extension is not contained in the active control or access 
chain. then the extension may be reclaimed. and is reclaimed immediately. Toe process repeats for the 
access and control chains of the reclaimed extension so that all stack space that was reachable only from 
the released stack pointer is reclaimed. 

A stack pointer may be released using the function RELSTK, -'but there are some cases for which RELSTK 
is not sufficient. For example. if a function contains a call to RETFROM in which a stack pointer was used 
to specify where to return to. it would not be possible to simultaneously release the stack pointer. (A 
RELSTK appearing in the function following the call to RETFROM would not be executed!) To permit 
release of a stack pointer in this simation. the stack functions that relinquish control have optional flag 
arguments to denote whether or not a stack pointer is to be released (AFLG and CFLG). Note that in this 
case releasing the stack pointer will not cause the stack space to be reclaimed immediately because the 
frame referenced by the stack pointer will have become part of the active environment. 

() 

C) 

Another way of avoiding creating new stack pointers is to reuse stack pointers that are no longer needed. (l 
The stack functions that create stack pointers (STKPOS. STKNTH, and STKSCAN) have an optional -- . 
argument which is a stack pointer to reuse. When a stack pointer is reused. two things happen. First the 
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the 
stack pointer. The old stack pointer (with its new contents) is the value of the function. Note that the 
reused stack pointer will be released even if the function does not find the specified frame. 

Note that even if stack pointers are explicitly being released. creation of many stack pointers can cause 
a garbage collection of stack pointer space. Thus. if the user's application requires creating many stack 
pointers, he definitely should take advantage of reusing stack pointers. 

7.4 THE PUSH·DOWN LIST A.ND THE INTERPRETER 

In addition to the names and values· of arguments for functions. information regarding partially-evaluated 
expressions is kept on the push-down list. For example. consider the following definition 9f the function 

7.10 () 



0 VARIABLE BINDINGS AND THE INTERLISP STACK 

FACT (intentionally faulty): 

(FACT 
[LAMBDA (N) 

ccorm 
((ZEROP H) 

L) 
(T (ITIMES N (FACT (SUBl UJ) 

In evaluating the form ( FACT 1), as soon as FACT is entered, the interpreter begins evaluating the 
implicit PROGN following the LAMBDA. The first function entered in this process is CONO. CONO begins 
to process its list·of clauses. After calling ZEROP and getting a NIL value, CONO proceeds to the next 
clause and evaluates T. Since T is true. the evaluation of the implicit PROGN that is the consequent of the 
T clause is begun. This requires calling the function ITIMES. However before ITIMES can be called, 

. o· its arguments must be evaluated. The first argument is evaluated by retrieving the current binding of i~ 
.rom its value cell: the second involves a recursive call to FACT, and another implicit PROGH, etc. 

Note that at each stage of this process. some portion of an expression has been evaluated. and another 
is awaiting evaluation. The output below (from Interlisp-10) illustrates this by showing the state of t.1le 
push-down list at the point in the computation of ( FACT 1 ) when the unbound atom L is reached. 

+-FACT{l) 
u.b.a. L {in FACT} in ((ZEROP N) L) 
(L broken) 
:BTVI 

•TAIL0 (L) 

•ARGl (((ZEROP N) L) {T {!TIMES N (FACT {SUB1 N))))) 
CONO. 

•FORM• (CONO ((ZEROP N) L) (T (!TIMES N (FACT (SUB1 N))))) 
•TAIL• ((CONO {{ZEROP N) L) {T (ITIMES N (FACT (SUB1 N)))))) 

1) t, 0 
UFAcr 

o. 

•FORM• {FACT {SUB1 N)) 
•FN• ITIMES 
•TAIL• ((FACT (SUBl N))) 
•ARGVAL• 1 
•FORM• {ITIMES N {FACT (SUB1 N))) 
•TAIL• {(ITIMES N {FACT (SUB1 N)))) 

•ARGl (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))) 
CONO 

•fORMu (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))) 
0 TA!L 0 ((CONO ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))) 

7.11 

C-

( ~ 
'. 

( .•. ' 



N 1 
FACT 

. .. . . ~ 

The Push· Down List and the Interpreter 

Internal calls to EVAL, e.g., from COHO and the interpreter, are marked on the push-down list by a special 
mark or blip which the backtrace prints as •FORM•. The genealogy of *F0RM•'s is thus a history of the 
computation. Other temporary information stored on the srack by the interpreter includes the tail of a 
partially evaluated implicit PR0GN (e.g.. a cond clause or lambda expression) and the tail of a partially 
evaluated form (i.e., those arguments not yet evaluated), both indicated on the backtrace by •TA IL•, 
the values of arguments that have already been evaluated, indicated by • ARGVAL •, and the names of 
functions waiting to be called, indicated by •FN•. *ARG1, · ··, •ARGn are used by the backtrace to 
in•Jicate the (unnamed) arguments to SUBRs. 

P.., Note that a function is not ac~y entered and does not appear on the stack, until its arguments rut\~ 
:is·; been·evaluated (except for nlambda functions. of course). Also note that the •ARG1, •FORM•, •TAILlll-, ··· 

etc ... bindings" comprise the actual working storage. In other words. in the above example, if a (lower) 
function changed the value of the • ARG 1 binding, the CON0 would continue interpreting the new bindin-g 

,, ... 
neri. 

as a list of C0ND clauses. Similarly, if the •ARGVAL* binding were changed, the new value would be 
given to ITIMES as its first argument after its second argument had been evaluated, and ITIMES was 
actually called. 

Note that •FORM•, *TAIL•, •ARGVAL•, etc •• do not actually appear as variables on the stack, Le., 
evaluating •FORM• or calling STKSCAN to search for it will not work. However, the functions BLIPVAL. 
SETBLIPVAL, and BLIPSCAN described below are available for accessing these internal bUps. These 
functions currently know about four different types of blips: · 

*ARGVAL• . 

the name of a function about to be called 

an argument for a function about to be called 

a form in the process of evaluation 

the rail of a COND clause, implicit PROGN, PROG, etc. 

(BLIPVAL BLlPTYP l'.POS FLG) [Function] 
Returns the value of the specified blip of type BLIPTYP. If FLG-is a number N, 
finds the Nth blip of the desired type, searching the control chain beginning at the 
frame specified by the StaCk descriptor IPOS. If FLG is NIL, 1 is used. If FLG is T. 
returns the number of blips of the specified cype at IPOS. 

( SETBLIPVAL BLlPTYP IPOS N VAL.} [Function] 
Sets the value of the specified blip of type BLIPTYP. Searches for the Nth blip of 
the desired type, beginning with the frame specified by the stack descriptor rros. 
and following the control chain. 

( BLIP SCAN BLIPTYP IPOS) [Function] 
Returns a StaCk pointer to the frame in which a blip of type BLlPTYP is located. 
Search begins at the frame specified by the stack descriptor IPOS and follows the 
control chain. 

() 
7.12 



o-

.-

0 

0 

VAPJABLE BINDINGS AND THE INTERLISP STACK 

7.5 GENERATORS AND COROUTINES 

This section describes an application of the spaghetti stack facility to provide mechanisms for creating 
and using simple generators. generalized coroutines. and Conniver scyle possibility listS. 

7.5.1 Generators 

A generator is like a subroutine except that it retains information about previous times it has been called. 
Some of this state may be data (for example, the seed in a random number generator), and some may be 
in program state (as in a recursive generator which finds all the atoms in a list structure}. For example, 
if LISTGEN is defined as: 

{ LISTGEH ( L) 
(IF L THEN (PRODUCE (CARL)) 

(LIS!GEN (CDR L)))) 

we can use the function GENERATOR (described below) to create a generator that uses LISTGEH to 
produce the elements of a list one at a time, e.g .. 

(SETQ GR (GENERATOR (LISTGEN '(ABC))) 

creates a generator. which cmi be called by 

(GEMERAiE GR) 

to produce as values on successive calls, A. B. C. When GEMERATE (not GENERATOR) is called the first 
time, it simply starts evaluating ( LISTGEN ' ( A B C) ). PRODUCE gets called from LISTGEN. and 
pops back up to GENERATE with the indicated value after saving the state. When GENERATE gets called 
again. it continues from where the last PRODUCE left off. This process continues until finally LISTGEN 
completes anti returns a value (it doesn't matter what it is}. GEr~ERATE then returns GR itself as its value. 
so that the program that called GENERATE can tell that it is finished. i.e .• there are no more values to be 
generated. 

(GENERATOR FOR.Ve;.# COMVAR##) [NLambda Function] 

( PRODUCE VAL) 

An nlambda function that creates a generator which uses FORM#;. to compute 
values. GENERATOR returns a generator handle which is represented by a dotted 
pair of stack pointers. 

COMVAR## is optional. [f its value (EVAL of) is a generator handle, the list 
structure and stack pointers will be reused. Otherwise. a new generator handle will 
be constructed. 

GEr~ERATOR compiles open. 

[Function] 
Used from within (below) a generator co return VAL as the value of the 
corresponding call to GE rJ ERA TE. 

( GENERATE HA,.'IDI.E VAL) [Function] 
Restaru the generator represented by HANDLE. VAL is returned as the value of 

7.13 

C 

C 

( 

(_ 



(: ~--

_ .. --- -- .. ,: . .t.,. -

Coroutines 

the PRODUCE which last suspended the operation of the generator. When the 
generator runs out of values. GENERATE rerurns BANDLE itself. 

Examples: 

The following function will go down recursively through a list structure and produce the atoms in the list 
snucrure one at a time. 

[LEAVESG (L) 
( if (ATOM L) 
then (PRODUCE L) 
else (LEAVESG (CARL)) 

( if (COR L) 
then (LEAVESG {CDR L)] 

The following function prints each of these atoms as it appears. It illustrates how a loop can be set up to 
use a generator. 

(PLEAVESG1 {L) 
(PROG (X LHANDLE) 

(SETQ LHANOLE (GENERATOR (LEAVESG L))) 
LP (SETQ X (GENERATE LHANDLE)) 

{if (EQ X LHANDLE) 
then (RETURN NIL)) 

(PRINT X) 
(GO 1:,P))) 

Note that the loop terminates when the value of the generator is EQ to the dotted pair which is the value 
proq.uced by the call to GENERATOR. A CLISP iterative operator. OUTOF. is provided which makes it 
much easier to write the loop in PLEAVESG1. OUTOF (or outof} can precede a form which is to be 
used as a generator. On each iteration. the iteration variable will be set to successive values recumed 
by the generator; the loop will be terminated automatically when the generater runs ouL TI1erefore. the 
following is equivalent to the above program PLEAVESGl: 

(PLEAVESG2 (L) 
(for X outof (~EAVESG L) do (PRINT x)) 

Here is another example; the following form will print the first N atoms. 

(for X outof (MAPATOMS (FUNCTION PRODUCE)) 
as I from 1 to N do (PRI~T X)) 

7.5.2 Coroutines 

This package provides facilities for the creation and use of fully general coroutine strucrures. It uses 
a stack pointer to preserve the state of a coroutine, and allows arbitrary switching between N different 
coroutines, rather than just a call to a generator and return .. This package is slightly more efficient than 
the generator package described above. and allows more flexibility on specification of what to do when a 
coroutine tcm1inates. 

7.14 

0 

(~ 



--------.--.. ·-·-··---- -----~. 

VARIABLE BINDINGS AND THE INTERLISP STACK 

{COROUTIHE CALLPTR## COROUTPTR## COROUTFORM## ENDFORM##) 
[NLambda Function] 

1bis nlambda function is used to create a coroutine and initialize the linkage. 
CALLPTR## and COROUTPTR## are the names of two variables. which will be 
set to appropriate st.ack pointers. If the values of CALLPTR## or COROUTPTR## 
are already stack pointers. the stack pointers will be reused. COROUTFORM## is 
the form which is evaluated to start the coroutine; ENDFORM## is a form to be 
evaluated if COROUTFORM## actually returns when it runs out of values. 

COROUTINE compiles open. 

( RESUME FROMPTR TOPTR VAL) [Function] 
Used to transfer control ftom one coroutine to another. rnoMPTR should be the 
stack pointer for the current coroutine. which wt11 be smashed to preserve the 
current st.ate. TOPTR should be the stack pointer which has preserved the state of 
the coroutine to be transferred to. and VAL is the value that is to be returned to 
the Iauer coroutine as the value of the RESUME which suspended the operation of 
that coroutine. 

For example. the following is the way one might write the LEAVES program using the coroutine package: 

(LEAVESC (L COROUTPTR CALLPTR) 
( if (ATOM L) 
then (RESUME COROUTPTR CALLPTR L) 
else (LEAVESC (CARL) COROUTPTR CALLPTR) 

(if (CDR L) then (LEAVESC (CCR L) COROUTPTR CALLPTR)))) 

A function PLEAVESC which uses LEAVESC can be defined as follows: 

(PLEAVESC (L) 
{bind PLHANDLE LHANDLE 
first (COROUTINE PLHANDLE LHANDLE • 

(LEAVESC L LHANDLE PLHANDLE) 
(RETFROM 'PLEAVESC)) 

do (PRINT (RESUME PLHANDLE LHANDLE)))) 

By RESUMEing LEAVESC repeatedly, this function will print all the leaves of list L and then return out 
of PLEAVESC via the RETFROM. The RETFROM is necessary to break out of the non-terminating do-loop. 
This was done to illustrate the additional flexibility allowed through the use of ENDFORM##-

We use two coroutines working on two trees in the example EQLEAVES. defined below. EQLEAVES tests 
to see whether two trees have the same leaf set in the same order. e.g.. (EQLEAVES • (A B C) '(A B 

0 

( C ) )) is true. · 

(EQLEAVES (Ll L2) 
{bind LHANDLE1 LHANDLE2 PE Ell EL2 
first {COROUTINE PE LHANOLEl (LEAVESC Ll LHANDLEl PE) 'NO-MORE) 

{COROUTINE PE LHANDLE2 (LEAVESC L2 LHANDLE2 PE) 'NO-MORE) 
do (SETQ Ell (RESUME PE LHANOLEl)) 

(SETQ EL2 (RESUME PE LHANDLE2)) 
(if (NEQ Ell EL2) 
then (RETURN NIL)) 

7.15 

(: 

C,-,_. 
-.. 

( -:--, 



r-·--
Possibilities Lists 

repeatunti1 (EQ Ell 'NO-MORE) 
finally (RETURN T))) 

7.S.3 - Possibilities Lists 

A possibilities list is the interface between a generator and a consumer. Toe possibilities list is initialized 
by a call to POSSIBILITIES. and elements are obtained from it by using TRYNEXT. By using the 
spaghetti stack to maintain separate environments. this package allows a regime in which a generator can 
put a few items in a possibilities list, suspend itself until they have been consumed, and be subsequently 
aroused and generate some more. 

(POSSIBILITIES FORM##) [NLambda Function} 
This nlambda function is used for the initial creation of a possibilities list. FORM## 0. 
will be evaluated to create the list. It should use the functions NOTE and AU- \_) 
REVOIR described below to generate possibilities. Normally, one would set some 
variable to the possibilities list which is returned. so it can be used later. e.g.: 

(SETQ PLIST (POSSIBILITIES (G£NERFN Vt V2))). 

_POSSIBILITIES compiles open. 

{NOTE VAL LSTFLG) [Function] 
Used .within a generator to put items on the possibilities list being generated. If 
LSTFLG is equal to.NIL. VAL is treated as a single item. I( LSTFLG is non·NIL. 
then the list VAL is NCONCed on the end of the possibilities list. Note that it 
is perfectly reasonable to create a possibilities list using a second generator. and 
NOTE that list as possibilities for the current generator with LSTFLG equal to T. 
Toe lower generator will be resumed at the appropriate point. 

{AU-REVOIR VAL##) [NoSpread Function] 
Puts VAL## on the possibilities list if it is given. and then suspends the generator 
and returns to the consumer in such a fashion that control will return to the 
generator at the AU-REVOIR if the consumer exhausts the possibilities list. Q 

(ADIEU VAL##) 

( TRYNEXT PLST## 

Note: NIL is not put on the possibilities list unless it is explicitly given as an 
argument to AU-REVOIR, i.e •• (AU-REVOIR) and (AU-REVOIR NIL) are not 
the same. AU-REVOIR and ADI"EU are lambda nospreads to enable them to 
distinguish these two cases. 

[NoSpread Function} 
Like AU-REVOIR except releases the generator instead of suspending it. 

ENDFORM## VAL##) [NLambda Function} 
This nlambda function allows a consumer to use a possibilities list. It removes 
the first item from the possibilities list named by PLST## (i.e. PLST## must 
be an atom whose value ·is a possiblities list). and returns that item. provided it 
is not a generator handle. If a generator handle is encountered., the generator is 
reawakened. When it returns a possibilities list. this list is added to the front of the 
current list. When a call to TRYNEXT causes a generator to be awakened., VAL## 
is returned as the value ofthe AU-REVOIR which put that generator to sleep. If 
PLST## is empty, it evaluates ENDFORM## in the caller's environment. 

7.16 
0 



0 

0 

.. 

0 

() 

VARI.IBLE BINDINGS AND THE INTERLISP STACK 

TRYNEXT compiles open. 

( CLEANPOSLST PI.ST) . [Function] 
This function is provided to release any ~"'1Ck pointers which may be left in the 
PI.ST which was not used to exhaustion. 

For example, F !B is a generator for fibonnaci numbers. It ~..arts out by NOTEing its two arguments. then 
suspends itself. Thereafter, on being re-awakened, it will NOTE two more terms in the series and suspends 
again. PRINT FIB uses FIB to print the first ·N fibonacci numbers. 

[FIB ( Fl F2) 
(do (HOTE Fl} 

( P!OTE F2) 
( SETQ Fl (.I PLUS 
(SETQ ·Fz (IPLUS 
(AU-REVOIR)] 

Fl F2)) 
Fl F2)) 

Note that this AU-REVOIR just suspends the generator and adds nothing to the possibilities list except 
the generator. • 

[PRINTFIB (N) 
(PROG ({FL (POSSIBILITIES (FIB O 1)))) 

(RPTQ N (PRINT (TRYNEXT FL))) 
(CLEANPOSLST FL)] 

Note that FIB itself will never terminate . 

7.17 

( 

( ··· .. 
.. 

c .. 



Possibilith~s Lists 

(~ 
7.18 



0 

0 

CHAPTER 8 

nIE PROGRAMMER'S ASSIST Al'-l'T 

8.1 INTRODUCTION. 

With any interactive computer language, the user interacts with the system through an .. executive", which 
interpretS ·and executes typed-in commands. In most implementations of Lisp, the executive is a simple 
"read·eval·print" loop, which repeatedly reads a Lisp expression. evaluates it, and prints out the value of 
the expression. Interlisp has an executive which allows a much greater range of inputs, other than just 
regular Interlisp expressions. 

In particular, the Interlisp executive implements a facility known as the "programmer's assistant" (or 
"p.a."). Toe central idea of the programmer's assis'"..ant is that the user is addressing an active intermediary, 
namely his assistant. Normally, the assistant is invisible to the user. and simply carries out the user's • 
requests. However, the assistant remembers what the user has done, so the user can give commands to 

. repeat a panicular operation or sequence of operations. with possible modifications. or. to undo the effect 
of specified operations. Like DWIM. the programmer's assistant embodies an approach to system design 
whose uitimate goal is to construct an environment t."lat "cooperates" with the user in the development of 
his programs, and frees him to concentrate more fully on the conceptual difficulties and creative aspects 
of the problem at hand. 

We will fL.--st discuss the various input formars. then the use of commands to the programmer's assistant. 
and finally how to modify the programmer's assistant for specialized uses. 

0 8.1.1 Input Formats 

0 

The Interlisp executive accepts inputs in the following formats: 

(1) A single lit.atom, followed by a carriage-return. The value of the lit.atom is returned. For the purposes 
of this discussion, we will call this EV AL V-format. 

(2) A regular Interlisp expression, beginning with a left parenthesis or square bracket and terminated by 
a matching right parenthesis or square bracket A right bracket matches any number of left parentheses, 
back to the last left bracket or the entire expression. Such an input is known as an "EV AL-format" input. 
since the form is simply passed to EVAL for evaluation. Notice that it is not necessary to t;'Pe a carriage 
return at the end of such a form: Interlisp will supply one automatically. If a carriage-return is typed 
before the final matching right parenthesis or bracket. it is treated as a space, and input continues. The 
following examples are all interpreted the same: 

~(PLUS· 1 (TIMES 2 3)) 

~(PLUS 1 (TIMES 2 3] 

8.1 

... . ... 



+-( PLUS 1 ( TIMES Cf' 

2 3] 

Examples 

(3) Often., the user, typing at the keyboard, calls functions with constant argument values. which would 
have to be quoted if the user typed it in "EV AL-format". For convience, if the user cypes a litatom 
immediately followed by a list form. the litatom is APPL Yed to the elements within the list. unevaluated. , 
For example, typing LOAD( FOO) is equivalent to typing ( LOAD 'FOO), and GETPROP( X COLOR) is 
equivalent to (. GETPROP 'X 'COLOR). Toe input is terminated by the matching right parenthesis or 
bracket. We will call such input HAPPLY·format." APPLY-format input is useful in some situations .. ,·but 
note that it may produce unexpected results when an nlambda function is called that explicitly evaluates 
its arguments. For example, typing SETQ{ FOO BAR) will set FOO to the value of BAR, not to BAR itself. 

__ However, there are times when a user does not want to ternrinate the input when a closing parenthesis 
· typed - especially when giving a command to the programmer's assistant. This leads us to our fourth 

rormat. 

(4) A sequence of lit.a.toms ai:d lists beginning with a litatom and a space (to distinguish it from APPLY· 
format), terminated by a carriage return or an extra right parenthesis or bracket. If a list is terminated 
then Interlisp will type a carriage-return and " ... " to indicate that funher input will be accepted. Toe 
user can type further expressions or terminate the whole expression by a carriage-rerum. 

Once the input is terminated. the programmer's assistant decides how to e~.r-- 1·~:ue the expression. This 
determination relies on a heuristic that says "If there is only expressio:·. ~.ssume EV AL V-format. 
If there are two expressio~, µien assume APPLY-format. If there are ~--~ ..,.- more expressions, then 
assume EV AL-format." Toe following inputs are examples of this rule: 

+-FOO<space> c~ 

same as FO0C" - EV ALV-fomiat 

+-LIST {AB) 
Cf' 

same as LIST(A B) - APPLY·fomzat 

----PLUS (TIMES 2 3) 
. . . 1 C:f' 

same as (PLUS (TIMES 2 3) I) - EVAL-Jomzat 

8.1.2 Examples 

So far. we have dealt only with how the executive instructs Interlisp to evaluate input. However. the same 
scheme also allows the user to give commands directly to the programmer's assistant. In fact. in each 
of the above cases, it is first determined whether the initial litatom is a command to the programmer's 
assistant. If so. the normal lisp evaluation process is bypassed. Note that this means that a function or 
variable with the same name as a programmer's assistant command will not be evaluated (in the normal 
lisp sense) if it is the first litatom of an expression input to the executive. 

The programmer's assistant facility features the use of memory structures called .. history lists.'' A hiscory 
list is a list of the information associated with each of the individual ··events'" that have occurred in the 

8.2 

0 
( 

(Y 
\ ;· 

'--

r----....,_ 
\, ) . 

\: .. ;./ .. 

0.-



THE PROGRAMMER'S ASSIST ANT 

system, where each event corresponds to one user input. Associated with each event on the history list is 
the input and its value. plus other optional information such as side-effects. formatting information. etc. 

Toe following dialogue. ta.ken from an actual session at the terminal. contains illustrative (but not 
necessarily useful) examples and gives the flavor of the programmer's assistant facility in Interlisp. Toe 
number before each prompt is the "event number" (see page 8.26). 

12+-(SETQ FOO 5) 
5 
13 .. (SETQ FOO 10) 
{FOO reset) 
10 

The p.a. notices that the user has reset the value of FOO and informs the user. 

14+-UNDO 
SETQ . .undone. 
15+-FOOcr 
5 

This is the first example of direct communication with the p.a. The user has said to UNDO the previous 
input to the executive. 

25+-SET(LSTl {ABC)) 
(A 8 C) 
26+-(SETQ LST2 '{0 E F)) 
{DEF) 
27+-{FOR X IN LST1 DO (REMPROP X 'MYPROP] 
NIL 

0 "The user asked to remove the property MYPROP from the atoms A. B, and C. Now lets assume that is not 

0 

what he wanted to do, but rather use the elements of LST2 · 

28+-UHOO FOR 
FOR undone. 

First he undoes the REMPROP, by undoing the izerative statemenL Notice the UNDO accepted an 
"argument. .. although in this case UN DO by itself would be sufficienL . 
29+-USE LST2 FOR LSTl IN 27 
NIL 

The user just instructed to go back to event number 27 and substitut~ LST2 for LSTI and then reexecuze 
the expression. The user could have also specified • 2 instead of 27 10 specify a relative address. 

8.3 



Ex:imples 

47~(PUTHASH 'FOO (MKSTRING 'FOO) MYHASHARRAY) 
"FOO" 

If MKSTRING was a computationally expensive.function (which it is not}, then the user might be cacheing 
its value for later use. _ 

48•USE FIE FUM FOE FOR FOO IN MKSTRING 
"FIE" 
"FUM" 
"FOE" 

The user now decides he would like to redo the PUTHASH several times with different values. He specifies 
the event by "IN MKSTRING" rather than PUTHASH. 

,. l.9.•?? USE 

48_ USE FIE FUM_FOE FOR FOO IN MKSTRING 
~(PUTHASH 'QUOTE FI£) (MKSTRING {QUOTE FIE)) MYHASHARRAY) 
"FIE" 
~(PUTHASH (QUOTE FUM) {MKSTRING (QUOTE FUM)) MYHASHARRAY) 
"FUM" . 
~(PUTHASH (QUOTE FOE) (MKSTRING (QUOTE FOE)) MYHASHARRAY) 
"FOE" 

Here we see the user ask the p.a. (using the ? ? command) what il has on its history list for the last input 
lo the executive. Since the event corresponds 10 a programmer's assistant command that evaluates several 
forms, these forms are saved as Lhe input. although the user's actual input. the p.a. command. is also saved 
in order to clarify the printout of that evenL 

As stated earlier. the most common interaction with the programmer's assistant occurs at the top level 
read-eval-print loop, or in a break. where the_ user types in expressions for evaluation. and sees the values 
printed out. In this mode, the assistant acts much like a standard Lisp executive, except that before 

9 ,· .. 

- attempting to evaluate an input, the assistant first stores it in a new entry on the history list. Thus if 
· .he operation is aboned or causes an error. the input is still saved and available for modification and/or (). 
-~·-reexecution. The assistant also notes new functions and variables to be added to its spelling lists to enable ~--

future corrections. Then the assistant executes the computation (i.e .. evaluates the form or applies the 
function to its arguments), saves the value in the entry on the history list corresponding to the input, and 
prints the result. followed by a prompt character to indicate it is again ready for input. 

If the input typed by the user is recognized as a p.a. . command. the assistant takes special action. 
Commands such as UNDO and ?? are immediately performed. Commands that involved reexecuti<;m of 
previous inputs, such as REDO and USE. are achieved by computing the corresponding input expression(s) 
and then unreading them. The effect of this unreading operation is to cause the assistant's input routine. 
LISPXREAD. to act exactly as though these expressions were typed in by the user. These expressions are 
processed exactly as though they had been typed. except that they are not saved on new and separate 
entries on the history list, but associated with the history command that generated them. 

The net effect of this implementation of the programmer's assistant is to provide a facility which is easily 
inserted at many levels. and embodies a consistent set of commands and conventions for talking about 
past events. This gives the user the subjective feeling that a single agent is watching everything he does 
and says. and is always available to help. 

8.4 

n 
\ /:-_; 
.. ....._ ·.-



0 

\J 

,· 

0 

0. 

THE PROGRA.Ml\.1ER'S ASSIST ANT 

8.2 PROGRAMMER'S ASSIST ANT COMMANDS 

The programmer's assistant recognizes a number of commands. which usually refer to past events on the 
history list. These commands are treated specially; for example, they may not be put on the history list. . 

Note: If the user defines a function by the same name as a p.a. command, a warning message is printed 
to remind him that the p.a. command interpretation will take precedence for type-in. 

All programmer's assistant commands use the same conventions and syntax for indicating which event 
or events on the history list the command refers to. even though different commands may be concerned 
with different aspects of the corresponding event(s), e.g., side-effects, value, input, etc. Therefore, before 
discussing the various p.a. commands, the following section dec-..cribes the types of event specifie2.tions 
currently implemented. 

8.2.1 Event Specification 

An event address identifies one event on the history list. It consists of a sequence of "commands" for 
moving an imaginary cursor up or down the history list. much in the manner of the arguments to the 
@ break command (see page 9.3). The event identified is the one .. under" the imaginary cursor when 
there are no more commands. (If any command fails, an error is generated and the history command is · 
aboned.) For example, the event address 42 refers to the event with event number 42. 42 FOO refers to 
the first event (searching back from event 42) whose input contains the word FOO, and 42 FOO -1 refers 
to the event preceeding that event. Usually, an event address will contain only one or two commands. 

Most of the event address commands perfoIIn searches for events which satisfy some condition. Unless 
the~ command is given (see below), this search always goes backwards through the history list. from the 
most recent event spe.."lfied to the oldest Note that each search skips the current evenL For example, if 
F 00 refers to event N, F 00 F IE will refer to some event before event N, even if there is a FIE in event 
N. 

Toe event address commands are interpreted as follows: 

N (an integer} 

.,.LITATOU 

.. 

F 

If N is the first command in an event address, refers to the event with event number 
N. Otherwise. refers to the event N events forward (in direction of increasing event 
number). If N is negative, it always refers to the event ·N events backwards. 

For example, -1 refers to the previous event, 42 refers to event number 42 (if 
the first command in an event address), and 42 3 refers to the event with event 
number 45. 

Specifies the last event with an APPLY-format inp~t whose function matches 
LITATOM. 

Note: There muse not be a space between .. and LITATOM. 

Specifies that the next search is to go forward instead of backward: If given as the 
first event address command. the next search begi.9J.s with last (oldest) event on the 
history list. , 

Specifies that the next object in the event address is to be searched for. regardless 

8.5 



= 

\ 

SUCHTHAT PRED 

PAT 

Event Specification 

of what it is. For example, F -2 looks for an event containing -2. 

Specifies that the next object (presumably a pattern) is to be matched against the 
values of events, instead of the inputs. 

Specifies the event last located. 

Specifies an-·event for which the function PRED returns true. PRED should be a 
function of two argumen~ the input portion of the event. and the event itself. See 
page 8.25 for a discussion of the format of events on the history list. 

Any other event address command specifies an event whose input contains an 
expression that match_es PAT as described in page 17.13. 

Toe matching is performed by the function HISTORYMATCH (page 8.33), which is r,l 
initially defined to call EDIT FI NOP but can be advised or redefined for specialized \ /-,-
applications. · \, · 

Note: Symbols used below of the form Evet2t.Add9'f:••i refer to event addresses. described above. Since an 
event address may contain multiple wor~ the -event address is parsed by searching for the words which 
delimit it. For example. in FROM EventAddru•1 THRU Evellt.Addres•~ the symbol EventAddreu1 corresponds 
to all words between FROM and THRU in the event specification, and Event.Addrfl•2 to all words from THRU 
to the end of the event specification. 

FROM EventAddreu1 THRU EventAddre.•2 
Event.Addreu1 TH RU Eve.at.Addrea2 

Specifies the sequence of events from the event with ad.dress E'Vf!Jlt.Addre••i through 
the event with address EventAddrea2• For example. FROM 47 THRU 49 specifies 
events 47, 48. and 49. Eve12tAddrea1 can be more recent than Eve.atAddreu2• For 
example, FROM 49 THRU 4 7 specifies events 49, 48. and 47 (note reversal of 
order). 

FROM EventAdcirea1 TO EventAdciress2 . 

Event.Address1 TO EveJJt:Addre••2 

Sam~ as TH RU but does not include event EventAddres•:z-

FR OM EventAddreu1 Same as FROM EventAddres•1 THRU -1. For example, if the current event is 
number 53. then FROM 49 specifies events 49, 50, 51 and 52. 

THRU Evf!1ltAddrea2 Same as FROM -1 THRU EventAddreu2. For example. if the current event is 
number 53. then TH RU 49 specifies events 52, 51 50. and 49 (note reversal of 
order). 

TO EventAdd.reu2 Same as FROM -1 TO EveatAddreH2· 

empty 

Specifies all events satisfying EventAddres.1• For example. ALL LOAD. ALL 
SUCHTHAT FOO. 

If nothing is specifie~ it is the same as specifying -1. 

Note: In the special case that the last event was an UNDO. it is the same as 
specifying -2. For example. if the user types ( NCO NC F 00 FIE). he can then 
type UNDO. followed by USE fJCONC 1. 

8.6 



-o 
\. .. , 

0 , 
' . -·· 

THE PROGRAMI\IIER'S ASSISTANT 

EvrmtSpec2 AND • • • AND EvrmtSpecN 
Each of the EvrmtSpeci is an event specification. Toe lists of events are concatenated. 
For example, FROM 30 THRU 32 AND 35 THRU 37 is the same as 30 AND 31 
AND 32 AND 35 AND 36 AND 37. 

If LlTATOM is the name of a command defined via the NAME command (page 8.12), 
specifies the event(s) defining LlTATOM. 

EvrmtSpec is an event specification interpreted as above, but with respect to the 
archived history list (see page 8.13). 

If no events can be found that satisfy the event specification, spelling correction on each word in the event 
specification is performed using LISPXFINDSPLST as the spelling list. For ex3l?lple, REDO 3 THRUU 
6 will war.I:: correctly. If the event specification still fails to specify any events after spelling correction. 
.an eITOr is generated. 

· 8.2.l Commands 

All programmer's assistant commands can be input as list forms, or as lines (see page 8.30). For example, 
typing REDO 5 er and ( REDO 5) are equivalent. · 

EvrmtSpec is used to denote an event specification. Unless specified otherwise, omitting EvrmtSpec is the 
same as specifying EventSpec=-1. For example, REPO and RECO -1 are the same. 

REDO EwzitSpac [Prog. Asst. Command] 
Redoes the event or events specified by EventSpec. For example, REDO FROM -3 
redoes the last three events. 

REDO EvrmtSpec N TIMES [Prag. Asst. Command] 
Redoes the event or events specified by Eve:JtSpec N times. For example, REDO 10 
TIMES redoes the last event ten times. 

() · REDO EvrmtSpec WHILE FORM [Prag. Asst. Command] 
\.____..I, Redoes the specified events as long as the value of FORM is true. FORM is evaluated 

b·efore each iteration so if its initial value is NIL, nothing will happen. 

0 

REDO EnzztSpec UHTIL FOP-M [Prog. Asst. Command] 
Same as REDO BvezJtSpec WHILE {~OT FORM). 

REPEAT EventSpec [Prag. Asst. Command] 
Same as REDO EventSpec WHILE T. Toe event(s} are repeated until an error occurs, 
or the user types control-E or control-D. 

REPEAT E-."C!lltSpec WHILE FORM 
REPEAT EventSpec UNTIL FORM 

Same as REDO. 

[Prag. AssL Command] 
[Prag. AssL Command] 

· For all history commands that perform multiple repetitions. the variable REDOCrH is initialized to O and 
incremented each iteration. If the event terminates gracefully, i.e.. is not aborted by an error or comrol-D. 
the number of iterations is printed. 

8.7 

.-



Commands 

RETRY EvcmtSpec [Prog. Asst. Command] 
Similar to REDO except sets HELPCLOCK (page 9.11) so that any errors that occur 
while executing EvlllltSpec will cause breaks. 

USE EXPRS FOR ARGS IN EventSpec (Prog. Asst. Command] 
Substitutes EXPRS for ARGS in EventSpec., and redoes the result. Substitution is 
done by ESUBST (page 17.57). and is carried out as described below. EXPP.S and 
A.RGS can include non-atomic members. 

For example, USE LOG (MINUS X) FOR MffILOG X IN -2 ANO -1 will 
substi.rute LOG for every occurrence of ANTILOG in the previous two events. and 
substirute {MINUS X) for every occurrence of x. and reexecute them. Note that 
these substitutions do not change the information saved about these events on the 

() 
( 

history list. n 
\ I 

Any expression to be substituted can be preceded by a ! . meaning that the -\... · 
expression is to be substituted as a segment.. e.g., LIST ( A B C) followed by USE 
I (X Y Z) FOR B will produce LIST(A X Y Z C). and USE ! NIL FOR B 
will produce LIST ( A C). 

If IN EventSpec is omitted.. the first member of ARGS is used for ETimtSpec. For 
example, USE PUTD FOR @UTD is equivalent to USE PUTD FOR @UTD IN F 
@UTD. The F is insened to handle correctly the case where the first member of 
ARGS could be interpreted as an event address command. 

USE EXPRS IN E~tSpec [Prag. Asst. Command] 
If ARGs are omitted. and the event referred to was itself a USE command, the 
arguments and expression substituted into are the same as for the indicated USE 
command. In effect. this USE command is thus a continuation of the previous USE 
command. For example. following USE X FOR Y IN 50, typing USE Z IN -1 
is equivalent to USE Z FOR Y IN 50. 

If ARGS are omitted and the event referred to was not a USE command. substitution 
is for the 0 operacor" in that command. For example ARGLI ST (FF) followed by (J 
USE CALLS IN -1 is equivalent to USE CALLS FOR ARGLIST IN -1. '-..· 

If IN EventSpec is omitted, it is the same as specifying IN -1. 

USE EXPP.S1 FOR A.RGS1 AND · · · AND EXPRSN FOR A.RGSN IN EventSpec 

[Prag. AssL Command] 
More general form of USE command. See description of the substitution algorithm 
below. 

Note: Toe USE command is parsed by a small finite state parser to distinguish the 
expressions and arguments. For example, USE FOR FOR AND AND AND FOR 
FOR will be parsed correctly. 

Every USE command involves three pieces of information: the expressions to be substituted. the arguments 
co be substituted. for. and a,.-i event specification. which defines the input expression in which the substitution 
cakes place. If the USE command has the same number of expressions as arguments, the substirution 

8.8 

(\. 
\ i .. ~,· 



() 
\::: 

THE PROGRAMMER'S ASSIST ANT 

procedure is straightforward.1 For example, USE X Y FOR U V means substitute X for U and Y for V, 
and is equivalent to USE X FOR U AND Y FOR V. However, the USE command also permits distributive 
substitutions, for substituting several expressions for the same argument. For example, USE A B C FOR 
X means first substitute A for X then substitute B for X (in a new copy of the expression), then substitute 
C for X. The effect is the same as three separate USE COil"..mands. Similarly, USE A B C FOR D AND X 
Y Z FOR W is equivalent to USE A FOR D AND X FOR W, followed by USE B FOR D AHO Y FOR 
W, followed by USE C FOR D AND Z FOR ·w. USE A B C FOR D AND X FOR Y also corresponds 
to three substitions, the first with A for D and X for Y, the second with B .for D, and X for Y, and the third 
with C for D, and again X for Y. However, USE A B C FOR D AND X Y FOR Z is ambiguous and will 
cause an error. Essentially, the USE command operates by proceeding from left to right handling each 
"AND" separately. Whenever the number of expressions exceeds the number of expressions available, 
multiple USE expressions are generated. Thus USE A B C D FOR E F means substitute A for E at the 
same time as substimting B for F, then in another copy of the indicated expression, substitute C for E 

(). and D for F. Note that this is also equivalent to USE A C FOR E AND B D FOR F. 

VARS [Prag. Asst. Command] 
Similar to USE except substitutes for the (first) operand. 

For example. EXP RP (FOO) followed by . • • FIE FUM is equivalent to USE FIE 
FUM FOR FOO. 

Note: In the following discussion. $ is used to represent the character <esc>, since this is how <esc> is 
echoed. 

$ x FOR Y IN Even:Spec [Prog. Asst. Comlµ~d] 

S Y X IN BvezitSpec 

S is a special form of th: USE command for conveniently specifying character 
substitutions in litatoms or strings. In addition. it has a number of useful properties 
in connection with events that involve errors (see below). 

Equivalent to USE SXS FOR $Y$ rn BYeZJtSpec:. which will do a character 
substimtion of the characters in x for the characters in Y. 

For eX3IIlple, if the user types MOVD{ FOO FOOSAVE T), he can then type S FIE 
FOR FOO IN MOVD to perform MOVD(FIE FIESAVE T). Note that USE FIE 
FOR FOO would perform MOVO( FIE FOOSAVE T ). 

$ Y TO X IN Evea:Spec: 
[Prag. Asst. Command] 
[Prag. Asst. Command] 
[Prag. Asst. Command] 
[Prag. Asst. Command] 

S Y = X IN Eve11tSpec 

S Y -> X IN EVe11:Spec 

Abbreviated forms of the $ command: the same as $ 
which changes YS to xs. 

X FOR Y IN EVe1J:Spec. 

S does event location the same as the USE command. Le., if IH EveZJtSpec is not specified. S searches for 
Y. However. unlike USE. Scan only be used to specify one substitution at a time. After$ finds the event. 
it looks to see if an error was involved in that event. and if the indicated character substitution can be 
performed in the object of the error message, called the offender. If so, S assumes the substitution refers 

1Except when one of the argumentS and one of the expressions are the same. e.g .• USE X Y FO~ Y X. 
or USE X FOR Y AHO Y FOR X. Titis situation is noticed when parsing the command. ·and handled 

/~ correctly. 

·v 
8.9 



Commands 

to the offender, performs the indicated character substitution in the offender only, and then substitutes the 
result for the original offender throughout the evenL For example, suppose the user types {-PRETTYOEF 

, FOOFNS 'FOO FOOOVARS) causing a U.S.A. FOOOVARS error message. The user can now type S 
00 0, which will change FOOOVARS to FOOVARS, but not change FOOFNS or FOO. 

If an error did occur in the specified event. the user can also omit specifying the object of the substitution. 
Y, in which case the offender itself is used. Thus, the user could have corrected the above example by 
simply typing S FOOVARS. Since ESUBST is used for performing the substitution (see page 17.57). Scan 
be used in x to refer to the characters in Y. For example, if the user types LOAD( PRSTRUC PROP), 
causing the error FILE NOT FOUND PRSTRUC, he can request the file to be loaded from LISP'S 
directory by simply typing S <LISP>S. This is equivalent to performing ( R PRSTRUC <LISP>S) on 
the event, and th.erefore replaces PRSTRUC by <LISP>PRSTRUC. 

,· _Note that $ never searches for an error. Thus, if the user types LOAD{ PRSTRUC PROP) causing a FILE 
IOT FOUND error, types CLOSEALL( ). and then types S <LISP>S. LISPX will complain that there is 

no error in CLOSEALL( ). In ems case, the user would have to type S <LISP>S IN LO,t\D, or S PRS 
<LISP>PRS (which would cause a search for PRS). 

Note also that S operates on input. not on programs. If the user types FOO{), and wir.hin the call to FOO 
gets a u. D. F. CONDO error, he cannot repair ems by s CONO. LISPX will type CONDO NOT FOUND 
I.N FOO{). 

F IX EYelltSpec [Prog. Asst. Command] 
Envokes the default program editor (Dedit or the teletype editor) on a copy of the 

· input(s} for Eve:JtSpec. Whenever the user exits via OK. the result is unread and 
reexecuted exactly as with REDO. 

FIX is provided for those cases when the modifications to the input(s} are not simple substitutions of the 
type that can be specified by USE. For example. if the default editor is the telecype editor, then: 

+-(OEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELLINGS2 X 70] 
INCORRECT DEFINING FORM 
FOO 
•FIX 

- £CIT 
•p 
(OEFINEQ FOO {LAMBDA & &)) 
•(LI 2) 
•p 
(OEFINEQ (FOO&)) 
•OK 
(FOO) .. 
The user can also specify the edit command(s) to LISPX. by typing - followed by the command(s) after 
the event specification. e.g., F IX - ( LI 2 ) . In this case, the editor will not type E O IT. or wait for an 
OK after executing the commands. 

Note: FIX calls the editor on the .. input sequence .. of an event. adjusting the editor so it is initially 
editing the expression typed. However. the entire input sequence is being edited. so it is possible co give 
editor commands that examine this structure funher. For more information on the format of an event's 
input. see page 8.25. 

8.10 

n 
(: 

·~-
1· ,.· 

\. -· 



0 

0 

0 

? ? Eve::tSpec 

UNDO EftlltSpec 

TIIE PROGR.Al\fMER'S ASSIST ANT 

[Prag. Asst. Command] 
Prints the specified events from the history list. If EVeJ:1tSpec is omitted. ? ? prints 
the entire history list. beginning with most recent events. Otherwise ? ? prints only 

. those events specified in EveD.tSpec (in the order specified). For example, ? ? -1. 
?? 10 THRU 15, etc. 

For each event specified. ?? prints the event number. the prompt, the input line(s). 
and the value(s). If the event input was a p.a. command that "unread" some other 
input lines, the p.a. command is printed without a preceding prompt, to show that 
they are not stored as the input, and the input lines are printed with prompts. 

Events are initially stored on the history list with their value field equal to the 
character "bell" (control·G). Thefore. if an operation fails to complete for a.DY 
reason, e.g., causes an error, is aborted. etc.. ?? will print a bell as its 0 value ... 

?? commands are· not entered on the history list, and so do not affect relative 
event numbers. In other words. an event specification of -1 typed following a ? ? 
command will refer to the event immediately preceding the ? ? coIIlII!and. 

?? is implemented via the function PRIHTHISTORY, page 8.35, which can also be 
called directly by the user. Printing is performed via the function SHOWPRIH2 (page 
6.17), so that if ~e value of SYS PRE TTY F LG= T, events will be prettyprinted. 

[Prag. Asst. Command] 
Undoes the side effects of the specified events. For each event undone, UNDO 
prints a message: RPLACA UNDONE, REDO UNDONE etc. If nothing is ·undone 
because nothing was saved, UNDO types NOTH ING SAVED. If nothing was undone 
because the event(s) were already undone, UNDO types ALREADY UNDONE. 

If EventSpec is not given. UNDO searches back for the last event that contained side 
.. effects. was not undone, and itself was not an urmo command. Note that the 

user can undo UNDO commands themselves by specifying the corresponding event 
address, e.g .. urmo - 7 or urmo UNDO. 

In order to restore all pointers correctly, the user should UHDO events in the reverse order from which 
they were executed. For example, to undo all the side effects of the last five events, perfonn UNDO 
THRU -5, not UNDO FROM -5. Undoing out of order may have unforseen effects if the operations 
are dependenL For example, if the user performed ( tJCONCl FOO FIE), followed by { NCOHCl FOO 
FUM), and then undoes the (NCONC1 FOO FIE), he will also have undone the (tJCONCl FOO FUM). 
If he then undoes the { NCONC1 FOO FUM). he will cause the FIE to reappear, by virtue of restoring 
FOO to its State before the execution of (NCONCl FOO FUM). For more details. see page 8.23. 

UNDO EveatSpec : Xl • • • XN [Prag. Asst. Command] 
Each xi is a pattern that is matched to a message printed by DWIM·in the event(s) 
specified by EveatSpec. The side effects of the corresponding DWIM corrections, 
and only those side effects, are undone. 

For example, if DWIM printed the message PRINTT [ IN FOO] -> PRINT, 
then UNDO : PRitHT or UNDO : PRINT would undo the correction. 

Some portions of the messages printed by DWIM are strings. e.g., the message 
FOO UNSAVED is printed by printing FOO and then" UNSAVED". Therefore. if 

8.11 



Commands 

the user types UNDO : UNSAVED, the DWIM correction wUI not be found. He 
should instead type UNDO : FOO or UNDO : SUNSAVEDS (<esc>UNSAVED<esc), 
see R command in editor, page 17.35). 

NAME L.ZTATOM EYUtSpec [Prog. Asst. Command} 
Saves the event(s) (including side effects) specified by EveatSpec on the property list 
of LlTA.XOM (under the property HISTORY). For example, NAME FOO 10 THRU 
15. NAME commands are undoable. 

Events saved on a litatom can be retrieved with the event specification @ LITATOM. 
For example, ?? @ FOO, REDO @ FOO, etc. 

Commands defined by NAME can also be typed in directly as though they were 
built-in commands, e.g., FOOCF is equivalent to REDO @ FOO. However. if FOO is 
the name of a variable. it would be evaluated, i.e., F 00 er would return the. value 
of FOO. 

Commands defined by NAME can also be defined to take arguments: 

NAME LITATOM ( ARG1 • • • A.RGN) ! EveatSpec [Prag. Asst. Command] 
NAME LITATOM ARGz ••• ABGN : EventSpec [Prog. Asst. Command] 

Toe arguments ARGi are interpreted the same as the arguments for a USE command. 
When LlTATOM is invoked, the argument values are substituted for ARG1 • • • A.RGN 
using the same.substitution algorithm as for USE. 

NAME FOO EfftltSpec is equivalent to NAME FOO : EveatSpec. In either case. if 
FOO is invoked with arguments, an error is generated. 

For example, following the event (PUTD 'FOO (COPY {GETPROP 'FIE 'EXPR))), the user types 
NAME MOVE FOO FIE : PUTD. Then typing MOVE TESTl TEST2 would cause (PUTC 'TESTl 
{COPY (GETPROP 'TEST2 'EXPR))) to be executed, i.e., would be equivalent to typing USE TESTl 
TEST2 FOR FOO FIE IN MOVE. Typing MOVE A B C D would cause two PUTD's to be executed. 
Note that ! 's and S's can also be employed the same as with USE. For example, if following 

~PREPINDEX(<MANUAL>14LISP.XGP) 
~FIXFILE(<MANUAL>14LISP.XGPIDX) 

the userperfonned NAME FOO S14S : -2 AND -1. then FOO S15S would perform the indicated two 
operations with 14 replaced by 15. 

RETRIEVE LlTATOM [Prag. Asst. Command] 
Retrieves and reenters on the history list the evencs named by LITATOM. Causes 
an error if UTATOM was not named by a NAME command. 

For example. if the user performs NAME FOO 10 THRU 15, and at some ~e later types RETRIEVE 
. FOO, 6 new evencs will be recorded on the history list (whether or not the corresponding eventS have been 

forgotten yet). Note that RETRIEVE does not reexecute the eventS, it simply retrieves them. The user 
can then REDO. UNDO. FIX, ere. any or all of these evencs. Note that the user can combine the effectS 
of a RETRIEVE and a subsequent history command in a single operation. e.g .• REDO FOO is equivalent 
to RETRIEVE FOO, followed by an appropriate REDO. Acrually. REDO FOO is better than RETRIEVE 
followed by REDO since in the latter case, the corre~ponding eventS would be entered on the history iist 
twice. once for the RETRIEVE and once for the REDO. Note that UNDO FOO and ?? FOO are permitted. 

8.12 

n 
C 

(; \ __ , __ 

\. ! 

() __ 
-\_· 



0 

0 

THE PROGRAM:MER'S ASSIST ANT 

BEFORE LITATOM [Prog. Asst. Command] 
Undoes the effects of the events named by LITATOM. 

AFTER LIT.ATOM [Prog. Asst. Command] 
Undoes a BEFORE LZTATOM. 

BEFORE and AFTER provide a convenient way of flipping back and forth between two states. namely 
the state bejore a specified event or events were executed. and that swe after execution. For example. if 
the user has a complex data structure which he wants to be able to interrogate before and after cenain 
modifications, he can execute the modifications, name the corresponding events with the NAME command. 
and then can tum these modifications off and on via BEFORE or AFTER commands. Both BEFORE and 
AFTER are no-ops if the UT.ATOM was already in the corresponding state; both generate errors if LITATOM 
was not named by a NAME command. · 

The alternative to BEFORE and AFTER for repeated switching back and forth involves typing UNDO, UHDO 
of the UNDO, UNDO of that etc. At each stage, the user would have to locate the correct event to undo, 
and furthermore would run the risk of that event being "forgotten" if he did not switch at least once per 
time-slice. 

Note: Since UNDO, t:AME, RETRIEVE, BEFORE, and AFTER are recorded as inputs they can be referenced 
by REDO, USE, etc. in the normal way. However. the user must again remember that the context in 
which the command is reexecuted is different than the original context. For example, if the user cypes 
NAME FOO DEF INEQ THRU COMP ILE, then types • • • FIE, the input that will be reread will be NAME 
FIE DEFHJEQ · THRU COMPILE as was intended. but both DEFINEQ and COMPILE. will refer to the 
most recent event containing those atoms. namely the event consisting of NAME FOO OEFINEQ THRU 
COMPILE. 

ARCHIVE Eve:1tSpec 

FORGET Ever:itS;,ec 

[Prog. Asst. Corrur.and] 
Records the events specified by EvelltSpec on a permanent history list. This history 
list can be referenced by preceding a standard event specification with ©@. For 
example, ? ? IH prints the archived history list. REDO @@ -1 will recover the 
corresponding event from the archived history list and redo it, etc. 

Toe user can also provide for automatic archiving of selected events by appropriately 
defining ARCH!VEFH, or by putting the property •ARCHIVE•, value T, on the 
event. Events that are referenced by history commands are automatically marked 
for archiving in this fashion (See page 8.19). 

[Prag. Asst. Command] 
Permanently erases the record of the side effects for the events specified by EvencSpec. 

If Ever:itSpec is omitted. forgets side effects for entire history list. 

FORGET is provided for users with space problems. For example. if the user has just 
performed SETs, RPLACAs, RPLACDs, PUTO, REMPROPs, etc. to release storage. 
the old pointers would not be garbage collected until the corresponding events age 
sufficiently to drop off the end of the history list and be forgotten. FORGET can 
be used to force immediate forgetting (of the side-effects only). FORGET is not 
undoable (obviously). 

REMEMBER EventSpec [Prog. Asst. Comm:md} 
Instructs the file package to "remember" the events specified by EvencSpec. These 
events will be marked as changed objects of file package type EXPRESSIONS. which 

8.13 



PL UT.ATOM 

PB LIT.A.TOM 

I. 

FORM 

SHH FORM 

.. 
Commands 

can be written out via the file package command P. For example. after the user 
types: 

-
~OVO?(OELFILE /DELFILE) 
DELFILE 
.. REMEMBER -1 
(MOVD? (QUOTE DELFILE) (QUOTE /DELFILE)) .. 
If the user calls FILES?, MAKEFILES, or CLEANUP, the command ( P (MOVD? 
(QUOTE OELFILE) (QUOTE /OELFILE))) will be constructed by the file 
package and added to the filecoms indicated by the user, unless the user has 
already explicitly added the corresponding expression to some P command himself. 

n --(-~ . .. 
.·.·· 

Note that ··remembering" an event like ( PUT PROP 'FOO 'CLISPTYPE EXPRESSION)~! 
will not result in a ( PROP CLISPTYPE FOO) command. because this will save . ('. 
the current (at the time of the MAKEFILE) value for the CLISPTYPE propeny, 
which may or may not be EXPRESSION. Thus. even if there is a PROP command 
which saves the CLISPTYPE propeny for FOO in some FII.ECOMS, remembering 
this event will still require a ( P ( PUTPROP 'FOO 'CLISPTYPE EXPRESSION)) 
command to appear: 

[Prog. Asst. Command] 
"Print Propeny List. .. Prints out the propeny list of UTA.TOM in a nil":e format. 
with PRINTLEVEL reset to ( 2 . 3 ). For example. 

.. pl+ 
CLISPTYPE: 
ACCESSFNS: 

12 
(PLUS IPLUS FPLUS) 

PL is implemented via the function PRINTPROPS. 

[Prag. Asst. Command] 
.. Print Bindings." Prints the value of LITATOi~ wi:..'-1 PRINT LEVEL reset to ( 2 • 
3). If LITATOM is not bound. does not attempt spelling correction or generate an 
error. PB is implemented via the function PRINTBINDINGS. 

PB is also a break command (page 9.5). As a break command. it ascends the stack 
and. for each frame in which LITATOM is bound. prints the frame name and value 
of LlTATOM. If typed in to the programmer's assistant when not at the top level 
e.g. in the editor. a lower USEREXEC. etc .• PB will also ascend the stack as it does 
with a break. However, as a programmer's assistant command. it is primarily used 
to examine the cop level value of a variable that may or may not be bound. or co 
examine a variable whose value is a large list. 

[Prog. Asst. Command] 
Allows the user co type a line of text without having the programmer's assistant 
process it Useful when linked to other users. or to annotate a dribble file (page 
6.12). 

[Prog. Asst. Command] 
Allows the user to evaluate an expression without having the programmer's assistant 

8.14 
() 

- ..:. 



0 

0 

o. 

0 

THE PROGRA!vIMER'S ASSIST ANT 

process it or record it on a history list. Useful when · one wants to bypass a 
programmer's assistant command or to keep the evaluation off the history list. 

EXEC [Prag. Asst. Command] 
(Interlisp-10) Calls SUBSYS (page 22.21) to descend to lower exec. 

Rather than start up a new fork each time the user types EXEC. the EXEC command 
will save the old fork handle upon return from an EXEC command. and. if the fork 
handle is still active, reuse it for the next EXEC command. i.e. an EXEC followed 
by another EXEC is equivalent to an EXEC followed by a corffIN. 

CONTIH [Prag. Asst. Command] 
(lnterlisp·lO) Performs (SUBSYS T) to continue the last call to SUBSYS (page 
22.21). 

TYPE-AHEAD [Prog. Asst. Command] 
A cOIIlII'.and that allows the user to type-ahead an indefinite number of inputs. 

The assistant responds to TYPE-AHEAD with a prompt character of>. The user can now type in an 
indefinite number of lines of input, under ERRORSET protection. Toe input lines are saved and unread 
when the user exits the type-ahead loop with the command SGO ( < esc>GO). While in the type-ahead loop, 
?? can be used to print the type-ahead, FIX to edit the type-ahead. and SQ (<esc>Q) to erase the last 
input (may be used repeatedly). Toe TYPE-AHEAD command may be aboned by $STOP (<esc>STOP}; 
control-E simply aborts the current line of input. .. 
For example: 

+-TYPE-AHEAD 
>SYSOUT(TEM) 
>MAICEFILE(EDIT) 
>BRECOMPILE((EDIT WEDIT)) 
>F 
>SQ 
\\F 
>SQ 
\\BRECOMPILE 
>LOAD(WEDIT PROP) 
>BRECOMPILE( (EDIT WEDIT)) 
>F 
>MAKEFILE(BREAK) 
>LISTFILES(EDIT BREAK) 
>SYSOUT{CURRENT) 
>LOGOUT] 
>?? 

>SYSCUT(TEM) 
>MAKEFILE(EDIT) 
>LOAD(WEDIT PROP) 
>BRECOMPILE{(EDIT WEDIT)) 
>F 
>MAKEFILE{BREAK) 
>LISTFILES(EDIT BREAK) 
>SYSOUT(CURRENT) 

8.15 

. I 



>FIX 
EDIT 

>LOGOUT] 

Commands 

•(R BRECOMPILE BCOMPL} 
•p 
{{LOGOUT} (SYSOUT &) {LISTFIL.ES &) (MAKEFILE &) {F} (BCOMPL &} 
(LOAD &) (MAKEFitE &} (SYSOUT &)) --
•(DELETE LOAD) 
!OK 
>SGO 

Note that type-ahead can be addressed to the compHer. since it uses LISPXREAD for input. Type-ahead 
can alsp be directed to the editor. but type-ahead to the editor and to LISPX cannot be intermixed. 

•, 

The following are some useful functions and variables: 

(VALUEOF LINE) [NLambdaNoSpread Function] 

IT 

• 

control-U 

An nlambda function for obtaining the value of a particular event. e.g.. ( VALUE OF 
-1 ), (VALUEOF .-FOO -2 ). Toe value of an event consisting of several operations 
is a list of the values for each of the individual operations. 

Note: The value field of a history entry is initialized to bell (control·G). Thus a 
value of bell indicates that the corresponding operation did not complete. i.e .. was 
aborted or caused an eITOr ( or else it returned. bell). 

Note: Although the input for VALUEOF is entered on the history list before 
VALUEOF is called. (VALUEOF -1) still refers to the value of the expression 
immediately before the VALUEOF input. because VALUEOF effectively backs the 
history list up one entry when it r~tlieves the specified event. Similarly, (VALUEOF 
FOO) will find the first event before this one that contains a FOO. 

[Variable] 
The value of the variable IT is always the value of the last event executed. Le. 
(VALUEOF -1). For example, 

.-(SQRT 2) 
1.414214 
.-(SQRT IT) 
1.189207 

If the last event was a multiple event. e.g. REDO -3 THRU -1. IT is set to value 
of the last of these events. Following a 77 command. IT is set to value of µie last 
event printed. In other words. in all cases. IT is set to the last value printed on 
the temlinal. 

When typed in at any point during an input being read by LISPXREAO, pen:rits 
the user to edit the input before it is returned to the calling function. 

Note: control·N for interlisp on TOPS-20. 

This feature is useful for correcting mistakes noticed in typing before the input is executed. instead of 
waiting till after execution and then performing an UNDO and a FIX. For example. if the user types 

8.16 

/) 
\ •-:-,. 

\...-

()_;::, 
\.:::·· . 

(~· 
··'-.;.· 



. 1 . 

THE PROGRAMMER'S ASSISTANT 

.. ( DEFINEQ FOO ( LAMBDA ( X) ( FIXSPELL X" and at that point notices the missing left parenthesis. 
instead of completlng the input and allowing the error to occur, and then fixing the input, ·he can simply 
type conttol·U, and finish typing normally. Control-U can be typed at any point. even in the middle of 
an atom; it simply sets a variabie checked by LISPXREAD. 

When the line is finished, the editor is-called on (OEFINEQ FOO (LAMBDA (X) (FIXSPELL X ···], 
which the user can then fix. If the user exits from the editor via OK, the (corrected) expression will be 
returned to whoever called LISPXREAO exactly as though it had been typed. If the user exits via STOP, 
the expression is returned so that it can be stored on the history list. However it will not be executed. In 
other words, the effect is the same as though the user had typed control·E at exactly the right instant. 

Conttol-U also works for calls to READLINE (page 8.30), i.e., for line commands. 

o--. 8.2.3 P.A. Commands Applied t(? P.A. Commands 

0 

0 

Programmer's assistant commands that unread expressions, such as REDO, USE, etc. do not appear in 
the input portion of events, although they are stored elsewhere in the event. They do not interfere with 
or affect the searching operations of event specifications. As a result, p.a. commands themselves cannot 
be recovered for execution in the normal way. For example, if the user types USE A B C FOR D and 
follows this with USE E FOR D, he will not produce the effect of USE A B C FOR E, but instead will 
simply cause E to be substituted for D in the last event containing a o. To produce the desired effect. the 
user should type USE D FOR E IN USE. The appearance of the word REDO, USE or FIX in an event 
address specifies a search for the corresponding programmer's assistant command. It also specifies that· 
the text of the programmer's assistant command itself be treated as though it were the input. However, 
the user must remember that the context in which a history command is reexecuted is that of the current 
history, not the original context. For example, if the user types USE FOO FOR FIE IN -1. and then 
later types REDO USE, the -1 will refer to the event before the REDO, not before the USE. 

The one exception to the statement that programmer's assistant commands "do not interfere with or 
affect the searching operations of event specifications" occurs when a p.a. command fails to produce 
any input. For example, suppose the user types USE LOG FOR ANTILOG AND AHTILOG FOR LOGG, 
mispelling the second LOG. This will cause an error, LOGG ? • Since the USE command did not produce 
any input. the user can repair it by typing USE LOG FOR LOGG, with.out having to specify IN USE. 
This latter USE command will invoke a search for LOGG, which will find the bad USE command. Toe 
programmer's assistant then performs the indicated substitution, and unreads USE LOG FOR ANTILOG 
AND AHTILOG FOR LOG. In tum. this USE command invokes a search for AHTILOG, which, because it 
was not typed in but reread, ignores the bad USE command which was found by the earlier search for 
LOGG, and which is still on the history list In other words. p.a. commands that fail to produce input 
are visible to. searches arising from event specifications typed in by the user. but not to secondary event 
specifications. 

In addition, if the most recent event is a history command which failed to produce input, a secondary 
event specification will effectively back up the history list one event so that relative event numbers for 
that event specification will not count the bad p.a. command. For example, suppose the user types 
USE LOG FOR MJTILOG ANO ANTILOG FOR LOGG IN -2 Mio -1. and after the p.a. types LOGG 
7, the user types USE LOG FOR LOGG. He thus causes the cornmand USE LOG FOR ANTILOG ANO 
ANTI LOG FOR LOG IN -2 ANO -1 to be constructed and unread. In the normal case. -1 would refer 
to the last event. i.e .• the "bad" USE command. and -2 to the event before it However. in this case. -1 
refers to the event before the bad USE command. and the -2 to the event before that. In short. the caveat 
above that "the user must remember that the context in which a history command is reexecuted is that of 

8.17 



Changing ~e Programmer's Assistant 

the current history, not the original context" does not apply if the correction is performed immediately. 

8.3 CF..Ai"iGING THE PROGRAL'\11v1ER'S ASSISTA.1.'IT 

(CHANGESLICE N HISTORY-) [Function] 
Changes the time-slice of the history list HISTORY to N (see page 8.25). If HISTORY 
is NIL, changes both the top level history list LISPXHISTORY and the edit history 
list EDITHISTORY. 

Note: Toe effect of increasing the time-slice is gradual: the history list is simply 
allowed to grow to the corresponding length before any events are forgotten. 
Decreasing the time-slice will immediately remove a sufficient number of the older 
events to bring the history list down to the proper size. However, CHANGES LICE is 
undoable, so that these events are (temporarily} recoverable. Therefore, if the user 
wants to recover the storage associated with these events without waiting N more 
events until the CHANGESLICE event drops off the history list. he must perform a 
FORGET command (page 8.13). 

PROMPT#FLG [Variable] 
When this variable is set to T, the current event number to be printed before each 
prompt character. See PROMPTCHAR, page 8.31. PROMPT#FLG is initially T. 

PROMPTCHARFORMS . [Variable] 
The value of PROMPTCHARFORMS is a list of expression which are evaluated 
each time PROMPTCHAR (page 8.31) is called to print the prompt character. If 
PROMPTCHAR is going to print something. it first maps down PROMPTCHARFORMS 
evaluating each expression under an ERRORSET. 

These expressions can access the special variables HISTORY (the current history 
list), ID (the prompt character to be printed), and PROMPTSTR. which is what 
PROMPTCHAR will print before ID, if anything. When PROMPT#FLG is T, 
PROMPTSTR will be the event number. The expressions on PROMPTCHARFORMS 
can change the shape of a cursor, update a clock. check for mail, etc~ · or change 
what PROMPTCHAR is about to print by resetting ID and/or PROMPTSTR. After the 
expressions on PROMPTCHARFORMS have been evaluated. PROMPTSTR is printed 
if it is (still) ncn-N IL, and then ID is printed, if it is (still) non·N IL.· 

HISTORYSAVEFORMS [Variable] 
The value of HISTORYSAVEFORMS is a list of expressions that are evaluated under 
errorset protection each time HISTORYSAVE (page 8.32) creates a new event. This 
happens each time there is an interaction with the user. but not when performing 
an operation that is being redone. 

The expressions on HISTORYSAVEFORMS are presumably executed for effect. and 
can access the special variables HISTORY (the current history list), re (the current 
prompt_character}. and EVENT (the current event which HISTORYSAVE is going 
to return). 

Note that PROMPTCHARFORMS and HISTORYSAVEFORMS tog1ther enable bracketing each interaction 

8.18 

.CJ. 
\._. 

() .. 
'· /. ,_. 



0 

0 

THE PROGRAMMER'S ASSIST ANT 

with the user. These can be used to measure how long the user takes to respond, to use a different 
readtable or terminal table, etc. · 

RESET FORMS 

ARCHIVEFN 

ARCHIVEFLG 

LISPXMACROS 

[Variable] 
Tne value of RESETFORMS is a list of forms that are evaluated at each RESET. i.e. 
when user types conttol·D, calls function RESET, or types conttol·C followed by 
START. 

[Variable] 
If the value of ARCHIVEFN is T; and an event is about to drop off the end of 
the history list and be forgotten, ARCHIVEFN is called as a function with two 
arguments: the input portion of the event. and the entire event (see page 8.25 
for the format of events). If ARCHIVEFtl returns T, the event is archived on a 
permanent history list (see page 8.13). Note that ARCHIVEFN must be both set 

. and defined. ARCHIVEFfl is initially NIL and undefined. 

Forexample,definingARCHIVEFNas(LAMBDA (X Y) (EQ (CAR X) 'LOAD)) 
will keep a record of all calls to LOAC. 

[Variable] 
If the value of ARCHIVEFLG is non-NIL, the system automatically marks all events 
that are referenced by history commands so that they will be archived when they 
drop off the history list. ARCHIVEFLG is initially T, so once an event is redone, it 
is guaranteed to be saved. 

An event is "marked for archiving" by putting the property "'ARCHIVE•, value T, 
on the event (see page 8.25). The user could do this by means of an approprfately 
defined LISPXUSERFN (see below). 

[Variable] 
LISPXMACROS provides a macro facility that allows the user to define his own 
programmer's assistant commands. It is a list of elements of the form { COMMAND 
DEF). Whenever COMMAND appears as the first expression on a line in a LISPX 
input. the variable LISPXLUE is bound to the rest of the line. the event is 
recorded on the history list. DEF is evaluated, and DEF's value is stored as the 
value of the event. Similarly, whenever co1.!MA.N.D appears as CAR of a form in a 
LISPX input. the variable LISPXLINE is bound to CDR of the form. the event is 
recorded, and DEF is evaluated. 

An· element of the form ( COMMAND NIL DEF) is interpreted to mean bind 
LISPXLINE and evaluate DEF as described above, except do not save the event 
on the history list. 

LISPXHISTORYMACROS [Variable] 
LISPXHISTORYMACROS allows the user to define programmer's assistant com­
mands that re-execute other events. LISPXHISTORYMACROS is interpreted the 
same as LISPXMACROS. except that the result of evaluating DEF is treated as a list 
of expressions to be unread. exactly as though the expressions had been retrieved 
by a REDO command.. or computed by a USE command. Note that reruming 
NIL means nothing else is done. This provides a mechanism for defining LISP X 
commands which are executed for effect only. 

8.19 



Changing The Progr:muner's Assistant 

Many programmer's assistant commands. such as RETRIEVE, BEFORE, AFTER, etc. are implemented 
through LISPXMACROS or· LISPXHISTORYMACROS. 

Note: Definitions of commands on LISPXMACROS or LISPXHISTORYMACROS can be saved on files with 
the file package command LISPXMACROS (see page 11.24). 

LISPXUSERFN [Variable] 
When LISPXUSERFN is set to T, it is applied as a function to all inputs 
not recognized as a programmer's assistant command, or on LISPXMACROS or 
LISPXHISTORYMACROS. If LISPXUSERFN decides to handle this input, it simply 
processes it (the event was already stored on the history list before LISPXUSERFN 
was called), sets LISPXVALUE to the value for the event. and remrns T. The . 
programmer's assistant will then know not to call EVAL or APPLY, and will simply 
store LISPXVALUE into the value slot for the event, and print it. If LISPXUSERFN 
returns NIL. EVAL or APPLY is called in the usual way. Note that LISPXUSERFN 
mus.t be both set and defined. 

LISPXUSERFN is given two arguments: x and LINE.xis the first expression typed, 
and LINE is the rest of the line, as read by READLINE (page 8.30). For example. if 
the user typed F 00 ( A B C), x= F 00, and LINE= ( { A B C) ) ; if the user typed 
(FOO AB C), x=(FOO AB C), and UNE=NlL; and if the user typed FOO 
A B c. x=FOO and LINE=(A B C). 

By appropriately defining (and setting) LISPXUSERFN, the user can with a 
minimum of effort incorporate the features of the programmer's assistant into his 
own executive· (acrually it is the other way around). For example, LISPXUSERFN 
could be defined to parse all input (other than p.a. commands} in an alternative 
way. Note that since LISPXUSERFN is called for each input (except for p.a. 
commands), it can also be used to monitor some condition or gather statistics. 

( LISPXPRINT X y z NODOFLG) [Function] 
( LISPXPRifn X y z NODOFLG) [Function] 
( LISPXPRIN2 x Y z NODOFLG} [Function) 
: LISPXSPACES X y z NODOFLG) [Function] 

- { LISPXTERPRI X y z NODOFLG) [Function] 
( LISPXTAB X y z NODOFLG) [Function] 
( LISPXPRINTDEF EXPR FILE LEFT DEF TA.IL NODOFLG) [Function] 

In addition to saving inputs and values, the programmer's assistant saves most 
system messages on the history list. For example. FILE CREATED ···, (FN 
REDEFINED), ( VAR RESET), output of TIME, BREAKDOWN, STORAGE. OWIM 
messages, er.c. When ? ? prints the event. the output is also printed. This faciiicy 
is implemented via these functions. 

These functions print exactly the same as their non-LISP X counterparts. Then, 
they put the output on the history list under the property •LIS?XPRINT• (see 
page 8.25). 

If NODOFLG is non-NIL. these fuctions do not print. but only put their output on 
the history .list. 

To perfonn output operations from user programs so that the output will appear 
on the history list. the program needs simply co call the corresponding LISPX 

8.20 

(\ 
\ X:. 

\...:•> .. 

,,., . 

( ): ....__ __ . 



') \.. _ __,. 
(. 

Q 

TIIE PROGRAMMER'S ASSIST ANT 

printing function. 

( USERLISPXPRINT X FILE z NODOFLG) [Function] 

LISPXPRINTFLG 

Toe function USERLISPXPRINT is available to permit the user to define additional 
LISPX printing functions. If the user has a function FN that takes three or fewer 
arguments, and the second argument is the file name, he can define a LISP X 
printing function by simply giving LISPXFN the definition of USERLISPXPRINT, 
for example, with MOVD(USERLISPXPR!NT LISPXFN}. USERLISPXPRINT is 
defined to look back on the stack, find the name of the calling function. strip off 
the leading "LISPX", perform the appropriate saving information. and then call 
the function to do the actual printing. 

. [Variable] 
If LISPXPRINTFLG=NIL. the LI SPX printing functiom will not store their output 
on the history list. LISPXPRINTFLG is initially T. 

8.4 STATISTICS 

The programmer's assistant keeps various statistics about system usage, e.g., number of user inputs, 
number of undo saves, number of calls to editor. number of edit commands, number of p.a. commands, 
cpu time, console time. etc. Th~e can be viewed via the function LISPXSTATS. Toe user can define add 
new statistics to the p.a. statistics via the function ADDSTATS, and increment them with LISPXWATCH. 

Note: Toe collection of programmer's assistant statistics is not supported in Interlisp·D. ADDSTATS and 
LISPXWATCH are defined with null definitiom, so programs can be transferred. 

( LISPXSTATS RETURNVALUESFLG) .:i [Function] 
Prints programmer's assistant statistics. If aETORNVALUESFLG= T, re0.1ms the 
statistics as a list of elements of the form ( VALUE • EX?LANATION). 

(). 
\_--<0· (ADDSTATS STAT1 •· • STATN) (NLambda NoSpread Function] 

Each STATi is a list of the form (STAT-NAME • MESSAGE). Each STAT-NAME is 
defined as the name of a new statistic. · 

0 

For example. (AOOSTATS ('EDITCALLS CALLS TO EDITOR) {UNOOSTAiS 
CHANGES UNDONE) will define two new statistics, named EDIT CALLS and 
UNDOSTATS. 

(LISPXWATCH STAT N) [Function} 
Increments the statistic with name STAT by N (or 1 if N=NIL). 

LISPXWATCH has a BLKLIBRARYDEF (see page 12.14). 

The user can ·save his statistics for loading into a new system by performing MAKEFILE{OUMPSTATS). 
After the file OUMPSTATS is loaded. the statistics printed by LISPXSTATS will be the same as those that 
would be printed following the MAKEFILE. 

8.21 



Undoing 

8.5 UNDOING 

Note: This discussion only applies to undoing under the executive and break; the editors handles undoing 
itself in a slightly di:ff erent fashion. 

Toe U~JDO cai,abilicy of the programmer's assistant is implemented by requiring that each operation that 
is to be undoable be responsible itself for saving on the history list enough information to enable reversal. 
of its side effects. In other words. the assistant does not "know" when it is about to perform a destructive 
operation. i.e.. it· is not constantly checking or anticipating. Instead. it simply executes operations. and 
any undoable changes that occur are automatically saved on the history list by the responsible functions. 
The UHOO command. which involves recovering the saved information and performing the corresponding 
inverses. works the same way. so that the user can UNDO an UNDO, and UNDO that ere. 

, --- 4\:t each point, until the user specifi~y requests an operation to be undone. the assistant does not know, 
· or care. whether information has been saved to enable the undoing. Only when the user attempts to 

undo an operation does the assistant check to see whether any information has been saved. If none has 
been saved. and the user has specifically named the event he wants undone. the assistant cypes NOTHH~G 
SAVED. (When the user simply types UNDO, the assistant searches for the last undoable event, ignoring 
events already undone as well as UNDO operations themselves.) _ 

This implementation minimizes the overhead for undoing. Only those operations which actually make 
changes are affected. and the overhead is small: two or three cells of storage for saving the information. and 
an extra function call. However, even this small price may be too expensive if the operation is sufficiently 
primitive and repetitive, Le.. if the extia overhead may seriously degrade the overall performance or· 
the progr;;..-:i. Hence not every destructive operation in a program should necessarily be undoable; the 
programmer must be allowed to decide each case individually. 

Therefore for exh primitive destructive function. Interlisp has defined an undoable version which always 
saves information. By convention. the name of the undoable version of a function is the function name. 
preceeded by"/," For example, there is RPLACA and /RPLACA, REMPROP and /REMPROP, etc. The 
"slash" functions that are currently implemented can be found as the value of /FNS. ' 

The various system packages use the appropriate undoable functions. Fer example. BREAK uses /PUTD and 
- .. /REMPROP so as to be undoable, and DWIM uses /RPLACA and /RPLACO. when it makes a correction.2 

Similarly, the user can simply use the corresponding / function if he wants to make a destructive 
operation in· his own program undoable. When the / function is called. it will save the UNDO information 
in the current event on the history list. 

The programmer's assistant cannot know whether efficiency and overhead are serious considerations for 
the execution of an expression in a user program. so the user must decide if he wants these operations 
undoable by explicitly calling /MAPCONC, etc. However, typed-in expressions rarely involve iterations or 
lengthy computations directly. Therefore, before evaluating the user input. the programmer's assistant 
substitutes the corresponding undoable function for any destructive function (see LISPX/, page 8.34). 
For example, if the user cypes ( MAPCO NC NASO IC • · ·). it is actually {/MAPCONC NASO IC · • ·) that' · 
is evaluated. Obviously, with a more sophisticated analysis of both user input and user programs. the 

2The effects of the following functions are always undoable: DEFINE. OEFIHEQ. OEFC (used to give 
a function a compiled code definition). DEF LIST. LOAD. SAVE DEF. UNSAVEOEF. BREAK. UNBREAK. 
REBREAK. TRACE. BREAKIN. UNBREAKIN. CHANGENAME, EDITFNS. EDITF. EOITV, EOITP. EOITE. 

- EDITL, ESUBST. ADVISE. UNAOVISE. READVISE, plus any changes caused by OWIM. 

8.22 

n 
(· 



0 

0 

(j 

I~ u 

THE PROGRAl'\1MER'S ASSISTANT 

decision concerning which operations to make undoable could be better advised. However, we have 
found the configuration described here to be a very satisfactory one. Toe user pays a very small price for 
being able to undo what he types in, and if he wishes to protect himself from malfunctioning in his own 
programs, he can have his program explicitly call undoable functions. 

8.5.1 .Undoing Out of Order 

/RPLACA operates undoably by saving (on the history list) the list cell. that is to be changed and irs 
original CAR. Undoing a /RPLACA simply restores the saved CAR. This implementation can produce 
unexpected results when multiple /RPLACAs are done on the same list cell, and then undone out of order. 
For example, if the user types (RPLACA FOO 1), followed by (RPLACA FOO 2), then undoes both 
evenrs by undoing the most recent event fust. then undoing the older event. F 00 will be restored to irs 
state before either RPLACA operated. However if the user undoes the fiist event, then the second event. 
( CAR FOO} will be 1, since this is what was in CAR of FOO before ( RPLACA FOO 2) was executed. 
Similarly, if the user types ( NCONCl FOO 1 }, followed by ( NC0NCl FOO 2 ), undoing just ( NC0HC 1 
FOO 1) will remove both 1 :md 2 from FOO. Toe problem in both cases is that the two operations are 
not "independent." In general, operations are always independent if they affect different lists or different 
sublisrs of the same lisr. Undoing in reverse order of execution. or undoing independent operations. is 
always guaranteed to do the "right" thing. However, undoing dependent operations out of order may not 
always have the predicted effect. 

Property list operations. (i.e .. PUT PROP, A00PROP and REMPROP) are handled specially, so that operations 
that affect different properties on the same property list are always independent. For example, if the user 
types ( PUT PROP 'F0O 'BAR 1) then ( PUT PROP 'FO0 'BAZ 2 ), then undoes the fust event. the 
BAZ property will remain, even though it may not have been on the property list of FOO at the time the 
fiist event was executed. 

8.S.2 SA VESET 

Typed-in SETs are made undoable by substiruting a call to SAVESET. SETQ is made undoable by 
substituting SAVESETQ, and SETQQ by SAVESETQQ, both of which are implemented in terms of 
SAVESET. 

In addition to saving enough information on the history list to enable undoing, SAVESET operates in a 
·manner analogous to SAVEDEF (page 11.18) when it resets a top level value: when it changes a tOp level 
binding from a value other than N0BIHD to a new value that is not EQUAL to the old one. SAVESET 
saves the old value of the variable being set on the variable's property list under the property VALUE, and 
prints the message (VARIABLE RESET). The old value can be restored via the function UNSET, which 
also saves the current value (but does not print a message). Thus UNSET can be used to flip back and 
fonh between two values. · - • 

Of course, UNDO can be used as long as the event containing this call to SAVESET is still active. Note 
however that the old value will remain on the property list, and therefore tie recoverable via UNSET, even 
after the original event has been forgotten. 

RPAQ and RPAQQ are implemented via calls to SAVESET. Thus old values will be saved and messages 
printed for any variables that are reset as the result of loading a file. 

For top level variables, SAVESET also adds the variable to the appropriate spelling list. thereby noticing 

8;23 



-

UNDONLSETQ and RESETUNDO 

variables set in files via RPAQ or RPAQQ, as well as those set via type-in. 

( SAVESET NAME VALVE TOPFLG FLG) [Function] 

(UNSET NAME) 

An undoable SET. SAVESET sc:ms the Stack looking for the last binding of NA..\!E. 
sets NAME to VALVE. and returns VALVE. 

If the binding changed was a top level binding. NAME is added to the spelling list 
SPELLINGS3 (see. page 15.14). Furthermore. if the old value was not NOB IND, 
and was also not EQUAL to the new value,' SAVESET calls the file package to 
update the necessary file records. Then, if DFNFLG is not equal to T, SAVESET 
prints (NAME RESET). and saves the old value on the property list of NAME. 
under the property VALUE. • 

If TOPFLG=T, SAVESET operates as above except that it always uses NAMES 

top-level value cell. When TOPFLG is T. and DFNFLG is ALLPROP and the old 
value was not NOB IND, SAVESET Sim"9ly stores VALVE on the property list of NAME 
under the property VALUE, and remrns VALVE. Tnis option is used for loading files 

· without clismrbing the current value of variables (see page 5.9). 

If FLG=NOPRINT. SAVESET saves the old value, but does not print the message. 
This option is used by UNSET. 

If FLG=NOSAVE, SAVESET does-not save the old value on the property list. 
nor does it add NAME to SPELLINGS3. However. the call to SAVESET is still 
undoable. This .option is used by /SET. 

If FLG=tJOSTACKUHOO, SAVE SET is undoable only if the binding being changed is 
a top-level binding. Le. this says when resetting a variable that has been rebound. 
don't bother to make it undoable. This option is used by RPAQ, RPAQQ, and 
AOC TOVAR. 

[Function] 
If NAME does not contain a property VALUE. UNSET generates an error. Otherwise 

n 
( 

() '. 
._ -~,: \.. . 

UNSET calls SAVESET with NAME, the propeny value, TOPFLG=T, andFLG= NOPRINT0 
\ J,; 

8.S.3 UNDONLSETQ and RESETUNDO 

The function UNDONLSETQ provides a limited fonn of backtracking: if an error occurs under the 
UNDONLSETQ, all undoabie side effects executed under the UNDONLSETQ are undone. RESETUNDO. used 
in conjunction with RESETLST and RESETSAVE (page 9.19}, provides a more general undo capability 
where the user can specify that the side effects be undone after the specified computation finishes. is 
aborted by an error. or by a concrol-D. 

( UNOONLSETQ UNDOFORM· - ) [NLambda Function] 
An nlambda function similar to NLSETQ (page 9.15}. UNDONLSETQ evaluates 
T.JNDOFORM. and if no error occurs during the evaluation. returns ( LI ST ( EVAL 
UNDOFORM)) and passes the undo infonnation from UNDOFORM {if any) upwards. 
If an error does occur. the UNOONLSETQ rerurns NIL. and any undoable changes 
made during the evaluation of UNDOFORM are undone. 

Any undo infonnation is stored directly on the history event (if LISPXHIST is 

8.24 

\ .... '-- .. 



,----. 

U' 

THE PROGRAMrvIER'S ASSISTANT 

not NIL}. so that if the user control-D's out of the UNOOHLSETQ, the event is still 
undoable. · 

UHOONLSETQ will operate correctly if #UNOOSAVES is or has been exceeded for 
this event, or is exceeded while under the scope of the UNDDr~LSETQ. 

Note: Caution must be exercised in using coroutines or other non-standard means 
of exiting while under an UNDOHLSETQ. See dis..--ussion in page 9.19. 

{ RESETUNDO X STOPFLG) [Function] 
For use in conjunction with RESETLST (page 9.19). { RESETUNDO) initializes 
the saving of undo information and returns a value which when given back 
to RESETUtJOO undoes the intervening side effects. For example, ( RESETLST 
( RESET SAVE ( RESETUNDO)) • FORMS) will undo the side effects of FOR.MS 
on normal exit, or if an error occurs or a control· D is typed. 

If STOPFLG=T. RESETUHOO stops accumulating undo information it is saving on 
x. Note that this has no bearing on the saving of undo information on higher 
RESETUNDO's, or on being able to undo the entire event. 

For example, 

. (RESETLST 
(SETQ FOO (RESETUNOO)) 
(RESETSAVE NIL {LIST 'RESETUNDO FOO)) 
(ADVISE --·) 
{RESETUNOO FOOT) 
. FORMS) 

would cause the advice to be undone. but not any· of the side effects in FORMS. 

o· 8.6 FORMAT AND USE OF THE msTORY LIST 

0 

Toe system currently uses three history lists. LISPXHISTORY for the top-level Interlisp executive. 
EOITHISTORY for the editors. and ARCHIVELST for archiving events (see page 8.13). All histozy 
lists have the same format. use the same functions, HISTORYSAVE, for recording events. and use the 
same set of functions for implementing commands that refer to the history list, e.g., HISTORYFHlD. 
PRINTHISTORY, UNOOSAVE.etc. 

Each history list is a list of the form ( L EVENT# SIZE MOD), where L is the list of events with 
the most recent event first. EVENT# is the event number for the most recent event on L, SIZE is 
the size of the time-slice (below), i.e .• the maximum length of L, and MOD is the highest possible 
event number. LISPXHISTORY and EDITHISTORY are both initialized to ( NIL 0 100 100 }. 
Setting LISPXHISTORY or EOITHISTORY to NIL disables all history fearures, so LISPXHISTORY 
and ED ITH I STORY act like flags as well as repositories of events. 

Each.history list has a maximum length. called its "time-slice." As new events occur. existing events are 
aged. and the oldest events are "forgotten." For efficiency. the storage used to represent the forgotten 
event is reused in the representation of the new event. so the history list is actually a ring buffer. The 

8.25 



( 

Format and Use of the History List 

time-slice of a history list can be changed with the function CHANGES LICE. page 8.18. Larger time-slices 
enable longer "memory spans." but tie up correspondingly greater amounts of storage. Since the user 
seldom needs really "ancient history," and a facility is provided for saving and remembering selected 
events (see NAME and RETRIEVE, page 8.U), a relatively small time-slice such as 30 events is more than 
adequate. although some users prefer to set the time-slice as large as 100 events, · 

If PROMPT#F"LG (page 8.18) is set to T, an "event number" will be printed before each prompt. More 
recent events have higher numbers. When the event· number of the current event is 100, the next event 
will be given number 1. If the time-slice is greater than 100. the "roll-over" occurs at the next highest 
hundred. so that at no time will two events ever have the same event number. For example. if the 
time-slice is 150, event number l will follow event number 200. 

Each individual event on L is a list of the form ( 'INPUT m VALtm • PROPS). m is the prompt character 
for this event. e.g. ... , : , •, etc. VALUE is the value of the event, and is initialized to bell. 3 PROPS is a 
1ropen;y list used to associate other information with the event ( described below), 

INPUT is the input sequence for the event· Normally, this is just the input that the user typed·in. For an 
APPLY format input, this is a list consisting of two expressions: for an EVAL format input. this is a list 
of just one expression; for an input entered as list of ato~ INPUT is simply that list. For example, 

User Input 

PLUS[1 1] 

(PLUS 1 1) 

PLUS 1 1 c:,. 

'INPUT is: 

(PLUS ( 1 1)) 

((PLUS 1 1)) 

(PLUS 1 1) 

If the user types in a programmer's assistant command that "unreads" and reexecutes other events (REDO. 
USE., etc.), INPtrr contains a "sequence" of the inputs from the redone evencs. Specifically, the INPUT 
fields from the specified events are concatenated into a single list. seperated by special markers called 
"pseudo-carriage rerums. •• which print out as the string "< c • r • > ". 4 When the result of this concatenation 
is "reread." the pseudo-carriage-rerurns are treated by LISPXREAD anc! fiEADLrnE exactly as real carriage 
:erurns. i.e •• they serve to distinguish between APPLY and EVAL fcr::iats on inputs to LI SPX, and to 

-- · delimit line commands to the editor. . · 

The same convention is used for representing multiple inputs when a USE command involves sequential 
substitutions. For example. if the user types GETD(FOO) and then USE FIE FUM FOR FOO. the input 
sequence that will be constructed is ( GE TD (FIE) "< c. r. >" G ETD ( FUM) ) • which is the result of 
substituting FIE for FOO in (GETD (FOO)) concatenated with the result of substituting FUM for FOO in 
( GETD (FOO)). 

Note that once a multiple input has been entered as the input portion of a new event, that event can 
be treated exactly the same as one resulting from type-in. In other words, no special checks have to 
be made when referencing ~ event. to see if it is simple or multiple. This implementation permits an 

3On EDITH!STORY. this field is used to save the side effects of each command. See page 8.35. 
4Tne value of the variable HISTSTR0 is used to represent a pseudo-carriage rerurn. · This is initially 
the string "< c. r. > ". Note that the functions that recognize pseudo-carriage returns compare them to 
HISTSTR0 using EQ, so this marker will never be confused with a string that was typed in by the user. 

8.26 

-~ ( /:-. 
- '-. ..... 

(J· 
- -



Q. 

o-
. , 

o .. · 

0 

THE PROGRAMMER'S ASSISTANT 

event specification to refer to a single simple event, or to several events. or to a single event originally 
constructed from several events (which may themselves have been multiple input events, etc.) without 
having to treat each case separately. 

REDO, RETRY, USE, ••• , and FIX commands. Le., those commands that reexecute previous events, are 
not stored as inputs, because the input portion for these events are the expressions to be .. reread". Toe 
history commands UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inputs, and?? prints 
them exactly as they were typed. 

PROPS is a property list of the form ( PROPERTYi VALt7Ei PROPERTY2 VALUE2 • • •), that can be used 
to associate arbitrary information with a particular event. Currently, the following properties are used by 
the programmer's assistant: 

SIDE 

•PRINT• 

USE-ARGS 
••• ARGS 

•ERROR• 
*CONTEXT* 

*LISPXPRIHT• 

0 ARCHIVE• 

•GROUP• 
•HISTORY• 

A list of the side effects of the event. See UNDOSAVE, page 8.33. 

Used by the ? ? command when special formatting is required. for example, when 
printing events corresponding to the break commands OK, GO, EVAL, and ?=. 

The USE-ARGS and ••• ARGS properties are used to save the arguments and 
expression for the corresponding history command. 

•ERROR•-and •CONTEXT• are used to save information when errors occur for 
subsequent use by the S command. Whenever an error occurs, the offender is 
automatically saved on that event's entry in the history list, under the •ERROR• 
property. 

Used to record calls to LISPXPRINT, LISPXPRINl, etc. (see page 8.20). 

Toe property •ARCHIVE• on an event causes the event to be automatically archived 
when it "falls off the end" of the history list (see page 8.13). 

Toe •HISTORY• and •GROUP• propenies are used for commands that reexecute 
previous events. Le., REDO, RETRY, USE, ••• , and FIX. The value of the 
•HISTORY• property is the history command that the user actually typed. e.g .• 
REDO FROM F. This is used by the ?? command when printing the event. TI1e 
value of the *GROUP* property is a strucrure containing the side effects, etc. for 
the individual inputs being reexecuted. This structure is described below. 

When LI SPX is given an input. it calls HISTORYSAVE (page 8.32) -to record the input in a new event.5 

Normally. HISTORYSAVE creates and rerurns a new event. LISPX' binds the variable LISPXHIST to 
the value of HISTORYSAVE, so that when the operation has completed. LISPX knows where to store 
the value. Note that by the time it completes. the operation may no longer correspond to the most 
recent event on the history list._ For example, all inputs cyped to a lower break will appear later on the 

5Tne commands ??. FORGET, TYPE-AHEAD, SBUFS. and ARCHIVE are executed immediately, and are 
not recorded on the history list. 

8.27 



Progr:unmer's Assistant Functions 

history list. After binding LISPXHIST, LI SPX executes the input, stores its value in. the value field of 
the LISPXHIST event. prints the value, and returns. 

When the input is a REDO, RETRY, USE •••• , or FIX command. the procedure is similar, except that 
the event is also given a •GROUP• property, initially NIL. and a •HISTORY• property, and LISPX 
simply unreads the input and returns. When the input is "reread", it is HISTORYSAVE. not LISPX, 
that notices this fact. and finds the event from which the input originally came.6 HISTORYSAVE then 
adds a new (INPUT ID VALVE' • PROPS) enuy to the *GROUP• property for this event. and returns 
this entry as the "new event." LISPX then proceeds exactly as when its input was typed directly, i.e.. 
it binds LISPXHIST to the value of HISTORYSAVE, executes the inpu, stores the value in CADDR of 
LISPXHIST, prints the value, and returns. In fact. LISPX never notices whether it is working on freshly 
typed input, or input that was reread. Similarly, UNDOSAVE will store undo information on LISPXHIST 
the same as always, and does not know or care that LISPXHIST is-not the entire event, but one of the 

·- elements of the •GROUP• property. Thus when the event is finished. its enuy will look like: 

· · (INP'ClT ID VALVE' 
-•HISTORY• 

COMMAND 
•GROUP• 

( ( INPUT 1 lD1 VALDE1 SIDE SlDE1) 
(1NPUT2 ID2 VALDE2 SIDE SIOE2 ) ... ) ) 

In this C3Se, the value field of the event with the •GROUP• property is not being used; VALUE OF instead 
remrns a list of the values from the •GROUP• property. Similarly, UNDO operates by collecting the SIDE 
properties from each of the elements of the •GROUP• property, and then undoing them in reverse order. 

This implementation removes the burden from the function calling HISTORYSAVE of distinguishing 
between new input and reexecution of input whose history eni:ry has already been set up. 

8.7 PROGRAJ."1MER'S . .\SSISTA1''T FUNCTIONS 

( LISPX I.ISPXX LISPXID USPXXM.ACROS LISPXXCJSERFN L.ISPXFLG) [Function] 
LISPX is the primary function of the programmer's assistant. LISPX takes 
one user input. saves it on the history list, evaluates it. saves its value. and 
prints and returns it. LISPX also interpretes p.a. commands. LISPXMACROS. 
LISPXHISTORYMACROS, and LISPXUSERFN. 

If LISPXX is a list. it is interpreted as the input. expression. Otherwise. LISP X 
calls READLINE. and uses LISPXX plus the value of READLINE as the input for 
the event. If LISPXX is a list CAR of which is LAMBDA or NLAMBDA. LISPX calls 
LISPXREAO to obtain the arguments. . 

LISPXID is the prompt character to print before· accepting user input. A user can 
call LISPX specifying any prompt character as LISPXID except for •. 'since in 

llo, 6If HISTORYSAVE cannot find the event. for example if a user program unreads the input directly, and 
not via a history com.-nand. HISTORYSAVE proceeds as though the input were typed. 

8.28 

0 
( 

n 
(;.:.: 

0 
~-?-· 



0 

.o· 

0 

0 

THE PROGRAMMER'S ASSIST ANT 

cenain cases LISPX must use the value of LISPXID to tell whether or not it was -
called from the editor. 

If LZSP::x::x:MA.cnos is not NIL. it is used as the list of LI SPX macros. otherwise the 
top level value of the variable LISPXMACROS is used. 

If LISPXXUSEP..FN is not tHL. it is used as the LISPXUSERFN. In this case. it is 
not necessary to both set and define LISPXUSERFr, as described on page 8.20. 

LISPXFLG is used by the E command in the editor (see page 8.35). 

Note that the history is not one of the arguments to LISPX, ie .. the editor must 
bind (reset) LISPXHISTORY to EDITHISTORY before calling LISPX to carry out 
a history command. LISPX will continue to operate as an EVAL/APPLY function 
if LISPXHISTORY is NIL. Only those functions and commands that involve the 
history list will be affected. . 

LI SPX performs spelling corrections using LISPXCOMS. a list of its commands. as 
a spelling list whenever it is given an unbound atom or undefined function. before 
attempting to evaluate the input. · 

LIS PX is responsible for rebinding HELPCLOCK. used by BREAKCHECK (page 9.10) 
for computing the amount of time spent in a computation. in order to determine 
whether to go into a break if and when an error occurs. 

( USEREXEC LISPXID LISPXXMA.CROS LISPXXUSERFN) fFunction] 
Repeatedly calls LISPX- under errorset protection specifying LISPXXMACROS and 
LISPXXU'SERFN, and using LISP'JOD (or~ if LISPXID=fHL) as a prompt character. 
USEREXEC is exited via the command OK. or else with a RETFROM. 

{ LISPXEVAL L~XFORM LISPXID) [Function] 
Evaluates LISPXFORM (using EVAL) the same as though it were typed in to LISPX, 
ie.. the event is recorded, and the evaluation is made undoable by substituting 
the slash functions for the corresponding destructive functions (see page 8.22). 
LISPXEVAL returns the value of the form. but does not print it. 

When LISPX recieves an "input." it may come from the user typing it in, or it may be an input that 
has been .. unread." LISPX handles these two cases by getting inpucs with LISPXREAD and REAOLHJE. 
described below. These functions use the variable READBUF to store the expressions that have been 
unread. When READBUF is not rHL. READLINE and LISPXREAD .. read" expressions from READBUF 
until READBUF is NIL, or until they read a pseudo-carriage return (see page 8.26). Both functions return 
a list of t..1-ie expressions that ha~e been .. read." (The pseudo-carriage return is not included in the list.) 

When READBUF is rHL. both LISPXREAD and READl:.INE actually obtain their input by performing. 
(APPLY• LISPXREAOFH FILE), where LISPXREADFN is initially set to READ. The user can make 
LISPX. the editor, break. etc. do their reading via a different input function by simply -setting 
LISPXREADFN to the name of that function (or an appropriate LAMBDA expression). 

Note: Tne user should only add expressions to READBUF using the function LISPXUNREAD (page 8.31), 
which knows about the format of READBUF. 

8.29 

.• 



.. 

Programmer's Assistant Functions 

( READLINE RDTBL - -) [Function} 

., 
-- -

Reads a line from the terminal. returning it as a list. If ( READP T) is NIL. 
READLINE returns NIL. Otherwise it reads expressions by perfomring {APPLY· 
LISPXREAOFN T) (LISPXREADFN is initially set to READ) until it encounters 
either: 

• a carriage-return {typed by the user} that is not preceded by any spaces. e.g., 

A B ccr 

and READLINE remrns ( A 8 C) 

• a list terminating in a "]", in which case the list is included in the value of 
READLINE, e.g.. 

A 8 (C DJ 

and READLINE remrns (A B ( C D) ). 

• an unmatched right parentheses or right square bracket, which is not included in 
the value of READ LINE, e.g., 

ABC] 

and READLINE remrns {A 8 C). 

In· the case that one or more spaces precede a carriage-return. or a list is terminated 
with a '") ", REAOLINE will type •• ••• ,. and continue reacting on the next line. 
e.g., 

A B tcr 
••• {D E F) 
••• { X Y Z] 

and READLINE remrns (A B C {D E F) (X Y Z)). 

If the user types another carriage-remm after the ..... ". the line will terminate. 
e.g •• 

A B ccr 
er 

andREADLINEremrns{A BC). 

Note that carriage-return. i.e., the EOL character. can be redefined with SET SYNTAX 
(page 6.34). REAOLINE acrually checks for the EOL character. whatever that may 
be. The same is true for right parenthesis and right bracket. 

· When REAOLINE is called from LISPX, it operates differently in two respects: 

(1) If the line consists ofa single) or], READLINE returns (NIL) instead of 
NIL. i.e., the ) or J is included in the line. This permits the user to type F 00) 
or FOO], meaning call the function FOO with no arguments. as opposed to Foo-=r 

8.30 

n 
(: 

n. \ ... , .. 
\.:::f-"· 

Q 



0 
C· 

0 

THE PROGRAMMER'S ASSIST ANT 

(FOO<carriage-return.>), meaning evaluate the variable FOO._ 

(2) If the first expression on the line is a list that is not preceded by any spaces, 
the list terminates the line regardless of whether or not it is terminated by ] . This 
permits the user to type EDITF( FOO) as a single input. 

Note that if any spaces are insened between the atom and the left parentheses or 
bracket. READLINE will assume that the list does not terminate the line. This is to 
enable the user to type a line command such as USE (FOO) FOR FOO. Therefore, 
if the user accidentially puts an extra space between a function and itS argumentS, 
he will have to complete the input with another carriage return. e.g., 

4-EOITF (FOO) 
er 

EDIT 
• 

( LISPXREAD FILE RDTBL) [Functit')n] 
A generalized READ. IfREADBUF = NIL, LISPXREAD performs (APPLY• LISPXREADFN 
FlLE), which it rerurns as its value. If READBUF is not NIL. LISPXREAD "reads" 
and returns the next expression on READBUF. 

Note: If the user types conttol-U during the call to READ, LISPXREAD calls the .. 
editor and rerurns the edited value. · 

LISPXREAD also sets REREAOFLG to NIL when it_ reads via READ, and sets 
REREADFLG to the value of READBUF when rereading. 

( LISPXREADP FLG) [Function] 
A generalized REAOP. If FLG=T, LISPXREADP returnS T if there is any input 
waiting to be "read", in the manner of LISPXlEAO. If FLG=NIL, LISPXREADP 
returns T only if there is any input waiting to be "read" on this line. In both cases, 
leading spaces are ignored, i.e .. skipped over with READC, so that if only spaces 
have been typed, LISPXREADP will return NIL. 

(LISPXUNREAD LST -) [Function] 

(PROMPTCHAR .lD 

Unreads LST, a list of expressions. 

FLG HISTORY) [Function} 
Called by LIS PX to print the prompt character .lD before each input. PROMPTCHAR 
will not print anything when the next input will be "reread", i.e .. when READBUF 
is not tlIL. 

PROMPTCHAR will not print when (REAOP) =T, unless FLG is T. The editor calls 
PROMPTCHAR with FLG=NIL so that extra •'s are not printed when the user 
types several commands on one line. However, EVALQT calls PROMPTCHAR with 
FLG= T, since it always wants the +- printed (except when .. rereading'"). 

If PROMPT#FLG (page 8.18) is T and HISTORY is not NIL. PROMPTCHAR prints 
the current event number (of HISTORY) before printing ID. 

" Toe value of PROMPTCHARFORMS (page 8.18) is a list of expressions that are 
evaluated by PROMPTCHAR before. and if. it does any printing. 

8.31 

' . 



Programmer's Assistant Functions 

{ HISTORY SAVE HISTORY ID INPO'Tl INPUT2 INPUT3 PROPS) 
Records one event on msTO.RY. 

[Function] 

If INPTJTl is not NIL. the input is of the form (INPUT1 IN.PUT:z • IN1'UT3). If 
1N.PUT ! is NIL, and INPUT :z is not NIL, the input is of the form ( Im'U'T :z • 
INPUT3). Otherwise, the input is just INPUT3• 

HISTORYSAVE creates a new event with the corresponding input, m, value field 
initialized to bell. and PROPS. If the IIISTOFCY has reached its full size. the last 
event is removed and cannibalized. 

Toe value of HISTORYSAVE is the new event. However, if REREADFLG is not 
NIL. and the most recent event on the history list contains · the history command 
that produced this input. HISTORYSAVE does not create a new event. but simply 
adds an ( INPUT m be 11 • PROPS) entry to the *GROUP• property for that 
event and retumS that entry. See discussion on page 8.28. 

HISTORYSAVEFORMS {page 8.18) is a list of expressions that are evaluated under 
errorset protection each time HISTORYSAVE creates a new event. 

( LISPXSTOREVALUE EVENT VALUE) [Function] 
Used by LI SPX for storing the value of an event. Can be advised by user to warch 
for particular values or perform other monitoring functions. 

( LISPXFIND HISTORY LINE TYPE BACKUP ~> [Function] 
LINE is an event specification. TYPE specifies the format of the value to be returned · 
by LISPXFINO, and can be either ENTRY, ENTRIES, COPY, COPIES, INPUT, or 
REDO.·LISPXFINO parses LlNE, and uses HISTORYFIND to find the corresponding 
events. LISP X FI NO then assembles and retumS the appropriate structure. 

LISPXFINO incorporates the following special fearures: 

(1) if BACKUP=T, LISPXFIND interprets LINE in the context of the history list 
before the current event was added. This feature is used. for example, by VALUEOF, 
so that (VALUEOF -1) will not refer to the VALUEOF event itself. 

(2) if LINE= NIL and the last event is an UNDO, the next to the last event is taken. 
This permits the user to type UNDO followed by REDO or USE. 

(3) LISPXFINO recognizes @@. and substitutes ARCHIVELST for HISTORY (see 
page 8.13). 

(4) LISPXFINO recognizes @. and retrieves the corresponding evenr(s) from the 
property list of the atom following @ (see page 8.12}. 

(HISTORYFINO LST INDEX MOD EVENTADDR.ESS -) [Function] 
Searches I.ST and returns the tails of I.ST beginning with the event corresponding 
to EVENTADDRESS. I.ST, INDEX, and MOD are the first three elements of a .. history 
list" structure (see page 8.25). EVENTADDRESS is an event address (see page 8.5) 
e.g .. (43), (-1), (FOO FIE). (LOAD .. FOO). etc. IfHISTORYFIND cannot 

. find EVENTADDRESS. it generates an error. 

8.32 

n 
'-(.· 

·~-
'. -~:· . . 

\.. 

() 
- '--



Q. 
TiiE PROGRAMMER'S ASSIST ANT 

(HISTORYMATCH 'INPUT PAT BVEN.I:) [Function] 
Used by HISTORYFINO for "matching" when EVENTADDRESS specifies a pattern. 
Matches PAT against 'INPUT, the input portion of the history event EVENT. as 
matching is defined on page 17.13. Initially defined as (EDITFI~DP INPUT PAT 
T), but can be advised or redefined by the user. 

( ENTRY# HIST X) [Function] 
msT is a history list (see page 8.25). xis EQ to one of the events on HIST. ENTRY# 
returns the event number for x. 

( UNDOSAVE UNDOFORM BISTENTRY) [Function] 
UNDOSAVE adds the "undo infonnation" UNDOFORM to the SIDE property of the 
history event BISTEN'Tf!Y. If there is no S IO E property, one is created. If the value 

,-,. of the SIDE property is NOSAVE, the information is not saved. u 

,,.........._ 

BISTENTRY specifies an event. If BISTE.NTRY=NIL. the value of LISPXHIST is 
used. If both BISTE.NTRY and LISPXHIST are NIL, UNOOSAVE is a no-op. Note 
that HISTENTRY (or LISPXHIST) can either be a "real" event, or an event within 
the •GROUP• property of another event (see page 8.28). 

The form of UNDOFORM is (FN • ARGS).1 Undoing is done by perform­
ing {APPLY (CAR UNDOFORM) (CDR ONDOFORM) ). For example, if the 
definition of FOO is DEF, ( /PUTD FOO NEWDEF) will cause a call to UNDOSAVE 
with UNDOFORM= (/PUTD FOO DEF). 

CAR of the SIDE property of an event is a count of the number of t7NDOFOR1'4S 

saved for this event. Each call to UNDOSAVE increments this count. If this count 
is set to -l then it is never incremented. and any number of UNDOFORMS can 
be saved. If this count is a positive number, UHDOSAVE' restricts the number of 
UNDOFORMS saved to the value of #UtlOOSAVES, described below. LOAD initializes 
the count to -l so that regardless of the value of #UNDOSAVES. no message will 
be printed. and the LOAD will be undoable. 

V ·#UNDOSAVES [Variable] 
The value of #UNDOSAVES is the maximum number of UNDOFORMS to be saved for 
a single event. When the count of UNDOFORMS reaches this number, UNDOSAVE 
prip.ts the message CONTINUE SAVING?, asking the user if he wants to continue 
saving. If the user answers NO or defaults. UNDOSAVE discards the previously 
saved information for this event. and makes NOSAVE be the value of the p~openy 
SIDE, which disables any further saving for this event. If the user answe~ YES. 
UNOOSAVE changes the count to -1, which is then never incremented. and continues 
saving. The purpose of this feature is to avoid tying up large quantities of storage · 
for operations that will never need to be undone. 

0 

If #UNOOSAVES is negative, then when the count reaches ·IJUNOOSAYES. 
UNOOSAVE simply stops saving without printing any messages or interacting with the 

71n the special case of /RPLNODE and /RPLNODE2. the format of UNDOFORM is (x OLDCAR • 
OLDCDR). When UNDO FORM is undone, this form is recognized and handled specially. )11.is 
implementation saves space. 

8.33 



(NEW/FN FN) 

Programmer's Assistant Functions 

user. #UND0SAVES=NIL is equivalent to #UN00SAVES=innnity. #UND0SAVES 
is initially NIL. 

[Function] 
NEW/FN performs the necessary housekeeping operations to make FN be translated 
to the undoable version IFN when typed-in. For example, RADIX can be made 
undoable when typed-in by performing: 

~ (DEFINEQ (/RADIX (X) 
(UNDOSAVE (LIST '/RADIX (RADIX X)) 

(/RADIX) 
~ (NEW/FN 'RADIX) 

( LISPX/ X FN VARS) [Function] 
LISPX/ performs the substitution of/ functions for destru::tive functions that are 
typed-in. If FN is not NIL. it is the name of a function, and x is its argument list. 
If FN is NIL.Xis a form. In both cases. LI SPX/ returns X with the appropriate 
substirutions. VA.RS is a list of bound variables ( optional). 

LISPX/ incorporates information about the syntax and semantics of Interlisp 
expressions. For example, it does not bother to make undoable operations involving 
variables bound in x. It does not perform substitution inside of expressions CAR of 
which is an nlambda function (unless CAR of the form has the property INFO value 
EVAL, see page 5.4). For example, ( BREAK PUT0) typed to LISPX, will break on 
PUTD, not /PUTD. Similarly, substitution should be performed in the arguments 
for functions like MAPC, RPTQ, etc., since these cont.ain expressions that will be 
evaluated or applied. For example, if the user types {MAPC '(F001 F002 
F003) 'PUT0) the PUT0 must be replaced by /PUTD. 

( UN00LISPX LlNE) [Function] 
LJ1'lB is an event specification. UND0LISPX is the function that executes UNDO 
commands by calling UND0LISPX 1 on the appropriate entrY(s). 

- (UND0LISPXl EVENT FLG -} [Function] 
Undoes one event. UN00LISPXl returns NIL if there is nothing to be undone. 
If the event is already undone, UN00LISPX1 prints ALREADY UNDONE and 
rerurns T. Otherwise, UN00LISPXl undoes the event, prints a message, e.g .. SETQ 
UNDONE, and returns T. 

If FLG=T and the event is already undone. or is an undo command. UN00LISPX,1 
takes no action and returns NIL. UND0LISPX uses this option to search for the 
last event to undo. Thus when LINE=NIL, UN0OLISPX simply searches history 
until it finds an event for which UH00LISPX 1 returns T. 

Undoing an event consists of mapping down (C0R of) the property value for SIDE, 
and for each element, applying CAR to CDR, and then marking the event undone 
by attaching (with /ATTACH) a NIL to the fro~t of its SIDE property. Note thac 
the undoing of each element on the SIDE property will usually cause undosaves to 
be added to the cun-eni LISPXHIST, thereby enabling the effects of UN00LISPX1 
to be undone. 

8.34 

(~ 
\_ j:: 

\_- :' .. 

o. --· 



p 

o·· -· 

0 

0 

TIIE PROGRA1\1MER'S ASSISTANT 

( PRINTHISTORY BIS'TORY LINE SKIPF'N 'NOVALUES FILE) [Function] 

8 0 • 
• o 

LINE is an event specification. PRINTHISTORY prints the events on HISTORY 
specified by LINE. e.g., (-1 THRU -10 ). Printing is performed via the 
function SHO\I/PRIN2, so that if the value of SYS?RETTYFLG=T, events will 
be prettyprinted. 

SKIPF'N is an ( optional) functional argument that is applied to each event before 
printing. If it returns non-HI L, the event is skipped, i.e •• not printed. 

If NOVALUES= T, or NOVALUES applied to the corresponding event is true, the 
value is not printed. For example, NOVALUES is T when printing events on 
EDITHISTORY. 

For example, the followi;ng LISPXMACRO will define ?? ' as a command for 
printing the history list while skipping all "large events" and not printing any 
values. 

(??' {PRINTHISTORY 
LISPXHISTORY 
LISPXLIHE 
(FUNCTION {LAMBDA (X) 

{IGREATERP (COUNT (CAR X)) 5))) 
T 
T)) 

THE EDITOR AND THE PROGRAMMER'S ASSISTANT 

As mentioned earlier. all of the remarks concerning "the programmer's assistant" apply equally well to 
user interactions with EVALQi, BREAK or the editor. The differences between the editor's implementation 
of these features and that of LI SPX are mostly obvious or inconsequential. However, for completeness. 
this section discusses the editor's implementation of the programmer's assistant. · 

The editor uses PROMPTCHAR to print its prompt character, and LISPXREAD. LISPXREADP, and 
READLIHE for obtaining inputs. When the editor is fiven an input. it calls HISTORY SAVE to record the 
input in a new event on its history list. EDITHISTORY.8 EDITH:STORY follows the same conventions 
and format as LISPXHISTORY. However, since edit commands have no value. the editor uses the value 
field for saving side effects. rather than storing them under the propeny SIDE. 

The editor recognizes and precesses the four commands DO. ! E, ! F, and ! rJ which refer to previous 
events on EDITHISTORY. Toe editor also processes UNDO itself .. as described below. All other history 

8Except that the atomic commands OK. STOP. SAVE. P, ?. PP and E are not recorded. In addition. 
number cmr.mands are grouped together in a single event. For example. 3 3 -1 is considered as one 
command for changing position. 

8.35 



, . 

The Editor and the Programmerts Assistant 

commands9 are simply given to LISPX for execution, aft.er first binding (resetting) LISPXHISTORY to 
EOITHISTORY. Toe editor also calls LISPX when given an E command (page 17.45). In this case. the 
editor uses the fifth argument to LISPX. LISPXFLG, to specify ~t any history commands are to be 
executed by a recursive call to LI SPX, rather than by unreading. For example, if the user types E REDO 
in the editor. lie wants the L.ist event on LISPXHISTORY processed as LISPX input. and not to be unread 
and processed by the editor. · 

The major implementation difference between the editor and LISPX occurs in undoing. EDITHISTORY 
is a list of only the last N commands. where N is the value of the time-slice. However the editor provides 
for undoing all changes made in a single editing session. even if that session consisted of more than N 
edit commands. Therefore, the editor saves undo information independently of the EDITHISTORY on 
a list called UNDOLST, (although it also stores each entry on UNDOLST in the field of the corresponding 
event on EDITHISTORY;) Thus, the commands UNDO, ! UNDO, and UNBLOCK, are not dependent on 
EDITHISTORY, and in fact will work if EOITHISTORY=NIL, or even in a system which does not 
::ontain LI SPX at all. For example. UNDO specifies undoing the last command on UNDOLST, even if that 
event no longer appears on EDITHISTORY. Toe only interaetion between UNDO and the history list occurs 
when the user cypes UNDO followed by an event specification. In this case, the editor calls LISPXF IND 
to find the event. and then undoes the corresponding entry on UNOOLST. Thus the user can only undo 
a specified command within the scope of the EDITHISTORY. (Noa: that this is also the only way UNDO 
commands themselves can be undone, that is. by using the history feature, to specify the corresponding 
event, e.g., UNDO UNDO.) 

The implementation of the actual undoing is similar to the way it is done in LI SPX: each command that 
makes a change in the structure being edited does so via a function that records the change on a variable. 
After the command has completed, this variable contains a list of all the pointers that have been changed 
and their crit..nal contents. Undoing that command simply involves mapping down chat list and restoring 
the pointers. 

9as indicated by their appearance on HISTORYCOMS. a list of the history commands. EOITOEFAULT in­
terrogates HISTORYCOMS before attempting spelling correction. (All of the commands on HISTORYCOMS 
are also on ED ITCOMSA and ED ITC OMS L so that they can be corrected if misspelled in the editor.) Thus 
if the user defines a LISPXMACRO and wishes it co operate in the editor as well. he need simply add it 
to HISTORYCOMS. For example. RETRIEVE is implemented as a LISPXMACRO and works equally well 
in LISP X and the editor. 

8.36 

0 ( • . .. 



0 
\.,-

0 .. 

CHAPTER 9 

ERRORS AND BREAK HANDLING 

Occasionally. while a program is numing. an error may occur which will stop the computation. A coding 
mistake may have caused the wrong arguments to be passed to a function. or the programmer may have 
not forseen a particular unusual situation which came up, causing a function to try doing something 
illegal. Interlisp provides extensive facilities for. detecting and handling error coiJ.ditions. to enable testing. 
debugging.and revising of imperfect programs. 

Errors can be caused in different ways. As mentioned above. an Interlisp primitive function may signal an 
error if given illegal arguments: for example, PLUS will cause an eITOr if its arguments are not numbers. It 
is also possible to interrupt a computation at any time by typing one of the .. interrupt characters." such as 

, control-D or control-E (the Interlisp-D interrupt characters are listed on page 18.l: those for Interlisp-10 
on page 22.1). Finally, as an aid to debugging. the programmer can specify that certain functions should 
cause an error automatically whenever they are entered (see page 10.1). This allows examination of the 
context within the computation. 

When an error occurs, the system can either1 reset and unwind the stack. or go into a .. break", an 
environment where the user can examine the state of the system at the point of the error. and attempt to 
debug the program. Within a break. Interlisp offers an extensive set of "break commands". which assist 
with debugging. 

This chapter explains what happens when errors occur. Breaks and break commands are given which 
allow the user to handle program errors. Finally. advanced facilities for modifying and extending the 
error mechanism are presented. 

1:-\,. 9.1 BREAKS 

Q. 

One of the most useful debugging facilities in Interlisp is the ability to put the system into a "break", 
stopping a computation at any point and allowing the user to interrogate the state of the world and affect 
the course of the computation. A break appears to the user like a top-level executive, except that a break 
uses the prompt character ": .. to indicate it is ready to accept input(s), in the same way that "+-" is used 
at the top-level However. a break saves the environment where the break occurred. so that the user may 
evaluate variables and expressions in the environment that was broken. In addition. the break program 
recognizes a number of useful .. break commands", which provide an easy way to interrogate tlte state of 

. the broken computation. 

Note: In Interlisp-D, the break package has been extended to include W¥1dow operations (see page 20.10}. 

1The mechanism used for decid.imz whether to unwind the stack or to szo into a break is described on 
page 9.10. Tne user can modify this mechanism. - · 

9.1 



Breaks 

Breaks may be entered in several different ways. Some interrupt characters (page 9.17) automatically 
cause a break to be entered whenever they are typed. Functions errors may also cause a break, depending 
on the depth of the computation (see page 9.10). Finally, Interlisp provides functions which make it 
easy to "break" suspect functions so that they always cause a break whenever they are entered. to allow 
examination and debugging (see page 10.4). 

Within a break the user has access to all of the power of Interlisp; he can do anything that he can do at 
the top-level executive. For example, the user can evaluate an expression. see that the value is incorrect. 
call the editor, change the function. and evaluate the expression again. all without leaving the break. The 

-- user can even type in commands to the programmer's assistant (page 8.l), e.g. to redo or undo previously 
executed evencs, including break commands. 

Similarly, the user can prettyprint functions, define new functions or redefine old ones, load a file, compile 
functions, time a computation. etc. In short, anything that he can do at the top level can be done while 

. in.side of the break. In addition the user can examine the stack (see page 7.1), and even force a return 
Jack to some higher function via the function RETFROM or RETEVAL 

It is important to emphasize that once a break occurs, the user is in complete conttel of the flow of 
the computation, and the computation will not proceed without specific instruction from mm. If the 
user types in an expression whose evaluation causes an error. the break is maintained. Similarly if the 
user aborcs a computation initiated from within the break (by typing control-E), the break is maintained. 
Only if the user gives one of the commands that exits from the break, or evaluates a form which does a 
RETFROM or RETEVAL back out of BREAK 1, will the computation continue.2 

The basic function of the break package is BREAKl. Note that BREAK1 is just another Interlisp function, 
not a special system feamre like the interpreter or the garbage collector.It has argumencs, and returns a 
_ value, the same as any other function. The value returned by BREAKl is called .. the value of the break." 
The user can specify this value explicitly by using the RETURN command described below. But in most 
cases. the value of a break. is given implicitly, via a GO or OK command. and is the result of evaluating 
"the break expression." BRK~XP, which is one of the arguments to BREAKl. For more information on 
the function BREAKl, see page 9.11. 

The break expression, stored in the variable BRKEXP. is an expression equivalent to the computation that 
would have taken place had no break occurred. For example, if the user breaks on the function FOO, the 
break expression is the body of the definition of FOO. When the user types OK or GO, the body of FOO is 
evaluated. and its value returned as the value of the break, Le.. to whatever function called FOO. BRKEXP 
is set up by the function that created the call to BREAKl. For functions broken with BREAK or TRACE. 
B RKEXP is equivalent to the body of the definition of the broken function (see page 10.4). For functions · 
broken with BREAKIN, using BEFORE or AFTER. BRKEXP is NIL. For BREAKIN AROUND, BRKEXP is 
the indicated expression (see page l~.5). 

BREAKl recognizes a large set of break commands. These are cyped in without parentheses. In order 
to facilitate debugging of p~grams that perform input operations. the_ carriage return tha_t is typed to 

2 Except that BREAKl does not "tum off' control-0, i.e., a control-0 will force an immediate return back 
to the top level 

9.2 

•·. ·".,·~ :-•. ~-..:.~4~· .-.. ~-.····• .• , .•••• ..._,,,,.,,,.,._ .. ····.· .··•• · •.• , ....... - ........ ·---·-····· ..... ,.-~-----·.-... --.~- ..... ··-.---·.-=·--·· .-.-.-. ,..:,--... -·-·· - .---- - .... . .. . 

n .. --,_ ·' 

n· ~-



0 

0 

() 

ERRORS AND BREAK HANDLING 

complete the GO, OK, EVAL, etc. commands is discarded by BREAK1, so that it will not be part of the 
input stream after the break. 

GO 

OK 

EVAL 

RETURN FOP->r! 

[Break Command] 
Evaluates BRKEXP, prints this value, and remrns it as the value 'of the break. 
Releases the break and allows the computation to proceed. 

[Break Command] 
Same as GO except that the value of BRKEXP is not printed. 

[Break Command] 
Same as OK except that the break is maintained after the evaluation. The value 
of this evaluation is bound to the local Yariable ! VALUE, which the user can 
intelTOgate. Typing GO or OK following EVAL will not cause BRKEXP to be 
reevaluated, but simply return the value of !VALUE as the value of the break. 
Typing another EVAL will cause reevaluation. EVAL is useful when the user is not · 
sure whether the break will produce the correct value and wishes to examine it 
before continuing with the computation. 

[Break Command] 
FORM is evaluated. and returned as the value of the break. For example, one could 
use the EVAL command and follow this with RETURtl ( REVERSE ! VALUE). 

. [Break Command] 
Calls ERROR 1 and aborts the break, making it "go away" without rerurning a value. 
This is a useful way to unwind to a higher level break. All other errors. including 
those encountered while executing the GO, OK, EVAL, and RETURN commands. 
maintain the break. 

The following four commands refer to .. the broken function." Titls is the function that caused the break, 
whose name is stored in the BREAKl argument BRKFN. 

IEVAL 

!GO 

!OK 

us 

@ 

[Break Command] 
The broken function is first unbroken, then the break expression is evaluated (and 
the value stored in 1 VALUE), and then the function is rebroken. This command is 
very useful for dealing with recursive functions. 

[Break Command] 
Equivalent to ! EVAL followed by GO. The broken function is unbroken. the break 
expression is evaluated, the function is rebroken, and then the break is exited with 
the value typed. 

[Break Command} 
Equivalent to ! EVAL followed by OK. The broken function is unbroken, the break 
expression is evaluated, the function is rebroken. and then the break is exited. 

[Break Command] 
Unbreaks the broken function. 

[Break Command] 
Resets the variable LASTPOS, which establishes a context for the commands ? =. 
ARGS, BT. BTV, srv•. EDIT. and IN? described below. LASTPOS is the position 

9.3 



i 

Breaks 

of a function call on the stack. It is initialized to the function just before the call 
to BREAK 1, Le., ( STKNTH -1 'BREAK1 ).3 

a treats the rest of the teletype line as its argument(s). It first resets LASTPOS to 
( STKNTH -1 'BREAKl) and then for each atom on the line, @ searches down 
the stack for a call to th.at atom. Toe following atoms are treated specially: 

8 Do not reset LASTPOS to { STKNTH -1 'BREAK!) but leave it as it was. 
·and continue searching from that point. 

a number N 
If negative, move LASTPOS down the stack N frames. If positive, move 
LASTPOS up the stack N frames. 

I Toe next atom on the line (which should be a number) specify that the 
previous atom should be searched for that many times. For example. "@ 

FOO / 3" is equivalent to "8 FOO FOO FOO". 

= Resets LAST POS to the value of the next expression. e.g.. if the value 
of F 00 is a stack pointer, ··@ = F 00 FIE" will search for FIE in the 
environment specified by (the value of) FOO. 

For example, if the push-down stack looks like: 

BREAK1 
FOO 
COND 
FIE 
CONO 
FIE 
COND 
FIE 
FUM 

{9} 
{8} 
{7] 
{6] 
{5] 
[4] 
{3] 
{2] 
fl] 

• 

then··@ FIE CONO" will set LASTPOS to the position corresponding to [5}; .. @ @ 

CONO" will then set LASTPOS to {3]; and .. m FIE / 3 - 1" to [l]. 

If @ cannot successfully complete a search for function FN, it searches the stack 
again from that point looking for a call to a function whose name is close to that 
of FN, in the sense of the spelling corrector (page 15.13). If the search is still 
unsuccessful. @ types ( FN NOT FOUND), and then aborts. 

When @ finishes. it types the name of the function at LASTPOS~ Le., ( STKNAME 
LASTPOS). 

@ can be used on BRKCOMS (see page 9.12). In this case, the next command on 
BRKCOMS is treated the same as the rest of the _teletype line. 

3When control passes from BREAK1, e.g. as a.result of an EVAL. OK, GO. REVERT, .,. command. or via 
a RETFROM or RETEVAL typed in by the user, (RELSTK LASTPOS) is executed to release this stack 
oointer. 

9.4 

-n (:-

( ) 
·. "'\~ 



0 

?= 

o-

-

ERRORS AND BREAK HANDLING 

[Break Command] 
This is a multi-purpose command. 4 Its most common use is to interrogate the 
value(s) of the arguments of the broken function. For·example, if FOO has t.liree 
arguments ( X Y Z ) , then typing ? = to a break on F 00 will produce: 

. ' 
:?= 
X = value of X 
y = value of Y 
z = value of Z 

?= operates on the rest of the teletype line as its arguments. If the line is empcy, 
as in the above case, it operates on all of the arguments of the broken function. If· 
the user types ? = X ( CAR Y), he will see the value of X, and the value of ( CAR 
Y}. 5 The difference between using ? = and typing X and ( CAR Y ) directly to 
BREAKl is that?= evaluates its inputs as of the stack frame LASTPOS, Le .. it uses 
STKEVAL This provides a way of examing variables or performing computations 
as of a particular point on the stack. For example. @ FOO I 2 followed by ?= X 
will allow the user to examine the value of X in the previous call to F 00, etc. 

? = also recognizes numbers as referring to the correspondingly numbered argument. 
Le.. it uses STKARG in this case. Thus 

:0 FIE 
FIE 
:?= 2 

will print the Il2IIl.e and value of the second argument of FIE. 

?= can also be used on BRKCOMS (page 9.12, in which case the next command 
on BRKCOMS is treated as the rest of the teletype line. For example, if BRKCOMS 
is (EVAL ?= (X Y) GO}, BRKEXP will be evaluated, the values of X and Y 
printed, and then the function exited with its value being printed. 

0 PB [Break Command] 
Prints the bindings of a given variable. Similar to ? =, except ascends the stack 
starting from LASTPOS, and. for each frame in which the given variable is bound. 
prints the frame name and value of the variable (with PRINTLEVEL reset to ( 2 

u 

• 3 )), e.g. · 

:PB FOO 
@ FNl: 
@ FN2: • 
@ • TOP: 

3 
10 
NOBIND 

41n fact. ?.= is a universal mnemonic for displaying argument names and their corresponding values. In 
addition to being a break command. ? = is an edit macro which prints the argument names and vah_1es 
for the current expression (page 17.37). and a read-macro (actually ? is the read-macro character) which 
does _the same fur the current level list being read. 
5The valile of each variable is printed with the function SHOWPRINT (page 6.17). so that if 
SYSPRETTYFLG=T, the value will be pretcyprinted.. 

9.5 



BT 

BTV 

·· BTV+ 

BTV• 

BTV! 

Breaks 

PB is also a programmer's assistant command (page 8.14) that can be used when 
not in a break. PB is implemented via the function PRINTBINOINGS. 

[Break Command] 
Prints a backtrace of function names only starting at LASTPOS. Toe several nested 
calls in system packages such as break, edit. and the top level executive appear as 
the single entries ••BREAK••, ••EDITOR••. a'.nd ••TOP•• respectively. 

[Break Command] 
Prints a backtrace of function names with variables beginning·at LASTPOS. 

Toe value of each variable is printed with the function SHOWPRINT (page 6.17). 
so that if SYSPRETTYFLG=T, the value will be pretty-printed. 

[Break Command] 
Same as BTV except also prints local variables _and arguments to SUB Rs. 

[Break Command] 
Same as BTV except prints arguments to SUBRs. local variables. and temporaries 
of the inteIJ)reter. Le. eval blips (see page 7.10). 

[Break Command] 
Same as BTV except prints everything on the stack. 

BT, BTV, BTV+, BTV•, and BTV! all take optional functional arguments. These arguments are used to 
choose functions to be skipped on the backtrace. As the backtrace scans down the stack. the name of 
each stack frame is passed to each of the functional argu.::iems to the backtrace command. If any of 
these functions rerums a non-NIL value, then that frame is skipped. and not shown in the backtrace. For 
example, BT SUBRP will skip all SUBRs. BTV (LAMBDA {X) {NOT {MEMB X FOOFNS))) will skip 
all but those functions on FOOFNS. If used on BRKCOMS (page 9.12) the functional argument is no longer 
optional. i.e •• the next element on BRKCOMS must either be a list of functional argumenr:s. or NIL if no 
functional argument is to be applied. 

For BT, BTV, BTV+, BTV•, and BTVl, if control-? is used to chan~~ a printlevel during the backtrace, 
the printlevel will be restored after the backtrace is completed. 

The value of BREAKDELIMITER, initially "er", is printed to delimit the output of ?= and backtrace 
commands._ This can be reset (e.g. to ", ") for more linear output. 

ARGS 

REVERT 

[Break Command] 
Prints the names of the variables bound at LASTPOS. i.e .. (VARIABLES LASTPOS) 
(page 7.5). For most cases. these are the arguments to the function entered at that 
position. i.e •• {ARGLIST {STKNAME LASTPOS)). 

[Break Command] 
Goes back to position LASTPOS on stack and reenters the fu1+ction called at that 
point with the arguments found on the stack. If the function is not already broken. 
REVERT first breaks it. and then unbreaks it after it is reentered. 

REVERT can be given the position using the conventions described for @. e.g .• 
REVE~T FOO -1 is equivalent to@ FOO -1 _followed by REVERT. 

REVERT is useful for restaning a computation in the situation where a bug is 

9.6 

.() 
·(·; 

()_ 
I :"' '-" . 

Cl-.'-



0 
---

0 

CRIGU!AL 

ERRORS AND BREAK HANDLING 

discovered at some point below where the problem acrually occurred.. REVERT 
essentially says "go back there and stan over in a break." REVEijT will work 
correctly if the names or arguments to the function. or even its function type. have 
been changed. 

[Break Command] 
For use in conjunction with BREAKMACROS (see page 9.12). Form is (ORIGINAL 
• COMS}. COMS are executed without regard for BREAKMACROS. Useful for 
redefining a break command in terms of itself. 

The following two commands are for use only with unbound atoms or undefined function breaks. 

= FORJ.! 

-> EXPR 

[Break Command] 
Can only be used in a break following an unbound atom error. Sets the atom to 
the value of FORM. exits from the break returning that value, and continues the 
computation. e.g., 

UNBOUND ATOM 

(FOO BROKEN) 
: = ( COPY FIE) 

sets FOO and goes on. 

Note: FORM may be given in the form FN[ARGS]. 

[Break Command} 
Can be used in a break following either with unbound atom error. or an undefined 
function error. Replaces the expression containing the error with EXPR (not the 
value of EXPR). and continues the computation. -> does not just change BRKEXP: 
it changes the function or expression containing the erroneous form. In other 
words. the user does not have to perform any additional editing. 

For example. 

~NDEFINED CAR OF FORM 

(FOOl BROKEN) 
:-> FOO 

changes the F001 to FOO and continues the computation. EXPR need not be 
atomic, e.g., 

UNBOUND ATOM 

(FOO BROKEN) 
:-> (QUOTE FOO) 

For undefined function breaks. the user can specify a function and initial arguments. 
e.g .• 

UNDEFINED CAR OF FORM 

- 9.7 



EDIT 

(MEMBERX BROKEN) 
:-> MEMBER X 

Breaks 

Note that in the case of a undefined function error occurring immediately following 
a call to APPLY (e.g.. {APPLY X Y) where the value of X is FOO and FOO is 
undefined), or a unbound atom error immediately following a call to EVAL (e.g .. 
( EVAL X ), where the value of X is FOO and FOO is unbound), there is no 
expression containing the offending atom. In this case, - > cannot operate, so ? is 
printed and no action is taken. 

[Break Command] 
Designed for use in conjunction with. breaks caused by errors. Facilitates editing 
the expression causing the break: 

NON-NUMERIC ARG 
NIL 
(IPLUS BROKEN) 
:EDIT 
IN FOO ••• 
(IPLUS X Z) 
EDIT 
•(3 Y) 
•OK 
FOO 

and the user can continue by typing OK, EVAL, etc. 

This command is vecy simple conceptually, but complicated in its implementation by all of the exceptional 
cases involving interactions with compiled functions. breaks on user functions. eITOr breaks. breaks within 
breaks, et al. Therefore, we shall give the following simplified explanation which will account for 90% of 
the situations arising in actual usage. For those others. EDIT will print an appropriate failure message 

· nd return to the break. 

ED IT begins by searching up the stack beginning at LASTPOS (set by @ command. initially position of the 
break) looking for a form. i.e., an internal call to EVAL. Then EDIT continues from that point looking for 
a call to an interpreted function, or to EVAL. It then calls the editor on either the EXPR or the argument 
to EVAL in such a way as to look for an expression EQ to the form that it first found. It then prints 
the form. and permits interactive editing to begin. Note that the user can then type successive O's to the 
editor to see the chain of superforms for this computation. 

If the user exits from the edit with an OK, the break expression is reset, if possible. so that the user can 
continue with the computation by simply typing OK. (Note that evaluating the new BRKEXP will involve 
reevaluating the form that causes the break. so that if ( PUTD ( QUOTE ( FOO) ) BIG-COMPtT"I'..'1.TION) 
were handled by EDIT, BIG-COMPUTATION would be reevaluated.) However. in some situations. the 
break expression cannot be reset. For example, if a compiled function FOO incorrectly called PUTO and 
caused the error ARG NOT ATOM followed by a break on PUTD. EDIT might be able to find the form 
headed by FOO. and also find that form in some higher interpreted function. But after the user corrected 
the problem in the FOO-form, if any, he would still not have in any way informed ED rT what to do about 
the immediate problem. i.e .• the incorrect call to PUTD. However. if FOO were interpreted ED IT would 
find the PUTD form itself. so that when the user corrected that form. EDIT could use the n1w corrected 

9.8 

() •. 

~(-

() 
\_ . ::'!', ·. 

l . ··.• • 
'-·. 

(-'\, 
\ -'-- . ./ ·'· 

'-._·-· 



() 
\:: 

ERRORS Al'ID BREAK HANDLING 

form to reset the break expression. The two cases are shown below: 

If FOO is compiled: 

F 00 compiled 

ARG NOT ATOM 
(FUM) 
(PUTD BROKEH) 
:EDIT 
IN FIE... • 
(FOO X) 
EDIT 

F 00 interpreted 

ARG r-lOT ATOM 
(PUTD BROKEN) 
:EDIT 
IN FOO •.• 
(PUTO X) 
EDIT 

,--, • ( 2 ( CAR X)) 
U *OK 

NOTE: BRKEXP NOT CHANGED 

0 (2 (CAR X)) 
*OK 
:OK 
PUTD 

FIE 
• : ?= 

0 

0 

U = (FUM) 
:(SEiQ U (CAR U)) 
FUM 
:OK 
PUTD 

IN? [Break Command] 
Similar to EDIT, but just prints parent form. and superform. but does not call 
editor, e.g.. 

ATTEMPT TO RPLAC NIL 
T 
(RPLACD BROKEH) 
:IN? 
FOO: (RPLACD X Z) 

Although EDIT and IN? were designed for error breaks. they can also be useful for user breaks. For 
example, if upon reaching a break on his function FOO, the user determines that there is a problem in 
the call to FOO, he can edit the calling form and reset the break expression with one operation by using 
EDIT. The following two protocol's with and without the use of EDIT, illustrate this: 

Without ED IT: 

(FOO BROKEN) 
:?= 
X = {A B C) 
y = D 
:BT 

FOO 
SETO 
COND 
PROG 
FIE 

With EDIT: 

(FOO BROKEN) 
:?= 
X = {A B C) 
y = D 
:EDIT 
0 ( SW 2 3) 
•OK 
FIE 6 

:OK 
FOO 

9.9 



CONO 

:EOITF{FIE) 
EDIT 
•F FOO P 
{FOO VU) 
•(SW 2 3) 
•OK 
FIE 
:(SETQ Y X) 
(ABC) 
:(SETQQ X D) 

,,--· I') 

?= 
X = D 
Y = (A B C) 
:OK 
FOO 

find which junction 
FOO is called from 
(aboned with .,. E) 

edit it 

reset X and Y 

check them 

When to Break 

9.2 · WHEN TO BREAK 

When an error occurs, the system has to decide whether to reset and unwind the srack. or go into a 
br~ In the middle of a complex computation. it is usually helpful to go into a break. so that the 
user may examine the state of the computation. However. if the computation has only proceeded _a litde 
when the error occurs. such as when the user mistypes a function name, the user would normally just 
terminate a break. and it would be more convenient for the system to simply cause an error and unwind 
the stack in this siruaruation. The decision over whether or not to induce a break depends on t.'1e depth 
of computation. and the amount of time invested in the computation. The actual algorithm is described 
-,. detail below; suffice it to say that the parameters affecting this decision h,we been adjusted empirically () 

-~o that trivial type-in errors do not cause breaks, but deep errors do. · ( -

(BREAKCHECK ERRORPOS ERXN) [Function] 
BREAKCHECK is called by the error routine to decide whether or not to induce 
a break when a error occurs. ERRORPOS is the stack position at which the error 
occurred; ERXN is the error number. Rerums T if a break should OCC'Jr; NIL 

. otherwise. 

BREAKCHECK returns T (and a break occurs) if the "computation depth" is greater 
than or equal to HELPOE PTH. HELPOEPTH is initially set to 7, arrived a_t empirically 
by taking into account the o¥erhead due to LISPX or BREAK. 

If the depth of the computation is less than .HELPOEPTH, BREAKCHECK next 
. calculates the length of time spent in the computation. If this time is greater than 

6X and Y have not been changed. but BRKEXP has. 

9.10 



0 

0 

() 

ERRORS AND BREAK HANDLING 

HELPTIME milliseconds, initially set to 1000, then BREAKCHECK returns T (and a 
break occurs), otherwise NIL. · 

. 
BREAKCHECK determines the "computation depth" by searching back up the stack looking for an 
ERRORSET frame (ERRORSETs indicate how far back unwinding is to take place when an error occurs. 
see page 9.15). At the same time, it counts the number of internal calls to EVAL. As soon as (if) 
the numb-er of calls to EVAL exceeds HELPOEPTH, BREAKCHECK immediately stops searching for an 
ERRORSET and returns T. Otherwise, BREAKCHECK continues searching until either an ERRORSET is 
found or the top of the stack is reached. (Note: If the second argument to ERRORSET is UJTERNAL, the 
ERRORSET is ignored by BREAKCHECK during this search.) BREA~CHECK then counts the number of 
function calls between the error and the last ERRORSET, or the top of the stack. The number.of function 
calls plus the number of calls to EVAL (already counted) is used as the "computation depth". 

BREAKCHf CK determines the computation time by subtracting the value of the variable HELP CLOCK from 
the value of ( CLOCK 2). the number of milliseconds of compute time (see page 14.10). HE LPCLOCK 
is rebound to the current value of { CLOCK 2) for each computation typed in to LISPX or to a break. 
Toe time criterion for breaking can be suppressed by setting HELPTIME to NIL (or a very big number), · · 
or by setting HELPCLOCK to NIL. Note that setting HELPCLOCK to NIL will not have any effect beyond 
the current computation. because HELPCLOCK is rebound for each computation typed in to LISPX and 
BREAK. 

The.user can suppress all error breaks by setting the top level binding of the variable HELPFLAG to 
NIL using SETTOPVAL (HELPFLAG is bound as a local variable in LISPX, and reset to the global value 
of HELPFLAG on every LISPX line, so just SETQing it will not work.) If HELPFLAG=T (the initial 
value). the decision whether to cause an error or break is decided based on the computation time· and 
the computation depth, as described above. Finally, if HELPFLAG=BREAK !, a break will always occur 
following an error. 

9.3 BREAK! 

Toe basic function. of the break package is BREAK 1, which creates a break. A break appears to be a 
regular executive, with the prompt .. : ", but BREAK1 also detects and interpretes break commands (page 
9.3). 

(BREAKl BRKEXP BRKWF!EN BRKFN BRKCOMS BRKTYPE ER.RORN) [NLambda Function] 
If BRKWREN is t~IL. BRKEXP is evaluated and returned as the value of BREAK 1. 
Otheiwise a break occurs and commands are then taken from BRKCOMS or the 
terminal and interpreted. All inputs not recognized by BREAK 1 are simply passed 
on to the programmer's assistant. 

When a break occurs, if ERB.ORN is a list whose CAR is a number. ERRORMESS 
is called to print an identifying message. If ERB.ORN is a list whose CAR is not 
a number. ERRORMESSl is called. Otherwise. no preliminary message is printed. 
Following this, the message ( BRKFN broken) is printed. · 

Sin:::e BREAKl itself calls functions. when one of these is broken. an infinite loop 
wouldoccur. BflEAKldetectsthissituation.andprintsBreak within a break 

9.11 



' 

i 

BREAKl 

on FN, and then simply calls the function without going into a break. 

Toe commands GO. ? GO, OK, ! OK, RETURN and ,. are the only ways to leave 
BREAK1. Toe command EVAL causes BRKEXP to be evaluated, and saves the 
value on the variable ! VALUE. Other commands can be defined for BREAK1 via 
BREAKMACROS (below). 

BRKTYPE is HIL for user breaks, INTERRUPT for control-H breaks. and 
ERRORX for error breaks. For breaks when B.RKTYPB is not NIL, BREAKl will 
clear and save . the input buffer. If the break returns a value (i.e.. is not aborted 
via ,. or control·D) the input buffer will be restored. 

The fourth argument to BREAKl is BRKCOMS, a list of break commands that BREAKl interpretS and 
executes as though they were keyboard input. One can think of BRKCOMS as another input file which 
always has prioricy over the keyboard. Whenever BRKCOJ.!S= NIL, BREAKl reads itS next command from 
the keyboard. Whenever BRKCOMS is not NIL. BREAKl takes ( CAR BRKCOMS) as itS next command 
and setS BRKCOMS to ( COR BRKCOMS). For example, suppose the user wished to see the value of the 
variable X after a function was evaluated. He could set up a break with BRKCOMS=(EVAL (PRIHT 
X) OK), which would have the desired effect. Note that if BRKCOMS is not NIL. the value of a break 
command is not printed. If you desire to see a value, you must print it yourself. as in the above example. 
The function TRACE (page 10.4) uses BRKCOMS: it setS up a break with two commands; the first one 
prints the arguments of the function. or whatever the user specifies, and the second is the command GO. 
which causes the function to be evaluated and its value printed. 

Note: If an error occurs while interpreting the BRKCOMS ~ommands, BRKCOMS is set to NIL, and a full 
interactive break occurs. 

The break package has a facilicy for redirecting ouput to a file. All output resulting ftom BRKCOMS will 
be output to the value of the variable BR K F I LE. whlch should be the name of an open file. Output due 
to user cypein is not affected, and will always go to the terminal. BRKFILE is initially T. 

BREAKMACROS [Variable] 
BREAKMACROS is a list of the form ( (NA.MEI COMu ... COM1n) (NAME2 
COM21 ••• COMau) ···). Whenever an ato!I'Jc command is given to B_REAKl. it 
first searches the list BREAKMACROS for the command. If the command is equal 
to NAMEj, BREAKl simply appends the corresponding commands to the front of 
BRICCOMS. and goes on. If the command is not found on BREAKMACROS. BREAKl 
then checks to see if it is one of the built in commands. and finally. treats it as a 
function or variable as before.1 

Example: The command ARGS could be defined by including on BREAKMACROS 
the form: {ARGS (~RINT (VARIABLES LASTPOS T))) 

( BREAKREAD Tn'E} [Function} 
Useful within BREAKMACROS for reading argumentS. If BRKCOMS is non-NIL (the 
command in which the call to BREAKREAO appears was not typed in}, returns the 
next break command from BRKCOMS, and sets- BRKCOMS to (.CCR BRKCOMS ). 

1If the command is not the name of a defined function. bound variable. or LI SPX command.. BREAK 1 will 
attempt spelling correction using B REAKCOMSLST as a spelling list. If spelling correction is unsuccessful 
BREAKl will go ahead and call LIS?X anyway, since t.'1e atom may also be a misspelled history command. 

9.12 

n 
·- ('"·. 

n 
(._ 

n 
. '-



Q 

0 

o. 

0 

ERRORS AND BREAK HANDLING 

If BRKC0MS is NIL (the command was typed in), then BREAKREA0 returns either 
the rest of the commands on the line as a list (if TYPE=LINE) or just the next 
command on the line (if TYPE is not LINE) • . 
For example, the BT command is defined as (BAK.TRACE LASTP0S NIL ( BREAKREAD 
'LINE) 0 T). Thus, if the user types BT, the third argument to BAKTRACE will 
be NIL. If the user types BT SUBRP, the third argument will be {SUBRP). 

BREAKRESETF0RMS [Variable] 
If the user is developing programs that change the way a user and Interlisp normally 
interact { e.g., change or disable the interrupt or line-editing characters. turn off 
echoing, etc.), debugging them by breaking or tracing may be difficult, because 
Interlisp might be in a "funny" state at the time of the break. BREAKRESETF0RMS 
is designed to solve this problem. Toe user puts on BREAKRESETF0RMS 
expressions suitable for use in conjunction with RESETF0RM on RESETSA\ff 
(page 9.19). When a break occurs. BREAKl evaluates each expression on 
BREAKRESETFORMS before any interaction with the terminal and saves the­
values. When the break expression is evaluated via an EVAL, OK, or GO, BREAK! 
first restores the state of the system with respect to the various expressions on 
BREAKRESETFORMS. When (if) control returns to BREAK1, the expressions on 
BREAKRESETFORMS are again evaluated, and their values saved. When the break 
is exited with an OK, GO, RETURN, or .,. command, by typing control·D, or by a 
RETFR0M or RETEVAL typed in by the user,8 BREAK1 again restores state. Thus 
the net ·effect is to make the break invisible with. respect to the user's programs. 
but nevertheless allow the user to interact in the break in the normal fashion. 

As mentioned earlier. BREAK1 detects "Break within a break" situations, and avoids 
infinite loops. If the loop occurs because of an error, BREAK! simply rebinds 
BREAKRESETF0RMS to rHL, and calls HELP. This situation most frequently occurs 
when there is a bug in a function called by BREAKRESETF0RMS. 

Note: SETQ expressions can also be included on BREAKRESETFORMS for saving 
and restoring system parameters. e.g. ( SETQ LISPXHIST0RY HIL). ( SETQ 
DWIMFLG HIL). etc. These are handled specially by BREAKl in that the current 
value of the variable is saved before the SETQ is executed, and upon restoration. 
the variable is set back to this value. 

9.4 ERROR FUNCTIONS 

{ ERRORX ERXM) [Function] 
Toe entry to the error routines. If ERXM=NIL. (ERRORN) is used to determine 
the error-message. Otherwise, ( SETERRORN ( CAR ER.XM) ( CADR ER.XM)) is 
performed. ··setting" the error number and argument. Thus following either 

8 All user type-in is scanned in order to make the operations undoable as described on page 8.22. At 
this point. RETFR0Ms and RETEVALs are also noticed. However. if the user types in an expression 
which calls a function that then does a RETFR0M. this RETFR0M will not be noticed, and the effects of 
BREAKRESETF0RMS will not be reversed. 

9.13 



Error Functions 

(ERRORX '(10 T)) or (PLUS T), (ERRORN) is {10 T}. ERRORX calls 
BREAKCHECK, and either induces a break or prints the message and unwinds to 
the last ERRORSET (page 9.10). Note that ERRORX can be called by any program 
to intentionally induce an error of any type. However, for most applications. the 
function ERROR will be more usefuL 

{ ERROR MESSl uzss2 NOa.R.EAK) [Function] 
Prints MESSl (using PRINl), followed by a space if MESSl is an atom. otherwise a 
carriage return. Then MESs:z is printed ( using PR IN 1 if MESS:Z is a string, otherwise 
PRINT}. For example, (ERROR "NON-NUMERIC ARG" T) prints -

NON-NUMERIC ARG 
T 

and ( ERROR 'FOO "NOT A FUttCTION") prints FOO NOT A FUNCTION. If 
both MESSl and MESS:.Z are NIL, the message printed is simply ERROR. 

If NOBREAK=T, ERROR prints its message and then calls ERROR !.9 Otherwise it 
calls ( ER RORX ' ( 17 ( MESSl • MESS:.Z) ) ) , ·Le.. generates error number 17, in 
which case the der..ision as to whether or not to break. and whether or not to print 
a message, is handled as per any other error. · 

{ HELP MESSl MESS:.Z BRKTYPE) [Function] 
Prints MESSl and MESS:Z similar to ERROR. and then calls BREAK1 passing BRKTYl':S 
as the BRKTYPE argume:::it. If both MESSl and MESS2 are NIL. HELP! is used 
for the message. HELP is a convenient way to program a default condition, or to 
terminate some portion of a program which the computation is theoretically never 
supposed to reach. · 

{ SHOULDNT MESS) [Function] 

- __ (ERROR!) 

(RESET) 

(ERRORN) 

Useful in those situations when a program detects a .ondition that should 
never occur. Calls HELP with the message arguments MESS and "Shaul dn' t 
happen!" and a BRKTYPE argument of 'ERRORX. 

[Function} 
Programmable concrol·E; immediately returns from last ERRORSET or resets. 

[Function} 
Programmable control·D; immediately returns to the top leveL 

[Function] 
Returns information about the last error in the form ( NTJM EXP) where NTJM is 
the error number (page 9.22) and EXP is the -expression which was (would have 
been) printed out after the error message. For example, following ( PLUS T ), 
( ERRORN) would return ( 10 T). 

( SETERRORN NTJM MESS) [Function] 
Sets the value returned by ERRORN to (NL'M MESS). 

9unless the value of HELP FLAG is BREAK!. in which case a break will always occur (see page 9.11). 

9.14 

.. . .. •· 

'-- .. 



0 

0 

-

0 

0 

( ERRORMESS u) 

ERRORS AND BREAK HANDLING 

[Function] 
Prints message corresponding to an ERRORN that yielded u. For exam.pl~. 
(ERRORMESS '(10 T)) would print 

PION-NUMERIC ARG 
T 

( ERRORMESSl MESSl MESS2 MESS3} [Function] 
Prints the message corresponding to a HELP or ERROR break. 

( ERRORSTRIHG-N) [Function] 
Returns as a new string the message corresponding to error number N, e.g., 
(ERRORSTRING l0)="NON-NUMERIC ARG". 

( ERRORSET FORM FLAG -) [Function] 

( ERSETQ FORM) 

.(NLSETQ FORM) 

NLSETQGAG 

Performs ( EVAL FORM). If no error occurs in the evaluation of FORM, the value 
of ERRORSET is a list containing one element. the value of (EVAL FORM). Ifan 
error did occur, the value of ERRORSET is NIL. 

Note that ERRORSET is a lambda function. so its arguments ~-e evaluated bejore 
.it is entered, i.e •• ( ERRORSET X) means EVAL is called with the value of X. In 
most cases, ERSETQ and NLSETQ (described below) are more useful 

The argument FLAG controls the printing of error messages if an error occurs: 
, 

If FLAG=T, the error message is printed; if FLAG=NIL it is not (unless 
NLSETQGAG is NIL, see below}. Note that if a break occurs below an ERRORSET, 
the message is printed regardless of the value of FLAG. 

If FLAG= INTERNAL, this ERRORS ET is ignored for the purpose of deciding 
whether or not to break or print a message (see page 9.10). However, the 
ERRORSET is in effect for the pUIJ)ose of flow of control i.e., if an error occurs, 
this ERRORSET returns NIL. 

If FLAG= NOBREAK, no break will occur, even if the time criterion for breaking 
is met. Note that FLAG= NOB REAK will nol prevent a break from occurring if 
the error occurs more than HELPDEPTH function calls below the errorset. since 
BREAKCHECK will stop searching before it reaches the ERRORSET. To guarantee 
that no break occurs, the user would also either have to reset HELPDEPTH or 
HELPFLAG. 

[NLambda Function] 
Performs ( E RRORSET 'FORM T). evaluating FORM and printing error messages. 

[NLambda Function] 
Performs { ERRORS ET 'FORM NIL). evaluating FORM without printing error 
messages. 

[Variable] 
If rJLSETQGAG is NIL. error messages will print. regardless of the FLAG 

argument of ERRORSET. NLSETQGAG effectively changes all NLSE"'FQs to ERSETQs. 
NLSETQGAG is initially T. 

9.15 



Error Handling by Error Type 

· 9.5 ERROR HANDLING BY ERROR TYPE 

Occasionally the user may want to treat certain types of errors differently from others. e.g .. always break. 
never break. or perhaps take some corrective action. This can be accomplished via ERRORTYPELST: 

ERRORTYPELST [Variable] 
ERRORTYPELST is a list of elements of the form ( NUM FOR.MI ••• FOR.MN)• 
where NUM is one of the error numbers (page 9.22). During an error. 
after BREAKCHECK has been completed. but before any other action is taken. 
ERRORTYPELST is searched for an element with the same error number as that 
causing the error. If one is found, the corresponding forms are evaluated. and if 
the last one . prodqces a non·N IL value. this value is substiruted for the offender. 
and the function causing the error is reentered. 

.,,.,.~-. 
(( '/ithin ERRORTYPELST entries. the following v3:fiables may be useful: 

ERRORMESS 

ERRORPOS 

BREAKCHK 

PR!NTMSG 

[Variable] 
CAR is the error number, CAD R the ••offender,., e.g., ( 10 NIL) corresponds to a 
NON-NUMERIC ARG NIL error. 

[Variable] 
Stack pointer to the function in which the error occurred. e.g.. ( STKNAME 
ERRORPOS) might be I PLUS. RPLACA. IN FILE. etc. 

Note: If the error is going to be bandied by a RETFROM. RETTO. or a RETEVAL 
in the ERRORTYPELST ent..--y, it probably is a good idea to first release the stack 
pointer ERRORPOS. e.g. by performing (RELSTK ERRORPOS). 

[Variable] 
Value of BREAKCHECK. i.e.. T means a break will occur, NIL means one will not. 
This may be reset within the ERRORTYPELST entry. 

[Variable] 
If T, means print error message, if NIL. don't print ermr message. i.e •• corresponds n-; 
to second argument to ERRORSET. The user can force or suppress the printing of \ j · 
error message for various errorcypes by including on ERRORTYPELST an expression 
which explicitly sets PRINTMSG. 

For example. putting 

[10 (ANO {NULL (CAOR ERRORMESS)) 
(SELECTQ (STKNAME ERRORPOS) 

{{!PLUS AOO1 SUBl) 0) 
(!TIMES 1) 
(PROGN (SETQ BREAKCHK T) NIL] 

on ERRORTYPELST would specify that whenever a NON-NUMERIC ARG - NIL error occurred. and the 
function in question was I PLUS, ADO 1. or SUB 1. o should be used for the NIL. If the function was 
!TIMES. 1 should be used. Otherwise. always break. Note that the latter case is achieved not by the 
value rerurned. but by the effect of the evaluation. i.e .• setting BREAKCHK co T. Similarly; ( 16 ( SETQ 
BREAKCHK NIL)) would prevent ENO OF FI LE errors from ever breaking. 

9.16 



0 '(. 

0 

0 

() 

ERRORS AND BREAK HANDLING 

ERRORTYPELST is initially ((23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG))), 
which causes SPELLFILE to be called in case of a FILE NOT FOUtlD error (see page 15.20). If 
SPELLFILE is successful. the operation will be reexecuted with the new (corrected) file name. 

9.6 INTERRUPT CHARACTERS 

Errors and breaks can be caused by errors within functions, or by explicitly breaking a function. The user 
can also indicate his desire to go into a break at while a program is running by typing certain control 
characters known as "interrupt characters". The interrupt characters in Interlisp-Dare listed on page 18.1: 
those in Interlisp-10 are listed on page 22.l. 

The user can disable and/or redefine Interlisp interrupt characters, as well as define new inlem.lpt 
characteIS. Interlisp-10 is initialized with 9 interrupt channels: RESET (control-D), ERROR (control·E), 
BREAK (control-B), HELP (control·H), PRrnTLEVEL (control-P), CONTROL-T (control-T), RUBOUT (del), 
STORAGE (control·S), and OU1 PUTBUFFER (control-0). Interlisp-D does not have the STORAGE and 
OUTPUTBUFFER interrupt channels, and has the additional channel RAID (control-C). Each of these 
channels independently can be disabled. or have a new interrupt character assigned to it via the function 
INTERRUPTCHAR described below. In addition. the user can enable up to 9 new interrupt channels, and 
associate with each channel an intenupt character and an expression to be evaluated when that character 
is typed. 

User interrupts can be either "hard" or "soft". A "hard'' interrupt is like control-E or control-D: it takes 
place as soon as it is typed. A soft interrupt is like control-H; it does not occur until the next function 
call. Soft interrupts can always be safely continued from. Hard interrupts rip the system out of the 
function currently being executed and unwind back to the last function call, Le. pan of the computation 
that was interrupted is lost and cannot be continued. 

Hard intem1pts are implemented by generating error number 43, and retrieving the corresponding form 
from the list USERIHTERRUPTS once inside of ERRORX. Soft interrupts are implemented by calling 
INTERRUPT with an appropriate third argument, and then obtaining the corresponding form from 
USERINTERRUPTS. As soon as a soft interrupt character is typed. Interlisp elem and saves the input 
buffers. and then rings the bell. After the interrupt form is evaluated. the input buffers are restored. 
In either case, if a character is enabled as a user interrupt. but for some reason it is not found on 
USERINTERRUPTS, an UNDEFINED USER INTERRUPT error will be generated. 

( INTERRUPTCHAR CHAR TYP/FORM HARDFLG) [Function] 
Defines CHAR as an interrupt character. If CH.AR was previously defined ~ an 
interrupt character, that interpretation is disabled. 

CHAR is either a character or a character code (as returned by CHCON 1). TENE.X 
requires that interrupt characters be one of control-A, B ..... z, space, esc(alt-mode), 
rubout(delete), or break. . · 

If TYP/FORM=NIL. CHAR is disabled. 

If TYP /FORM= T. the current state of CHAR is returned without changing or 
disabl_ing iL 

If TYP/FORM is one of the 8 literal atoms HELP. PRHHLEVEL. STORAGE. RUBOUT. 

9.17 



Changing and Restoring System State 

ERROR, RESET, 0UTPUTBUFFER, or BREAK, then INTERRUPTCHAR assigns CHAR 

to the indicated Interlisp interrupt channel. (reenabling the channel if previously 
disabled). 

If TYP /FORM is any other literal atom. CHAR is enabled as an interrupt character 
that when typed causes the atom TYP /FORM to be immediately set to T. 

If TYP /FORM is a list. CHAR is enabled as a user interrupt character, and TYP /FORM 
is the form that is evaluated when CHAR is typed. The interrupt will be hard if 
HA.RDFI.G = T, otherwise soft. 

( INTERRUPTCHAR T) restores all Interlisp channels to their original state, and 
disables all user interrupts. 

I~) 
\ -. "l... 

INTERRUPTCHAR returns an expression which, when given as an argument to f"\ 
INTERRUPT CHAR, will restore things as they were before the call to INTERRUPTCHAR. \_ /:· 
Therefore, INTERRUPTCHAR can be used in conjunction with RESETFORM or '-----
RESETLST (page 9.20). 

INTERRUPTCHAR is undoable. 

(RESET. INTERRUPTS PEP...\!ITTEIJINTERR.UPTS SAVEC'URRENT?) [Function] 
PERMITTEDINTERRUPTS is a list of interrupt character settings to be performed. 
each of the form ( CRAR • TYPjFORM). The effect of RESET. INTERRUPTS 
is as if ( INTERRUPTCHAR CHAR TYPjFORM) were performed for each item 
on PER.MITTEDINTERRUPTS, and ( INTERRUP.TCHAR OTHERCHAR NIL) were 
performed on every other existing interrupt character. 

If SAVECURR.ENT? is non-NIL, then RESET. INTERRUPTS returns the current state 
of the interrupts in a form that could be passed to RESET. INTERRUPTS, otherwise 
it rerums NIL. This can be used with a RESET. INTERRUPTS that appears in a 
RESET FORM, so that the list' is built at .. entry", but not upon .. exit''. 

( INTERRUPT ABLE FLAG) [Function] 
if FLAG= NIL, turns interrupt off. If FLAG= T, turns interrupt on. Value is (}. _ 
previous setting. INTERRUPT AB LE compiles open. · '- ··· -

Note: Any interrupt character typed while interrupts are off is treated the same as any other character, 
i.e. placed in the input buffer, and will not cause an interrupt when interrupts are turned back on. 

( INTERRUPTABLEP) [Function] 
(Interlisp-10) Returns T if interrupts are enabled; NIL if disabled. 

9.7 CHAl'l"GING AND RESTORING SYSTEM STATE 

In Interlisp, a computation can be interrupted/aborted at any point due co an error, or more forcefully, 
because a comrol-O was typed. causing return co the top level. This situation creates problems for 
programs that need to perform a computatipn with the system in a "differem state", e.g., different radix. 
input file, readtable, etc. but want to "protect" the calling environment. i.e., be able to restore the state 

9.18 



0 
"--· 

0 

0 

,"\ 
U. 

ERRORS AND BREAK HANDLING 

when the computation has completed. While program errors and control· E can be "caught" by errorsets. 
control·D is not.10 Thus the system may be left in its changed state as a result of the computation being 
aborted. Toe following functions address this problem. 

Note that these functions do not and cannot handle the situation where their environment is exited via 
anything other than a normal return. an error, or a reset. E.g. a RETEVAL, RETFROM, RESUME. ere .. will 
never be seen. 

( RESETLST FORM1 • • • FORMN) [NLambda NoSpread Function] 
RESETLST evaluates its arguments in order, after setting up an ERRORSET so that 
any reset operations performed by RESETSAVE (see below) are restored when the 
forms have been evaluated (or an error occurs, or a control-D is typed). If no 
error occurs. the value of RESETLST is the value of FORMN, otherwise RESETLST 
generates an error (after performing the necessary restorations). 

RESETLST compiles open. 

( RESETSAVE x Y) • [NLambda NoSpread Function] 
RESET SAVE is used within a call to RES ET LST to change the system state by calling 
a function or setting a variable, while specifying how to restore the original system 
state when the RESETLST is exited (normally, or with an error or control-D). 

If x is atomic, resets the top level value of x ·to the value of Y. For 
example, ( RESETSAVE LISPXHISTORY ED ITH I STORY) resets the value of 
LISPXHISTORY to the value of EDITHISTORY; and provides for the original 
value of LISPXHISTORY to be restored when the RESETLST completes operation, 
(or an error occurs. or a control-D is typed). This use is somewhat anachronistic in 
Interlisp-10 in that in a shallow bound system, it is sufficient to simply rebind the 
variable. FurJlermore. if there are any rebindings, the RESET SAVE will not affect 
the most recent binding but will change only the top level value. and therefore 
probably not have the intended effect. · 

If x is not atomic. it is a form that is evaluated. If Y is N IL. x must rerurn as its 
value its "former state;', so that ~e effect of evaluating the form can be reversed. 
and the system state can be restored. by applying CAR of x to the value of x. 
For example, (RESETSAVE (RADIX 8)) performs (RADIX 8), and provides 
for RADIX to be reset to its original value when the RESETLST completes by 
applying RADIX to the value returned by ( RAO IX 8 ) . 

In the special case that CAR of xis· SETQ, the SETQ is transparent for the purposes 
of RESETSAVE, i.e. the user could also have written ( RESETSAVE ( SETQ X 
( RADIX 8) ) ) , and restoration would be performed by applying RADIX, not 
SETQ, to the previous value of RAD IX. 

If Y is not N IL. it is evaluated (before x), and its value is used as the restoring 
expression. This is useful for functions which do not rerurn their "previous setting". 
For example, 

10Note that the program couid redefine control-D as a user interrupt (page 9.17), check for it. reenable 
it. and call RESET or something similar. . 

9.19 



\• 

Changing and Restoring System State 

[RESETSAVE (SETBRK ···) (LIST 'SETBRK (GETBRK] 

will restore the break characters by applying S~TBRK to the value returned 
by ( GETBRK ). which was computed before the { SETBRK • • ·) expression was 
evaluated. Note that the restoration expression is still .. evaluated" by applying its 
CAR to itS COR. 

If x is NIL. Y is still treated as a restoration expression. Therefore. 

(RESETSAVE NIL (LIST 'CLOSEF FILE}) 

will cause FILE to be closed when the RESETLST that the RESETSAVE is under 
completes (or an error occurs or a control·D is typed}. 

(" 
\ ) ~-c 

Note: RESETSAVE can be called when nol under a RESETLST. In this case, the ('\, 
restoration will be performed at the next RESET. Le •• control·D or call to RESET. , /·'· 
In other words, there is an .. implicit" RESETLST at the top-level ~~tive. \.. · 

RESET SAVE compiles open. Its value is not a .. useful'' quantity. 

( RESETVAR VAR NEWVALOE FORM) (NLambda Function] 
Simplified form of RESETLST and RESETSAVE for resetting and restoring 
global variables.11 Equivalent to { RESETLST ( RESETSAVE VAR NEWVALt"E) 
FORM). For example, ( RESETVAR LISPXHISTORY EDITHISTORY (FOO)) 
resets LISPXHISTORY to the value of EDITHI.STORY while evaluating ( FOO). 
RE_SETVAR compiles open. If no error occurs. its value is the value of FORM. 

( RESETVARS VA.RSI.ST E1 E2 , .. EN} [NLambda NoSpread Function] 
Similar to PROG, except the variables in VARSLST are global variables. In a shallow 
bound system (Interlisp-10} RESETVARS and PROG are identical.12 In a deep bound 
system. each variable is _"rebound" using RESETSAVE. 

RESETVARS, like GETATOMVAL and SETATOMVAL (page 2.6). is provided to permit compatibility (i.e. 
transportablilicy) between a shallow bound and deep bound system with respect to conceptually global 
variables. 

( RESETFORM R.ESETFORM FOR.\lz FOR.\l2 ••• FORMN) [NLambda NoSpread Function] 
Simplified form of RESETLST and RESETSAVE for resetting a system state when 
the corresponding function returns as 'its value the .. previous setting." Equivaient 
to { RESETLST ( RESET SAVE RESETFOR.\f) FOR.\lz FORM2 • .. FORMN). For 
example, ( RESETFORM { RADIX 8) (FOO)). RESETFORM compiles open. If 
no error occurs. it returns the value returned by FORMN. 

For some applications, the restoration operation must be different depending on whether the computation 
completed successfully or was aboned by an error or control·D. To facilitate this. while the restoration 
operation-is bei;ng performed, the value of RESETSTATE will be bound to NIL. ERROR. or RESET, 

11Unnecessarily expensive in a shallow bound system as the variable can simply be rebound. 

12Except that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS (see 
page U.4). · 

9.20 
n-...... 



0 

0 

-.. 

0 

0. 

ERRORS AND BREAK HANDLING 

depending on whether the exit was normal. due to an error, or reset (Le •• control-D, or in Interlisp· 10, 
control-C followed by reenter). For example, 

(RESETLST 
(RESETSAVE (INFILE X) 

(LIST·'[LAMBDA (FL) __ 
(COND ( (EQ RESETSTATE 'RESET) 

(CLOSEF FL) 
{DELFILE FL] 

X)) 
FORMS) 

will cause X to be closed and deleted only if a contral-D was typed during the execution of FORMS. 

When specifying complicated restoring expressions. it is often necessary to use the old value- of the saving 
expression. For example, the following expression will set the primary input file (to FL) and execute 
some forms, but reset the primary input file only if an error or contral-D occurs. 

(RESETLST 
(SETQ TEM (INPUT FL)) 
(RESETSAVE NIL 

(LIST '(LAMBDA (X) (ANO RESETSTATE (INPUT X))) 
TEM}) 

FOIL\!S) 
. . 

So that you will not have to explicitely save the old value, the variable OLDVALUE is bound at the time the 
restoring .operation is performed to the value of the saving expression. Using this, the previous example 
could be recoded as: 

{RE$ETLST 
(RESETSAVE (INPUT FL) 

'(AND RESETSTATE (INPUT OLOVALUE))) 
FORMS) 

As mentioned earlier. resto.ring is performed by applying CAR of the restoring expression to the 
CCR, so RESETSTATE and ( INPUT OLOVALUE) will not be evaluated by the APPLY. This particular 
example works because AND is an nlambda function that explicitly evaluates its arguments. so APPL Ying 
AHO to ( RESETSTATE ( INPUT OLDVALUE)) is the same as EVALing (AND RESETSTATE ( rnPUT 
OLOVALUE) ). PROGN also has this property, so you can use a lambda function as a restoring form by 
enclosing it within a PROGN. 

Toe function RESETUNDO (page 8.25) can be used in conjunction with RESETLST and RESETSAVE to 
provide a way of specifying that the system be restored to its prior state by undoing the side effects of 
the computations performed under the RESETLST. 

9.8 ERROR LIST 

There are currently fifty-plus cypes of errors in the Interiisp system. Some of these errors a.fie 
implementation dependent. i.e.. appear in Interlisp· 10 but may not appear in other Interlisp syste!!'..S. 

9.21 



( 

Error List 

The error number is set internally by the code that detects the error before it calls the error handling 
functions. It is also the value rerurned by ERRORN if called subsequent to that type of error. and is used 
by ERRORMESS for printing the error message. 

Most errors will print the offending expression following the message. e.g.. NON-NUMERIC ARG NIL is 
very common. Error number 18 (control·B) always causes a break (unless HELPFLAG is NIL). All other 
eITOrs cause breaks if BREAKCHECK returns T (see page 9.10). 

The errors are listed below by error number: 

0 - JSYS ERROR 

1 

(Interlisp-10) Occurs following a trap in a JSYS. As described on page 22.6, TRAP 
AT LOCATION is printed. followed by t.lte J SYS diagnostic, and control rerums 
to the operating system executive. The user can then safely CONTINUE, and the 
Interlisp error. JSYS ERROR is then generated. A TRAP AT LOCATION can 
also occur if an illegal instruction is executed. In this case.· the operating system 
also prints ILLEGAL INSTRUCTIOH. This can happen for example if the user is 
programming directly in ASSEMBLE code, or if his system somehow got smashed. 
In the latter case. it is quite possible that random programs or data structures might 
have already been smashed. Unless he is sure he knows what the problem is. the 
user is best advised to abandon this system as soon as possible. (If the user does 
elect to CONTINUE. Interlisp will (try to) generate a JSYS ERROR and unwind. In. 
some cases. however. the system may be so badly smashed that the error message 
won't even print.) Note that in some cases. e.g. illegal instruction trap while in the 
garbage collector. Interlisp will print out CAN ' T CONT HWE. because traps under 
those cone:iitions are fatal. The user may be able to reenter his sytem via the ST ART 
command. and. if lucky. dump some data or functions before the system totally 
collapses. 

In Interlisp·D, this error is named SYSTEM ERROR. 

No longer used. 

2 • STACK OVERFLOW , 
Occurs when computation is too deep. either with respect to number of function 
calls. or number of variable bindings. Usually because of a non-terminating 
recursive computation. Le .• a bug. 

In Interlisp· 10, the garbage collector uses the same stack as the rest of the system. 
so that if a garbage collection occurs when deep in a computation. the stack can 
overflow (par-Jcularly if there is a lot of list structure that is deep in the CAR 
direction). If this does happen. the garbage collecror will flush the stack used by 
the computation in order that the garbage collection can complete. Afterwards. 
theerrormessageSTACK OVERFLOW IN GC - COMPUTATION LOStisprinted. 
followed by a (RESET), i.e .• rerurn to top leve].. 

3 • ILLEGAL RETURN 
Call to RETURN when not inside of an interpreted PROG. 

4 • ARG NOT LIST E.g., RPLACA called on a non-list. 

5 • HARO DISK ERROR 
(Interlisp·D} An error with the local disk drive. 

9.22 

r 

(Y 

i:~·.:.;.. . r",~· 
\ / 



rJ \_ , __ 

() 

0 

ERRORS AND BREAK HAi'IDLING 

6 - ATTEMPT TO SET NIL 
Via SET or SETQ 

7 - ATTEMPT TO RPLAC HIL 
Attempt eiti."ler to RPLACA or to RPLACD NIL with something other than NIL. 

8 - UNDEFINED OR ILLEGAL GO 
GO when not inside of a PROG, or GO to nonexistent labeL 

9- FILE WON'T OPEN 
From INF ILE otOUTFILE, page 6.2. 

10 - NOrJ-NUMERIC ARG 
A numeric function e.g., IPLUS, !TIMES, IGREATERP, expected a number. 

11 - ATOM TOO LONG 
Attempted to create a litatom (via PACK, or typing one in, or reading from a file} 
with too many characters. In lnterlisp-D, the maximum number of characters in a 
litatom is 255. In Interlisp· 10, the maximum is 127 characters. 

U · ATOM HASH TABLE FULL 
No room for any more (new) atoins. 

In Interlisp· 10. the atom hash table will automatically expand by a specified number 
of pages each time it fills up until an upper limit of 32K atoms is reached. 

13 • FILE NOT OPEN 
From an l/0 function, e.g., READ, PRIHT, CLOSEF. 

14 • ARG HOT LITATOM 
E.g., SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic arg. 

15 • TOO MANY FILES OPEN . 
~ 30, excluding the terminaL 

16 • END OF FILE From an input function, e.g., READ, REAOC, RATOM. After the error, the file will 

17 • ERROR 

18 • BREAK 

then be closed. · 

Note: The entries on ERRORTYPELST (page 9.16) are processed before the file 
is closed. so that the user can intercept and process this error via an entry on 
ERRORTYPELST, thereby preventing the file from being closed. lt is also possible 
to use a.Ii ERRORTYPELST entry to return a character as the value of the call 
to ERRORX. and the program will continue, e.g. returning .. ]" may be used tq 
complete a read operation. 

Call to ERROR (page 9.14). 

Control-B was typed. . 

19 • +LLEGAL STACK ARG 
A stack function expected a stack position and was given something else. This 
mimt occur if the arl!llmems to a stack function are reversed.· Also occurs if user 
sp;dfied a stack position with a function name. and that function was not found 

9.23 



Error List 

on the stack. See page 7 .1. 

20 • FAULT IN EVAL 
Artifact of bootstrap. Never occurs after FAUL TEVAL has been defined as described 
earlier. 

21 - ARRAYS FULL System will first initiate a garbage collection of array space, and if no array space 
is reclaimed. will then generate this error. 

22 • FILE SYSTEM RESOURCES EXCEEDED 
(Interlisp-10) Includes no more disk space, disk quota exceeded. directory full. too 
many jfbs, job full. 

23 - FILE NOT FOUf.O 
Ftle name does not correspond to a file in the corresponding directory. Can also 
occur if file name is ambiguous. 

Interlisp is initialized with an entry on ERRORTYPELST · (page 9.16) to call 
SPELLFILE for eITOr 23. SPELLFILE will search alternate directories or perform 
spelling correction on the connected directory. If SPELLFILE fails, then the user 
will see this error. 

24 • BAD SYSOUT FILE • 
Date does not agree with date of MAKESYS, or file is not a sysout file at all (see 
page 14.3). · 

25 • UNUSUAL CDR ARG LIST 
A form ends in a non-list other than NIL, e.g., (CONS T • 3). 

26 • HASH TABLE FULL 
See hash array functions, page 2.35. . . 

27 - ILLEGAL ARG Catch-all eITOr. Currently used by PUTD. EVALA. ARG, FUNARG. ALLOCATE. 

l 28 • ARG NOT ARRAY 

RPLSTRING. etc. 

EL T or SETA given an argument that is not a pointer co the beginning of an array 
(see page 2.33). 

29 - ILLEGAL OR IMPOSSIBLE BLOCK 
(Incerlisp-10) From GETBLK or RELBLK (see page 22.20). 

30 • STACK PTR HAS BEEN RELEASED __ 

31 • STORAGE FULL 

A released stack pointer was supplied as a stack descriptor for a purpose other than 
as a stack pointer to be re-used (see page 7.1). 

Following a garbage collection. if a sufficient" amount of words has not been 
collected. and there is no un·allocated space left in the system. this error is 
gener:ited. 

32 • ATTEMPT TO USE ITEM OF INCORRECT TYPE 
Before a field of a user daca type is changed. the type of the item is first checked 

9.24 

() 
C 

(~ 
\ ) ,~'- . '-- :-· . 

Q 



0 t., 

0 

0 

<Q 

. ····-··· - -· ·--··· . ·---- ·-·---····--- --··---.c.-------·-- ... ··- .- . .. ·-· . . ·--~---·-·-------------

ERRORS AND BREAK HANDLING 

to be sure that it is of the expected type. If not, this error is generated (see page 
3.14). 

33 • ILLEGAL DATA TYPE NUMBER 
The argument is not a valid user data type number (see page 3.14). 

34 • DAT A TYPES FULL . 
All available user data types have been allocated. (see page 3.14). 

35 • ATTEMPT TO BIND NIL OR T 
In a PROG or LAMBDA expression. 

36-TOO MANY USER INTERRUPT CHARACTERS 
Attempt to enable a user interrupt character when all 9 user channels are currently · 
enabled (see page 9.17). 

37 • READ-MACRO CONTEXT ERROR 
(Interlisp· 10) Occurs when a READ is executed from within a read-macro function 
and the next token is a ) or a ] (see page 6.36). 

38 - ILLEGAL READT ABLE 
The argument was expected to be a valid readtable (see page 6.32}. 

39 - ILLEGAL TERMINAL TABLE 
The argument was expected to be a valid terminal table (see page 6.40). 

40 • SWAPBLOCK TOO BIG FOR BUFFER 
(lnterlisp-10) An attempt was made to swap in a function/array which is too large 
for the swapph].g buffer. See SETSBSIZE, page 22.26. 

41 • PROT-ECTION VIOLATION 
(Interlisp-10) Attempt to open a file that user does not have access to. Also 
reference to unassigned device. 

42 • BAD FILE NAME • . 
illegal character in file specification. illegal syntax. e.g. in Interlisp-IO, two ; ·s etc. 

43 - USER BREAK Error corresponding to "hard" user-interrupt character. See page 9.17. 

44 - UNBOUND ATOM 
Unbound atom error. When this occurs. a variable (atom) was used which had 
neither a stack binding (wasn't an argument to a function nor a PROG variable} 
nor a top·level value. The .. culprit" ((CADR ERRORMESS)) is the atom. Note 
that if DWIM corrects the error, no error occurs and the error number is not set. 
However. if an error is going to occur, whether or not it will cause a break, the 
error number will be set. 

45 • UN DEF rnED CAR OF FORM 
Undefined function error. When is occurs. a fonn was evaluated whose function 
position (CAR) does not have a definition as a function. Culprit is the fonn. 

46 • UtlDEFirlED FUNCTION 
This error is generated if APPLY is given an undefined function. Culprit is ( LIST 

9.25 



f 

- ·-~ ... ____ .. -. ........ -..--J_,,,_ .... -·· ···-----······-·----·-~----~- ~ ... -

Error List 

FN ARGS) 

47 • CONTROL-E Toe user typed Control-E. 

48 • FLOATING UNDERFLOW 
(lnterlisp-D) Underflow during fioating·point operation. 

49 • FLOATING OVERFLOW 
(lnterlisp-D) Overflow during floating-point operation. 

50 • OVERFLOW (Interlisp-D) Overflow during integer operation. 

51 • ARG NOT HARRAY 
(Interlisp-D} Signaled by hash array operations when given an argument that is not 
a hash array. (In Interlisp-IO, this still triggers error 28, ARG NOT ARRAY). 

~ 52 · TOO MANY ARGUMENTS 

l-

(Interlisp·D) Signaled when too many arguments are given to a lambda-spread. 
lambda-nospread. or nlambda-spread function. 

In additio~ many system functions, e.g .• DEFINE, ARGLIST, ADVISE, LOG, EXPT, etc, also generate 
errors with appropriate messages by calling ERROR (see page 9.14) which causes error number 17. 

9.26 

0 
( 

(), 
c· 

n cf 



CHAPTER 10 

BREAKING, TRACING, AND ADVISING 

It is frequently useful to be able to modify the behavior of a function without actually editing its definition. 
Interlisp provides several different facilities for doing this. By "breaking" a function, the user can cause 
breaks to occur at various times in the running of an incomplete program. so that the program state can 
be inspected. "Tracing" a function causes information to be printed every time the function is entered or 
exited. These are very useful debugging tools. 

"Advising" is a facility for specifying longer-term function modifications. Even system functions can be 
changed through advising. 

10.1 BREAKING FUNCTIONS AND DEBUGGING 

Debugging a collection of LISP functions involves isolating problems within particular functions and/or 
determining when and where incorrect data are being generated and transmitted. In the Interlisp system, 
0--~re are three facilities which allow the user to (temporarily) modify selected function definitions so that 
he can follow the flow of control in his programs, and obtain this debugging information. All three 
redefine functions in terms of a system function, BREAKl (see page 9.11). 

BREAK modifies the definition of a function FN, so that whenever FN is called and a break condition 
(defined by the user) is satisfied, a function break occurs. The user can then interrogate the state of the 
machine, perform any computation, and continue or return from the call. 

TRACE modifies a definition of a function FN so that whenever FN is called, its arguments (or some other 
values specified by the user} are printed. When the value of FN is computed it is printed also. (TRACE 
is a special case of BREAK). 

BREAKIN allows the user to insert a breakpoint inside an expression defining a function. When the 
breakpoint is reached and if a break condition (defined by the user) is satisfied, a temporary halt occurs 
and the user can again investigate the state of the computation. 

The following two examples illustrate these facilities. In the first example, the user traces the function 
FACTORIAL. TRACE redefines FACTORIAL so that it print its arguments and value, and then goes on 
with the computation. When an error occurs on the fifth recursion, a full interactive break occurs. The 
situation is then the same as though the user had originally performed BREAK( FACTORIAL) instead of 
TRACE(FACTORIAL), and the user can evaluate various Interlisp forms and direct the course of the 
computation. In this case, the user examines the variable N, and instructs BREAK 1 to return 1 as the 
value of this cell to FACTORIAL. The rest of the tracing proceeds without incident The user would then 
presumably edit FACTORIAL to change L to 1. 

+-PP FACTORIAL 

{FACTORIAL 

10.1 

I 

1, 



Breaking Functions and Debugging 

(LAMBDA (N) 
(COND 

(( ZEROP N 
L) 

(T (!TIMES N (FAC!ORIAL (SUBl N]) 
FACTORIAL 
~TRACE(FACTORIAL) 
(FACTORIAL) 
~FACTORIAL(4) 

FACTORIAL: 
N = 4 

FACTORIAL: 
N = 3 

FACTORIAL: 
N = 2 

FACTORIAL: 
N = 1 

FACTORIAL: 
N = 0 

U.B.A. 
L 
(FACTORIAL BROKEN) 
:N 
0 
: RETURN 1 

FACTORIAL= 1 
FACTORIAL= 1 

FACTORIAL= 2 
FACTORIAL= 6 

FACTORIAL= 24 
24 

In the second example, the user has constructed a non-recursive definition of FACTORIAL. He uses 
BREAKIN to insert a call to BREAKl just after the PROG label LOOP. This break is to occur only on the 
last two iterations, when N is less than 2. When the break occurs, the user tries to look at the value of 
N, but mistakenly types NN. The break is maintained, however, and no damage is done. After examining 
N and M the user allows the computation to continue by typing OK. A second break occurs after the next 
iteration, this time with N = 0. When this break is released, the function FACTORIAL returns its value of 
120. 

+-PP FACTORIAL 
(FACTORIAL 

(LAMBDA (N) 

10.2 



BREAKING, TRACING, AND ADVISING 

( PROG ((M 1)) 
LOOP (COND 

FACTORIAL 

(( ZEROP N) 
( RETURN M))) 

(SETQ M (!TIMES MN)) 
(SETQ N (SUBl N)) 
(GO LOOP]) 

~BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2] 
SEARCHING ... 
FACTORIAL 
~FACTORIAL(5) 

((FACTORIAL) BROKEN) 
:NN 
U.B.A. 
NN 
(FACTORIAL BROKEN AFTER LOOP) 
:N 
1 
:M 
120 
:OK 
(FACTORIAL) 

((FACTORIAL) BROKEN) 
:N 
0 
:OK 
(FACTORIAL) 
120 

Note: BREAK and TRACE can also be used on CUSP words which appear as CAR of form, e.g. FETCH, 
REPLACE, IF, FOR, DO, etc., even though these are not implemented as functions. For conditional 
breaking, the user can refer to the entire expression via the variable EXP, e.g. BREAK ( ( FOR (MEMB 
'UNTIL EXP))). 

(BREAK0 FN WHEN COMS - -) [Function] 
Sets up a break on the function FN: returns FN. If FN is not define~ returns ( FN 

NOT DEFINED). 

BREAK0 redefines FN as a call to BREAK! (page 9.11), with an equivalent definition 
of FN as BRKEXP, and WHEN, FN, COMS as BRKWHEN, BRKFN, BRKCOMS. Puts a 
GE NSYM defined with the original definition of FN on the property list of FN under 
the property BROKEN . Puts ( BREAK0 WHEN COMS) on the property list of FN 

under the property BRKINFO (for use in conjunction with RE~REAK). Adds FN to 
the front of the list BROKENFNS. 

If FN is non-atomic and of the form {FN1 IN FN2), BREAK0 breaks every call 

10.3 



' ; 
j, 
I 

~ 
,I 

1 
i 

(BREAK x) 

(TRACE x) 

Breaking Functions and Debugging 

to FNl from within FN2. This is useful for breaking on a function that is called 
from many places, but where one is only interested in the call from a specific 
function, e.g., (RPLACA IN FOO), (PRINT IN FIE), etc. It is similar to 
BREAKIN described below, but can be performed even when FN2 is compiled or 
blockcompiled, whereas BREAKIN only works on interpreted functions. If FNl is 
not found in FN2, BREAK0 returns the value (FNl NOT .FOUND IN FN2). 

BREAKO breaks one function inside another by first calling a function which changes 
the name of FNl wherever it appears inside of FN2 to that of a new function, FNl -
IN-FN2, which is initially given the same function definition as FNl. Then BREAKO 
proceeds to break on FN1- IN-FN2 exactly as described above. In addition to 
breaking FNI-IN-FN2 and adding FN1-IN-FN2 to the list BROKENFNS, BREAK0 
adds FN1 to the property value for the property NAMESCHANGEO on the property 
list of FN2 and puts ( FN2 • FN1) on the property list of FN1- IN - FN2 under the 
property ALIAS. This will enable UNBREAK to recognize what changes have been 
made and restore the function FN2 to its original state. 

If FN is nonatomic and not of the above form, BREAK0 is called for each member 
of FN using the same values for WHEN, COMS, and FILE. This distributivity permits 
the user to specify complicated break conditions on several functions. For example, 

(BREAK0 '(FOO1 ((PRINT PRIN1) IN (FOO2 FOO3))) 
'(NEQ X T) 
'(EVAL ?= (Y Z) OK) ) 

will break on FOO1, PRINT-IN-FOO2, PRINT-IN-FOO3, PRIN1-IN-FOO2 and 
PRIN1-IN-F003. 

If FN is non-atomic, the value of BREAK0 is a list of the functions broken. 

[NLambda NoSpread Function] 
Nlambda nospread function. For each atomic argument, it performs (BREAK0 
ATOM T ). For each list, it performs (APPLY 'BREAK0 LIST). For ex­
ample, (BREAK FOO1 (FOO2 (GREATERP N 5) (EVAL))) is equivalent to 
(BREAK0 'FOO1 T) and (BREAK0 'FOO2 '(GREATERP N 5) '(EVAL)). 

[NLambda NoSpread Function] 
Nlambda nospread function. For each atomic argument, it performs ( BREAK0 
ATOM T ' ( TRACE 7 = NI L GO ) ) 1 

For each list argument, CAR is the function to be traced, and COR the forms the 
user wishes to see, i.e., TRACE performs: 

(BREAK0 (CAR LIST) T (LIST 'TRACE '?= (CDR LIST) 'GO)) 

For example, ( TRACE FOO1 ( FOO2 Y)) will cause both FOO1 and F0O2 to be 
traced. All the arguments of FOO1 will be printed; only the value of Y will be 
printed for FOO2. In the special case that the user wants to see only the value, 

1 The flag TRACE is checked for in BREAK 1 and causes the message "FUNCTION : " to be printed instead 
of (FUNCTION BROKEN). 

10.4 

1 



r 
BREAKING, TRACING, AND ADVISING 

he can perform (TRACE ( FUNCTION) ) . This sets up a break with commands 
(TRACE?= (NIL) GO). 

Note: the user can always call BREAKO himself.to obtain combination of options of BREAKl not directly 
available with BREAK and TRACE. These two functions merely provide convenient ways of calling BREAKO, 
and will serve for most uses. 

( BREAK IN FN WHERE WHEN COMS) [NLambda Function] 
BREAKIN is an nlambda function. WHEN and COMS are similar to WHEN and 
COMS for BREAK 0, except that if WHEN is NIL, T is used. WHERE specifies where 
in the definition of FN the call to BREAKl is to be inserted (see below). 

If FN is a compiled function, BREAKIN returns (FN UNBREAKABLE) as its value. 

If FN is interpreted, BREAKIN types SEARCHING... while it calls the editor. 
If the location specified by WHERE is not found, BREAK IN types ( NOT FOUND ) 
and exits. If it is found, BREAKIN puts T under the property BROKEN-IN and 
( WHERE WHEN COMS) under the the property BRKINFO on the property list of 
FN, and adds FN to the front of the list BROKENFNS. 

Multiple break points, can be inserted with a single call to BREAK IN by using a list 
of the form ( (BEFORE ... ) ... ( AROUND ... )) for WHERE. It is also possible 
to call BREAK or TRACE on a function which has been modified by BREAKIN, and 
conversely to BREAKIN a function which has been redefined by a call to BREAK 
or TRACE. 

BREAK IN enables the user to insert a break, i.e., a call to BREAK 1, at a specified location in an interpreted 
function. For example, if F 00 calls FIE, inserting a break in F 00 before the call to FIE is similar to 
breaking FIE. However, BREAKIN can be used to insert breaks before or after PROG labels, particular 
SETQ expressions, or even the evaluation of a variable. This is because BREAK IN operates by calling the 
editor and actually inserting a call to BREAKl at a specified point inside of the function. 

The user specifies where the break is to be inserted by a sequence of editor commands. These commands 
are preceded by BEFORE, AFTER, or AROUND. which BREAKIN uses to determine what to do once the 
editor has found the specified point, i.e., put the call to BREAKl BEFORE that point, AFTER that point, 
or AROUND that point For example, ( BEFORE CONO) will insert a break before the first occurrence 
of COND, (AFTER COND 2 1) will insert a break after the predicate in the first CONO clause, (AFTER 
BF (SETQ X &) ) after the last place Xis set Note that (BEFORE TTY:) or (AFTER TTY:) permit 
the user to type in commands to the editor, locate the correct point, and verify it for himself using the 
P command if he desires, and exit from the editor with OK.2 BREAKIN then inserts the break BEFORE, 
AFTER, or AROUND that point 

For BREAKIN BEFORE or AFTER, the break expression is NIL, since the value of the break is irrelevant 
For breakin AROUND, the break expression will be the indicated form. In this case, the user can use the 
EVAL command to evaluate that form. and examine its value, before allowing the computation to proceed. 
For example, if the user inserted a break after a COND predicate, e.g., (AFTER ( EQUAL X Y) ) • he 
would be powerless to alter the flow of computation if the predicate were not true, since the break would 

2A STOP command typed to TTY: produces the same effect as an unsuccessful edit command in the 
original specification, e.g., (BEFORE CONDO). In both cases. the editor aborts, and BREAK IN types ( NOT 
FOUND). 

10.5 



r 

Breaking Functions and Debugging 

not be reached. However, by breaking ( AROUND ( EQUAL X Y) ), he can evaluate the break expression, 
i.e., ( EQUAL X Y), look at its value, and return something else if he wished. 

The message typed for a BREAKIN break, is ( (FN) BROKEN}, where FN is the name of the function 
inside of which the break was inserted. Any error, or typing control-E, will cause the full identifying 
message to be printed, e.g., (FOO BROK'EN AFTER COND 2 1). 

A special check is made to avoid inserting a break inside of an expression headed by any member of the 
list NOBREAKS, initialized to (GO QUOTE •), since this break would never be activated. For example, 
if (GO L) appears before the label L, BREAKIN (AFTER L) will not insert the break inside of the GO 
expression, but skip this occurrence of L and go on to the next L, in this case the label L. Similarly, for 
BfFORE or AFTER breaks, BREAKIN checks to make sure that the break is being inserted at a "safe" 
place. For example, if the user requests a break (AFTER X) in (PROG ··· (SETQ X &) ···), the 
break will actually be inserted AFTER ( SETQ X &), and a message printed to this effect, e.g., BREAK 
INSERTED AFTER (SETQ X &). 

(UNBREAK x) [NLambda NoSpread Function] 
Nlambda nospread function. It takes an indefinite number of functions modified 
by BREAK, TRACE, or BREAK IN and restores them to their original state by calling 
UNBREAK0. Returns list of values of UNBREAK0. 

( UNBREAK) will unbreak all functions· on BROKENFNS, in reverse order. It first 
sets BRKINFOLST to NIL. 

(UNBREAK T) unbreaks just the first function on BROKENFNS, i.e., the most 
recently broken function. 

(UNBREAK0 FN -) [Function] 
Restores FN to its original state. If FN was not broken, value is ( NOT BROKEN) 
and no changes are made. If FN was modified by BREAK IN, UNBREAKIN is called 
to edit it back to its original state. If FN was created from ( FN1 IN FN2), (i.e., 
if it has a property ALIAS), the function in which FN appears is restored to its 
original state. All dummy functions that were created by the break are eliminated. 
Adds property value of BRKINFO to (front of) BRKINFOLST. 

Note: { UNBREAK0 ' { FNl IN FN2)) is allowed: UNBREAK0 will operate on 
( FN1 - IN - FN2) instead. 

( UNBREAKIN FN) [Function] 
Performs the appropriate editing operations to eliminate all changes made by 
BREAKIN. FN may be either the name or definition of a function. Value is FN. 

UNBREAKIN is automatically called by UNBREAK if FN has property BROKEN-IN 
with value T on its property list. 

( REBREAK x) [NLambda NoSpread Function] 
Nlambda nospread function for rebreaking functions that were previously broken 
without having to respecify the break information. For each function on x, 
RE BREAK searches B RK IN FOL ST for break(s) and performs the corresponding 
operation. Value is a list of values corresponding to calls to BREAK0 or BREAK IN. 
If no information is found for a particular function, returns ( FN - NO BREAK 

10.6 



If 
BREAKING, TRACING, AND ADVISING 

INFORMATION SAVED). 

( REBREAK) rebreaks everything on BRKINFOLST, so ( REBREAK) is the inverse 
of ( UNBREAK ). 

( REBREAK T) rebreaks just the first break on BRKINFOLST, i.e., the function 
most recently unbroken. 

( CHANGE NAME FN FROM TO) [Function] 
Changes all occurrences of FROM to TO in FN. FN may be compiled or 
blockcompiled. Value is FN if FROM was found, otherwise NIL. Does not perform 
any modifications of property lists. Note that FROM and TO do not have to be 
functions, e.g., they can be names of variables, or any other literals. 

(VIRGINFN FN FLG) [Function] 

10.2 ADVISING 

The function that knows how to restore functions to their original state regardless 
of any amount of breaks, breakins, advising, compiling and saving exprs, etc. 
It is used by PRETTYPRINT, DEFINE, and the compiler. If FLG=NIL, as for 
PRETTYPRINT, it does not modify the definition of FN in the process of producing 
a "clean" version of the definition; it works on a copy. If FLG=T, as for the 
compiler and DEFINE, it physically restores the function to its original state, and 
prints the changes it is making, e.g., FOO UNBROKEN, FOO UNADVISED, FOO 
NAMES RESTORED, etc. Returns the virgin function definition. 

The operation of advising gives the user a way of modifying a function without necessarily knowing how 
the function works or even what it does. Advising consists of modifying the interface between functions as 
opposed to modifying the function definition itself. as in editing. BREAK, TRACE, and BREAKDOWN, are 
examples of the use of this technique: they each modify user functions by placing relevant computations 
between the function and the rest of the programming environment. 

The principal advantage of advising, aside from its convenience, is that it allows the user to treat functions, 
his or someone else's, as "black boxes," and to modify them without concern for their contents or details 
of 0pcrations. For example, the user could modify SYSOUT to set SYSDATE to the time and date of 
creation by (ADVISE 'SYSOUT '(SETQ SYSDATE {DATE))). 

As with BREAK, advising works equally well on compiled and interpreted functions. Similarly, it is 
possible to effect a modification which only operates when a function is called from some other specified 
function., i.e., to modify the interface between two particular functions, instead of the interface between 
one function and the rest of the world. This latter feature is especially useful for changing the internal 
workings of a system function. 

For example, suppose the user wanted TIME (page 14.14) to print the results of his measurements to the 
file FOO instead of the teletype. He could accomplish this by (ADVISE ' ( ( PRIN1 PRINT SPACES) 
IN TIME) 'BEFORE '(SETQQ U FOO)) 

Note that advising PRIN1, PRINT, or SPACES directly would have affected all calls to these very 
frequently used function, whereas advising ((PRINl PRINT SPACES) IN TIME) affects just those 

10.7 



r 
11 

ll 
" ii 
Si 

,i 

Implementation of Advising 

calls to PRIN1, PRINT, and SPACES from TIME. 

Advice can also be specified to operate after a function has been evaluated. The value of the body of the 
original function can be obtained from the variable ! VALUE, as with BREAK 1. For example, suppose the 
user wanted to perform some compu~tion following each SYSIN, e.g., check whether his files were up 
to date. He could then: (ADVISE 'SYSOUT 'AFTER '(COND ((LISTP !VALUE) --))).3 

10.2.1 Implementation of Advising 

After a function has been modified several times by ADVISE, it will look like: 

{LAMBDA arguments 
(PROG (!VALUE) 

(SETQ !VALUE 
(PROG NIL 

advice! 

advice1 

advice before 

advicen 
( RETURN BODY))) 

advice after 

advicem 
(RETURN !VALUE))) 

where BODY is equivalent to the original definition.4 Note that the structure of a function modified by 
ADVISE allows a piece of advice to bypass the original definition by using the function RETURN. For 
example, if ( COND ( ( ATOM X) ( RETURN Y))) were one of the pieces of advice BEFORE a function, 
and this function was entered with X atomic, Y would be returned as the value of the inner P ROG, 
! VALUE would be set to Y, and control passed to the advice, if any, to be executed AFTER the function. 
If this same piece of advice appeared AFTER the function. Y would be returned as the value of the entire 
advised function. 

T11t:: advice ( COND ( ( ATOM X) ( SETQ ! VALUE Y))) AFTER the function would have a similar effect, 
but the rest of the advice AFTER the function would still be executed. 

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and RETURN, (called ADV-PROG, ADV­
SETQ, and ADV-RETURN) in order to enable advising these functions. 

3After the SYS IN,, the system will be as it was when the SYSOUT was performed. hence the advice must 
be to SYSOUT, not SYS IN. See page 14.3 for complete discussion of SYSOUT. 

4If FN was originally an EXPR, BODY is the body of the definition. otherwise a form using a GENSYM 
which is defined with the original definition. 

10.8 



BREAKING, TRACING, AND ADVISING 

10.2.2 Advise Functions 

ADVISE is a function of four arguments: FN, WHEN, WHERE, and WHAT. FN is the function to be modified 
by advising, WHAT is the modification, or piece of advice. WHEN is either BEFORE, AFTER, or AROUND, 
and indicates whether the advice is to operate BEFORE, AFTER, or AROUND the body of the function 
definition. WHERE specifies exactly where in the list of advice the new advice is to be placed, e.g., FIRST, 
or (BEFORE PRINT) meaning before the advice containing PRINT, or {AFTER 3) meaning after the 
third piece of advice, or even (: TTY:). If WHERE is specified, ADVISE first checks to see if it is one of 
LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly. Otherwise, it constructs an appropriate 
edit command and calls the editor to insert the advice at the corresponding location. 

Both WHEN and WHERE are optional arguments, in the sense that they can be omitted in the call 
to ADVISE. In other words, ADVISE can be thought of as a function of two arguments (ADVISE FN 

WHAT), or a function of three arguments: (ADVISE FN WHEN WHAT), or a function of four arguments: 
(ADVISE FN WHEN WHERE WHAT). Note that the advice is always the last argument If WHEN=NIL, 
BEFORE is used. IfWHERE=NIL, LAST is used. 

( ADVISE FN WHEN WHERE WHAT) [Function] 
FN is the function to be advised, WHEN=BEFORE, AFTER, or AROUND, WHERE 

specifies where in the advice list the advice is to be inserted, and WHAT is the piece 
· of advice. 

If FN is of the form (FN1 IN FN2), FN1 is changed to FN1- IN-FN2 throughout 
FN2, as with break, and then FN1 - IN - FN2 is used in place of FN. If FN1 and/ or 
FN2 are lists. they are distributed as with B RE AKO, page 10.3. 

If FN is broken, it is unbroken before advising. 

If FN is not defined, an error is generated, NOT A FUNCTION. 

If FN is being advised for the first time, i.e., if (GET p FN ' ADV Is ED) =NIL, 
a GENSYM is generated and stored on the property list of FN under the property 
ADVISED, and the GENSYM is defined with the original definition of FN. An 
appropriate S-expression definition is then created for FN. 5 Finally, FN is added 
to the (front of) ADVISEDFNS, so that (UNADVISE T) always unadvises the last 
function advised (see page 10.10). 

If FN has been advised before, it is moved to the front of ADVISEDFNS. 

If WHEN= BEFORE or AFTER, the advice is inserted in FN's definition either 
BEFORE or AFTER the original body of the function. Within that context, its 
position is determined by WHERE. If WHERE= LAST, BOTTOM, ENO, or NIL, the 
advice is added following all other advice, if any. If WHERE= FIRST or TOP, 
the advice is inserted as the first piece of advice. Otherwise, WHERE is treated 
as a command for the editor, similar to BREAK IN, e.g., ( BEFORE 3 ) , ( A FT ER 
PRINT). 

5Using private versions of PROG, SETQ, and RETURN, so that these functions can also be advised. 

10.9 



Advise Functions 

-.... -· -- If WHEN= AROUND, the body is substituted for • in the advice, and the 
result becomes the new body, e.g .• (ADVISE 'FOO 'AROUND ' ( RESET FORM 
( OUTPUT T) •)). Note that if several pieces of AROUND advice are specifie~ 
earlier ones will be embedded inside later ones. The value of WHERE is ignored 

Finally ( LIST WHEN WHERE WHAT) is added (by ADDPROP) to the value of 
property ADVICE on the property list of FN, so that a record of all the changes is 
available for subsequent use in readvising. Note that this property value is a list 
of the advice in order of calls to ADVISE, not necessarily in order of appearance 
of the advice in the definition of FN. 

The value of ADVISE is FN. 

If FN is non-atomic, every function in FN is advised with the same values (but 
copies) for WHEN, WHERE, and WHAT. In this case, ADVISE returns a list of 
individual functions. 

Note: advised functions can be broken. However if a function is broken at the time it is advised. it is first 
unbroken. Similarly, advised functions can be edited. including their advice. UNADVI SE will still restore 
the function to its unadvised state, but any changes to the body of the definition will survive. Since the 
advice stored on the property list is the same structure as the advice inserted in the function, editing of 
advice can be performed on either the function's definition or its property list. 

(UNADVISE x) 

(READVISE x) 

[NLambda NoSpread Function] 
An nlambda nospread like UNBREAK. It takes an indefinite number of functions and 
restores them to their original unadvised state. including removing the properties 
added by ADVISE. UNADVISE saves on the list AOVINFOLST enough information 
to allow restoring a function to its advised state using READVISE. ADVINFOLST 
and REAOVISE thus correspond to BRKINFOLST and REBREAK. If a function 
contains the property READVICE, UNADVISE moves the current value of the 
property ADVICE to READVICE. 

(UNAOVISE) unadvises all functions on AOVISEDFNS in reverse order, so that 
the most recently advised function is unadvised last. It first sets AOVINFOLST to 
NIL. 

( UNADVISE T) unadvises the first function of ADVISEDFNS, i.e., the most recently 
advised function. · 

[NLambda NoSpread Function] 
An nlambda nospread like REBREAK for restoring a function to its advised state 
without having to specify all the advise information. For each function on x, 
READVISE retrieves the advise information either from the property READVICE 
for that function, or from ADVINFOLST, and performs the corresponding advise 
operation(s). In addition it stores this information on the property READVICE if 
not already there. If no information is found for a particular function, value is 
(FN - NO ADVICE SAVED). 

( READVISE) readvises everything on ADVINFOLST. 

( READVISE T) readvises the first function on ADVINFOLST, i.e., the function 
most recently unadvised. 

10.10 



BREAKING, TRACTNG, AND ADVISING 

A difference between ADVISE, UNADVISE, and READVISE versus BREAK, UNBREAK, and REBREAK, is 
that if a function is- not rebroken between successive ( UNBREAK )'s, its break information is forgotten. 
However, once READVISE is called on a function, that function's advice is permanently saved on its · 
property list (under READVICE); subsequent calls to UNADVISE will not remove it. In fact, calls to 
UNADVISE update the property READVICE with the current value of the property ADVICE, so that the 
sequence READVISE, ADVISE, UNADVISE causes the augmented advice to become permanent. Note 
that the sequence READVISE, ADVISE, READVISE removes the "intermediate advice" by restoring the 
function to its earlier state. 

( ADVISE DUMP X FLG) [Function] 
Used by PRETTYDEF when given a command of the form (ADVISE ... ) or 
(ADVICE · · · ). If FLG=T, ADVISEDUMP writes both a DEF LIST and a 
READVISE (this corresponds to (ADVISE · · · )}. If FLG=NIL, only the DEF LIST 
is written (this corresponds to ( ADVICE · · · )}. In either case, ADVISE DUMP copies 
the advise information to the property READVICE, thereby making it "permanent" 
as described above. 

10.11 



AdYise Functions 

10.12 



CHAPTER 11 

FILE PACKAGE 

Most implementations of Lisp tteat symbolic files as unstrucrured text, much as they are tteated in most 
conventional programming environments. Function definitions are edited with a character-oriented text 
editor, and then the changed definitions (or sometimes the entire file) is read or compiled to install those 
ch.mges in the running memory image. Interlisp incorporates a different philosophy. A symbolic file 
is considered as a database of information about a group of data objects-function definitions, variable 
values, record declarations, etc. The text in a symbolic file is never edited directly. Definitions are edited 
only after their texrual representations on files have been converted to data-strucrures that reside inside 
the Lisp address space. The programs for editing definitions inside Interlisp can therefore make use of the 
full set of data-manipulation capabilities that the environment already provides, and editing operations 
can be easily intermixed with the processes of evaluation and compilation. 

Interlisp is thus a "resident" programming environment, and as such it provides facilities for moving 
definitions back and forth between memory and the external databases on symbolic files, and for doing 
the bookkeeping involved when definitions on many symbolic files with compiled counterparts are being 
manipulated. The file package provides those capabilities. It removes from the user the burden of keeping 
track of where things are and what things have changed. The file package also keeps track of which files 
have been modified and need to be updated and recompiled. 

The file package is integrated into many other system packages. For example, if only the compiled version 
of a file is loaded and the user attempts to edit a function, the file package will attempt to load the 
source of that function from the appropriate symbolic file. In many cases, if a datum is needed by some 
program, the file package will automatically retrieve it from a file if it is not already in the user's working 
environment 

Some of the operations of the file package are rather complex. For example, the same function may 
appear in several different files, or the symbolic or compiled files may be in different directories, etc. 
Therefore, this chapter does not document how the file package works in each and every situation, but 
instead makes the deliberately vague statement that it does the "right" thing with respect to keeping 
track of what has been changed, and what file operations need to be performed in accordance with those 
changes. 

For a simple illustration of what the file package does, suppose that the symbolic file FOO contains the 
functions FOO1 and FOO2, and that the file BAR contains the functions BAR1 and BAR2. These two files 
could be loaded into the environment with the function LOAD: 

+- (LOAD 'FOO) 
FILE CREATED 4-MAR-83 09:26:55 
FOOCOMS 
{OSK} FOO. ; 1 
•· (LOAD 'BAR) 
FILE CREATED 4-MAR-83 09:27:24 
BARCOMS 
{DSK}BAR.;1 

11.1 



,. 

Now, suppose that we change the definition of F002 with the editor, and we define two new functions, 
NEW1 and NEW2. At that point, the file package knows that the in-memory definition of F002 is no 
longer consistent with the definition in the file FOO, and that the new functions have been defined but 
have not yet been associated with a symbolic file and saved on permanent storage. The function FILES? 
summarizes this state of affairs and enters. into an interactive dialog in which we can specify what files 
the new functions are to belong to. 

+- (FILES?) 
FOO ... to be dumped. 

plus the functions: NEW1,NEW2 
want to say where the above go? Yes 
(functions) 
NEW1 File name: BAR 
NEW2 File name: ZAP 

new file ? Yes 
NIL 

The·file package knows that the file FOO has been changed. and needs to be dumped back to permanent 
storage. This can be done with MAKEFILE. 

+-(MAKEFILE 'FOO) 
{OSK} FOO. ; 2 

Since we added NEW1 to the old file BAR and established a new file ZAP to contain NEW2, both BAR and 
ZAP now also need to be dumped. This is confirmed by a second call to F I LES?: 

+- (FILES?) 
BAR, ZAP ... to be dumped. 
FOO ... to be listed. 
FOO ... to be compiled 
NIL 

We are also informed that the new version we made of FOO needs to be listed (sent to a printer) and 
that the functions on the file must be compiled. 

Rather than doing several MAKEFILES to dump the files BAR and ZAP, we can simply call CLEANUP. 
Without any further user interaction, this will dump any files whose definitions have been modified. 
CLEANUP will also send any unlisted files to the printer and recompile any files which need to be 
recompiled. CLE AN UP is a useful function to use at the end of a debugging session. It will call F I LES? 
if any new objects have been defined. so the user does not lose the opportunity to say explicitly where 
those belong. In effect, the function CLEANUP executes all the operations necessary to make the user's 
permanent files consistent with the definitions in his current core-image. 

+- (CLEANUP) 
FOO ... compiling {DSK}FOO. ;2 

BAR ... compiling {DSK}BAR.;2 

11.2 



FILE PACKAGE 

ZAP ... compiling {DSK}ZAP.;1 

In addition to the definitions of functions, symbolic files in Interlisp can contain definitions of a variety 
of other types, e.g. variable values, property lists, record declarations, macro definitions, hash arrays, etc. 
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations, the 
file package uses the concept of a typed definition, of which a function definition is just one example. A 
typed definition associates with a name ( usually a litatom), a definition of a given type ( called the file 
p~ckage type). Note that the same name may have several definitions of different types. For example, a 
litatom may have both a function definition and a variable definition. The file package also keeps track of 
the files that a particular typed definition is stored on, so one can think of a typed definition as a relation 
between four elements: a name, a definition, a type, and a file. 

Symbolic files on permanent storage devices are referred to by names that obey the naming conventions 
of those devices, usually including host. directory, and version fields. When such definition groups are 
noticed by the file package, they are assigned simple root names and these are used by all file package 
operations to refer to those groups of definitions. The root name for a group is computed from its full 
permanent storage name by applying the function ROOTF ILENAME; this strips off the host. directory, 
version, etc., and returns just the simple name field of the file. For each file, the file package also has a 
dat.a structure that describes what definitions it contains. This is known as the commands of the file, or 
its "filecoms". By conv~ntion, the filecoms of a file whose root name is x is stored as the value of the 
litatom xCOMS. For example, the value of FOOCOMS is the filecoms for the file FOO. This variable can 
be directly manipulated, but the file package contains facilities such as F I LES? which. make constructing 
and updating filecoms easier. and in some cases automatic. See page 11.32. 

The file package is able to maintain its databases of information because it is notified by various other 
routines in the system when events take place that may change that database. A file is "noticed" when it 
is loaded, or when a new file is stored (though there are ways to explicitly notice files without completely 
loading all their definitions). Once a file is noticed, the file package takes it into account when modifying 
filecoms, dumping files, etc. The file package also needs to know what typed definitions have been changed 
or what new definitions have been introduced, so it can determine which files need to be updated. This 
is done by "marking changes". All the system functions that perform file package operations (LOAD, 
TCOMPL, PRETTYDEF, etc.), as well as those functions that define or change -data, (EDITF, EDITV, 
ED ITP, DWIM corrections to user functions) interact with the file package. Also, typed-in assignment 
of variables or property values is noticed by the file package. (Note that modifications to variable or 
property values during the execution of a function body are not noticed.) In some cases the marking 
procedure can be subtle, e.g. 1f the user edits a property list using ED IT P, only those . properties whose 
values are actually changed ( or added) are marked. 

All file package operations can be disabled with FI LE PKG F LG. 

FILEPKGFLG [Variable] 
The file package can be disabled by setting F I LE PKG F LG to N I L. This will tum 
off noticing files and marking changes. FI LEPKGFLG is initially T. 

The rest of this chapter goes into further detail about the file package. Functions for loading and storing 
symbolic files are presented first. followed by functions for adding and removing typed definitions from 
files. moving typed definitions from one file to another. determining which file a particular definition is 
stored in, and so on. 

11.3 



Loading Files 

11.1 LOADING FILES . 

The functions below load information from symbolic files into the Interlisp environment A symbolic file 
contains a sequence of Interlisp expressions that can be evaluated to establish specified typed definitions. 
The expressions on symbolic files are read using F I LE RD TB L as the readtab le. 

The loading functions all have an argument LDFLG. LDFLG affects the operation of DEFINE, DEFINEQ, 
RPAQ, RPAQ?, and RPAQQ. While a source file is being loaded, DFNFLG (page 5.9) is rebound to LDFLG. 
Thus, if LDFLG =NIL, and a function is redefined, a message is printed and the old definition saved. 
If LDFLG = T, the old definition is simply overwritten. If LDFLG = PROP, the functions are stored as 
"~ved" definitions on the property lists under the property EXPR instead of being installed as the active 
derlnitions. If LDFLG=ALLPROP, not only function definitions but also variables set by RPAQQ, RPAQ, 
RPAQ? are stored on property lists (except when the variable has the value NOBINO, in which case they 
are set to the indicated value regardless of D F N FL G ). 

Another option is available for users who are loading systems for others to use and who wish to suppress 
the saving of information used to aid in development and debugging. If LDFLG=SYSLOAD, LOAD will: 
(1) Rebind DFNFLG to T, so old definitions are simply overwritten; (2) Rebind LISPXHIST to NIL, 
thereby making the LOAD not be undoable and eliminating the cost of saving undo information (See page 
8.22); (3) Rebind ADDSPELLFLG to NIL, to suppress adding to spelling lists; (4) Rebind FILEPKGFLG to 
NIL, to prevent the file from being "noticed" by the file package; (5) Rebind BUILDMAPFLG to NIL, 
to prevent a file map from being constructed; (6) After the load has completed. set the filecoms variable 
and any filevars variables1 to NOBIND; and (7) Add the file name to SYSFILES rather than FILELST. 

Note: All functions that have LDFLG as an argument perform spelling correction using LOAOOPT IONS 
as a spelling list when LDFLG is not a member of LOADOPTIONS. LOAOOPTIONS is initially ( NIL T 
PROP ALLPROP SYSLOAD). 

( LOAD FILE LDFLG PRINTFLG) [Function] 
Reads successive expressions from FILE (with FILERDTBL as readtable) and 
evaluates each as it is read, until it reads either NI L, or the single atom STOP. Note 
that LOAD can be used to load both symbolic and compiled files. Returns FILE 

(full name). 

If PRINTFLG= T, LOAD prints the value of each expression; otherwise it does not. 

( LOAD? FILE LDFLG PRINTFLG) [Function] 
Similar to LOAD except that it does not load FILE if it has already been loaded, in 
which case it returns N IL. 

Note: The test is whether the root name of FILE has a FILEDATES property (page 
11.13). 

1 A filevars variable is any variable appearing in a file package command of the form ( FILECOM * 
VARIABLE) (see page 11.30). Therefore, if the filecoms includes ( FNS * FOOFNS ), FOOFNS is set to 
NOB I NO. If the user wants the value of such a variable to be retained, even when the file is loaded with 
LDFLG = SY SLOAD, then he should replace the variable with an equivalent, non-atomic expression, such 
as (FNS * (PROGN FOOFNS)). 

11.4 



FILE PACKAGE 

( LOADFNS FNS FILE LDFLG VARS) [Function] 
Permits selective loading of definitions. FNS is a list of function names, a single 
function name, or T, meaning to load all of the functions on the file. FILE can be 
either a compiled or symbolic file. If a compiled definition is loaded, so are all 
compiler-generated subfunctions. The interpretation of LDFLG is the same as for 
LOAD. 

If FILE=NIL, LOAOFNS will use WHERE IS (page 11.10) to determine where the 
first function in FNS resides, and load from that file. Note that the file must 
previously have been "noticed" (see page 11.12). If WHERE IS returns NIL, and 
the WHEREIS package (page 23.40) has been loaded, LOADFNS will use the 
WHEREIS data base to find the file containing FN. 

VARS specifies which non-0 E F IN E Q expressions are to be loaded (i.e., evaluated): 
T means all, NIL means none, VA RS means to evaluate all variable assignment 
expressions (beginning with RPAQ, RPAQQ, or RPAQ?, see page 11.37), and any 
other atom is the same as specifying a list containing that atom. 

If VARS is a list, each element in VARS is "matched" against each non-DEF INEQ 
expression, and if any elements in VARS "match" successfully, the expression 
-is evaluated. "Matching" is defined as follows: If an element of VARS is an 
atom, it matches an expression if it is EQ to either the CAR or the CADR of 
the expression. If an element of VARS is a list, it is treated as an edit pattern 
(page 17 .13 ), and matched with the entire expression ( using ED IT 4 E, page 
17.57). For example, if VARS was ( FOOCOMS DECLARE: ( DEF LIST & ( QUOTE 
MAC RO ) ) ) , this would cause ( RP AQQ F OOC OMS · · · ) , all DECLARE : s, and all 
DEFLISTs which set up MACROS to be read and evaluated. 

If VARS is a list and ( FNTYP VARS) is true (VARS is a function definition), 
then LOAOFNS will invoke that function on every non-DEFINEQ expression being 
considered, applying it to two arguments, the first and second elements in the 
expression. If the function returns NIL, the expression will be skipped; if it returns 
a non-NIL litatom ( e.g. T), the expression will be evaluated; and if it returns a 
list, this list is evaluated instead of the expression. Note: The file pointer is set to 
the very beginning of the expression before calling the VARS function definition, 
so it may read the entire expression if necessary. If the function returns a litatom, 
the file pointer is reset and the expression is READ or SKREAD. However, the file 
pointer is not reset when the function returns a list, so the function must leave it 
set immediately after the expression that it has presumably read. 

LOADFNS returns a list of: (1) The names of the functions that were found; (2) A 
list of those functions not found (if any) headed by the litatom NOT-FOUND:; (3) 
All of the expressions that were evaluated; (4) A list of those members of VARS 

for which no corresponding expressions were found (if any), again headed by the 
litatom NOT-FOUND:. For example, 

~ {LOADFNS '(FOO FIE FUM) FILE NIL '(BAZ (DEFLIST &})) 
(FOO FIE (NOT-FOUND: FUM) (RPAQ BAZ ···) (NOT-FOUND: (DEFLIST 
&}) ) 

(LOADVARS VARS FILE LDFLG) [Function] 
Same as (LOADFNS NIL FILE LDFLG VARS). 

11.5 



Storing Files 

(LOAOFROM FILE FNS LDFLG) [Function] 
Same as (L0A0FNS FNS FILE LDFLG T). 

Once the file package has noticed a file, the user can edit functions contained in the file without explicitly 
loading them. Similarly, those functions which have not been modified do not have to be loaded in order 
to write out an updated version of the file. Files are normally noticed (i.e., their contents become known 
to the file package; see page 11.12) when either the symbolic or compiled versions of the file are loaded. 
If the file is not going to be loaded completely, the preferred way to notice it is with L0ADFR0M. Note 
that the user can also load some functions at the same time by giving L0ADFR0M a second argument, but 
it is normally used simply to inform the file package about the existence and contents of a particular file. 

( l 0ADBL0CK FN FILE LDFLG) [Function] 
Calls L0ADFNS on those functions contained in the block declaration containing 
FN (See page 12.14). LOAD BLOCK is designed primarily for use with symbolic files, 
to load the EXPRs for a given block. It will not load a function which already has 
an in·core EXPR definition. and it will not load the block name, unless it is also 
one of the block functions. 

( L0ADC0MP FILE LDFLG) [Function] 
Performs all operations on FILE associated with compilation, i.e. evaluates all 
expressions under a DECLARE: EVAL@C0MPILE (see page 11.26), and "notices" 
the function and variable names by adding them to the lists N0FIXFNSLST and 
N0F IXVARSLST (see page 16.16). 

Thus, if building a system composed of many files with compilation information 
scattered among them, all that is required to compile one file is to L0A0C0MP the 
others. 

( L0ADC0MP? FILE LDFLG) [Function] 
Similar to L0A0C0MP, except it does not load if file has already been loaded, in 
which case its value is NI L. 

11.2 STORING FILES 

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE) [Function] 
Makes a new version of the file FILE, storing the information specified by FIL.E's 

filecoms. Notices FILE if not previously noticed (see page 11.12). Then, it adds 
FILE to NOTLISTEDF ILES2 and NOT COMP ILEDF ILES.3 

OPTIONS is a litatom or list of litatoms which specify options. By specifying certain 
options, MAKEFILE can automatically compile or list FILE. Note that if FILE does 
not contain any function definitions, it is not compiled even when OPTIONS specifies 

. 2Except if FILE has on its property list the property FI LETY PE with value DON' TL I ST, or a list containing 
DON' TLIST. 
3Except if FILE has on its property list the property FILETYPE with value D0N'TC0MPILE, or a list 
containing DON' TC0MPILE. Also, if FILE does not contain any function definitions, it is not added to 
N0TC0MPILEDFILES, and it is not compiled even when OPTIONS specifies C or RC. 

11.6 



r 

FILE PACKAGE 

C or RC. The options are spelling corrected using the list MAKE F ILE OPT IONS. If 
spelling correction fails, MAKEFILE generates an error. The options are interpreted 
as follows: 

C 
RC 

LIST 

CLISPIFY 

NOC LISP 

FAST 

REMAKE 

NEW 

After making FILE, MAKEFILE will compile FILE by calling 
TCOMPL (if C is specified) or RECOMPILE (if RC is specified). 
If there are any block declarations specified in the filecoms for 
FILE, BCOMPL or BRECOMPILE will be called instead. 

If F, ST, S TF, or S is the next item on OPTIONS following C or 
RC, it is given to the compiler as the answer to the compiler's 
question LISTING? (see page 12.1). For example, (MAKEFILE 
'FOO ' ( C F LIST)) will dump FOO, then TCOMPL or BCOMPL 
it specifying that functions are not to be redefined, and finally list 
the file. 

After making FILE, MAKEFILE calls USTFILES to print a 
hard.copy listing of FILE. 

MAKEFILE calls PRETTYDEF with CUSPIFYPRETTYFLG=T 
(see page 16.20). This causes CLISPIFY to be called on each 
function defined as an EXPR before it is prettyprinted.4 

MAKEFILE calls PRETTYDEF with PRETTYTRANFLG=T (see page 
16.20). This causes CUSP translations to be printed, if any, in place 
of the corresponding CUSP expressions, e.g., iterative statements, 
record expressions, PRINTOUT forms, etc. 

MAKEFILE calls PRETTYDEF with PRETTYFLG=NIL (see page 
6.54). This causes data objects to be printed rather than 
prettyprinted, which is much faster. 

MAKEFILE "remakes" FILE: The prettyprinted definitions of 
functions that have not changed are copied from an earlier version 
of the symbolic file. Only those functions that have changed are 
prettyprinted. See page 11.10. 

MAKEFILE does not remake FILE. If MAKEFILEREMAKEFLG=T 
(the initial setting), the default for all calls to MAKEFILE is to 
remake. The NEW option can be used to override this default 

REPRINTFNS and SOURCEFILE are used when remaking a file, as described on 
page 11.10. 

4 A]ternatively, if FILE has the propeny FILETYPE with value CUSP or a list containing CUSP, 
PRETTYDEF is called with CLISPIFYPRETTYFLG reset to CHANGES. which will cause CLISPIFY to 
be called on all functions marked as having been changed. If FILE has property FILE TYPE with value 
CUSP, the compiler will DWIMIFY its functions before compiling them (see page 12.9). 

11.7 



Storing Files 

If a remake is not being performed. MAKEFILE checks the state of FILE to make sure that the entire source 
file was actually LOADed. If FILE was loaded as a compiled file, MAKEFILE prints the message CAN'T 
DUMP: ONLY THE COMP I LED FI LE HAS BE EN LOADED. Similarly, if only some of the symbolic 
definitions were loaded via LOADFNS or LOAD FROM, MAKEFILE prints CAN'T DUMP: ONLY SOME OF 
ITS SYMBOLICS HAVE BEEN LOADED. In both cases, MAKEFILE will then ask the user if it should 
dump anyway: if the user declines, MAKEFr'LE does not call PRETTYDEF, but simply returns (FILE NOT 
DUMPED) as its value. 

The user can indicate that FILE must be block compiled together with other files as a unit by putting a list 
of those files on the property list of each file under the property FILEGROUP. If FILE has a FI LEG ROUP 
property, the compiler will not be called until all files on this property have been dumped that need to 
be 

MAKEFILE operates by rebinding PRETTYFLG, PRETTYTRANFLG. and CLISPIFYPRETTYFLG, evaluat­
ing each expression on MAKEFILEF0RMS (under errorset protection}, and then calling PRETTYDEF. The 
user can add expressions to MAKEFILEFORMS to implement his own options. 

( MAKEFILES OPTIONS FILES) [Function] 
Performs (MAKEFILE FILE OPTIONS) for each file on FILES that needs to be 
dumped. IfFILES=NIL, FILELST is used. For example, (MAKEFILES 'LIST) 
will make and list all files that have been changed. In this case, if any typed 
definitions for any items have been defined or changed and they are not contained 
in one of the files on FILELST. MAKEFILES calls AD0T0FILES? to allow the 
user to specify where these go. MAKEFILES. returns a list of all files that are made. 

{CLEANUP FILE1 FILE2 .. · FIL.EN) [NLambd.a NoSpread Function] 
Dumps, lists, and recompiles (with RECOMPILE or BREC0MPILE) any of the 
specified files (unevaluated) requiring the corresponding operation. If no files are 
specified, FILELST is used. CLEANUP returns NIL. 

CLEANUP uses the value of the variable CLEANUP0PTI0NS as the OPTIONS 

argument to MAKEFILE. CLEANUP0PTI0NS is initially (LIST RC), to indicate 
that the files should be listed and recompiled. If CLEANUP0PTI0NS is set to ( RC 
F ) , no listing will be performed, and no functions will be redefined as the result 
of compiling. Alternatively, if FILE1 is a list, it will be interpreted as the list of 
options regardless of the value of CLEANUP0PT IONS. 

( fTLES?) [Function] 
Prints on the terminal the names of those files that have been modified but not 
dumped. dumped but not listed, dumped but not compiled. plus the names of any 
functions and other typed definitions (if any) that are not contained in any file. 
If there are any, FILES? then calls AD0T0FILES? to allow the user to specify 
where these go. 

(AODTOFILES? -) [Function] 
Called from MAKEFILES, CLEANUP, and FILES? when there are typed definitions 
that have been marked as changed which do not belong to any file. A00TOFILES? 
lists the names of the changed items, and asks the user if he wants to specify where 
these items should be put. If user answers N(o), AD0TOFILES? returns NIL 
without taking any action. If the user answers ], this is taken to be an answer 
to each question that would be asked, and all the changed items are marked as 
dummy items to be ignored. Otherwise, A00TOFILES? prints the name of each 

11.8 



FILE PACKAGE 

changed item, and accepts one of the following responses: 

A file name or a variable whose value is a list 
Adds the item to the corresponding file or list, using ADDTOF I LE. 

If the item is not the name of a file on FILE LS T, the user will be asked 
whether it is a new file. If he says no, then AOOTOF ILES? will check 
whether the item is the name of a list, i.e. whether its value is a list. If 
not, the user will be asked whether it is a new list. 

line-feed 
Same as the user's previous response. 

space or carriage return 
Take no action. 

] The item is marked as a dummy item by adding it to NILCOMS. This tells 
the file package simply to ignore this item. 

[ The "definition" of the item in question is prettyprinted to the terminal, 
and then the user is asked again about its disposition. 

( ADO TOFIL ES? prompts with "LIST NAME : ( ", the user types in the name 
of a list, i.e. a variable whose value is a list, terminated by a ) . Toe item 
will then only be added to (under) a command in which the named list 
appears as a filevar. If none are found, a message is printed, and the user 
is asked again .. For example, the user defines a new function F003, and 
when asked where it goes, types ( FOOFNS ). If the command ( FNS * 
FOOF.NS) is found, F003 will be added to the value of FOOFNS. If instead 
the user types ( FOOCOMS ), and the command ( COMS * FOOCOMS) is 
found, then F003 will be added to a command for dumping functions that 
is contained in FOOCOMS. 

Note: If the named list is not also the name of a file, the user can simply 
type it in without parenthesis as described above. 

ADDTOFILES? prompts with "Near: (", the user types in the name 
of an object, and the item is then inserted in a command for dumping 
objects ( of its type) that contains the indicated name. The item is inserted 
immediately after the indicated name. 

( LISTF I LES FILE1 FILE2 · · · FILEN) [NLambda NoSpread Function] 
Lists each of the specified files (unevaluated). If no files are given, NOT LI ST EDF I LES 
is used. Each file listed is removed from NOTLISTEDFILES if the listing is com­
pleted. For each file not found, LIST FI LES prints the message "FILENAME NOT 
FOUND" and proceeds to the next file. LISTFILES calls the function LISTFILESl 
on each file to be listed. Toe user can advise or redefine LIST FILES 1 for more 
specialized applications. 

(lnterlisp-10) LISTF ILES uses the function TENEX (page 22.6) to tell the operating 
system to print the file. LIST F I LES calls LIST F ILES 1 which calls TENEX 
with (CONCAT 'LIST$ FILENAME LISTFILESTR), where LISTFILESTR is 

11.9 



(COMPILEFILES 

(WHEREIS NAME 

Remaking a Symbolic File 

initially "er". The user can reset LISTFILESTR to specify subcommands for the 
list command, or advise or redefine LIST F ILES 1. 

(Interlisp-D) LISTFILESl is initially defined as EMPRESS (page 18.17). 

FILE1 FILE2 · · · FILEN) [NLambda NoSpread Function] 
Executes the RC and C options of MAKEFILE for each of the specified files 
(unevaluated). If no files are given, NOTCOMPILEOFILES is used. Each file 
compiled is removed from NOT COMP I LEDF ILES. If FILE1 is a list, it is interpreted 
as the OPTIONS argument to MAKEFILES. This feature can be used to supply 
an answer to the compiler's LIST ING? question, e.g., ( COMP I L EF ILES ( S TF ) ) 
will compile each file on NOTCOMPILEDFILES so that the functions are redefined 
without the EXPRs definitions being saved. 

TYPE FILES FN) [Function] 
TYPE is a file package type. WHERE IS sweeps through all the files on the list FILES 

and returns a list of all files containing NAME as a TYPE. WHERE IS knows about 
and expands all file package commands and file package macros. TYPE= NIL 
defaults to FNS (to retrieve function definitions). If FILES is not a list, the value 
of FI LE LST is used. 

If FN is given, it should be a function (with arguments NAME, FILE, and TYPE) 

which is applied for every file in FILES that contains NAME as a TYPE. In this case, 
WHERE IS returns NIL. 

If the WHEREIS package (page 23.40) has been loaded, WHERE IS is redefined so 
that FILES= T means to use the whereis package data base, so WHERE IS will find 
_NAME even if the file has not been loaded or noticed. FILES= NIL always means 
use FILELST. 

11.2.1 Remaking a Symbolic File 

Most of the time that a symbolic file is written using MAKEFILE, only a few of the functions that it 
contains have been changed since the last time the file was written. Rather than prettprinting all of 
the functions, it is often considerably faster to "remake" the file, copying the prettprinted definitions of 
unchanged functions from an earlier version of the symbolic file, and only prettyprinting those functions 
that have been changed. 

MAKEFILE will remake the symbolic file if the REMAKE option is specified. If the NEW option is given. 
the file is not remade, and all of the functions are prettprinted. The default action is specified by the value 
of MAKEFILEREMAKEFLG: if T (its initial value), MAKEFILE will remake files unless the NEW option is 
given; if NIL, MAKEFILE will not remake unless the REMAKE option is given. 

Note: If the file has never been loaded or dumped, for example if the filecoms were simply set 
up in memory, then MAKEFILE will never attempt to remake the file, regardless of the setting of 
MAKEFILEREMAKEFLG, or whether the REMAKE option was specified. 

When MAKEFILE is remaking a symbolic file, the user can explicitly indicate the functions which are 
to be prettyprinted and the file to be used for copying the rest of the function definitions from via the 
REPRINTFNS and SOURCEFILE arguments to MAKEFILE. Normally, both of these arguments are defaulted 
to N IL. In this case, REPRINTFNS will be set to those functions that have been changed since the last 

11.10 



FILE PACKAGE 

version of the file was written. For SOURCEFILE, MAKEFILE obtains the full name of the most recent 
version of the file (that it knows about) from the FI LEDA TES property of the file, and checks to make 
sure that the file still exists and has the same file date as that stored on the F ILE DATES property. If it 
does, MAKEFILE uses that file as SOURCEFILE. This procedure permits the user to LOAD or LOADFR0M a 
file in a different directory, and still be able to remake the file with MAKEFILE. In the case where the most 
recent version of the file cannot be found, MAKEFILE will attempt to remake using the original version of 
the file (i.e., the one first loaded), specifying as REPRINTFNS the union of all changes that have been made 
since the file was first loaded, which is obtained from the FILECHANGES property of the file. If both of 
these fail, MAKEFILE prints the message "CAN'T FINO EITHER THE PREVIOUS VERSION OR THE 
ORIGINAL VERSION OF FILE, SO IT WILL HAVE TO BE WRITTEN ANEW", and does not remake 
the file, i.e. will prettyprint all of the functions. 

When a remake is specified, MAKEFILE also checks to see how the file was originally loaded (see page 
11.12). If the file was originally loaded as a compiled file, MAKEFILE will automatically call L0A0VARS 
to obtain those DECLARE: expressions that are contained on the symbolic file, but not the compiled 
file, and hence have not been loaded. If the file was loaded by L0A0FNS (but not L0A0FR0M), then 
LOADVARS will automatically be called to obtain any non-DEFINEQ expressions. 

Note: Remaking a symbolic file is considerably faster if the earlier version has a file map indicating where 
the function definitions are located (page 11.38), but it does not depend on this information. 

11.3 MARKING CHANGES 

The file package needs to know what typed definitions have been changed, so it can determine which 
files need to be updated. This is done by "marking changes". All the system functions that perform file 
package operations (LOAD, TCOMPL, PRETTYDE F, etc.), as well as those functions that define or change 
data, (ED IT F, ED ITV, ED IT P, OWIM corrections to user functions) interact with the file package by 
marking changes. Also, typed-in assignment of variables or property values is noticed by the file package. 
(Note that if a program modifies a variable or property value, this is not noticed.) In some cases the 
marking procedure can be subtle, e.g. if the user edits a property list using EDITP, only those properties 
whose values are actually changed ( or added) are marked. 

The various system functions which create or modify objects call MARKASCHANGED to mark the object as 
changed. For example, when a function is defined via DEFINE or DEFINEQ, or modified via EDITF, or 
a DWIM correction, the function is marked as being a changed object of type FNS. Similarly, whenever a 
new record is declared, or an existing record redeclared or edited, it is marked as being a changed object 
of type RECORDS, and so on for all of the other file package types. 

The user can also call MARKASCHANGED directly to mark objects of a particular file package type as 
changed: 

( MARKASCHANGED NAME TYPE REASON) (Function] 
Marks NAME of type TYPE as being changed. REASON is a litatom that indicated 
how NAME was changed. MARKASCHANGED recognizes the following values for 
REASON: 

DEFINED 

CHANGED 

Used to indicate the creation of NAME, e.g. from DE F IN E. 

Used co indicate a change to NAME, e.g. from the editor. 

11.11 



DELETED 

CUSP 

Noticing Files 

Used to indicate the deletion of NAME, e.g. by DELDEF. 

Used to indicate the modification of NAME by CUSP translation. 

For backwards compatibility, MARKASCHANGED also accepts a REASON of T 
(=DEFINED) and ·NIL (=CHANGED). New programs should avoid using these 
values. 

MARKASCHANGED returns NAME. MARKASCHANGED is undoable. 

( UNMARKASCHANGED NAME TYPE) [Function] 
Unmarks NAME of type TYPE as being changed. Returns NAME if NAME was 
marked as changed and is now unmarked, NIL otherwise. UNMARKASCHANGED is 
undoable. 

( F ILEPKGCHANGES TYPE LST) [NoSpread Function] 
If LST is not specified (as opposed to being NIL), returns a list of those objects 
of type TYPE that have been marked as changed but not yet associated with their 
corresponding files (See page 11.14). If LST is specified, F ILEPKGCHANGES sets 
the corresponding list ( F ILEPKGCHANGES) returns a list of ail objects marked 
as changed as a list of elements of the form ( TYPENAME . CHANGEDOBJECTS). 

Some properties (e.g. EXPR, ADVICE, MACRO, I. S. QPR, etc .. ) are used to implement other file package 
types. For example, if the user changes the value of the property I. S. QPR, he is really changing an object 
of type I. S. QPR, and the effect is the same as though he had redefined the i.s.opr via a direct call to the 
function I. S. OPR. If a property whose value has been changed or added does not correspond to a specific 
file package type, then it is marked as a changed object of type PROPS whose name is ( VARIABLENAME 

PROPNAME) (except if the property name has a property PROPTYPE with value IGNORE). 

Similarly, if the user changes a variable which implements the file package type AUSTS (as indicated by 
the appearance of the property VARTYPE with value AUST on the variable's property list), only those 
entries that are actually changed are marked as being changed objects of type AUSTS, and the "name" 
of the object will be ( VARIABLENAME KEY) where KEY is CAR of the entry on the alist that is being 
marked. If the variable corresponds to a specific file package type other than AUSTS, e.g. USERMACRQS, 
LISPXMACROS, etc., then an object of that type is marked. In this case, the name of the changed object 
will be CAR of the corresponding entry on the alist. For example, if the user edits LISPXMACROS and 
changes a definition for PL, then the object PL of type USPXMACROS is marked as being changed. 

11.4 NOTICING FILES 

Already existing files are "noticed" by LOAD or LOADFROM (or by LQAOFNS or LQAOVARS when the 
VARS argument is T. New files are noticed when they are constructed by MAKEFILE, or when definitions 
are first associated with them via F ILES? or ADO TO F I LES?. Noticing a file updates certain lists and 
properties so that the file package functions know to include the file in their operations. For example, 

"CLEANUP will only dump files that have been noticed. . 

The file package uses information stored on the property list of the root name of noticed files. The 
following property names are used: 

11.12 



FILE 

FILECHANGES 

FILEDATES 

FILEMAP 

FILE PACKAGE 

[Property Name] 
When a file is noticed, the property F ILE, value ( ( F'ILECOMS • LOADTYPE) ) is 
added to the property list of its root name. F'ILECOMS is the variable containing 
the filecoms of the file (see page 11.21). LOADTYPE indicates how the file was 
loaded, e.g., completely loaded, only partially loaded as with LOADFNS, loaded as 
a compiled file, etc. 

The property FILE is used to determine whether or not the corresponding file 
has been modified since the last time it was loaded or dumped. CDR of the 
FILE property records by type those items that have been changed since the last 
MAKEFILE. Whenever a file is dumped, these items are moved to the property 
FILECHANGES, and CDR of the FILE property is reset to NIL. 

[Property Name] 
The property FILECHANGES contains a list of all changed items since the file was 
loaded ( there may have been several sequences of editing and rewriting the file). 
When a file is dumped, the changes in CDR of the FILE property are added to the 
FILECHANGES property. 

[Property Name] 
The property FILEDATES contains a list of version numbers and corresponding file 
dates for this file. These version numbers and dates are used for various integrity 
checks in connection with remaking a file (see page 11.10). 

[Property Name] 
The property FI LEMAP is used to store the filemap for the file (see page 11.38). 
This is used ~o directly load individual functions from the middle of a file. 

To compute the root name, ROOTF I LE NAME is applied to the name of the file as indicated in the 
F ILE CREA TED expression appearing at the front of the file, since this name corresponds to the name 
the file was originally made under. The file package detects that the file being noticed is a compiled file 
(regardless of its name), by the appearance of more than one FILECREATED expressions. In this case, 
each of the files mentioned in the following FI LE CREA TED expressions are noticed. For example, if the 
user perfonns ( BCOMPL ' ( FOO FIE)), and subsequently loads FOO. DCOM, both FOO and FIE will be 
noticed. 

When a file is noticed, its root name is added to the list F I LE LS T: 

FILELST 

LOADEDFILELST 

(Variable] 
Contains a list of the root names of the files · that have been noticed. 

(Variable] 
Contains a list of the actual names of the files as loaded by _LOAD, LOADF NS, 
etc. For example, if the user performs (LOAD '<NEWLISP>EDITA.COM;3), 
EDITA will be added to FILELST, but <NEWLISP>EDITA.COM;3 is added 
to LOADEDFILELST. LOADEDFILELST is not used by the file package; it is 
mai.r;itained solely for the user's benefit. 

11.13 



Distributing Change Information 

115 DISTRIBUTING CHANGE INFORMATION 

Periodically, the function UPDATE FILES is called to find which file(s) contain the elements that have 
been changed. UPOATEFILES is called by FILES?, CLEANUP, and MAKEFILES, i.e., any procedure that 
requires the FI LE property to be up to date. This procedure is followed rather than update the FI LE 
property after each change because scanning FI LE LST and examining each file package command can be 
a time-consuming process, and is not so noticeable when performed in conjunction with a large operation 
like loading or writing a file. 

UPOATEF ILES operates by scanning FILE LST and interrogating the file package commands for each file. 
When (if) any files are found that contain the corresponding typed definition, the name of the element 
is added to the value of the property FILE for the corresponding file. Thus, after UPDATEFILES has 
completed operating, the files that need to be dumped are simply those files on FILELST for which CDR 
of their FI LE property is non-NIL. For example, if the user loads the file FOO containing definitions for. 
FOOl, FO02, and FOO3, edits FOO2, and then calls UPDATE FILES, (GETPROP 'FOO 'FILE) will be 
( ( FOOCOMS . T) { FNS FO02) ). If any objects marked as changed have not been transferred to the 
FI LE property for some file, e.g., the user defines a new function but forgets ( or declines) to add it to the 
file package commands for the corresponding file, then both FILES? and CLEANUP will print warning 
messages, and then call ADOTOF ILES? to permit the user to specify on which files these items belong. 

The user can also invoke UPDATE FILES directly: 

(UPOATEFILES - -) [Function] 
{UPOATEFILES) will update the FILE properties of the noticed files. 

11.6 FILE PACKAGE TYPES 

In addition to the definitions of functions and values of variables, source files in Interlisp can contain a 
variety of other information, e.g. property lists, record declarations, macro definitions, hash arrays, etc. 
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations, the 
file package uses the concept of a typed definition, of which a function definition is just one example. A 
typed definition associates with a name (usually a litatom), a definition of a given type (called the file 
package type). Note that the same name may have several definitions of different types. For example, a 
litatom may have both a function definition and a variable definition. The file package also keeps track of 
the file that a particular typed definition is stored on, so one can think of a typed definition as a relation 
between four elements: a name, a definition, a type, and a file. 

A file package type is an abstract notion of a class of objects which share the propeny that every object 
of the same file package type is stored. retrieved, edited, copied etc .. by the file package in the same way. 
Each file package type is identified by a litatom, which can be given as an argument to the functions that 
manipulate typed definitions. The user may define new file package types, as described in page 11.20. 

FILEPKGTYP.ES [Variable] 
The value of FILEPKGTYPES is a list of all file package types, including any that 
may have been defined by the user. 

The file package is initialized with the following built-in file package type~: 

11.14 



FNS 

VARS 

PROPS 

ALISTS 

EXPRESSIONS 

MACROS 

USERMACROS 

LISPXMACROS 

ADVICE 

FILEPKGCOMS 

FILE PACKAGE 

Function definitions. 

(top-level) Variable values. 

Property name/value pairs. When a property is changed or added. an object of 
type PROPS, with "name" ( LITATOM PROPNAME) is marked as being changed. 

Note that some properties are used to implement other file package types. For 
example, the property MACRO implements the file package type MACROS, the 
property ADVICE implements ADVICE, etc. This is indicated by putting the 
property PROPTYPE, with value of the file package type on the property list 
of the property name. For example, (GETPROP 'MACRO 'PROPTYPE) => 
MACROS. When such a property is changed or added. an object of the corresponding 
file package type is marked. If { GETPROP PROPNAME 'PROPTYPE) => 
IGNORE, the change is ignored. The FILE, FILEMAP, F ILEDATES, etc. properties­
are all handled this way. (Note that IGNORE cannot be the name of a file package 
type implemented as a property). 

Alists (association lists); a list of dotted pairs accessed via ASSOC and PUT ASSOC. 

A variable is declared to have an association list as its value by putting on its 
property list the property VARTYPE with value AUST. In this case, each dotted 
pair on the list is an object of type ALISTS. When the value of such a variable 
is changed. only those entries in the a-list that are actually changed or added 
are marked as changed objects of type A LISTS ( with "name" ( LITATOM KEY)). 

Objects of type ALISTS are dumped via the ALISTS or ADDVARS file package 
commands. 

Note that some alists are used to "implement" other file package types. For 
example, the value of the global variable USERMACROS implements the file package 
type USERMACROS and the values of LISPXMACROS and LISPXHISTORYMACROS 
implement the file package type LISPXMACROS. This is indicated by putting on 
the property list of the variable the property VARTYPE with value a list of the form 
(AUST FILEPKGTYPE). For example, (GETPROP I LISPXHISTORYMACROS 
'VARTYPE) => (ALIST LISPXMACROS). 

Expressions. 

Objects of type EXPRESS IONS are written out via the P file package command. 
and marked as being changed via the REMEMBER programmers assistant command 
(page 8.13). 

Compiler macros. See page 5.17. 

User edit macros. See page 17.48. 

(values in) LISPXMACROS and LISPXHISTORYMACROS. See page 8.19. 

Advice. See page 10.7. 

File package commands/types. New file package types and commands can be 
defined as explained on page 11.20 and page 11.32. 

11.15 



RECORDS 

FIELDS 

I. S. OPRS 

TEMPLATES 

FILES 

FILEVARS 

Functions for Manipulating Typed Definitions 

Record declarations. See page 3.1. 

Fields of records. Toe "definition" of an object of type FIE LOS is a list of all the 
record declarations which contain the name. See page 3.1. 

Iterative statement operators. See page 4.5. 

Masterscope templates. See page 13.1. 

Files. -Files may be treated like other typed definitions. 

Filevars. See page 11.30. 

11.6.1 Functions for Manipulating Typed Definitions 

The functions described below can be used to manipulate typed definitions, without needing to know -how 
the manipulations are done. For example. (GET DEF ' F 00 ' F NS ) will return the function definition of 
FOO, (GETDEF 'FOO 'VARS) will return the variable value of FOO, etc. All of the functions use the 
following conventions: 

(1) Any argument that expects a list of litatoms will also accept a single litatom, operating as though it 
were enclosed in a list. For example, if the argument F'ILES should be a list of files. it may also be 
a single file. 

(2) TYPE is a file package type. TYPE= NIL is equivalent to TYPE= FNS. The singular form of a file 
package type is also recognized, e.g. TYPE=VAR is equivalent to TYPE=VARS. 

(3) F'ILES= NIL is equivalent to F'ILES= FI LELST. 

(4) SOURCE is used to indicate the source of a definition, that is, where the definition should be found. 
SOURCE can be one of: 

CURRENT 

SAVED 

FILE 

? 

Get the definition currently in effect. 

Get the "saved" definition, as stored by SAVEDE F (page 11.18). 

Get the definition contained on the (first) file determined by WHERE IS (page 11.10). 

Note: WHERE IS is called with F'ILES= T, so that if the WHEREIS package (page 
23.40) is loaded, the WHEREIS data base will be used to find the file containing the 
definition. 

Get the definition currently in effect if there is one, else the saved definition if there 
is one, otherwise the definition from a file determined by WHERE IS. Like specifying 
CURRENT, SAVED, and FI LE in order, and taking the first definition that is found. 

a file name or list of file names 
Get the definition from the first of the indicated files that contains one. 

NIL In most cases, giving SOURCE= NIL ( or not specifying it at all) is the same as giving 
? , to get either the current, saved, or filed definition. However, with HASD E F. 
SOURCE=NIL is interpreted as equal to SOURCE=CURRENT, which only tests if 

11.16 



,.. 

FILE PACKAGE 

there is a current definition. 

( 5) All functions which make destructive changes are undoable. 

The operation of most of the functions described below can be changed or extended by modifying 
the appropriate properties for the corresponding file package type using the function F I LE PKG TYPE, 
described on page 11.20. 

( GETDEF NAME TYPE SOURCE OPTIONS) [Function] 
Returns the definition of NAME, of type TYPE, from SOURCE. For most types, 
GE TOE F returns the expression which would be prettyprinted when dumping 
NAME as TYPE. For example, for TYPE= FNS, an EXPR definition is returned, for 
TYPE=VARS, the value of NAME is returned, etc. 

OPTIONS is a list which specifies certain options: 

NOERROR 

a string 

NOCOPY 

NODWIM 

GETDEF causes an error if an appropriate definition cannot be 
found, unless OPTIONS is or contains NOERROR. 

If OPTIONS is or contains a string, that string will be returned if 
no definition is found. The caller can thus determine whether a 
definition was found, even for types for which NIL or NOB I ND 
are acceptable definitions. 

GETDEF returns a copy of the definition unless OPTIONS is or 
contains NOCOPY. 

A F NS definition will be dwimified if it is likely to contain CUSP 
unless OPTIONS is or contains NODW IM. 

( PUT DEF NAME TYPE DEFINITION) [Function] 
Defines NAME of type TYPE with DEFINITION. For TYPE= FNS, does a DEFINE; 
for TYPE=VARS, does a SAVESET, etc. 

For TYPE=FILES, PUTDEF establishes the command list, notices NAME, and then 
calls MAKE F ILE to actually dump the file NAME, copying functions if necessary 
from the "old" file (supplied as part of DEFINITION). 

( J-l1'SDEF NAME TYPE SOURCE SPELLFLG) [Function] 
Returns NAME if NAME is the name of something of type TYPE. If not, attempts 
spelling correction if SPELLFLG = T, and returns the spelling-corrected NAME. 

Otherwise returns N IL. 

( HASOE F NIL TYPE) returns T if NIL has a valid definition. 

Note: if SOURCE=NIL, HASDEF interprets this as equal to SOURCE=CURRENT, 
which only tests if there is a current definition. 

( TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES SOURCE) [Function] 
Returns a list of the types in POSSIBLETYPES but not in IMPOSSIBLETYPES for 
which NAME has a definition. F ILE p KG Ty p Es is used if POSSIBLE TYPES is NI L. 

11.17 



Functions for Manipulating Typed Definitions 

( COPYDE F OLD NEW TYPE SOURCE OPTIONS) [Function] 
Defines NEW to have a copy of the definition of OLD by doing PUTDEF on a copy 
of the definition retrieved by ( GET DEF OLD TYPE SOURCE OPTIONS). NEW is 
substituted for OLD in the copied definition, in a manner that may depend on the 
TYPE. 

For example, ( COPYDEF 'PDQ 'RST 'FILES) sets up RSTCOMS to be a copy of 
PDQCOMS, changes things like ( VARS • PDQVARS) to be ( VARS • RSTVARS) 
in RSTCOMS, and performs a MAKEFILE on RST such that the appropriate 
definitions get copied from PDQ. 

Note: COP YOE F disables the NOCOPY option of GE TOE F, so NEW will always have 
a copy of the definition of OLD. 

( DELDEF NAME TYPE) [Function] 
Removes the definition of NAME as a TYPE that is currently in effect 

( SHOWDEF NAME TYPE FILE) [Function] 
Prettyprints the definition of NAME as a TYPE to FILE. This shows the user how 
NAME would be written to a file. Used by ADOTOF ILES? (page 11.8). 

( EDITDEF NAME TYPE SOURCE EDITCOMS) [Function] 
Edits the definition of NAME as a TYPE. Essentially performs ( PUT DEF NAME 

TYPE (EOITE {GETDEF NAME TYPE SOURCE) EDITCOMS) ). 

( SAVE DEF NAME TYPE DEFINITION) [Function] 
Makes DEFINITION ( or if DEFINITION= NIL, the definition of NAME as a TYPE that 
is currently in effect) be the "saved" definition for NAME as a TYPE. If TYPE= F NS 
(or TYPE= NIL), this consists of storing DEFINITION on NAME'S property list under 
property EXPR, CODE, or SUBR. For TYPE=VARS, the definition is stored as the 
value of the VALUE property. For other types, DEFINITION is stored in an internal 
data structure, from where it can be retrieved by GETDEF or UNSAVEDEF. 

( UNSAVEOEF NAME TYPE -) [Function] 
Makes the "saved" definition of NAME as a TYPE be the definition currently in 
effect IfTYPE=FNS (or TYPE=NIL), UNSAVEDEF will unsave the EXPR property 
if any, else CODE or SUBR. UNSAVEDEF also recognizes TYPE= EXPR, CODE, or 
SUBR, meaning to unsave the corresponding definition only. 

( LOAODE F NAME TYPE SOURCE} [Function] 
Equivalent to ( PUT DEF NAME TYPE { GETOEF NAME TYPE SOURCE)). LOADOEF 
is essentially a generalization of LOADFNS, e.g. it enables loading a single record 
declaration from a file. Note that ( LOAD DEF FN) will give FN an EXPR definition, 
either obtained from its property list or a file, unless it already has one. 

( CHANGE CALLERS OLD NEW TYPES FILES METHOD) [Function] 
Finds all of the places where OLD is used as any of the types in TYPES and changes 
those places to use NEW. For example, ( CHANGECALLERS 'NLSETQ 'ERSETQ) 
will change all calls to NLSETQ to be calls to ERSETQ. Also changes occurrences of 
OLD to NEW inside the filecoms of any file, inside record declarations. properties, 
etc. 

11.18 



FILE PACKAGE 

CHANGECALLERS attempts to determine if OLD might be used as more than one 
type; for example, if it is both a function and a record field. If so, rather than 
performing the transformation OLD -> NEW automatically, the user is allowed 
to edit all of the places where OLD occurs. For each occurrence of OLD, the 
user is asked whether he wants to make the replacement. If he responds with 
anything except Yes or No, the_ editor is invoked on the expression containing that 
occurrence. 

Currently there are two different methods for determining which functions are to be 
examined. If METHOD= EDITCALLERS, EDITCALLERS is used to search FILES 

(see page 17.59). If METHOD=MASTERSCOPE, then the Masterscope database 
is used instead. METHOD=NIL defaults to MASTERSCOPE if the value of the 
variable DE FAUL TRENAMEMETHOD is MASTERSCOPE and a Masterscope database 
exists, otherwise it defaults to ED ITCALLE RS. 

( RENAME OLD NEW TYPES FILES METHOD) [Function) 
First performs ( COPYDE F OLD NEW TYPE) for all TYPE inside TYPES. ·It then 
calls CHANGE CALLERS to change all occurrences of OLD to NEW, and then "deletes" 
OLD with DELDEF. For example, if the user has a function FOO which he now 
wishes to call F IE, he simply performs ( RENAME ' F 00 ' F IE ) , and F I E will be 
given F00's definition, and all places that FOO are called will be changed to call 
F I E instead. 

( COMPARE NAMEl NAME2 TYPE SOURCEl SOURCE2) [Function] 
Compares definiton of NAMEl with that of NAME2, i.e. performs { COMPARE LISTS 
{GETDEF NAMEl TYPE SOURCE1) {GETDEF NAMEl TYPE SOURCE2)) 

( COMPAREDEFS NAME TYPE SOURCES) [Function] 
Calls COMPARE LISTS on all pairs of definitions of NAME as a TYPE obtained from 
the various SOURCES. 

11.6.2 Defining New File Package Types 

All manipulation of typed definitions in the file package is done using the type-independent functions 
GETDEF, PUTDEF; etc. Therefore, to define a new file package type, it is only necessary to specify what 
these functions should do when dealing with a typed definition of the new type. Each file package type 
has the following properties, whose values are functions or lists of functions: 

Note: These functions are defined to take a TYPE argument so that the user may have the same function 
for more than one type. 

GET0EF Value is a function of three arguments, NAME, TYPE, and OPTIONS, which should 
return the current definition of NAME as a type TYPE. Used by GETDEF (which 
passes its OPTION argument). 

If there is no GETDEF property, a file package command for dumping NAME is 
created (by MAKENEWCOM). This command is then used to write the definition of 
NAME as a type TYPE onto the file FI LE PKG. SCRATCH (in lnterlisp-0, this file is 
created on the {CORE} device). This expression is then read back in and returned 
as the current definition. 

11.19 



F ILEGETDEF 

PUTDEF 

DELDEF 

NEWCOM 

WHENCHANGED 

WHENFILED 

WHENUNFILED 

DESCRIPTION 

Defining New File Package Types 

This enables the user to provide a way of obtaining definitions from a file that is more 
efficient than the default procedure used by GETDEF. Value is a function of four 
arguments, NAME, TYPE, FILE, and OPTIONS. The function is applied by GE TD E F 
when it is determined that a typed definition is needed from a particular file. The 
function must open and search the given file and return any TYPE definition for 
NAME that it finds. 

Value is a function of three arguments, NAME, TYPE, and DEFINITION, which should 
store DEFINITION as the definition of NAME as a type TYPE. Used by PUTDEF. 

Value is a function of two arguments, NAME, and TYPE, which removes the definition 
of of NAME as a TYPE that is currently in effect Used by DE LOE F. 

Value is a function of four arguments, NAME, TYPE, LISTNAME, and FU..E. Specifies 
how to make a new (instance of a) file package command to dump NAME-. an object 
of type TYPE. The function should return the new file package command. Used by 
ADDTOFILE and SHOWOEF. 

If LISTNAME is non-NIL, this means that the user specified LISTNAME as the filevar 
in his interaction with AOOTOF I LES? (see page 11.30). 

If no NEWCOM is specified, the default is to call DEFAULTMAKENEWCOM, which will 
construct and return a command of the form ( TYPE NAME). DE FAUL TMAKENEWCOM 
can be advised or redefined by the user. 

Value is a list of functions to be applied to NAME, TYPE, and REASON when NAME, 

an instance of type TYPE, is changed or defined (see MARKASCHANGED, page 11.11). 
Used for various applications, e.g. when an object of type I. S. OPRS changes, it is 
necessary to clear the corresponding translatons from C LISP AR RAY. 

The WHENCHANGED functions are called before the object is marked as changed, so 
that it can, in fact. decide that the object is not to be marked as changed, and execute 
(RETFROM 'MARKASCHANGEO). 

Note: For backwards compatibility, the REASON argument passed to WHENCHANGED 
functions is either T (for DEFINED) and NIL (for CHANGED). 

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an 
instance of type TYPE, is added to FILE. 

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an 
instance of type TYPE. is removed from FILE. 

Value is a string which describes instances of this type. For example. for type 
RECORDS, the value of DESCRIPTION is the string "record declarations". 

The function FILEPKGTYPE is used to define new file package types, or to change the attributes of 
existing types. Note that it is possible to redefine the attributes of system file package types. such as FNS 
or PROPS. 

( F ILEPKGTYPE TYPE PROP1 VAL1 · · · PROPN VALN) [NoSpread Function] 
Nospread function for defining new file package types, or changing attributes of 
existing file package types. PROP, is one of the property names given above; VALi 

11.20 



FILE PACKAGE 

is the value to be given to that property. Returns TYPE. 

( FILEPKGTYPE TYPE PROP) returns the value of the property PROP. without 
changing it 

( F ILEPKGTYPE TYPE returns an alist of all of the defined properties of TYPE, 

using the property names as keys. 

11.7 FILE PACKAGE COMMANDS 

The basic mechanism for creating symbolic files is the function MAKEFILE (page 11.6). For each file, 
the file package has a data structure known as the "filecoms", which specifies what typed descriptions are 
contained in the file. A filecoms is a list of file package commands, each of which specifies objects of a 
certain file package type which should be dumped. For example, the filecoms 

( (FNS FOO) 
(VARS FOO BAR BAZ) 
(RECORDS XYZZY) ) 

has a FNS, a VARS, and a RECORDS file package command. This filecoms specifies that the function 
definition for FOO, the variable values of FOO, BAR, and BAZ, and the record declaration for XYZZY 
should be dumped. 

By convention, the filecoms of a file x is stored as the value of the litatom xCOMS. For example, 
(MAKEFILE ' F 00 . ; 2 7 ) will use the value of F OOC OMS as the filecoms. This variable can be directly 
manipulated, but the file package contains facilities which make constructing and updating filecoms easier. 
and in some cases automatic (See page 11.32). 

A file package command is an instruction to MAK EF ILE to perform an explicit, well-defined operation, 
usually printing an expression. Usually there is a one-to-one correspondence between file package types 
and file package commands; for each file package type, there is a file package command which is used 
for writing objects of that type to a file, and each file package command is used to write objects of a 
particular type. However, in some cases, the same file package type can be dumped by several different 
file package commands. For example, the file package commands PROP, If PROP, and PROPS all dump 
out objects with the file package type PROPS. This means if the user changes an object of file package 
type PROPS via EOITP, a typed-in call to PUTPROP, or via an explicit call to MARKASCHANGED, this 
object can be written out with any of the above three commands. Thus, when the file package attempts to 
determine whether this typed object is contained on a particular file, it must look at instances of all three 
file package commands PROP, IFPROP, and PROPS, to see if the corresponding atom and property are 
specified. It is also permissible for a single file package command to dump several different file package 
types. For example, the user can define a file package command which dumps both a function definition 
and its macro. Conversely, some file package comands do not dump any file package types at all, such as 
the E command. 

• 
For each file package command. the file package must be able to determine what typed definitions the 
command will cause to be printed so that the file package can determine on what file (if any) an object 
of a given type is contained (by searching through the filecoms). Similarly, for each file package type, 
the file package must be able to construct a command that will print out an object of that type. In other 
words, the file package must be able to map file package commands into file package types, and vice 

11.21 



r 
File Package Commands 

versa. Infonnation can be provided to the file package about a panicular file package command via the 
function FI LEPKGCOM (page 11.32), and infonnation about a panicular file package type via the function 
FI LE PKG TYPE (page 11.20). In the absence of other infonnation, the default is simply that a file package 
command of the fonn ( x NAME) prints out the definition of NAME as a type x, and, conversely, if NAME 

is an object of type x, then NAME can be written out by a command of the fonn ( x NAME). 

If a file package function is given a command or type that is not defined, it attempts spelling correction5 

using FILEPKGCOMSPLST as a spelling list. If successful, the corrected version of the list of file package 
commands is written (again) on the output file.6 If unsuccessful. generates an error, BAO FILE PACKAGE 
COMMAND. 

File package commands can be used to save on the output file definitions of functions, values of variables, 
property lists of atoms, advised functions, edit macros, record declarations. etc. The interpretation of each 
file package command is as follows: 

( FNS FN1 · · · FNN) [File Package Command] 
Writes a DEF I NEQ expression with the function definitions of FN1 ,. · FNN. 

The user should never print a DEF IN E Q expression directly onto a file himself (by 
using the P file package command, for example), because MAKEFILE generates 
the filemap of function definitions from the F NS file package commands (see page 
11.38). 

(VARS VAR 1 · · · VARN) [File Package Command] 
For each VARi, writes an expression to set its top level value when the file is loaded. 
If VARi is atomic, VARS writes out an expression to set VARi to the top-level value 
it had at the time the file was written. If VARi is non-atomic, it is interpreted as 
( VAR FORM), and VARS write out an expression to set VAR to the value of FORM 

( evaluated when the file is loaded). 

VARS prints out expressions using RPAQQ and RPAQ, which are like SETQQ and 
SETQ except that they also perform some special operations with respect to the file 
package (see page 11.37). 

Note: VARS cannot be used for putting arbitrary variable values on files. For 
example, if the value of a variable is an array (or many other data types). a litatom 
which represents the array is dumped in the file instead of the array itself. The 
HORRIBLEVARS file package command (page 11.25) provides a way of saving and 
reloading variables whose values contain re-entrant or circular list structure. user 
data types, arrays, or hash arrays. · 

( INITVARS VARz ... VARN) [File Package Command] 
· INITVARS is used for initializing variables, setting their values only when they are 

currently NOB I NO. A variable value defined in an IN ITVARS command will not 
change an already established value. This means that re-loading files to get some 
other information will not automatically revert to the initialization values. 

5unless DWIMFLG or NOSPELLFLG=NIL. See page 15.12. 
6since at this point. the uncorrected list of file package commands would already have been printed on 
the output file. When the file is loaded, this will result in FILECOMS being reset, and may cause a message 
to be printed, e.g., ( FOOCOMS RESET)_. The value of FOOCOMS would then be the corrected version. 

11.22 



FILE PACKAGE 

The format of an INITVARS command is just like VARS. The only difference is 
that if VARi is atomic, the current value is not dumped; instead NIL is defined as 
the initialization value. Therefore, ( IN I TV AR S F 00 ( F UM 2 ) ) is the same as 
(VARS { FOO NIL) ( FUM 2) ), if FOO and FUM are both NOB IND. 

INITVARS writes out an RPAQ? expression on the file instead of RPAQ or RPAQQ. 

( ADDVARS { VAR1 • LST1) · · · ( VARN • LSTN)) [File Package Command] 
For each {VARj • LSTj), writes an ADDTOVAR to add each element of LSTi to 
the list that is the value of VARi at the time the file is loaded. The new value of 
VARi will be the union of its old value and LSTi. If the value of VARi is NOB I ND, 
it is first set to N I L. 

For example, {ADDVARS (DIRECTORIES LISP LISPUSERS)) will add LISP 
and LISPUSERS to the value of DIRECTORIES. 

If LSTi is not specified. VARi is initialized to NIL if its current value is NOB I ND. 
In other words, { ADDVARS ( VAR) ) will initialize VAR to NIL if VAR has not 
previously been set. 

( ALI STS ( VAR1 KEY1 KEY2 · · ·) · · · ( VARN KEY3 KEY4 · · ·) ) [File Package Command] 
VARi is a variable whose value is an alist, such as EDITMACROS, BAKTRACELST, 
etc. For each VARi, ALISTS writes out expressions which will restore the values 
associated with the specified keys. For example, ( ALISTS ( BREAKMACROS BT 
BTV)) will dump the definition for the BT and BTV commands on BREAKMACROS. 

Some alists (USERMACROS, LISPXMACROS, etc.) are used to implement other file 
package types, and they have their own file package commands. 

{ PROP PROP NAME LITATOM l · · · LITATOM N) [File Package Command] 
Writes a PUTPROPS expression to restore the value of the PROPNAME property of 
each litatom LITATOMi when the file is loaded. 

If PROPNAME is a list, expressions will be written for each property on that list. If 
PROPNAME is the litatom ALL, the values of all user properties (on the property 
list of each LITATOMi) are saved. SYS PROPS is a list of properties used by system 
functions. Only properties not on that list are dumped when the ALL option is 
used. 

If LITATOMi does not have the property PROPNAME (as opposed to having the 
property with value N IL), a warning message " NO PROP NAME PROPERTY FOR 
LITATOMt is printed. The command IF PROP can be used if it is not known 
whether or not an atom will have the corresponding property. 

( If PROP PROP NAME LITATOM 1 · · · LITATOM N) [File Package Command] 
Same as the PROP file package command. except that it only saves the properties 
that actually appear on the property list of the corresponding atom. For example, 
if FOOl has property PROP! and PROP2, F002 has PROP3, and F003 has 
property PROP! and PROP3, then (IFPROP (PROP! PROP2 PROP3) FOOl 
F002 F003) will save only those five property values. 

11.23 



,. ... 

File Package Commands 

( PROPS ( LITATOM 1 PROPNAME 1 ) • · · ( LITATOM N PROPNAME N) ) [File Package Command] 
Similar to PROP command. Writes a PUT PROPS expression to restore the value of 
PROPNAMEi for each LITATOMi when the file is loaded. 

As with the PROP comman~ if LITATOMi does not have the property PROPNAME 

(as opposed to having the property with NIL value), a warning message "NO 
PROPNAMEi PROPERTY FOR LITATOM/ is printed. 

( P EXf'1 · • · EXPN) [File Package Command] 
Writes each of the expressions EXP1 · · • EXPN on the output file, where they will 
be evaluated when the file is loaded. 

{ E FORM 1 • • • FORM N) [File Package Command] 

(COMS COM1 

{ • . TEXT) 

Each of the forms FORM1 · • · FORMN is evaluated at output time, when MAKEFILE 
interpretes this file package command. 

COM N) [File Package Command] 
Each of the commands coM1 · · · COMN is interpreted as a file package command. 

[File Package Command] 
Used for inserting comment in a file. The file package command is simply written 
on the output file; it will be ignored when the file is loaded. 

If the first element of TEXT is another •, a form-feed is printed on the file before 
the comment. 

(ADVISE FN1 · • • FNN) [File Package Command] 
For each function FNi, · writes expressions to reinstate the function to its advised 
state when the file is loaded. See page 10.7. 

( ADVICE FN1 · · · FNN) [File Package Command] 
For each function FNi, writes a PUTPROPS expression which will put the advice 
back on the property list of the function. The user can then use READVISE to 
reactivate the advice. 

( USE RMAC ROS LITATOM1 · · · LITATOMN) [File Package Command] 
Each litatom LITATOMi is the name of a user edit macro. Writes expressions to 
add the edit macro definitions of LITATOMi to USE RMAC ROS, and adds the names 
of the commands to the appropriate spelling lists. 

If LITATOMi is not a user macro, a warning message "no ED IT MAC RO for 
LITATOMi" is printed. 

( FILEPKGCOMS LITATOM1 · · · LITATOMN) [File Package Command] 
Each litatom LITATOMi is either the name of a user-defined file package command 
or a user-defined file package type ( or both). Writes expressions which will restore 
each command/type. 

If LITATOMi is not a file package command or type, a warning message " no F I LE 
PACKAGE COMMAND for LITATOM/' is printed. 

( LISPXMACROS LITATOM1 · · · LITATOMN) [File Package Command] 
Each LITATOMi is defined on LISPXMACROS or LISPXHISTORYMACROS (see page 

11.24 



FILE PACKAGE 

8.19). Writes expressions which will save and restore the definition for each macro, 
as well as making the necessary additions to LISPXCOMS 

( RECORDS REC1 · · · RECN) [File Package Command] 
Each RECi is the name of a record (see page 3.1). Writes expressions which will 
redeclare the records when the file is loaded. 

( INITRECORDS REC1 • • • RECN) [File Package Command] 
Similar to RECORDS, INITRECORDS writes expressions on a file that will, when 
loaded, perform whatever initialization/ allocation is necessary for the indicated 
records. However, the record declarations themselves are not written out This 
facility is useful for building systems on top of Interlisp, in which the implementor 
may want to eliminate the record declarations from a production version of the 
system, but the allocation for these records must still be done. 

( I . S. OPRS OPR1 · · · OPRN) [File Package Command] 
Each OPRi is the name of a user-defined i.s.opr (see page 4.13). Writes expressions 
which will redefine the i.s.oprs when the file is loaded. 

( TEMPLATES LITATOM1 · · · LITATOMN) [File Package Command] 
Each LITATOMi is a litatom which has a Masterscope template (see page 13.18). 
Writes expressions which will restore the templates when the file is loaded. 

(BLOCKS BLOCK1 · .. BLOCKN) [File Package Command] 
For each BLOCKi, writes a DECLARE: expression which the block compile functions 
interpret as a block declaration. See page 12.14. 

( MAC ROS LITATOM 1 • · •. LITATOM N) [File Package Command] 
Each LITATOMi is a litatom with a MACRO definition (and/or a DMACRO, l0MACRO, 
etc.}. Writes out an expression to restore all of the macro properties for each 
LITATOMj, embedded in a DECLARE: EVAL@COMPILE so the macros will be 
defined when the file is compiled. See page 5.17. 

( SPECVARS VAR1 · · · VARN) 

( LOCAL VARS VAR1 · · · VARN) 

(GLOBAL VARS VAR1 · · · VARN) 

Outputs the corresponding compiler declaration 
DOEVAL@COMPILE DONTCOPY. See page 12.3. 

[File Package Command] 
[File Package Command] 
[File Package Command] 

embedded in a DECLARE: 

( UGL YVARS VAR1 · · · VARN). [File Package Command] 
Like VARS, except that the value of each VARi may contain structures for which 
READ is not an inverse of PRINT, e.g. arrays, readtables, user data types, etc. Uses 
HPRINT (page 6.24). 

( HORRIBLEVARS VAR1 · · · VARN) [File Package Command] 
Like UGL YVARS, except structures may also contain circular pointers. Uses HPRI NT 
(page 6.24). The values of VAR1 · · · VARN are printed in the same operation, so 
that they may contain pointers to common substructures. 

UGL YVARS does not do any checking for circularities, which results in a large speed 
and internal-storage advantage over HORRIBLEVARS. Thus, if it is known that the 
data structures do not contain circular pointers, UGL YVARS should be used instead 

11.25 



... 

File Package Commands 

of HORRIBLEVARS. 

{DECLARE: . FILEPKGCOMS/FLAGS) [File Package Command] 
Normally expressions written· onto a symbolic file are (1) evaluated when loaded; 
(2) copied to the compiled file when the symbolic file is compiled (see page U.l); 
and (3) not evaluated at compile time. DECLARE: allows the user to override these 
defaults. 

FILEPKGCOMS/FLAGS is a list of file package commands. possibly interspersed with 
"tags". The output of those file package commands within FILEPKGCOMS/FLAGS is 
embedded in a DECLARE: expression, along with any tags that are specified. For ex­
ample, {DECLARE: EVAUtCOMPILE DONTCOPY (FNS ···) (PROP ···))would 
produce(DECLARE: EVAL@COMPILE DONTCOPY (DEFINEQ ···) (PUTPROPS 
· · ·) ). DECLARE: is defined as an nlambda nospread function, which processes 
its arguments by evaluating or not evaluating each expression depending on the 
setting of internal state variables. The initial setting is to evaluate, but this can be 
overridden by specifying the DONTEVAL@LOAD tag. 

DECLARE: expressions are specially processed by the compiler. For the purposes 
of compilation, DECLARE: has two principal applications: (1) to specify forms 
that are to be evaluated at compile time, presumably to affect the compilation, 
e.g., to set up macros; and/or (2) to indicate which expressions appearing iil the 
symbolic file are not to be copied to the output file. (Normally, expressions are not 
evaluated and are copied.) Each expression in CDR of a DECLARE: form is either 
evaluated/not-evaluated and copied/not-copied depending on the settings of two 
internal state variables, initially set for copy and not-evaluate. These state variables 
can be reset for the remainder of the expressions in the DECLARE: by .means of 
the tags DONTCOPY, EVAL!tCOMPILE, etc. 

The tags are: 

EVALIILOAD 
DOEVALIILOAD Evaluate the following forms when the file is loaded (unless 

overridden by DONTEVALIILOAD). 

DONTEVAL@LOAD Do not evaluate the following forms when the file is loaded. 

EVALIILOADWHEN This tag can be used to provide conditional evaluation. 

COPY 

The value of the expression immediately following the 
tag determines whether or not to evaluate subsequent 
expressions when loading. · ·. EVALltLOADWHEN T ... is 
equivalent to · · · EVAL@LOAD · · · 

DOCOPY When compiling, copy the following forms into the compiled 
file. 

DONTCOPY When compiling, do not copy the following forms into the 
compiled file. 

COPYWHEN When compiling, if the next form evaluates to non-NIL, 
copy the following forms into the compiled file. 

11.26 



FILE PACKAGE 

EVAL@COMPILE 
DOEVAL@COMP I LE When compiling, evaluate the following forms. 

DONTEVAL@COMPILE 

EVAL@COMPILEWHEN 

FIRST 

NOTFIRST 

When compiling, do not evaluate the following forms. 

When compiling, if the next form evaluates to non-NIL, 
evaluate the following forms. 

For expressions that are to be copied to the compiled 
file, the tag f I RST can be used to specify that the fol­
lowing expressions in the DECLARE: are to appear at 
the front of the compiled file, before anything else ex­
cept the FILECREATED expressions (see page 11.35). For 
example, (DECLARE: COPY FIRST ( P ( PRINT MESS1 

T)) NOTF IRST ( P ( PRINT MESS2 T))) will cause ( PRINT 
MEss1 T) to appear first in the compiled file, followed by 
any functions, then ( PRINT MESS2 T ) . 

Reverses the effect of FIRST. 

The value of DECLARETAGSLST is a list of all the tags used in DECLARE: 
expressions. If a tag not on this list appears in a DECLARE : file package command, 
performs spelling correction using DECLARE TAGS LS T as a spelling lisL 

Note that the function LOADCOMP (page 11.6) provides a convenient way of 
obtaining information from the DECLARE: expressions in a file, without reading 
in the entire file. This information may be used for compiling other files. 

( EXPORT COM1 · · · COMN) [File Package Command] 
This command is used for "exporting" definitions. Like COM, each of the commands 
COM 1 · · · COM N is interpreted as a file package command. The commands are also 
flagged in the file as being "exported" commands, for use with GA THE REXPORTS 
(see page 11.29). 

( CONSTANTS VAR1 · · · VARN) [File Package Command] 
Like VARS, for each VARi writes an expression to set its top level value when the 
file is loaded. Also writes a CONST ANTS expression to declare these variables as 
constants (see page 12.6). Both of these expressions are wrapped in a (DECLARE: 
EV A L@C OM P ILE · · ·) expression, so they can be used by the compiler. 

Like VARS, VARi can be non-atomic, in which case it is interpreted as ( VAR 

FORM), and passed to CONSTANTS (along with the variable being initialized to 
FORM}. 

(ORIGINAL COM1 • • • COMN) [File Package Command] 
Each of the commands COMi will be interpreted as a file package command without 
regard to any file package macros (as defined by the MACRO property of the 
FI LE PKGCOM function, page 11.32). Useful for redefining a built-in file package 
command in terms of itself. 

11.27 



Exporting Definitions 

Note that some of the "built-in" file package commands are defined by file package 
macros, so interpreting them (or new user-defined file package commands) with 
ORIGINAL will fail. ORIGINAL was never intended to be used outside of a file 
package command macro. 

(FILES . FILES/LISTS) [File Package Command] 
Used to specify auxiliary files to be loaded in when the file is loaded. FTLES/LISTS 

is a list of files, possibly interspersed with lists, which may be used to specify 
certain loading options. Within these lists, the following tokens are recognized: 

The elements of the FILES command are the ( namefield) of the files to load. There 
are actually several other ways to load in files; the F ILES command interprets 
LISTP elements of the commands as a series of tokens which change its state. 
Those tokens can be: 

FROM DIRECTORY Pack the given directory onto the beginning of the file. For 
example, (FILES (FROM LISPUSERS) CJSYS). If this 
is not specified. the default is to use the same directory as 
the file containing the F ILES command. 

SOURCE Load the source version of the file rather than the compiled 
version. 

COMPILED 

LOAD 

LOADCOMP 

LOADFROM 

SYSLOAD 

PROP 

ALLPROP 

Load the compiled version of the file (the default). 

Load the file with by calling LOAD? (the default). 

Load the file with LOADCOMP? rather than LOAD?. Automatically 
implies SOURCE. 

Load the file with LOADFROM rather than LOAD?. 

Load the file with LDFLG = SY sour. This is mainly used 
when loading system files. 

Load the file with LDFLG= PROP, so function definitions 
loaded will be stored on property lists. 

Load the file with LDFLG=ALLPROP, so both function 
definitions and variable values loaded will be stored on 
property lists. 

These tokens can be joined together in a single list. For example, an actual 
command in the FTP package is: 

(FILES (LOADCOMP) NET (SYSLOAD FROM LISPUSERS) CJSYS) 

11.7.1 Exporting Definitions 

When building a large system in Interlisp, it is often the case that there are record definitions, macros and 
the like that are needed by several different system files when running, analyzing and compiling the source 

11.28 



FILE PACKAGE 

code of the system, but which are not needed for running the compiled code. By using the DECLARE: 
file package command with tag DONTCOPY (page 11.26), these definitions can be kept out of the compiled 
files, and hence out of the system constructed by loading the compiled files files into Interlisp. This saves 
loading time, space in the resulting system, and whatever other overhead might be incurred by keeping 
those definitions around, e.g., burden on the record package to consider more possibilities in translating 
record accesses, or conflicts between system record fields and user record fields. 

However, if the implementor wants to debug or compile code in the resulting system, the definitions are 
needed. And even if the definitions had been copied to the compiled files, a similar problem arises if 
one wants to work on system code in a regular Interlisp environment where none of the system files had 
been loaded. One could mandate that any definition needed by more than one file in the system should 
reside on a distinguished file of definitions, to be loaded into any environment where the system files are 
worked on. Unfortunately, this would keep the definitions away from where they logically belong. The 
EXPORT mechanism is designed to solve this problem. 

To use the mechanism, the implementor identifies any definitions needed by files other than the one 
in which the definitions reside, and wraps the corresponding file package commands in the EXPORT 
file package command (page 11.27). Thereafter, GATHEREXPORTS can be used to make a single file 
containing all the exportS. 

( GATHER EXPORTS FROMFILES TOFILE FLG} [Function] 
FROMFILES is a list of files containing EXPORT commands. GATHEREXPORTS 
extracts all the exported commands from those files and produces a loadable file 
TOFILE containing them. If FLG = EVAL, the expressions are evaluated as they 
are gathered; i.e., the exports are effectively loaded into the current environment 
as well as being written to TOFILE. 

( IMPORTF ILE FILE RETURNFLG) [Function] 
If RETURNFLG is NIL, this loads any exported definitions from FILE into the 
current environment If RETURNFLG is T, this returns a list of the exported 
definitions (evaluable expressions) without actually evaluating them. 

( CHECK IMPORTS FILES NOASKFLG} [Function] 
Checks each of the files in FILES to see if any exists in a version newer than 
the one from which the exportS in memory were taken (GATHEREXP0RTS and 
IMPORT FILE note the creation dates of the files involved), or if any file in the 
list has not had its exportS loaded at all. If there are any such files, the user is 
asked for permission to IMP0RTF I LE each such file. If NOASKFLG is non-NIL. 
IMPORTFILE is performed without asking. 

For example, suppose file FOO contains records Rl, R2, and R3, macros BAR and BAZ, and constants 
CONl and C0N2. If the definitions of Rl, R2, BAR, and BAZ are needed by files other than FOO, then 
the file commands for F 00 might contain the command 

(DECLARE: EVAL@COMPILE DONTCOPY 
(EXPORT (RECORDS Rl R2} 

(MACROS BAR BAZ)) 
(RECORDS R3) 
(CONSTANTS BAZ)) 

None of the commands inside this DECLARE: would appear on FOO's compiled file, but ( GATHEREXP0RTS 
'(FOO) 'MYEXPORTS) would copy the record definitions for Rl and R2 and the macro definitions for 

11.29 



File Vars 

BAR and BAZ to the file MYEXPORTS. 

11.7.2 FileVars 

In each of the file package commands described above, if the litatom • follows the command type, 7 

the form following the •, i.e., CADDR of the command, is evaluated and its value used in executing 
the command, e.g., ( FNS • ( APPEND FNS1 FNS2) ). When this form is a litatom, e.g. ( FNS • 
FOOFNS), we say that the variable is a "filevar". Note that (COMS • FORM) provides a way of 
computing what should be done by MAKEFILE. 

Example: 

~ (SETQ FOOFNS '(F001 F002 F003)) 
(F001 F002 F003) 
~ (SETQ FOOCOMS 

'( (FNS • FOOFNS) 
(VARS FIE) 
(PROP MACRO F001 F002) 
( P ( MOVD ' F 001 ' F IE 1 ) ) ] 

~ (MAKEFILE 'FOO) 

would create a file F 00 containing: 

(FI LE CREATED "time and date the file was made" . "other information") 
(PRETTYCOMPRINT FOOCOMS) 
( RPAQQ FOOCOMS (( FNS * FOOFNS). · · ·) 
(RPAQQ FOOFNS (FOOl F003 F003)) 
(DEFINEQ "definitions ofFOOl, F002, and F003") 
( R PAQQ FIE "value of F IE " ) 
(PUTPROPS F001 MACRO PROPVALUE) 
{PUTPROPS F002 MACRO PROPVALUE) 
(MOVD (QUOTE F001) (QUOTE FIE1)) 
STOP 

11.7.3 Defining New File Package Commands 

A file package command is defined by specifying the values of certain properties. The user can specify 
the various attributes of a file package command for a new command, or respecify them for an existing 
command. The following properties are used: 

MACRO Defines how to dump the file package command. Used by MAKEFILE. Value 
is a pair ( ARGS • COMS). The "'arguments" to the file package command are 
substituted for ARGS throughout COMS. and the result treated as a list offile package 
commands. For example, following (FI LEPKGCOM 'FOO 'MACRO ' (( X Y) . 

7Except for the PROP and IFPROP commands, in which case the * follows the property name, e.g., 
(PROP MACRO* FOOMACROS). 

11.30 



ADD 

DELETE 

CONTENTS 
CONTAIN 

FILE PACKAGE 

COMS)-) ,- the file package command ( FOO A B) will cause A to be substituted for 
X and B for Y throughout COMS, and then COMS treated as a list of commands. 

The substitution is carried out by SUB PA IR (page 2.24 ), so that the "argument list" 
for the macro can also be atomic. For example, if ( X • COMS) was used instead 
of ( ( X Y) • COMS), then the command ( FOO A B) would cause ( A B) to be 
substituted for X throughout COMS. 

Note: Filevars are evaluated before substitution. For example, if the litatom 
• follows NAME in the command, CADD R of the command is evaluated substituting 
in COMS. 

Specifies how (if possible) to add an instance of an object of a particular type to a 
given file package command. Used by ADDTOF I LE. Value is FN, a function of three 
arguments, COM, a file package command CAR of which is EQ to COMMANDNAME, 

NAME, a typed object, and TYPE, its type. FN should return T if it (undoably) adds 
NAME to COM, NIL if not. If no ADD property is specified, then the default is (1) if 
( CAR COM)= TYPE and ( CADR COM)=•, and ( CADDR COM) is a filevar (i.e. 
a literal atom), add NAME to the value of the filevar, or (2) if ( CAR COM)= TYPE 

and (CADR COM) is not•, add NAME to (CDR COM). 

Actually, the function is given a fourth argument, NEAR, which if non-N IL, 
means the function should try to add the item after NEAR. See discussion of 
ADDTOF ILES?, page 11.8. 

Specifies how (if possible) to delete an instance of an object of a particular type from 
a given file package command. Used by DELFROMFILES. Value is FN, a function 
of three arguments, COM, NAME, and TYPE, same as for ADD. FN should return T 
if it (undoably) deletes NAME from COM, NIL if not. If no DELETE property is 
specified, then the default is (1) ( CAR COM)= TYPE and ( CADR COM) = •, and 
( CADOR COM) is a filevar (i.e. a literal atom), and NAME is contained in the value 
of the filevar, then remove NAME from the filevar, or (2) if ( CAR COM)= TYPE 

and { CADR COM) is not •, and NAME is contained in ( CDR COM), then remove 
NAME from ( CDR COM). 

If FN returns the value of All, it means that the command is now "empty", and 
can be deleted entirely from the command list. 

Specifies whether an instance of an object of a given type is contained in a given 
file package command Used by WHERE IS and INF ILECOMS?. Value is FN, a 
function of three arguments, COM; a file package command CAR of which is EQ 
to COMMANDNAME, NAME, and TYPE. The interpretation of NAME is as follows: 
if NAME is NIL, FN should return a list of elements of type TYPE contained in 
COM. If NAME is T, FN should return T if there are any elements of type TYPE in 
COM. If NAME is an atom other than T or NIL, return T if NAME of type TYPE is 
contained in COM. Finally, if NAME is a list, return a list of those elements of type 
TYPE contained in COM that are also contained in NAME. 

Note that it is sufficient for the CONTENTS function to simply return the list of 
items of type TYPE in command COM, i.e. it can in fact ignore the NAME argument. 
The NAME argument is supplied mainly for those sit1:1ations where producing the 

11.31 



Functions for Manipulating File Command Lists 

entire list of items involves significantly more computation or creates more storage 
than simply determining whether a particular item (or any item) of type TYPE is 
contained in the command. 

If a CONTENTS property is specified and the corresponding function application 
returns NIL and ( CAR COM) = TYPE, then the operation indicated by NAME is 
performed (1) on the value of ( CADDR COM). if ( CADR COM)=*, otherwise (2) 
on { CD R COM) . In other words, by specifying a CONTENTS property that returns 
NIL, e.g. the function N I LL, the user specifies that a file package command of 
name FOO produces objects of file package type FOO and only objects of type FOO. 

If the CONTE NT S property is not provided. the command is simply expanded 
according to its MAC RO definition, and each command on the resulting command 
list is then interrogated. 

Note that if COMMANDNAME is a file package command that is used frequently, 
its expansion by the various parts of the system that need to interrogate files can 
result in a large number of CONSes and garbage collections. By informing the 
file package as to what this command actually does and does not produce via the 
CONTENTS property, this expansion is avoided. For example, suppose the user 
has a file package command called GRAMMARS which dumps various property lists 
but no functions. Thus, the file package could ignore this command when seeking 
information about FNS. 

The function FI LE PKG COM is used to define new file package commands, or to change the attributes of 
existing commands. Note that it is possible to redefine the attributes of system file package commands, 
such as FNS or PROPS, and to cause unpredictable results. 

( FILEPKGCOM COMMANDNAME PROP1 VAL1 · .. PROPN VALN) [NoSpread Function] 
Nospread function for defining new file package commands, or changing attributes 
of existing file package commands. PROPi is one of of the property names described 
above; VALi is the value to be given that property of the file package command 
COMMANDNAME. Returns COMMANDNAME. 

(FILEPKGCOM COMMANDNAME PROP) returns the value of the property PROP, 

without changing it 

( FILEPKGTYPE COMMANDNAME returns an alist of all of the defined properties 
of COMMANDNAME, using the property names as keys. 

11.8 FUNCTIONS FOR MANIPULATING FILE COMMAJ.'iD LISTS 

The following functions may be used to manipulate filecoms. Note that the argument COMS does not have 
to correspond to the filecoms for some file. For example, co Ms can be the list of commands generated 
as a result of expanding a user defined file package command. 

( INFILECOMS? NAME TYPE COMS -) [Function] 
COMS is a list of file package commands, or a variable whose value is a list of 
file package commands. TYPE is a file p~ckage type. INFILECOMS? returns T if 

11.32 



FILE PACKAGE 

NAME of type TYPE is "contained" in COMS. 

If NAME=NIL, INFILECOMS? returns a list of all elements of type TYPE. 

If NAME=T, INFILECOMS? returns T if there are any elements of type TYPE in 
COMS. 

(ADDTOFILE NAME TYPE FILE - -) [Function] 
Adds NAME of type TYPE to the file package commands for FILE. Uses AOOTOCOMS 

(DELFROMFILES 

and MAKENEWCOM. Returns FILE. ADDTOFILE is undoable. . 

NAME TYPE FILES) [Function] 
Deletes all instances of NAME of type TYPE from the filecoms for each of the files on 
FILES. If FILES is a non-NIL litatom. ( LI s T FILES) is used. FILES= NIL defaults 
to FILELST. Returns a list of files from which NAME was actually removed. Uses 
DELFROMCOMS. DELFROMF ILES is undoable. 

Note: Deleting a function will also remove the function from any BLOCKS 
declarations in the filecoms. 

( ADDTOCOMS COMS NAME TYPE - - ) [Function] 
Adds NAME as a TYPE to COMS, a list of file package commands or a variable 
whose value is a list of file package commands. Returns NIL if ADDTOCOMS was 
unable to find a command appropriate for adding NAME to COMS. AOOTOCOMS is 
undoable. 

Note that the exact algorithm for adding commands depends the particular 
command itself. See discussion of the ADD property, in the description of 
FI LEPKGCOM, page 11.32. 

Note: AODTOCOMS will not attempt to add an item to any command which is 
inside of a DECLARE: unless the user specified a specific name via the LIST NAME 
or NEAR option of ADOTOF ILES?. 

( DELFROMCOMS COMS NAME TYPE) [Function] 
Deletes NAME as a TYPE from COMS. Returns NIL if DELFROMCOMS was unable 
to modify COMS to delete NAME. DELFROMCOMS is undoable. 

(MAKENEWCOM NAME TYPE - -) [Function] 
Returns a file package command for dumping NAME of type TYPE. Uses the 
procedure described in the discussion of NEWCOM, page 11.20. 

( MOVETOF ILE TOFILE NAME TYPE FROMFILE) [Function] 
Moves the definition of NAME as a TYPE from FROMFILE to TOFILE by modifying 
the file commands in the appropriate way (with DE LF ROMF ILES and AOOTOF I LE). 

Note that if FROMFILE is specified. the definition will be retrieved from that file, 
even if there is another definition currently in the user's environment 

(FILECOMSLST FILE TYPE-) [Function] 
Returns a list of all objects of type TYPE in FILE. 

TYPE can also be the name of a file package command. For example, 

11.33 



Symbolic File Format 

-( F ILECOMSLST FILE 'BLOCKS) will return the list of all BLOCKS declaration in 
FILE. FILECOMSLST knows about expanding user defined file package commands. 

( F ILEFNSLST FILE) [Function] 
Same as ( F ILECOMSLST FILE 'FNS ). 

( F ILECOMS FILE TYPE) [Function] 
Returns {PACK* FILE (OR TYPE 'COMS)). Note that (FILECOMS 'FOO) 
returns the litatorn FOOCOMS, not the value of FOOCOMS. 

(SMASHFILECOMS FILE) [Function] 
Maps down ( F ILECOMSLST FILE 'FI LE VARS) and sets to NOB I NO all filevars (see 
page 11.30), i.e. any variable used in a command of the form ( COMMAND • 

VARIABLE). Also sets ( F ILECOMS FILE) to NOB IND. Returns FILE. 

11.9 SYMBOLIC FILE FORMAT 

The file package manipulates symbolic files in a particular format This format is defined so that the 
information in the file is easily readable when the file is listed, as well as being easily manipulated by the 
file package functions. In general, there is no reason for the user to manually change the contents of a 
symbolic file. However, in order to allow users to extend the file package, this section describes some of 
the functions used to write symbolic files, and other matters related to their format. 

( PRETTYOEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE CHANGES) 

[Function] 
Writes a symbolic file in PRETTYPRINT format for loading, using FILEROTBL as 
its readtable. PRETTYDEF returns the name of the symbolic file that was created. 

PRETTYDEF operates under a RESETLST (see page 9.19), so if an error occurs, 
or a control-D is typed, all files that PRETTYOEF has opened will be closed, the 
(partially complete) file being written will be deleted, and any undoable operations 
executed will be undone.8 

PRTTYFNS is an optional list of function names. It is equivalent to including ( F NS 
• PRTTYFNS) in the file package commands in PRTTYCOMS. PRTTYFNS is an 
anachronism from when PRETTYDEF did not use a list of file package commands, 
and should be specified as N IL. 

PRTTYFILE is the name of the file on which the output is to be written. If 
PRTTYF"ILE = NIL, the primary output file is used. If PRTTYFILE is atomic the file 
is opened if not already open, and it becomes the primary output file. PRTTYFILE 

is closed at end of PRETTYDEF, and the primary output file is restored. Finally, 
if PRTTYFILE is a list. CAR of PRTTYFILE is assumed to be the file name, and is 
opened if not already open. In this case, the file is left open at end of PRETTYDE F. 

8Since PRETTYDEF operates under a RESE TLST, any RESETSAVEs executed in the file package commands 
will also be protected. For example. if one of the file package commands executes a ( RESET SAVE 
( RAO IX - 8) ) . the RAO IX will atomatically be restored. 

11.34 



FILE PACKAGE 

PRTTYCOMS is a list of file package commands interpreted as described on page 
11.21. If PRTTYCOMS is atomic, its top level value is used and an RPAQQ is written 
which will set that atom to the list of commands when the file is subsequently loaded. 
A PRETTYCOMPRINT expression (see below) will also be written which informs 
the user of the named atom or list of commands when the file is subsequently 
loaded.9 

REPRINTFNS and SOURCEFILE are for use in conjunction with remaking a file 
(see page 11.10). REPRINTFNS can be a list of functions to be prettyprinted, or 
EXPRS, meaning prettyprint all functions with EXPR definitions, or ALL meaning 
prettyprint all functions either defined as EXP Rs, or with EXP R properties. Note that 
doing a remake with REPRINTFNS=NIL makes sense if there have been changes 
in the file, but not to any of the functions, e.g., changes to variables or property 
lists. SOURCEFILE is the name of the file from which to copy the definitions 
for those functions that are not going to be prettyprinted, i.e., those not specified 
by REPRINTFNS. SOURCEFILE= T means to use most recent version (i.e., highest 
number) of PRTTYFILE, the second argument to PRETTYDEF. If SOURCEFILE 

cannot be found, PRETTYDE F prints the message "FILE NOT FOUND, SO IT 
w I LL BE w RITT EN AN E w". and proceeds as it does when REPRINTFNS and 
SOURCEFILE are both NIL. 

PRETTYDEF calls PRETTYPRINT with its second argument PRETTYDEFLG=T. so 
whenever PRETTYPRINT starts a new function, it prints (on the terminal) the 
name of that function if more than 30 seconds (real time) have elapsed since the 
last time it printed the name of a function. 

Note that normally if PRETTYPRINT is given a litatom which is not defined as 
a function but is known to be on one of the files noticed by the file package, 
PRETTYPRINT will load in the definition (using LOADFNS) and print it. This is 
not done when PRETTYPRINT is called from PRETTYDEF. 

( PRINTFNS x -) [Function] 
xis a list of functions. PRINTFNS prettyprints a DEFINEQ epression that defines 
the functions to the primary output file using the primary readtable. Used by 
PRETTYDEF to implement the FNS file package command. 

( PRINTDATE FILE CHANGES) [Function] 
Prints the FILECREATED expression at beginning of PRETTYDEF files. CHANGES 

used by the file package. 

( F ILECREATED x) [NLambda NoSpread Function] 
Prints a message (using LI SPX PR INT) followed by the time and date the file 
was made, which is ( CAR x). The message is the value of PRE TTYHEADE R. 
initially "FILE CREATED". If PRETTYHEADER=NIL, nothing is printed. (CDR 
x} contains information about the file, e.g., full name, address of file map, list of 
changed items, etc. FILE CREATED also stores the time and date the file was made 

91n addition, if any of the functions in the file are Nlambdas, PRETTYDEF will automatically print 
a DECLARE: expression suitable for informing the compiler about these functions, in case the user 
recompiles the file without having first loaded the nlambda functions. See page 12.6. 

11..35 



Copyright Notices 

on the property list of the file under the propeny FI LE DAT ES and performs other 
initialization for the file package. 

( PRETTYC0MPRINT x) (NLambda Function] 
Prints x (unevaluated) using LISPXPRINT, unless PRETTYHEA0E R= NIL. 

PRETTYHEA0ER [Variable] 
Value is the message printed by FI LE CREA TED. PRETTYHEADER is initially ,. FI LE 
CREATED". If PRETTYHEADER= NIL, neither F ILECREATED nor PRETTYC0MPR I NT 
will print anything. Thus, setting PRETTYHEADE R to NIL will result in "silent 
loads". PRETTYHEADER is reset to NIL during greeting (page 14.5). 

( F ILECHANGES F'ILE TYPE) [Function] 
Returns a list of the changed objects of file package type TYPE from the 
FILECREATED expression of F'ILE. If TYPE=NIL, returns an alist of all of the 
changes, with the file package types as the CARs of the elements .. 

( FILEDATE F'ILE -) [Function] 
Returns the file date contained in the FILE CR EA TED expression of FILE. 

11.9.1 Copyright Notices 

The system has a facility for automatically printing a copyright notice near the front of files, right after 
the FILECREATED expression, specifying the years it was edited and the copyright owner. The format 
of the copyright notice is: 

(* Copyright (c) 1981 by Foo Bars Corporation) 

Once a file has a copyright notice then every version will have a new copyright notice insened into the 
file without user intervention. (The copyright information necessary to keep the copyright up to date is 
stored at the end of the file.). 

Any year the file has been edited is considered a "copyright year" and therefore kept with the copyright 
information. For example, if a file has been edited in 1981, 1982, and 1984, then the copyright notice 
would look like: 

(* Copyright (c) 1981,1982,1984 by Foo Bars Corporation) 

When a file is made, if it has no copyright information, the system will ask the user to specify the copyright 
owner (if C0PYRIGHTFLG=T). The user may specify one of the names from C0PYRIGHT0WNERS, or 
give one of the following responses: 

(1) Type a left-square-bracket The system will then prompt for an arbitrary string which will be used as 
the owner-string 

(2) Type a right-square-bracket, which specifies that the user really does not want a copyright notice. 

(3) Type "NONE" which specifies that this file should never have a copyright notice. 

For example, if COPYRIGHTOWNERS has the value 

11.36 



FILE PACKAGE 

((BBN "Bolt Beranek and Newman Inc.") 
(XEROX "Xerox Corporation")) 

then for a new file F 00 the following interaction will take place: 

Do you want to Copyright FOO? Yes 
Copyright owner: (user typed?) 
one of: 
BBN - Bolt Beranek and Newman Inc. 
XEROX - Xerox Corporation 
NONE - no copyright ever for this file 
[ - new copyright owner -- type one line of text 
J - no copyright notice for this file now 

Copyright owner: BBN 

Then "Foo Bars Corporation" in the above copyright notice example would have been "Bolt Beranek and 
Newman Inc." 

The following variables control the operation of the copyright facility: 

COPYRIGHTFLG [Variable] 
If COPYRIGHT F LG= NIL (default), the system will preserve old copyright infor­
mation, but will not ask the user about copyrighting new files. 

If COPYR IGHTFLG = T, then when a file is made, if it has no copyright information, 
the system will ask the user to specify the· copyright owner. 

If COPYRIGHTFLG=NEVER, the system will neither prompt for new copyright 
information nor preserve old copyright information. 

COPYRIGHTOWNERS [Variable] 
COPYRIGHTOWNERS is a list of entries of the form (KEY OWNERSTRING), where 
KEY is used as a response to AS KUSER and OWNERSTRING is a string which is the 
full identification of the owner. , 

DEFAULTCOPYRIGHTOWNER [Variable] 
If the user does not respond in DWIMWAIT seconds to the copyright query, the 
value of OEFAULTCOPYRIGHTOWNER is used. 

11.9.2 Functions Used Within Source Files 

The following functions are normally only used within symbolic files, to set variable values, property 
values, etc. Most of these have special behavior depending on file package variables. 

( RPAQ VAR VALUE) [NLambda Function] 
An nlambda function like SE TQ that sets the top level binding of VAR (unevaluated) 
to VALUE. 

( RPAQQ VAR VALUE) [NLambda Function] 
An nlambda function like SETQQ that sets the top level binding of VAR 

11.37 



r 

! 
'' 

File Maps 

(unevaluated) to VALVE (unevaluated). 

( RPAQ? VAR VALVE) [NLambda Function] 
Similar to RPAQ, except that it does nothing if VAR already has a top level value 
other than NOB IND. Returns VALUE if VAR is reset, otherwise NIL. 

RPAQ, RPAQQ, and RPAQ? generate errors if xis not a litatom. All are affected by the value of DFNFLG 
(page 5.9). IfDFNFLG=ALLPROP (and the value of VAR is other than NOB IND), instead of setting x, the 
corresponding value is stored on the property list of VAR under the property VALUE. All are undoable. 

(ADDTOVAR VAR X1 X2 · · · XN) [NLambda NoSpread Function] 
Each xi that is not a member of the value of VAR is added to it. i.e. after ADD TOVAR 
completes, the value of VAR will be (UNION (LIST X1 X2 · · · XN) VAR). 

ADOTOVAR is used by PRETTYDEF for implementing the ADOVARS command. 
It performs some file package related operations, i.e. "notices" that VAR has been 
changed. Returns the atom VAR (not the value of VAR). 

( PUT PROPS ATM PROP1 VAL1 · · · PROPN VALN) [NLambda NoSpread Function] 
Nlambda nospread version of PUT PROP (none of the arguments are evaluated). For 
i= 1·. ·N, puts property PROPi, value VALi, on the property list of ATM. Performs 
some file package related operations, i.e., "notices" that the corresponding properties 
have been changed. 

(SAVEPUT ATM PROP VAL) [Function] 

11.9.3 File Maps 

Same as PUTPROP, but marks the corresponding property value as having been 
changed ( used by the file package}. 

A file map is a data structure which contains a symbolic 'map' of the contents of a file. Currently, this 
consists of the begin and end byte address (see GETFILEPTR, page 6.9) for each DEFINEQ expression in 
the file, the begin and end address for each function definition within the DEF INEQ, and the begin and 
end address for each compiled function. 

MAKEFILE, PRETTYDEF, LOADFNS, RECOMPILE, and numerous other system functions depend heavily 
on the file map for efficient operation. For example, the file map enables LOADFNS to load selected 
function definitions simply by setting the file pointer to the corresponding address using SET FILE PT R, 
and then performing a single READ. Similarly, the file map is heavily used by the "remake" option of 
MAKE F ILE (page 11.10): those function definitions that have been changed since the previous version 
are prettyprinted; the rest are simply copied from the old file to the new one, resulting in a considerable 
speedup. 

Whenever a file is written by MAKEFILE, a file map for the new file is built Building the map in this 
case essentially comes for free, since it requires only reading the current file pointer before and after each 
definition is written or copied. However, building the map does require that PRETTYPRINT know that 
it is printing a DEFINEQ expression. For this reason, the user should never print a DEFINEQ expression 
onto a file himself, but should instead always use the FNS file package command (page 11.22). 

The file map is stored on the property list of the root name of the file, under the property FI LEMAP. In 
addition, MAKE F ILE writes the file map on the file itself. For cosmetic reasons, the file map is written 
as the last expression in the file. However, the address of the file map in the file is (over)written into the 

11.38 



FILE PACKAGE 

FI LE CREATED expression that appears at the beginning of the file so that the file map can be rapidly 
accessed without having to scan the entire file. In most cases, LOAD and LOADFNS do not have to build 
the file map at all, since a file map will usually appear in the corresponding file, unless the file was written 
with BUILDMAPFLG=NIL, or was written outside of Interlisp. 

Currently, file maps for compiled files are not written onto the files themselves. However, LOAD and 
LOAD F NS will build maps for a compiled file when it is loaded, and store it on the property FI LE MAP. 
Similary, LOADF NS will obtain and use the file map for a compiled file, when available. 

The use and creation of file maps is controlled by the following variables: 

BlJILDMAPFLG 

USEMAPFLG 

[Variable] 
Whenever a file is read by LOAD or LOADFNS, or written by MAKEFILE, a file map 
is automatically built unless BUILDMAPFLG=NIL. {BUILOMAPFLG is initially T.) 

While building the map will not help the first reference to a file, it will help in 
future references. For example, if the user performs ( LOAD FROM 'FOO) where 
FOO does not contain a file map, the LOAD FROM will be (slightly) slower than if 
FOO did contain a file map, but subsequent calls to LOADFNS for this version of 
FOO will be able to use the map that was built as the result of the LOADF ROM, 
since it will be stored on FOO's FI LE MAP property. 

[Variable] 
If USEMAP F LG= T {the initial setting), the functions that use file maps will first 
check the F ILEMAP property to see if a file map for this file was previously 
obtained or built If not, the first expression on the file is checked to see if it is a 
FILECREATED expression that also contains the address of a file map. If the file 
map is not on the F I LE MAP property or in the file, a file map will be built ( unless 
BUI LDMAPFLG= NIL). 

If USEMAPFLG=NIL, the FILEMAP property and the fiie will not be checked for 
the file map. This allows the · user to recover in those cases where the file and its 
map for some reason do not agree. For example, if the user uses a text editor 
to change a symbolic file that contains a map (not recommended), inserting or 
deleting just one character will throw that map off. The functions which use file 
maps contain various integrity checks to enable them to detect that something is 
wrong, and to generate the error FILEMAP DOES NOT AGREE WITH CONTENTS 
0 F F'ILE. In such cases, the user can set USE MAP F LG to N I L, causing the map 
contained in the file to be ignored, and then. reexecute the operation. 

11.39 



File Maps 

11.40 



(). 
\.: . 

0 

0 

CHAPTER 12 

THE COMPILER 

The compiler is contained in the standard Interlisp system. It may be used to compile functions defined 
in the user's Interlisp system, or to compile definitions stored in a file. Toe resulting compiled code may 
be stored as it is compiled. so as to be available for immediate use. or it may be written onto a file for 
subsequent loading. . 

The most common way to use the compiler is to use one of the file package functions, such as MAKEFILE 
(page 11.6), which automatically updates source files. and produces compiled versions. However. it is 
also possible to compile individual functions defined in the user's Interlisp system. by directly calling 
the compiler ~g functions such as COMP I LE (page 12.10). No matter how the compiler is called. the 
function COMPSET is called which asks the user certain questions concerning the compilation. (COMPSET 
sets the free variables LAPFLG. STRF. SVFLG. LCFIL and LSTFIL which determine various modes of 
operation.} Those that can be answered "yes" or "no" can be answered with YES, Y. or T for "yes": and 
NO. N. or NIL for ··no". Toe questions are: 

LISTING? 

FILE: 

REDEFINE? 

SAVE EXPRS? 

This asks whether to generate a listing of the compiled code. The LAP and machine 
code are usually not of interest but can be helpful in debugging macros. Possible 
answers are: .. 

1 Prints output of pass 1. the LAP macro code. 

2 Prints output of pass 2. the machine code. 

YES Prints output of both passes. 

NO Prints no listings. 

The variable LAPFLG is set to the answer. 

This question (which only appears if the answer to LISTING? is affirmative) ask 
where the compiled code listing(s) should be written. Answering T will print the 
listings at the terminal. The variable LSTF IL is set to the answer. 

This question asks whether the functions compiled should be redefined to their 
compiled definitions. If this is answered YES, the compiled code is stored and the 
function definition changed. otherwise the function definition remains unchanged. 

The variable STRF is set to T (if this is answered YES) or NIL. 

This question asks whether the original defining EXPRs of functions should be 
saved. If answered YES. then before redefining a function to its compiled definition. 
the EXPR definition is saved on the property list of the function name. Otherv,rise 
they are discarded. 

It is very useful to save the E XPR definitions. just in case the compiled function 
needs co be changed. The editing functions will retrieve this saved definition if it 

12.1 



· OUTPUT FILE? 

Compiler Printout 

exists. rather than reading from a source file. 

The variable SVFLG is set to T (if this is answered YES) or NIL. 

This question asks whether ( and where) the compiled definitions should be written 
into.a file for later loading. If you answer with the name of a file, that file will be 
used. If you answer Y or YES, you will be asked the name of the file. If the file 
named is already open. it will continue to be used. If you answer T or TTY : • the 
output will be typc;d on the teletype (not particularly useful). If you answer N, NO, 
or NIL, output will not b~ done. 

The variable LCFIL is set to the name of the file • 

.. In order to make answering these questions easier, there are four other possible answers to the LISTING? 
1uestion, which specify common compiling modes: 

s Same as last setting. Uses the same answers to compiler questions as given for the 
last compijation. 

F 

ST 

STF 

Compile to File, without redefining functions. 

STore new definitions. saving EXPR definitions. 

STore new definitions; Forget EXPR definitions. 

Implicit in these answers are the answers to the questions on disposition of compiled code and EXPR 
definitions. so the questions REDEFINE? and SAVE EXPRS? would not be asked if these answers were 
given. OUTPUT FILE? would still be asked. however. For example: 

~coMPILE((FACT FACT1 FACT2)) 
LISTING? ST 
OUTPUT FILE? FACT.0C0M 
(FACT COMPILING) 

(FACT REDEFINED) 

(FACT2 REDEFINED) 
(FACT FACTl FACT2) 
~ 

This process caused the functions FACT. FACT1. and• FACTZ to be compiled. redefined. and the compiled 
. definitions also written on the 'tile FACT. DC0M for subsequent loading. 

12.1 COMPILER PRINTOUT 

In Interlisp-D. for each function FN compiled.. whether by TC0MPL. RECOMPILE. or COMPILE. the 
compiler prims: 

12.2 

n 
C> 

() 
·(:) 



n 
t: 

(J· 
~-···· 

.. 

(J 
'-::-

0 

THE COMPILER 

(FN (A.RG1 ... A.RGN) (uses: VA.R1 .•. VA.RN} (calls: FN1 .•• FNN)} 

The message is printed·at the beginning of the second pass of the compilation of FN. (ARG1 ••• A.RGN) 
is the list of arguments to FN; following "uses:" are the free variables referenced or set in FN (not 
including global variables); following "ca 11 s:" are the undefined functions called within FN. 

In Interlisp-IO, for ever:y function compiled, the compiler prints (FN (ARG1 • .. .ARGN} (FREE1 .. · 
TREEN) ) , where FREE1 • • • FREEN are the free variables referenced or set in FN. 

· If the compilation of FN causes the generation of one or more auxilar:y functions (see page 12.8), a 
compiler message will be printed for these functions before the message for FN, e.g., 

{FOOA0027 (X) (uses: XX)) 
( FOO (A B}) 

When compiling a block, the compiler first prints ( BI.KN.AME BLKFN 1 BLKFN 2 : • • ) • Then the normal 
message is printed for the entire block. The names of the arguments to the block are generated 
by suffixing "#" and a number to the block name, e.g., ( FOOBLOCK ( FOOBLOCK#O FOOBLOCK#l) 
FREE-VARIABLES} • Then a message is printed for each entry to the block. 

In addition to the above output, both RECOMPILE and BRECOMPILE print the name of each function 
that is being copied from the old compiled file to the new compiled file. Toe normal compiler message 
is printed for each function that is actually compiled. 

The compiler prints out error messages when it encounters problems compiling a function. -For example: 

----- In BAZ: 
••••• (BAZ - illegal RETURN) 
---~-
Toe above error message indicates that an "i 11 eg a 1 RETURN" compiler error occurred while trying to 
compile the function BAZ. Some compiler errors cause the compilation to terminate, producing nothing; 
however, there are other compiler errors which do not stop compilation. The compiler error messages are 
described on page 12.20 • 

Compiler printout and error messages go to the file COUTFILE, initially T. COUTFILE can also be set to 
the name of a file opened for output, in which case all compiler printout will go to COUTFILE, i.e. the 
compiler will compile .. silently." However. any error messages will be printed to both COUTFILE as well 
as T. 

12.2 GLOBAL VARIABLES 

Variables that appear on the list GLOBALVARS. or have the property GLOBALVAR with value T. or are 
declared with the GLOBALVARS file package command (page 11.25), are called global variables. Such 
variables are always accessed through their top level value when they are used freely in a comP,iled 
function. In other words. a reference to the value of this variable is equivalent to (GETTOPVAL (QUOTE 
VARLABLE}), regardless of whether or not it is bound in the current access chain. Similarly, ( SETQ 
VARLABLE VALL''E) will compile as ( SETTOPVAL { QUOTE VA.RlA.SLE) VALUE). 

12.J 



LOCAL VARS and SPECV ARS 

All system parameters, unless otherwise specified. are declared as global variables. Thus, rebinding these 
variables in a deep bound system (like Interlisp·D} will not affect the behavior of the system: instead. the 
variables must be reset to their new values. and if they are to be restored to their original values. reset 
again. For example, the user might write 

( SETQ GLO.BA.LV.ARIA.BLE NEWVALUE) 

FORM 
{ SETQ GLOBALV.ARIA.BLE OLDVALUE) 

Note that in this case, if an error occurred during the evaluation of FO~ or a control·D was typed, the 
global variable would not be restored to its original value. The function RESETVAR (page 9.20) provides­
a convenient way of resetting global variables in such a way that their values are restored even if an error 

· occurred or conttol·D is typed. 

· fote: Interlisp· 10 employs a shallow binding scheme as described on page 7 .1. There is no distinction 
· ., · oetween global variables and other types of variables: all variable references are to the variable's value .... 

cell Thus. the cost of accessing a variable is small and independent of the depth of computation. whereas 
in a deep bound system. it can be expensive to search the stack for the most recent binding of a variable, 
hence the need for a mechanism like global variables. ·Note however that in a shallow bound system. the 
cost of rebinding a variable is somewhat higher than in a deep bound system ( except when the variable 
is a LOCALVAR). For the purposes of compilation. global variables are treated the same as S?ECVARS. 
i.e. their names are always visible on the stack when they are rebound. 

12.3 LOCAL VARS AND SPECV ARS 

In normal compiled and interpreted code. all variable bindings are accessible by lower level functions 
because the variable's name is associated with its value. We call such variables special variables, or 
specvars. As mentioned earlier, the block compiler normally does not associate names with variable 
values. Such unnamed variables are not accessible from outside the function which binds them and are 

· cherefore local to that function. We call such unnamed variables locsi variables, or localvars. 

The time. economies of local variables can be achieved without block compiling by use of declarations. 
Using local variables will increase the speed of compiled code: the price is the work of writing the 
necessary specvar declarations for those variables which need to be accessed from outside the block. 

LOCALVARS and SPECVARS are variables that affect compilation. During regular compilation. SPECVARS 
is normally T, and LOCALVARS is NIL or a list. This configuration causes all. variables bound in the 
functions being compiled to be treated as special except those that appear on LOCALVARS. During block 
compilation. LOCALVARS is normally T and SPECVARS is NIL or a list.. All variables are then treated as 
local except those that appear on SPECVARS. 

Declarations to set LOCALVARS and SPECVARS to other values. and therefore affect how variables are 
treated, may be used at several levels in the compilation process with varying scope. 

(1) The declarations may be included in the filecoms of a file. by using the LOCALVARS and SPECVARS 
file package commands (page 11.25). The scope of the declaration is then the entire file: 

··· (LOCALVARS • T) (SPECVARS X Y) ""' 

12.4 

(;~. 
'..-



(). 

0 

THE COMPILER 

{2) The declarations may be included in block declarations; the scope is then the block, e.g., 

(BLOCKS ((FOOBLOCK FOO FIE (SPECVARS. T) (LOCALVARS X))) 

(3) Tne declarations may also appear in individual functions. or in PROG's or LAMBDA'S within a function. 
using the DECLARE function. In this case, the scope of the declaration is the function or the PROG or 
LAMBDA in which it appears. LOCALVARS and SPECVARS declarations must appear immediately after the 
variable list in the function. PROG, or LAMBDA, but intervening comments are permitted. For example: 

(OEFINEQ ((FOO 
(LAMBDA (X Y) 

(DECLARE (LOCALVARS Y)) 
(PROG (X Y Z) 

(DECLARE (LOCALVARS X)) . . . ] 

If the above function is compiled (non-block), the outer X will be special, the X bound in the PROG will 
be !ocal, and both bindings of Y will be local. 

Declarations for LOCALVARS and SPECVARS can be used in two ways: either to cause variables to 
be treated the same whether the functian(s) are block compiled or compiled normally, or to affect one 
compilation mode while not affecting the default in the other mode. For example: 

(LAMBDA (X Y) 
. ( DECLARE ( SPECVARS . T)) 

(PROG (Z) ••• ] 

will cause X, Y, and Z to be specvars for both block and normal compilation while 

(LAMBDA (X Y) 
(DECLARE (SPECVARS X)) 
. . . ] 

-
will make X a specvar when block compiling, but when regular compiling the declaration will have no 
effect. because the default value of specvars would be T. and therefore both X. and Y will be specvars by 
default. 

Although LOCALVARS and SPECVARS declarations have the same form as other components of block 
declarations such as { LINK F NS • T ) , their operation is somewhat different because the two variables 
are not independent. (SPECVARS • T) will cause SPECVARS to be set to T, and LOCALVARS to be 
set to NIL. ( SPECVARS Vl V2 ••• ) will have no effect if the value of SPECVARS is T, but if it is a 
list (or NIL), SPECVARS will be set to the union of its prior value and {Vl V2 ••• ). The operation . 
of LOCALVARS is analogous. Thus. to affect both modes of compilation one of the two (LOCALVARS or 
SPECVARS) must be declared T before specifying a list for the other. 

12.4 CONSTANTS 

The function CONST ANT enables the user to define certain expressions as descriptions of their ··constant" 
values. For example. if a user program needed a scratch list of length 30. the user could specify 

12.5 



Compiling Function Calls 

(CONSTANT_ (to 30 collect NIL)) instead of {QUOTE (NIL NIL···)). The former is more 
concise and displays the important parameter much more directly than the latter. CONST ANT can also be 
used to denote values that cannot be quoted directly, such as {CONSTANT {PACK NIL)}, (CONSTANT 
{ARRAY 10) ). It is also useful to parameterize quantities that are constant at run time but may differ at 
compile time, e.g. (CONSTANT BITSPERWORD) in a program is exactly equivalent to 36, if the variable 
BITSPERWORO is bound to 36 when the CONSTANT expression is evaluated at compile time. 

When interpreted, the expression occuring as the argument to CONST ANT is evaluted each time it is 
encountered. If the CONST ANT form is compiled, however. the expression will be evaluated only once: 

If the value of the expression has a readable print-name, then it will be evaluated at compile-time, and the 
value will be saved as a literal in the compiled function's definition, as if { QUOTE VALVE-OF-EXPRESSION) 
had appeared instead of (CONSTANT EXPRESSION). . 

;.' the value does not have a readable printname (e.g. the PACK and ARRAY examples above). then 
·,. the expression itself will be saved with the function, and it will be evaluated when the function is first 

executed. The value will then be stored in the function's literals. and will be retrieved on fuwre references. 

Whert:as the function CONSTANT attempts to evaluate the expression as soon as possible (compile-time, 
load-time, or first-run-time), the function DE FERREDCONST ANT will always defer the evaluation until first 
running. This · is useful when the storage for the constant is excessive so that it shouldn't be allocated 
until (unless} the function is actUally invoked. 

Note: The function SELECTC (page 4.3) provides a mechanism for conparing a value to a number of 
constants. .. 

( CONSTANTS VAR1 VAR2 • • • VARN) [NLambda NoSpread Function} 
· Defines VAR.1, •• • VARN (unevaluated) to be compile-time constants. Whenever the 

compiler encounters a {free) reference to one of these constants. it will compile the 
form ( CON~T ANT VARi) instead. 

If VARi is a list of the form ( VAR FORM), a free reference to the variable will 
compile as ( CONSTANT FORM). 

Constants can be saved using the CONSTANTS file package command (page 11.27). 

12.5 COMPILING FUNCTION CALLS 

When compiling the call to a function, the compiler must know the type of the function. to determine how 
the arguments _should be prepared ( evaluated/unevaluated, spread/nospread). There are three seperate 
cases: lambda. nlambda spread. and nlambda. nospread functions. 

To determine which of these three cases is appropriate. the compiler will first look for a definition among 
the functions in the file that is being compiled. The function can be defined anywhere in any of the files 
given as argu.:nents to BCOMPL. TCOMPL. BRECOMPILE or RECOMPILE. If the function is not contained 
in the file. the compiler will look for other information in the variables NLAMA. NLAML. and LAMS. which 
can be set by the user: 

12.6 

(\ 
\ . _; 

(: 

n 
( -,~. 
\....--· 

Q 



0 
c.~-~· 

NLAMA 

NLAML 

LAMS 

THE COMPILER 

[Variable] 
(for N LAMbda Atoms) A list of functions to be treated as nlambda nospread functions 
by the compiler. 

[Variable] 
(for NLAMbda List) A list of functions to be treated as nlambda spread functions 
by the compiler. 

[Variable] 
A list of functions to be treated as lambda functions by the compiler. Note 
that including functions on LAMS is only necessary to override in-core nlambda 
definitions, since in the absence of other information. the compiler assumes the 
function is a lambda. 

Q If the function is not contained in a file. or on the lists NLAMA, NLAML. or LAMS, the compiler will look 
'- ,, for a current definition in the Interlisp system. and use its type. If there is no current definition. next 

C0MPILEUSERFN is called: 

0 

C0MPILEUSERFN . [Variable] 
When compiling a function call. if the function type cannot be found by looking 
in files, the variables NLAMA, NLAML, or LAMS. or at a current definition. then 
if the value of C0MPILEUSERFN is not NIL. the compiler calls (the value of) 
C0MPILEUSERFN giving it as arguments C0R of the form and the form itself. 
Le .• the compiler does (APPLY• C0MPILEUSERFN ( CDR FOP..M) FORM). If a 
non-NIL value is returned. it is compiled instead of FORM. If NIL is returned. the 
compiler compiles the original expression as a call to a lambda spread that is not 
yet defined. 

Note that C0MPILEUSERFN is only called when the compiler encounters a list CAR 
of which is not the name of a defined function. Toe user can instruct the compiler 
about.how to compile other data types via C0MPILETYPEL.9T. page 12.9. 

CLISP uses C0MPILEUSERFN to tell the compiler how to compile iterative 
statements. IF-THEN-ELSE statements. and pattern match constructs (See page 
12.9). 

If the compiler cannot detemtine the function type by any of the means above, it assumes that the 
function is a lambda function. and its arguments are to be evaluated. Toe function is also added to the 
value of ALAMS: 

ALAMS [Variable] 
(for Assumed LAMbdaS) A list of functions to that the compiler has assu!Iled to 
be lambda functions. ALAMS is not used by the compiler: it is maintained for the 
_user's benefit so that the user can· check to see whether any incorrect assumpti_ons 
were made. 

If there are nlambda functions called from the functions being compiled. and they are only defined in 
a separate file, they must be included on NLAMA or NLAML. or the compiler will incorrectly assume that 
their arguments are to be evaluated. and compile the calling function correspondingly. Note that this is 
only necessary if the compiler does not "know" about the function. If the function is defined at compiie 
time, or is handled via a macro. or is contained in the same group of files as the functions that call it. the 

12.7 



FUNCTION and Functional Arguments 

compiler will automatically handle calls to that function correctly. 

12.6 FUNCilON AND FUNCTIONAL ARGUMENTS 

Compiling the function FUNCTION (page 5.15) may involve creating and compiling a seperate "auxiliary 
function", which will be called at run time. An auxiliary function is named by attaching a GENSYM 
(page 2.11) to the end of the name of the function in which they appear. e.g., FOOA0 o 03. For example, 
suppose FOO is defined as ( LAMBDA ( X} .. • { FOO1 X ( FUNCTION • • ·)) • .. } and compiled. When 
FOO is run, FOO1 will be called with two arguments. X, and FOOA000N and FOOl will call FOOA000N 
each time it uses its functional argument. 

0 
(.. 

..:ompiling FUNCTION will not create an auxiliary function if it is a functional argument to a function that (J 
compiles open, such as most of the mapping functions (MAPCAR, MAPLIST, ete.). Note that a considerable C · 
savings in time could be achieved by making FOO1 compile open via a computed macro (page 5.17). e.g. 

(Z (LIST (SUBST (CADADR Z) 
{QUOTE FN) 
DEF) 

{CAR Z))} 

DEF is the definition of FOOl as a function of just its first argument. and F_N is the name used for itS 
· functional argument in its definition. In this case, ( FOOl X ( FUNCTION .. ·)) would compile as an 
expression. containing the argument to FUNCTION as an open LAMBDA expression. Thus you save not 
only the function call to FOO1. but also each of the function calls to its functional argument. For example. 
if FOOl operates on a list of length ten, ·eleven function calls will be saved. Of course, this savings in 
time costS space. and the user must decide which is more important. · 

12.7 OPEN FQNCTIONS 

When a function is called from a compiled function. a system routine is invoked that sets up the parameter 
and control push lists as necessary for variable bindings and return information. If the amount of time 
spent inside the function is small. this function calling time will be a significant percentage of the total 
time required to use the function. Therefore, many .. small" functions. e.g., CAR. CDR. EQ. NOT. CONS are 
always compiled .. open". i.e .• they do not result in a function call. Other larger functions such as PROG. 
SELECTQ. MAPC. etc. are compiled open because they are frequently used. The user can make other 
functions compile open via MACRO definitions (see page 5.17). The user can also affect the compiled code 
via COMPILEUSERFN (page 12.7) and COMPILETYPELST (page 12.9). 

12.8 COMPILETYPELST 

Most of the compiler's mechanism deals with how to handle forms (listS) and variables (literal atoms) . 
. The user can affect the compiler's behaviour with respect to lists and literal atoms in a number of ways. 

12.8 

n 
\ I-~ 

c·) 

() --



0 
'- --

0 

THE COMPILER 

e.g. macros. declarations. COMPILEUSERFN (page ~2.7), etc. COMPILETYPELST allows the user to tell 
the compiler what to do when it encounters a data type other than a list or an atom. It is the facilicy in 
th~ compiler that corresponds to DEFEVAL (page 5.11) for the interpreter. 

COMPILETYPELST [Variable] 
A list of elements of the form ( TYPENAME • FUNCTION). Whenever the compiler 
encounters a datum that is not a list and not an atom (or a number) in a context 
where the damm is being evaluated. the type name of the datum is looked up on 
COMPILETYPELST. If an entry appears CAR of which is equal to the type name. 
CDR of that entry is applied to the datum. If the value returned by this application 
is not EQ to the datum, then that value is compiled instead. If the value is EQ to 
the datum. or if there is no entry on COMPILETYPELST for this type name, the 
compiler simply compiles the dawm as (QUOTE DA.Tt7M). 

12.9 COMPILING OJSP 

Since the compiler does not know about CUSP, in order to compile functions containing CUSP construas. 
· the definitions must first be DWIMIFYed (page 16.14). Toe user can automate this process in several ways: 

(1) If the variable OWIMIFYCOMPFLG is T, the compiler will always DWIMIFY expressions before compiling 
them. DWIMIFYCOMPFLG is initially NIL. -

(2) If a file has the property FILETYPE with value CLISP on its property list. TCOMPL, BCOMPL. 
RECOMPILE, and BRECOMPILE will operate as though DWIMIFYCOMPFLG is T and OWIMIFY all 
expressions before compiling. 

(3) If the function definition has a local CL ISP declaration (see page 16.10). including a null declaration. 
i.e., just { CLISP: ), the ~finition will be automatically DWIMIFYed before compiling. 

Note: COMPILEUSERFN (page 12.7) is defined to call OWIMIFY on iterative statements. IF-THEN 
statements. .and fetch, rep 1 ace. and match expressions. i.e., any CUSP consa-uct which can be 
recognized by its CAR of form. Thus. if the only CUSP constructs in a function appear inside of iterative 
Statements. IF Statements, etc., the function does not have to be dwim.ified before compiling. · 

If DWI MI FY is ever unsuccessful in processing a CL ISP expression. it will print the error message UNABLE 
TO DWIMIFY followed by the expression. and go into a break.8 The user can exit the break in several 
different ways: (1) type OK to the break. which will cause the compiler to try again. e.g. the user could 
define some missing records while in the break. and then continue; or (2) type .,. , which will cause the 
compiler to simply compile the expression as 'is. i.e. as though CLISP had not been enabled in the first 
place: or (3) rerurn an expression to. be compiled in its place by using the RETURN break command (page 
9.3). 

Note: TCOMPL. BCOMPL. RECOMPILE. and BRECOMPILE all scan the entire file before doing any 
compiling, and take note of the names of all functions that are defined in the file as well as -the names 
of all variables that are set by adding them to NOFIXFNSLST and NOFIXVARSLST. respectively. Thus. 

8unless DWIMESSGAG=T. In this case. the expression is just compiled as is. i.e. as though clisp had not 
been enabled.. 

12.9 



Compiler Functions 

if a function is not currently defined, but is defined in the file being compiled, when DWI MI FY is called 
before compiling. it will not attempt to interpret the function name as CUSP when it appears as CAR 
of a form. DWIMIFY also takes into account variables that have been declared to be LOCALVARS, or 
SPECVARS. either via block declarations or DECLARE expressions in the function being compiled. and 
does not attempt spelling correction on these variables. Toe declaration USEDFREE may also be used to 
declare variables simply used freely in a function. These variables will also be left alone by DWIMIFY. 
Finally, NOSPELLFLG (page 15.12) is reset to T when compiling functions from a file (as opposed to from 
their in-core definition) so as to suppress spelling correction. 

12.J.O COMPILER FUNCTIONS 

( :formally, the compiler is envoked through file package commands that keep track of the state of functions. 
and manage a set of files, such as MAKEFILE (page 11.6). However. it is also possible to explicitly call the 
compiler using one of a number of functions. Functions may be compiled from in-core definitions (via 
COMPILE), or from definitions in files {TCOMPL), or from a combination of in-core and file definitions 
(RECOMPILE). 

TCOMPL and RECOMPILE produce "compiled" files. Compiled files usually have the same name as the 
symbolic file tqey were made from. suffixed-with DCOM (Interlisp-O) or COM (Incerlisp-10).9 Toe file name 
is constructed from the name field only, e.g .. (TCOMPL '<BOBROW> FOO. TEM; 3) produces FOO. DCOM 
on the Ct?nnected directory. The version number will be the standard default. · 

A "compiled file" contains the same expressions as the original symbolic file. except that (1) a special 
FILECREATED expression appears at the front of the file which contains information used by the file 
package, and which causes the message COMPILED ON DATE to be printed when the file is loaded:10 (2) 
every DEFINEQ in the symbolic file is replaced by the corresponding compiled definitions in the compiled 
file: and (3) expressions following a D,ONTCOPY tag inside of a DECLARE: (page 11.26) that appears in 
the symbolic file are not copied to the compiled file. Toe compiled definitions appear at the front of the. 
compiled file, Le .. before the other expressions in the symbolic file, regardless of where they appear in the 
symbolic.file. The only exceptions are expressions that follow a FIRST tag inside of a DECLARE: (page 
11.26). This ··compiled" file can be loaded into any Interlisp system with LOAD (page 11.4). 

Note: When a function is compiled from its in-core definition (as opposed to being compiled from a 
definition in a file), and the function has been modified by BREAK. TRACE. BREAKIN, or ADVISE. it is 
first restored to its original state. and a message is printed out. e.g., FOO UNBROKEN. If the function is 
not defined as an EXPR. the value of the function's EXPR property is used for the compilation. if there is 
one. If there is no EXPR property, and the compilation is being performed by RE COMP I LE. the definition 
of the function is obtained from the file (using LOADFNS). Otherwise. the compiler prints _(FN NOT 
COMP I LEAB LE}, and goes on to the next function.· 

{COMPILE X FLG) [Function] 
x is a list of functions (if atomic. (LIST x) is used). COMP I LE first asks the 
standard compiler questions. and then compiles each function on x. using its in-core 
definition. Returns x. 

9The compiled file suffix is stored as the value of the variable COMPILE. EXT. 
10The actual string printed is the value of COMP I LEHEAOE R. initially "comp i 1 ed on". 

12.10 

() 
\ Jo 
\} .· 

n -



0 
\ .!;• 

0 

THE COMPILER 

If compiled definitions are being written to a file, the file is closed unless FLG = T. 

{ COMPILE! FN DEF -) [Function] 

{TCOMPL F.ILES) 

Compiles DEF, redefining FN if STRF = T (STRF is one of the variables set by 
COMPSET, page 12.1). COMPILE! is used by COMPILE, TCOMPL. and RECOMPILE. 

lfDWIMIFYCO,MPFLG is T, or DEF contains a CLISP declaration. DEF is dwimiiied 
before compiling. See page 12.9. 

[Function] 
-TCOMPL is used to .. compile files"; given a symbolic LOAD file (e.g.. one created 
by MAKEFILE), it produces a "compiled file". FILES is a list of symbolic files to be 

-compiled (if atomic, { LIST FILES) is used). TCOMPL asks the standard compiler 
questions. except for .. OUTPUT FILE:". Toe output from the compilation of 
each symbolic file is written on a file of the same name suffixed with D(;OM, e.g., 
{ TCOMPL ' { SYMl SYM2) ) produces two files, SYMl. DCOM and SYM2. DCOM. 

TCOMPL processes the files one at a time, reading in the entire file. For each 
FILECREATED expression. the list of functions that were marked as changed by 
the file package is noted, and the FILECREATED expression is written onto the 
output file. For each DEFINEQ expression. TCOMPL adds any nlambda functions 
defined in the ·oEFINEQ to NLAMA or NLAML. and adds lambda functions to 
LAMS. so that calls to these functions will be compiled correctly (see page 12.7).11 

Expressions beginning with DECLARE: are processed specially (see page 11.26). 
All other expressions are collected to be subsequently written onto the output file. 

After processing the file in this fashion. TCOMPL compiles each function. except 
for those functions which appear on the list DONTCOMPILEFNS,12 and writes the 
compiled definition onto the output file. TCOMPL then writes onto the output file 
the other expressions found in the symbolic file. 

Note: If the rootname of a file has the property FILETYPE with value CLISP. 
or value a list containing CLISP, TCOMPL rebinds OWIMIFYCOMPFLG to T while 
compiling the functions on FILE. so the compiler will DWI MI FY all expressions 
before compiling them. See page 12.9._ · 

TCOMPL returns a list of the names of the _output files. All files are properly 
terminated and closed. If the compilation of any file is aboned via an error or 
control-D, all files are properly closed, and the (partially complete) compiled file· 
is deleted. 

{ RECOMPILE PFrLE CFILE FNS) [Function] 
The purpose of RECOMPILE is to allow the user to update a compiled file without 
recompiling every function in the file. RECOMPILE does this by using the results of 

11 NLAMA. NLAML. and L~MS are rebound to their top level values (using RESETVAR) by TCOMPL. 
RECOMPILE. BCOMPL. BRECOMPILE. COMPILE. and BLOCKCOMPILE. so that any additions to these 
lists while inside of these functions will not propagate outside. 
12Initially tHL. OONTCOMPILEFNS might be used for functions that compiie open. since their definitions 
would be superfluous when operating with the compiled file. Note that OONTCOMP I LE FNS can be set 
via block declarations (see pagi; 12.14). 

12.11 



,• 

~-
' ..... 

Compiler Functions 

a previous compilation. It produces a compiled file similar to one that would have 
been produced by TC0MPL. but at a considerable savings in time by only compiling 
selected functions. and copying the compiled definitions for the remainder of the 
functions in the file from an earlier TCOMPL or RECOMPILE file • . 
PFILE is the name of the Pretty file (source file} to be compiled; aFILB is the name 
of the Compiled file containing compiled definitions that may be copied. FNS 
indicates which functions in PF!LE are to be recompiled. e.g .. have been changed 
or defined for the first time since CFILB was made. Nate that PFILE. not FNS. 
drives RE.COMPILE. 

RECOMPILE asks the standard compiler questions. except for "OUTPUT FILE:". 
As with TC0MPL. the output automatically goes to PFILE. DC0M. RECOMPILE 
processes PFILE the same as does TCOMPL except that 0EFINEQ expressions are 
not actually read into core. Instead. RECOMPILE uses the filemap (see page 
11.38} to obtain a list of the functions contained in PFILE. The filemap enables 
RECOMPILE to skip over the DEFINEQs in the file by simply resetting the file 
pointer. so that in most cases the scan of the symbolic file is very fast ( the only 
processing required' is the reading of the non-DEF INEQs and the processing of the 
DECLARE: expressions as with TC0MPL). A map is built if the symbolic file does 
not already contain one. for example if it was written in an earlier system. or with 
BUILDMAPFLG=NIL (page 11.39). 

After this initial scan of PFILE. RECOMPILE then processes the functions defined 
in the file. For each function in PFII.E. RECOMPILE detennines whether 
or not the function is to be (re)compiled. Functions that are members of 
DONTC0MPILEFNS are simply ignored. Otherwise, ~ function is recompiled if 
(1) FNS is a list and the function is a member of that list: or (2) FNS= T or 
EXPRS and the function is an EXPR; or (3) FNS=CHANGES and the function is 
marked as having been changed in the FILECREATED expression i.,.1 PFILE; or (4) 
FNS=ALl:..13 If a function is not to be recompiled. RE COMP ILE obtains its compiled 
definition from CFTLE. and copies it (and all generated subfunctions) to the output 

0 
(·: 

(J 
(\. 

file. PFILE.DC0M. If the function does not appear on CFILE. RECOMPILE simply f'l 
recompiles it. Finally. after processing all functions, RECOMPILE writes out all \, : __ ~} 
other expressions that were collected in the prescan of PFILE. '-

If CFII.E=NIL. PFILE.DCOM (the old version of-the output file) is used for 
copying . .from. If both FNS and CFILE ·are NIL. FNS is set to the value of 
REC0MPILEDEFAULT. which is initially EXPRS. This is the most common usage. 
Typically, the functions the user has changed will have been UNSAVEDEFed by the 
editor. and therefore will be EXPRs. Thus the user can perform his edits. dump 
the file. and then simply ( RECOMPILE 'FILE) to update the compiled file .. 

The value ofREC0MPILE is the new compiled file. PFILE.DC0M. [f RECOMPILE 
is aborted due to an error or comrol-D. the new {partially complete) compiled file 
will be closed and deleted. 

t 3[f FNS=ALL. CF'ILE is superfluous. and does not have to be specified. This option may be used to 
compile a symbolic file that has never been compiled before. but which has already been loaded (since 
•1sing TC0MPL would require reading the file in a second time}. 

1212 

() 
'-



0 
~-·· 

0 

0 

0 

THE COMPILER 

RECOMPILE is designed to allow the user to conveniently and efficiently update a compiled file, even 
when the corresponding symbolic file has not been (completely) loaded. · For example, the user can 
perform a LOADFROM (page 11.6) to "notice" a symbolic file. edit the functions he wants to change (the 
editor will automatically load those functions not already loaded), call MAKEFILE (page 11.6) to update 
the symbolic file (MAKEFILE will copy the unchanged functions from the old symbolic file), and then 
perform (RECOMPILE PFZLE). 

Note: Since PRETTYOEF automatically outputs a suitable DECLARE: expression to indicate which 
functions in the file (if any) are defined as NLAMBDAs. calls to these functions will be handled correctly, 
even though the NLAMBDA functions themselves may never be loaded. or even looked at. by RECOMPILE. 

12.11 · BLOCK COMPILING 

Block compiling provides a way of compiling several functions into a single block. Function calls between 
the component functions of the block are very fast. Thus. compiling a block consisting of just a single 
recursive function may be yield great savings if the function calls itself many times. e.g .. EQUAL, COPY. 
and COUNT are block compiled in Interlisp· 10. 

The output of a block compilation is a single, usually large, function. Calls from within the block to 
functions outside of the block look like regular function calls. except that they are usually linked (see page 
12.18). A block can be entered via several different functions. called entries.14 These must be specified 
when the block is compiled. For example, the error block has three entries. ERRORX. INTERRUPT; and 
FAULT 1. Similarly, the compiler block has nine entries. 

Note: In Interlisp·D, block compiling is handled somewhat differently: block compiling provides a 
mechanism for hiding function names internal to a block, but it does not provide a performance 
improvement. Block compiling in Interlisp-D works by automatically renaming the block _functions with 
special names. and calling these functions with the normal function-calling mechanisms. Specifically, a 
function FN is renamed to \BLOCK-NAMEIFN. For example, function FOO in block BAR is renamed to 
··\BAR/FOO". Note that it is possible with this scheme to break functions internal to a block. 

12.11.1 RETFNS 

Another savings in block compilation arises from omitting most of the information on the stack about 
internal calls between functions in the block. However. if a function's name must be visible on the stack. 
e.g., if t.i.e function is to be returned from RETFROM, RETTO, RETEVAL. etc., it must be included on tb.e 
list RETFNS. 

14Acrually the block is entered the same as everv other function. i.e .. at .the too. However. the entry 
functions call the main block with their name as ·one of its arguments. and the block dispatches on the 
name. and jumps to the portion of the block corresponding to that entry point. The effect is thus the 
same as though there were several different entry points. 

12.13 



__ ,.·--. 

BLKAPPLYFNS 

12.11.2 BLKAPPL YFNS 

Normally, a call to APPLY from inside a block would be the same as a call to any other function outside 
of the block. If the first argument to APPLY turned out to be one of the entries to the block. the block 
would have to be reentered. BLKAPPLYFNS enables a program to compute the name of a function in 
the block to be called next. without the overhead of leaving the block and reentering it. This is done by 
including on the list BLKAPPL YFNS those functions which will be called in this fashion. and by using 
BLKAPPL y in place of APPLY, and BLKAPPLY• in place of APPLY•. If BLKAPPLY or BLKAPPL y• 
is given a function not on BLKAPPL YFNS. the effect is the same as a call to APPLY or APPLY• and 
no error is generated. Note however. that BLKAPPLYFNS must be set at compile time, not run time, 
and furthermore, that all functions on BL.KAP PLY FNS must be in the block. or an error is generated (at 
compile time), NOT ON BLKFNS. 

12.11.3 BLKJJB~RY 

Compiling· a function open via a macro provides a way of eliminating a function call. For block compiling. 
the same effect can be achieved by including the function in the block. A further advantage is that the 
code for this function will appear only once in the block. whereas when a function is compiled open. its 
code appears at each place where it is called. 

Toe block licrrary feature provides a convenient way of including functions in a block. It is just a 
convenience since the user can always achieve the same effect by specifying the function(s} in question as 
one of the block functions. provided it has an EXP R definition at compile time. The block library feature 
simply eliminates the burden of supplying this definition. 

To use the block library feature, place the names of the functions of interest on the list BLKLIBRARY. 
and their EXPR definitions on the property list of the functions under the property BLKLIBRARYOEF. 
When the block compiler compiles a form, it first checks to see if the function being called is one of the 
block functions. If not, and the function is on BLKLIBRARY, its definition is obtained from the property 
value of BLKLIBRARYDEF. and it is automatically included as part of the block. The functions ASSOC. 
EQUAL, GETPROP, LAST, LENGTH, LISPXWATCH, MEMB. MEMBER, 'JCONCl, NLEFT, NTH, /RPLNODE, 

__ and TAILP already have BLKLIBRARYDEF properties. 

12.11.4 Block Declarations 

Block compiling a file frequently involves giving the compiler a lot of information about the nature and 
structure of the compilation. e.g •• bfock functions. entries. specvars. linking., etc. To help with this. there 
is the BLOCKS file package command (page 11.25). which has the form: 

. (BLOCKS BL.OCK1 BLOCK2 .... BL'?CKN) 

where each sr.ocxi is a block declaration. The BLOCKS command outputs a DECLARE: expression. which 
is noticed by BCOMPL and BRECOMPILE. BCOMPL and BRECOMPILE are sensitive to these declarations 
and take the appropri~te action. 

Note: :vlasterscope includes a facility for checking the block declarations of a file or files for various 
anomalous conditions. e.g. functions in block declarations which aren·c on the file(s). functions in 
ENTRIES nae in the block. variables that may not need co be SPECVARS because they are not used freely 

12.14 

() 
'-



0 
c~.-

THE COMPILER 

below the places they are bound, etc. See page 13.1 

The form of a block declaration is: 

( BLKNAME BLKFN1 • • • BLKFN14 ( V.A.Rl • VALt1E1) • • · { VA.RN • VALt1En) ) 

Bl.KN.AME is the name of a block. BLKFN1 • • • BLKFN14 are the functions in the block and correspond to 
BI..KFNS in ui.e call to BLOCKCOMPILE. T).le (vARi. VALtmi) expressions indicate the settings for variables 
affecting the compilation of that block. If VALUEi is atomic. then VARi is set to VALUEi (e.g. ( LINKFNS 
• T)), otherwise VARi is set to the UNION of VALUEi and the current value of the variable V.ARi. Also. 
expressions of the form { VAR • FORM) will cause FORM to be evaluated and the resulting list used as 
described above (e.g. (GLOBALVARS • MYGLOBALVARS)). 

0 -. As an example. one of the block definitions for the editor is shown below. The block name is ED ITB LOCK, 
it includes a number of functions (EDITL0, EDITL1. · · · EDITH), and it sets the variables ENTRIES, 

- · SPECVARS, RETFNS, GLOBALVARS, BLKAPPLYFNS, BLKLIBRARY, and tJOLINKFNS: 

Q. 

{EDITBLOCK 
EDITL0 EDITL1 UNOOEDITL EDITCOM EDITCOMA EDITCOML 
EDITMAC EDITCOMS EDITJUNDO UNDOEDITCOM UNOOEDITCOMl 
EDITSMASH EDITNCONC EOIT1F EDIT2F EDITNTH BPNT BPNT0 
BPNT1 RI RO LI LO BI BO EDITOEFAULT ## EDUP EDIT• EDOR 
EDRPT EDLOC EOLOCL EDIT: EDITMBD EDITXTR EDITELT 
EDITCONT EDITSW EDITMV EOITTO EDITBELOW EDITRAN TAILP 
EDITSAVE EDITH 
(ENTRIES EDITL0 ## UNDOEDITL) 
(SPECVARS L COM LCFLG #1 #2 #3 LISPXBUFS ••coMMENT··FLG 

PRETTYFLG UNDOLST UNDOLSTl) 
{RETFNS EDITL0) 
{GLOBALVARS EDITCOMSA EDITCOMSL EDITOPS HISTORYCOMS 

EDITRACEFN) 
(BLKAPPLYFNS RI RO LI LO BI BO EDIT: EDITMBD EDITMV 

EDITXTR) 
(BLKLIBRARY LENGTH NTH LAST) 
{NOLINKFNS EOITRACEFN)) 

Whenever BCOMPL or BRECOMPILE encounter a block declaration. they rebind RETFNS. SPECVARS. 
GLOBALVARS. BLKLIBRARY. NOLHJKFNS. LINKFNS, and OONTCOMPILEFNS to their top level values. 
bind BLKAPPLYFNS and ENTRIES to NIL. and bind BLKNAME to the first element of the declaration. 
They then scan the rest of the declaration. setting these variables as described above. When the declaration 
is exhauSted. the block compiler is called and given BLKNAME. the list of block functions. and ENT RI ES. 

If a function appears in a block declaration. but is not defined in one of the files. then if it has 
an in-core definition. this definition is used and a message printed NOT ON FILE, COMPILING IN 
CORE DEFHUTION. Otherwise. the message NOT COMPILEABLE. is printed and the block declaration 
processed as though the function were not on it. i.e. calls to the function will be compiled as external 
function calls. 

Note that since all compiler variables are rebound for each block declaration. the declaration only has to 
set those variables it wants changed. Furthermore, setting a variable in one declaration has no effect on 
the variable's value for another declaration. 

12.15 



Block Compiling Functions 

After finishing all blocks., BCOMPL and BRECOMPILE treat any functions in the file that did not appear 
in a .block declaration in the same way as do TCOMPL and RECOMPILE. If the user wishes a function 
compiled separately as well as in a block. or if he wishes to compile some functions (not blockcompile), 
with some compiler variables changed, he can use a special pseudo-block declaration of the form 

(NIL BLKFN1 ••• BLKFN14 (V.A.R1 • VALUE1) · ·· (VARN • VALUEN)) 

which means that BLKFN1 • •• BLKFN14 should be compiled after first setting V.A.R1 • •• VA.RN as described 
above. For example, 

(NIL CGETD FNTYP ARGLIST NARGS NCONCl GENSYM (LINKFNS. T)) 

appearing as a "block declaration" will cause the six indicated functions to be compiled while LINKFNS=T 
so that all of their calls will be linked (except for those functions on NOLINKFNS). r-~, 

:\ ' 

-- · 12.11.5 Block Compiling Functions 

There are three user level functions for block compiling, BLOCKCOMPILE, BCOMPL, and BRECOMPILE. 
corresponding to COMPILE, TCOMPL. and RECOMPILE. All of them ultimately call the same low level 
functions in the compiler. i.e •• there is no "block compiler" per se. Instead, when block compiling, a flag 
is set to enable special treatment for SPECVARS, RETFNS. BLKAPPL YFNS. and for determining whether 
or not to link a function call. Note that all of the remarks on macros. globalvars. compiler messages, 
etc •• ,all apply equally for block compiling. Using block declarations. the user can intermix in a single 
file functions compiled normally, functions compiled normally with linked T:alls, and block compiled 
functions. 

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG) [Function] 
BLXNAME is the name of a block. BLKFNS is a list of the functions comprising the 
block. and ENTRIES a list of entries .to the block. 

Each of the entries must also be on BLKFNS or an error is generated. NOT ON 
BLKFNS. If only one entry is specified, the block name can also be one of the 
BLKFNS, e.g .• ( BLOCKCOMP ILE 'FOO ' { FOO FIE FUM) ' {FOO)). However, 
if more than one entry is specified, an error will be generated, CAN'T BE BOTH 
AN ENTRY AND THE BLOCK NAME. 

If ENTR.JES is NIL { LIST BLKNAME) is used. e.g., (BLOCKCOMPILE 'COUNT 
' ( COUNT COUNT 1)) 

_If BLKFNS is NIL. ( LIST BLKNAME) is used, e.g., (BLOCKCOMPILE 'EQUAL) 

BLOCKCOMPILE asks the standard compiler questions and then begins compiling. 
As with COMP I LE. if the compiled code is being written co a file. the file is 
closed unless FLG= T. The value of BLOCKCOMPILE is a list of the entries. or if 
ENTRIES= N IL. the value is BLKNAME. 

The output of a call to BLOCKCOMPILE is one function definition for BLKNAME. 
plus definitions for each of the functions on ENTRIES if any. These entry functions 

12.16 

0 
(· 

Q 



0 

0 

· . THE COMPILER 

are very short functions which immediately call BLKNAME. 

( BC0MPL FILES CFJI.E - - ) [Function] 
FILES is a list of symbolic files (if atomic. ( LIST FILES) is used). BC0MPL 
differs from TC0MPL in that it compiles all of the files at once, instead. of one 
at a time. in order to permit one block to contain functions in several files. (If 
you have several files to be BC0MPLed separately. you must make several calls to 
ec·oMPL.) Output is. to CF1LE if given. otherwise to a file whose name is ( CAR 
FILES) suffixed with DC0M. For example, ( BC0MPL ' (EDIT WED IT) ) produces 
one file, ED IT • DC0M. 

BC0MPL asks the standard compiler questions, except for .. OUTPUT FI LE:··. then 
processes each file exactly the same as TC0MPL (page 12.11). BC0MPL next 
processes the block declarations as described above. Fmally, it compiles those 
functions not mentioned in one of the block declarations, and then writes out all 
other expressions. 

If any of-the files have property FILETYPE with value CLISP, or a list containing 
CL ISP, then DWIMIFYC0MPFLG is rebound i.o T for all of the files. See page 12.9. 

The value of BC0MPL is the output file (the new compiled file}. If the compilation 
is aborted due to an error or control-D, all files are closed and the (partially 
coxµplete} output file is deleted. • 

Note that it is pennissible to TC0MPL files set up for BC0MPL; the block declarations 
will simply have no effect. Similarly, you can BC0MPL a file that does not contain 
any block declarations and the result will be the same as having TC0MPLed it. 

(BREC0MPILE FILES CFII.E FNS -) [Function] 
BREC0MPILE plays the same role for BC0MPL that RECOMPILE plays for TC0MPL. 
Its purpose is to allow the user to update a compiled file without requiring an 
entire BC0MPL. 

FILES is a list of symbolic files (if atomic, ( LIST FILES) is used). CFILE is 
the compiled file produced by BC0MPL or a previous BREC0MPILE that contains 
compiled detinitions that may be copied. The interpretation of FNS is the same as 
with RECOMPILE. 

BRECOMPILE asks the standard compiler questions except for .. OUTPUT FILE:". 
As with BCOMPL. output automatically goes to FILE. DC0M, where FILE is the first 
file in FILES. 

BREC0MPILE processes each file the same 'as RECOMPILE (page 12.11}, then 
processes each block declaration. If any ·of the functions in the block are to be 
recompiled.. the entire block must be (is) recompiled. Otherwise. the block is· copied 
from CF'!LE as with RECOMPILE. For pseudo-block declarations ·of the form ( NIL 
FN1 • • ·). all variable assignments are made. but only those functions indicated by 
FNS are recompiled. 

After completing the block declarations. BREC0MPILE processes all functions that 
do not appear in a block declaratio~. recompiling chose dictated by FNS. and 
copying the compiled definitions of the remaining from CF'!LE. 

12.17 



I 

I 
' . 

Linked Function Calls 

Finally. BRECOMPILE writes onto the output file the "other expressions" collected 
in the initial scan of FILES. · 

The value of BRECOMPILE is the output file (the new compiled file). If the 
compilation is aborted due to an error or control-D. all files are closed and the 
(partially complete) output file is deleted. 

If CFILE=NIL, the old version of FlLE.DCOM is used. as with RECOMPILE. 
In addition, if FNS and CFILE are both NIL. FNS is set to the value of 
RECOMPILEDEFAULT, initially EXPRS. 

,-·-··2.12 LINKED FUNCI1ON CALLS 

Note: Linked junction calls are not implemented in Interlisp-D. 

Conventional (non-linked) function calls from a compiled function go through the function definition cell. 
i.e., the definition of the called function is· obtained from its function definition cell at call time. Thus. 
when the user breaks. advises, or otherwise modifies the definition of the function F 00. every function 
that subsequently calls it instead calls the modified function. For calls from the system functions. this 
is clearly not a desirable feature. For example. suppose that the user wishes to break on basic functions 
such as PRinT. EVAL. RPLACA. etc .• which are used by the break package. We would like to guarantee 
that the system packages will survive through user modification ( or destruction) of basic functions ( unless 
the user specifictlly requests that the system packages also be modified}. This protection is achieved by 
linked function calls. 

For linked function calls. the definition of the called function is obtained at link time, Le., when the calling 
function is defined. and stored in the literal table of the calling function. At call time. th.is deftnition is 
retrieved from where it was stored in the literal table. not from the function definition. cell of the called 
function as it is for non-linked calls . 

0 
(·: 

. __ 8ote that while function calls from block compiled functions are usually linked (i.e. the default for (} 
blocks is to link). 15 and those from standardly compiled functions are usually non-linked. linking function \.. > 
calls and blockcompiling are independent fearures of the Interlisp compiler, i.e •• linked function calls are 
possible, and frequently employed, from standardly compiled functions. 

Note that nonnal function calls require only the called function's name in the literals of the compiled code. 
whereas a linked function call uses two licei:als and hence produces slightly larger compiled functions. 

Jhe compiler's decision as to whether to link a particular function call is determined by the variables 
L INKFNS and NOLINKFNS as follows: 

(1) If tile functiori appears on NOLINKFNS. the call is not linked: 

Ls In Interlisp· 10. linked function calls are actually a little slower and cake more space than non-linked 
calls. so that the user might want to include ( NOLINKFNS • T) in block declarations to override the 
iefault. 

12.18 

(\ 
\ ) ·-



0. 
'-. 

Q. 

. ~. ( t, , .... / 

THE COMPILER 

(2) If block compiling and the function is one of the block functions, the call is internal as described 
earlier; · 

(3) If the function appears on LrnKFNS, the call is linked: 

(4) If N0LINKFNS=T,.the call is not linked; 

(5) If block compiling, the call is linked: 

(6) If LINKFNS=T, the call is linked; 

(7) Othenvise the call is not linked. 

Note that (1) takes precedence over (2), Le., if a function appears on NOLINKFNS, the call to it is not 
linked, even if it is one of the functions in the block, Le., the call will go outside of the block. 

NOLINKFr~s is initialized to various system functions such as ERR0RSET. BREAKl. etc. LINKFNS is 
initialized to NIL. Thus if the user does not specify otherwise. all calls from a block compiled function 
(except for those to functions on NOLINKFNS} will be linked; all calls from standardly compiled functions 
will not be linked. However, when compiling system functions such as HELP. ERROR, ARGLIST, FNTYP. 
BREAK1, et al. LINKFNS is set to T so that even though these functions are not block compiled, all of 
their calls will be linked. 

If a function is not defined at link time, Le., when an attempt is made to link to it, it is linked instead to 
the function t:OLINKDEF. When the function is later defined. the link can be completed by relinking the 
calling function using RELINK described below. Otherwise, if a function is run which attempts a linked 
call that was not completed, N0LINKDEF is called. If the function is now defined, i.e., it was defined 
at some point after the attempt was made to link to it, N0LIHKDEF will quietly penorm the link and 
continue the call. Otherwise, it will caµ FAUL TAP PLY and proceed as described in page 15.6. 

CALLS, BREAK on FNI-IH-FN2 and ADVISE FNI-IN-FN2 all work correctly for linked function calls. 
e.g., (BREAK ' ( FOO IN FIE)}, where FOO is called from FIE via a linked function call. Note that 
control-H will not interrupt at linked function calls. 

12.12.1 Relinking 

The function RELINK is available for relinking a compiled function. i.e., updating all of its linked calls 
so that they use the definition extant at the time of the relink operation. 

(RELINK FN) [Function] 
FN is either the name of a function. a list of functions. an atom whose value is a list 
of functions. or the atom WORLD. RELIHK performs the corresponding relinking 
operations. RELINK returns FN. 

( RELINK ' WO R LO ) is possible because the compiled code reader maintains on 
LINKEDFNS a list of all user functions containing any linked calls. SYSLINKEDFNS 
is a list of all system functions that have any linked calls. (RELINK 'W0RLD) 
performs both ( RELINK LINKEDFNS) and ( RELINK SYSLHJKEDFNS ) . 

12.19 



-. 
Compiler Error Messages 

Note: To relink a function in a.block. one should relink the block. not the function . 

. It is important to stress that linking takes place when a function is defined. Thus. if FOO calls FIE via a 
linked call. and a bug is found in FIE. changing f IE is not sufficient; FOO must be relinked. Similarly, if 
F001. F002. and F003 are defined (in that order) in a file. and each call the others via linked calls. when 
a new version of the file is loaded, F001 will be linked to the old F002 and F003. since those definitions 
will be extant at the time it is read and defined. Similarly. f002 will link to the new F001 and old F003. 
Only F003 will link to the new F001 and F002. The user would have to perfomi ( RELINK ' ( F001 
F002 F003)) following the LOAD. 

1:2.13 COMPILER ERROR MESSAGES 

"· Messages describing errors in the function being compiled are also printed on the teletype. These messages 
are always preceded by •••••. Unless otherwise indicated below, the compilation will continue. 

(FN NOT ON FILE. COMPILING IN CORE DEFINITION) 
From calls to BCOMPL and BRECOMPILE. 

(FN NOT COMPILEABLE) 
An EXPR definition for FN could not be found. In this case. no code is produced 
for FN, and the compiler proceeds to the next function to be compiled., if any . 

. 
(FN NOT FOUHD) Occurs when RECOMPILE or BRECOMPILE tty to copy the compiled definition of 

FN from CF!LE, and cannot find it. In this case. no code is copied and the compiler 
proceeds to the next function to be compiled., if any. 

{FN NOT ON BLKFNS) 
FN was specified as an entry to a bloc~ or else was on BLKAPPLYFHS. but did 
not appear on the BLKFNS. In this case, no code is produced for the entire block 
and the compiler proceeds to the next functicn to be compiled., if any. 

. · -· (FN CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME) 
In this case, no code is produced for the entire block and the compiler proceeds 
to the next function to be compiled. if any. 

(BI.KN.AME - USED BLKAPPLY WHEN NOT APPLICABLE) 
BLKAPPLY is used in the block BLKN.AME, but there are no BLKAPPLYFNS or 
ENTRIES declared for the block. 

(VAR SHOULD BE A SPECVAR - USED FREELY BY FN) 

[n Interlisp· 10, while compiling a block. the compiler has already generated code 
to bind VAR as a LOCALVAR, but now discovers that FN uses VAR freely. VAR 

should be declared a SPECVAR and the block recompiled. 

((•--)COMMENT USED FOR VALUE) 
A comment appears in a context where its vaiue is being used. e.g. (LI ST X ( • 
-- ) Y ). The compiled function will run. but the value at the point where the 
comment was used is ··undefined." 

12.20 

0 
r 
l .. 

r -, 
\ ): . 

( .. ·• . 
\, ... 



·:=) t .. -C 

THE COMPILER 

((FORM) - NON-ATOMIC CAR OF FORM) 
If user intended to treat the value of FORM as a function, he should use APPLY• 
(page 5.12). FORM is compiled as if APPLY• had been used. 

{(SETQ VAR EXPR --} BAD SETQ} 
SETQ of more than two arguments. 

(FN - USED AS ARG TO NUMBER FN?) _ , ~ 

Toe value of a predicate, such as GREATERP or EQ, is used as an argument to a 
. function that expects numbers. such as IPLUS. 

{FN - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMEHT) 
The compiler has assumed · FN is the name of a function. If the user intended to 

-· " treat the value of FN as a function, he must use APPLY• (page 5.12). u 
'-- · This message is printed when FN is not- defined. and is also a local variable of the 

(\_ 
\____)-

0 

function being compiled. Note that earlier versions of the Interlisp· 10 compiler 
did treat FN as a functional argument, and compiled code to evaluate ii.. 

(FN - ILLEGAL RETURN) 
RETURN encountered when not in PROG. 

(TG - ILLEGAL GO) 
GO encountered when not in a PROG. 

(TG - MULTIPLY DEFINED TAG) 
TG is a PROG label that is defined more than once in a single PROG. Toe second 
definition is ignored. 

(TG - UNDEFINED TAG) 
2'G is a P ROG- label that is referenced but not defined in a P ROG. 

( VAR - NOT A BIHDABLE VARIABLE) 
VAR is NIL, T, or else not a literal ato_m. 

{VAR VAL -- BAD PROG BINDING) 
Occurs when there is a prog binding of the form { VAR VAL1 

(TG - MULTIPLY DEFINED TAG. ASSEMBLE) 
TG is a label that is defined more than once in an assemble form. 

(TG - UNDEFINED TAG. ASSEMBLE) 
TG is a label that is referenced but not defined in an ASSEMBLE form. 

(TG - MULTIPLY DEFINED TAG. LAP) 
TG is a label that was encountered twice during the second pass of the compilation. 
If this error occurs with no indication of a multiply defined tag during pass one, 
the tag is in a LAP macro. 

(TG - ~NOEFINED TAG, LAP) 
TG is a label that is referenced during the second pass of compilation and is 
not defined. LAP treats TG as though it were a COREVAL. and continues ·tbe 
compilation. 

12.21 



Compiler Error Messages 

(OP - OPCODE? - ASSEMBLE) 
OP appears as CAR of an assemble statement.. and is illegal. See page 22.12 for 
legal assemble statements •. 

{NO. BINARY CODE GENERATED OR LOADED FOR FN} . 
A previous error condition was sufficiently serious that binary code for FN cannot 
be loaded without causing an error. 

() 
(·-· 

c·-y· 
"("\ 

12.22 () 
'---



0 

0 

0 

0 

CHAPTER13 

MASTERSCOPE 

Masterscope is an interactive program for analyzing and cross referencing user programs. It contains 
facilities for analyzing user functions to determine what other functions are caHed, how and where 
variables are bound. set. or referenced, as well as which functions use particular record declarations. 
Masterscope is able to analyze definitions directly from a file as well as in-core definitions. 

(: 

Masterscope maintains a database of the results of the analyses it perfomis. Via a simple command 
language. the user may inteI'!ogate the database. call the editor on those expressions in functions that were 
analyzed which use variables or functions in a particular way. or display the tree strucrure of function (:-.. 
calls among any set of functions. · 

Masterscope is interfaced with the editor and file package so that when a function is edited or a new 
definition loaded in. Masterscope knows that it must re-analyze that function. 

The following sample session illustrates some of these facilities. 

~. ANALYZE FUNCTIONS ON RECORD 

NIL .. 
~. WHO CALLS RECFIELDLOOK 
(RECFIELDLOOK ACCESSDEF ACCESSDEF2 EDITREC) 
~. EDIT WHERE ANY CALL RECFIELDLOOK 
RECFIELDLOOK: 
(RECFIELDLOOK (CDR Y) FIELD) 
tty: . . 
•OK 
ACCESSDEF : 
(RECFIELDLOOK OECLST FIELD VARl) 
•OK 
(RECFIELDLOOK USERRECLST FIELD) 
•N VARl 
•OK 
ACCESSDEF2 : 
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD) 
tty: 
(RECFIELDLOOK (RECORD.SUBOECS TRAN) FIELD) 
•N (CAR TAIL] 
•OK 
EDITREC : 
{RECFIELDLOOK USERRECLST {CAR EDITRECX)) 
•01< . 
NIL 
~ WHO CALLS ERROR 

13.1 

fl] 
{2] 

{3] 

{4] 

[5] 

( '::;:. 
.. 

c-



I 
I. , , ..... 
i'--'·· 

( EDITREC) 
... SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF 
( inverted tree) 

1. 
2. 
3. 
4. 

RECFIELDLOOK RECFIELDLOOK 
ACCESSDEF 
ACCESSDEF2 ACCESSDE~Z 

ACCESSDEF 
5. 
NIL 
... WHO CALLS WHO IN 
RECORDSTATEMENT -­
RECORDECLl -­
RECREDECLAREl -­
UNCLISPTRAN -­
RECORDWORD 
RECORDl 
EDITREC --

RECORDCHAIN ACCESSDEF 

/FNS 
/RPLNOOE 
/NCONC, /RPLACD, /RPLNODE 
/PUTHASH 
/PUTHASH, /RPLNODE2 
/RPLACA 
/RPLACA, /SETTOPVAL 
/SETTOPVAL 

{6} 

{7} 

[I} The user directS that the functions on file RECORD be analyzed. The leading period and space specify 
that this line is a Masterscope command.1 

[2] Masterscope printS a • whenever it (re}analyzes a function. to let the user know what it is happening.:: 

{3}The user asks which functions call RECFIELDLOOK. Masterscope responds with the list. 

[4] Toe user asks to edit the expressions where the function RECF IELDLOOK is called. Masterscope calls 
EDITF !:>n the functions it bad analyzed that call RECFIELDLOOK. dir~.ing the editor to the appropriate 
expressions. Toe user then edits some of those expressions.3 • 

[5} Next the user asks which functions call ERROR. Since some of the functions in the database have 
been changed, Masterscope re-analyzes the changed definitions (and printS out . 's for each function it 
analyzes}. Masterscope responds that EDITREC is the only analyzed function that calls ERROR. 

{6} The user asks to see a map of the ways in which RECFIELDLOOK is called from ACCESSDEF. A tree 
structure of the calls is displayed. 

1The user may also call Masterscope directly" by typing ( MASTERSCOPE ). Masterscope prints a greeting 
and prompts with ··... ". Within the top-level executive of Masterscope, the user may issue Masterscope 
commands. programmer's assistant commands. (e.g.. REDO. FIX). or run programs. The user can exit 
from the MasterSCope executive by typing OK. The function • is defined as a nlambda nospread function 
which interprets itS argument as a Masterscope command, executes the command and returns. 
2The feedback when Masterscope analyzes a function is controlled by the flag MSPRINTFLG: if 
MSPRINTFLG is the atom ". ", Masterscoj:,e will print out a period. (If an error in the function is 
detected. ··1" is printed instead.) If MSPRINTFLG is a number N, Masterscope will print the name of the 
function it is analyzing every Nth function. If MSPRINTFLG is NIL. Masterscope won't print anything. 
Initial setting is ". ". Note that the function name is printed when Masterscope stanS analyzing, and t.1-ie 
comma is printed when it finishes. 

3In this example. the teletype editor is used. In lnterlisp-D. if Dedit is enabled as the primary editor. it 
would be called to edit the appropriate functions (see page 20.1). 

13.2 

() 

.C) 

Cl 

(l 



0 

() ...... _,. 

0 

0 

MASTERSCOPE 

[7]Tne user then asks to see which functions call which functions in the list /FNS. Masterscope responds 
with a structured printout of these relations. 

Below is a summary of the Masterscope commands. similar to what would be printed out by the HELP 
command (page 13. 7). Optional elements are shown in brackets []: ~tematives are shown in braces {} 
separated with vertical bars I or are listed on separate lines; words in angle bracke~ <> are "qieia-objects": 
other lower-case words are "noise words" and may be omitted. · 

·--------------------~---------------------------------------------· 
a <command> is: 

[RE]ANALYZE <functions> 
ERASE <functions> 
show PATHS <pathoptions> 
<set> {<relation> I IS I ARE} <set> 
EDIT where <functions> [<relation> <set>J [ - <edit commands>] 
SHOW where <functions> ~relation> <set> 
CHECK (files> 
~OR <variable> <set> <iterative statement tail> 

-------------------------------------------------------------------
a <set> is {at least one of): 
a determiner + a type + a specification 

THE 
AHY 
WHICH 
WHO 

FUNCTIONS 
VARIABLES 
PROPERTY NAMES 
RECORDS 
FIELDS 
FILES 
I. S.OPRS 

FIELDS OF <records> 

[']{atom I list} 
• @ <predicate> 

IH <expression> 
<relation>ING <set> 
<relation>ED {BY I IN} <set> 
THAT <relation> <set> 
LIKE <edit-pattern> 
ON <files> 
ON PATH <pathoptions> 

<blockword> {ON <files> I OF <functions>} 
<functions>, <files>, etc. are <set>s whose type is implied. 

a <relation> is 
verbs: 

CALL 

USE 
USE 
USE 
SET 
SMASH 
TEST 
REFERENCE 
DECLARE 
Brno 
FETCH 
REPLACE 

a verb and optional modifier: 
modifiers (anywhere after the verb): 
{SOMEHOW I FOR EFFECT I FOR VALUE I 

DIRECTLY I INDIRECTLY} 
AS a {RECORD I PROPERTY I record FIELD} name 
AS a CLISP word 
{FREELY I LOCALLY} 
{FREELY I LOCALLY} 
{FREELY I LOCALLY} 

"{FREELY I LOCALLY} 
{FREELY I LOCALLY} 
AS a {LOCALVAR I SPECVAR} 

·--------------------------------------------------
13.3 

(.· 

(·-,.~ 
.\. 



I 

:c'. 
i 

! 
I 

\... 

1\...:·. 

Command Language 

CREATE 
CONTAIN 

I <blockword>: ENTRIES. GLOBALVARS, FREEVARS. 
SPECVARS, LOCALFREEVARS, BLKFNS or BLOCKFNS 

<pathoptions>: 

FROM <functions> 
TO <functions> 
AVOIDING·<functions> 
NOTRACE <functions> 
SEPARATE <functions> 
LINELENGTH <number> 

I abbreviations & synonyms: 
I 
I FNS = FUNCTIONS PROPS= PROPERTIES 
I VARS= VARIABLES 
I 0 (& singular FN, VARIABLE. etc) 
I FREE~ FREELY LOCAL= LOCALLY 
I AMONG= .AVOIDING NOT 
I 

<sets> may be joined by ANO or OR or preceded by NOT. 
Any command can be followed by OUTPUT <filename>. 

·-----------~-------- ·-------------·----~~----------~--~------~~---· 

13.1 C01'v!l\1AND LANGUAGE 

The user communicates with Masterscope using an English-like command language, e.g .• WHO CALLS 
P~INT. With these commands. the·user can direct that functions be analyzed. interrogate Masterscope's 
database. and perform other operations. Toe commands deal· with sets of functions. variables, etc .• and 

· relations between them (e.g., call bind). Sets correspond to English nouns. relations to verbs. 

A set of atoms can be specified in a variety of ways, either explicitly. e.g.. FUNCTIONS ON FIE specifies 
the atoms in ( FILEFNSLST 'FIE), or implicitly, e.g .• NOT CALLING Y, where the meaning must be 
determined in the context of the rest of the command. Such sets of atoms are the basic building blocks 
which the command language deals with. 

Masterscope also deals with relations between sets. For example. the relation CALL relates functions and r\~_ 
other functions; the relations BIND and USE FREELY relate functions and variables. These relations , ) 
are what get stored in the Masterscope database when functions are analyzed. In addition. Masterscope 
"knows" about file package conventions: CONTAIN relates files and various types of objects (functions. 
variables). 

Sets and relations are used (along with a few additional words) to form sentence-like commands. For 
example. the command WHO ON 'FOO USE 'X FREELY will print out the list of functions contained 
in the file FOO which use the variable X freely. The command EDIT WHERE ANY CALLS 'ERROR will 
call EDITF on those functions which have previously been analyzed that directly call ERROR, pointing at 
each successive expression where the call to ERROR actually occurs. 

13.1.1 Commands 

The normal mode of communication with Masterscope is via "co~ands". These are sentences in 
the Masterscope command language which direct Masterscope to answer questions or perform various 
operations. The syntaX of Masterscope commands is described below: 

13.4 



0 

n 
\._) 

•., 

0 

0 

ANALYZE SET 

REANALYZE SET 

ERASE 0SET 

MASTERSCOPE 

[Masterscope Command] 
Analyze the functions in SET (and any functions called by them) and include che 
informatlon gathered in the database. Masterscope will not re-analyzing a function 
if it thinks it already has valid information about that function in its database. Tne 
user may use the command REANALYZE (below) to force re-analysis. 

Note that whenever a function is referred to in a command as a .. subject" of one 
of the relations, it is automatically analyzed: the user need not give an explicit 
ANALYZE command. Thus. WHO IN MYFNS CALLS FIE will automatically 
analyz-a the functions in MYFNS if they have not already been analyzed. 

Note also that only EXPR definitions will be analyzed: that is. Masterscope will 
not analyze compiled code. If there is no in-core definition for a function (either 
in the definition cell or an EXP R property), Masterscope will attempt to read in 
the definition from a file." If necessary, the definition will be DWIMIFYed before 
analysis. 

[Masterscope Command] 
Causes Masterscope to reanalyze the functions in SET (and any functions called 
by them) even if it thinks it already has valid information in its database. For 
example. this would be necessary if the user had disabled or subvened the file 
package. e.g. performed PUTD's to change the definition of functions. 

• [Masterscope Command} 
Erase all information about the functions in SET from the database. ERASE by 
· itself clears the entire database. 

SHOW PATHS PATHOPTIONS [Masterscope Command} 

SET RELATION SET 
SET IS SET 
SET ARE SET 

Displays a tree of function calls. PATIIOPTIONS are described on page 13.14. 

[Masterscope Comm~d] 
[Masterscope Command} 
[Masterscope Command} 

This command has the same format as an English sentence with a subject (the first 
SET). a verb (the RELATION or IS or ARE), and an object (the second SET). Any 
of the SETS within the command may be preceded by the question determiners 
WHICH or WHO (or just WHO alone}. For example. WHICH FUNCTIONS CALL X 
prints the list .of functions that call the function X. RELATION may be one of the 
relation words in present tense (CALL. BIND, TEST. SMASH. etc.) or used as a 
passive (e.g., \IIHO IS CALLED BY WHO). Other variants are allowed. e.g. WHO 
DOES X CALL, IS FOO CALLED BY FIE.etc. 

The interpretation of the co~d depends on the number of question elementS 
present: 

"'Files which have been explicitly mentioned previously in some command are searched first. If the 
definition ca.11not be found on any of rhose files. Masterscope looks among the files on F ILELST for a 
definition. If a function is found in this manner. Maste~....cope will print a message"( reading from 
FILENA.\!E),.. If no definition can be found at all. Masterscope will print a message ·• FN can ' t be 
analyzed". If the function previously was known. the message ''FN disappeared!" is printed. 

13.5 

(·_. ... 

C'· 

C 



i 
1 ... -.:.: 

...... 
i 

i. 
! 

>--. 

Commands 

(1) If there is no question element. the command is treated as an assertion and 
Masterscope rerurns either T or NIL. depending on whether that assertion is trUe. 
Thus. ANY IN MYFNS CALL HELP will print T if any function in MYFNS call the 
function HELP, and NIL otherwise. 

(2} If there is one ,question element. Masterscope rerurns · the list of items for which 
the assertipn would be true. For example MYFN BINDS WHO USED FREELY BY 
YOURFN prints the list of variables bound by MYFN which are' also used freely by 
YOURFN. 

(3) If there are two question elements. Masterscope will print a doubly indexed 
list: 

•. WHO CALLS WHO IN 
RECORDSTATEMENT -­
RECORDECLl -­
RECREDECLAREl -­
UNCLISPTRAN -­
RECOROWORD 
RECORDl --
EDITREC --

/FNSe" 
/RPLNODE 
/NCONC. /RPLACD, /RPLNODE 
/PUTHASH 
/PUTHASH. /RPLNODE2 
/RPLACA 
/RPLACA, /SETTOPVAL 
/SETTOPVAL 

EDIT WHERE SET RELATION SET [- EDI'!'COMSJ [Masterscope Command] 
(WHERE may be omitted.) The first SET refers to a set of functions. Toe _ 
EDIT command calls the editor on each expression' where the RELATION acrually 
occurs. For example. EDIT WHERE ANY CALL ERROR will call EDITF on each 
(analyzed) function which calls ERROR stopping within a TTY: at each call to 
ERROR. CuITe11tly one cannot EDIT WHERE a file which CONTAINS a datum, nor 
where one function CALLS another SOMEHOW. 

EDITCOMS. if given. are a list of commands passed to ED IT F to be performed at 
each expression. For example. EDIT WHERE At4Y CALLS MYFN DIRECTLY -
( SW 2 3) P will switch the first and second arguments to MYFN in every call 
to MYFN and print the result. EDIT WHERE ANY ON MYFILE CALL ANY NOT 
@ GETD will call the editor on any expression involving a call to an undefined 
function. Note that EDIT WHERE X SETS Y will point only at those expressions 
where Y is acrually set. and will skip over places where Y is otherwise mentioned. 

SHOW WHERE SET RELATION SET [Masterscope Command} 
Like the EDIT command except merely prints out the expressions without calling 
the editor. 

ED IT SET {- EDITCOMSJ [Masterscope Command] 

DESCRIBE SET 

Calls ED IT F on each function in SET. EDITCOMS, if given, will be passed as a list 
of editor commands to be executed. For example EDIT ANY CALLING FN1 -
(R FN1 FN2) will replace FNl by FN2_in those functions that call FNl. 

[Masterscope Command] 
Prints out the 8 IND. USE FREELY and CALL information about the functions in 
SET. For example. the command DESCRIBE PRINT ARGS might print out: 

PRINTARGS[N,FLG] 

13.6 

n 

() 



;" u 

0 

0 

binds: 
calls: 
called by: 

MASTERSCOPE . 

TEM,LST,X 
MSREC0RDFILE,SPACES,PRIN1 
PRINTSENTENCE,MSHELP,CHECKER 

1his shows that PRINTA.RGS has two arguments, N and FLG. binds internally the 
variables TEM, LST and X. calls MSRECORDFILE, SPACES and PRINl and is called 
by PRINT SENTENCE, MSHELP, 'and CHECKER. . 

Toe user can specify additional information to be included in the descriptio~. 
DESCRIBELST is a list each of whose elements is a list containing a· d~riptive 
string and a form. Toe form is evaluated (it can refer to the name of the 
funtion being described by the free variable F N); if it returns a non-NIL value. the 
description string is printed followed by the value. If the value is a list, its elements 
are printed with commas between them. For example, the entry ("types: " 
(GETRELATI0N FN '(USE TYPE) T)wouldincludealistingofthetypesused 

C· 

by each function. ( · 

CHECK SET [Masterscope Command} 
Checks for various anomalous conditions (mainly in the compiler declarations) for 
the files in SET (if SET is not given. FI LELST is used). For example, this command 
will warn about variables which are bound but never referenced, functions in 
BLOCKS delarations which aren't on the file containing the declaration. functions 
declared as ENTRIES but not in the block. variables which may not need to be 
declared SPECVARS because they are not used freely below the places where they 
are bound. etc. 

FOR VA.RLAB.LB SET LS.TAIL [Masterscope Command] 
1his command provides a way of combining CLISP iterative statements with 
Masterscope. An iterative statement will be constructed in which VA.RIA.BU: is 
iteratively assigned to each element of SET, and then the iterative statement tail 
I.S.TAIL is executed. For example, • 

FOR X CALLED BY FOO WHEN CCODEP DO (PRINTOUT TX ,., (ARGLIST 
X) T) 

HELP 

will print out the name and argument list of all of the compiled functions which 
are called by FOO. 

[Masterscope Command] 
Prints out a summary of Masterscope commands as shown on page 13.3. Optional 
elements are shown in brackets (]; alternatives are shown in braces {} separated 
with vertical bars I or are listed on separate lines: words in angle brackets < > are 
"meta-objects"; other lower-case words are .. noise words" and may be omitted. 

Note: any command may be followed by OUTPUT FILENAME to send output to the given file rather than 
the terminal. e.g. WHO CALLS WHO OUTPUT CR0SSREF. 

13.1.2 Relations 

A relation is specified by one of the keywords below. Some of these ··verbs" accept modifiers. For 

13.7 

... ( - .. 

C 



I 
i ,(.\,· .... 

I 

\.: : 

l;; 

(.- ·;.·, 
\;.,; . 

Relations 

example. USE, SE.T, SMASH and REFERENCE all may be modified by FREELY. The modifier may occur 
anywhere within the command.5 Verbs can occur i_n the present tense (e.g., USE, CALLS, BINDS, USES) 
or as present or past participles (e.g., CALLING, BOUND, TESTED). The relations (with their modifiers) 
recognized by Masterscope are: . 

CALL 

CALL SOMEHOW 

[Masterscope Relation] 
· Function F1 calls F2 if the definition of"F1 contains a form {F2 --)~ (APPLY 

(QUOTE F2) --). (FUNCTION F2), etc. 

[Masterscope Relation] 
One function calls another SOMEHOW if there is some path from the first to the 
other. That is, if Fl calls F2, and F2 calls F3, then F1 CALLS F3 SOMEHOW. 

(\ , __ ) 

This information is not stored directly in the database: instead, Masterscope stores 
only information about direct ftmction calls, and (re)computes the CALL SOMEHOW n 
relation as necessary. 

USE 

SET 

SMASH 

[Masterscope Relation] 
If unmoclifte_d, the relation USE denotes variable usage in any way; it is the union 
of the relations SET, SMASH, TEST, and REFERENCE. 

[Masterscope RelationJ 
A function SETs a variable if the function contains a form ( SETQ var --), 
(SETQQ var. --),etc. ~ 

[Masterscope Relation] 
A function SMASHes a variable if the function calls a destructive list operation 
(RPLACA. RPLACD, DREMOVE, SORT, etc.) on the value of that variable. 
Masterscope will also find instances where the operation is performed on a "part" 
of the value of the variable: for example, if a function contains a form ( RPLACA 
(NTH X 3) T) it will be noted as SMASHING X. 

Note that if the function contains a sequence (SETQ Y X), { RPLACA Y T) then 
Y is noted as being smashed, but not X. () 

TEST 

REFERENCE 

-

[Masterscope Relation] 
A variable is TESTed by a function if its value is only distinguished between NIL 
and non-NIL. For example, the form { COND ( {AND X -- ) --) ) zests the value 
of x. 

This relation includes all variable usage except for SET. 
[Masterscope Relation} 

The verbs USE, SET. SMASH, TEST and REFERENCE may be modified by the words FREELY or 
LOCALLY. A variable is used FREELY if it is not bound in the function at the place of its use: alternatively, 
it is used LOCALLY if the use occurs within a PROG or LAMBDA that binds the variable. 

5If there is more than one verb, any modifier between two verbs is assumed to modify the first one. For 
exampie, in usnrn ANY FREELY OR SETTING x. the FREELY modifies USHJG but not SETTrnG -
the entire phrase is interpreted as the set of all functions .which either i¥Se any variable freely or set the 
variable X, whether or not X is set freely. . 

13.8 

(') 
' j 



0 
MASTERSCOPE 

Masterscope also distinguishes between CALL DIRECTLY and CALL INDIRECTLY. A function is calied 
DIRECTLY if it occurs as CAR-of-form in a normal evaluation context. A function is called IND IRECiL Y 
if its name appears in a context which does not imply its immediate evaluation. for example ( SETQ Y 
(LIST (FUNCTION FOO) 3)).6 lnaddition.CALL FOR EFFECT(wherethevalueofthefunctionis 
not used) is distinguished from CALL FOR VALUE. 

BI ND · • • [Masterscope Relaµon] . 
The BI ND i::elation between functions and· variables includes both variables bound 
as function arguments and those bound in an internal PROG or LAMBDA expression. 

USE AS A FIELD [Masterscope Relation} 

FETCH 

REPLACE 

Masterscope notes all uses of record field names within FETCH. REPLACE or 
CREATE expressions. 

[Masterscope Relation] 
Use of a field within a FETCH expression. 

[Masterscope Relation] 
Use of a record field name within a REPLACE or CREATE expression. 

USE AS A RECORD [Masterscope Relation} 
Masterscope notes all uses ofrecord names within CREATE or TYPE? expressions.1 

CREATE [Masterscope Relation] 
Use of a record name within a CREA TE expression. 

USE AS A PROPERTY NAME [Masterscope Relation] 
Masterscope notes the property names used in GETPROP, PUTPROP. GETLIS. etc. 
expressions if the name is quoted. E.g. if a function contains a form ( GET PROP 
X {QUOTE INTERP) ), then that function USES INTERP as a property name. 

USE AS A CLISP WORD [Masterscope Relation} 
Masterscope notes all iterative ~&Atement operators and user defined CLISP words 
as being used as a CLISP word. 

0 . CONTAIN [Masterscope Relation] 

0 

Ftles contain functions. records, and variables. This relation is not stored in the 
data~ase but is computed using the file package. 

DECLARE AS LOCALVAR [Masterscope Relation] 
DECLARE AS SPECVAR [Masterscope Relation] 

Masterscope notes internal "calls" to DECLARE from withm functions. 

The following abbreviations are recognized: FREE=FREELY. LOCAL=LOCALLY. PROP=PROPERTY, 
REF=REFEREHCE. Also, the words A, AN and NAME (after AS) are "noise" words and may be omitted. 

6The distinction. is whether or not the comoiled code of the caller would contain a direct call to the callee. 
Note that an occurrence of ( FUN CT I OH F°oo) as the functional argument to one of the built-in maoping 
functions which compile open is considered to be a direct call. · 
7 Additionally, in X.: F 00 • FIE, f 00 is used as a record name. 

13.9 

( .... . 

( .... ·-. ·- ~-

(._ 



l:= 
I 

Sets 

Note: Masterscope ·uses .. templates" (page 13.16) to decide which relations hold between functions and 
their arguments. For example, the information that SORT SMASHes its first argument is contained in the 
template for SORT. Masterscope initially contains templates for most system functions which set variables, -
test their arguments, or perform destructive operations. The user may change existing templates or insen 
new ones in Masterscope's tables via the SETTEMPLA TE function (page .13.19). 

13.1.3 Sets . 

A ··set" is a collection of things (functions. variables. etc.). A set is specified by a set phrase, consisting 
of a determiner (e.g., ANY, WHICH, WHO) followed by a type (e.g.,. FUNCTIONS; VARIABLES} followed 
by a specificazion (e.g., IN MYFNS, @ SUBRP}. The determiner, type and specification may be used 
alone or in combination. For example, ANY FUNCTIONS IN MYFtlS, ANY @ SUBRP, VARIABLES IN 
GLOBALVARS, and WHO are all acceptable set phrases. Set specifications, types and detenniners are 
explained below: · · 

13.1.3.1 Set Specifications 

'ATOM 

'LIST 

[Masterscope Set Specification} 
The simplest way to specify a set consisting of a single thing is by the name of 
that thing. For example, in the command· WHO CALLS 'ERROR, the function 
ERROR is referred to by its name. Although the ' can be left out, to resolve 
possible ambiguities names should usually be quoted: e.g., WHO CALLS ' CALLS 
will return the list of functions which call the function CALLS. 

~terscope Set Specification] 
Sets consisting of several atoms may be specified by naming the atams. For 
example, the cosmand WHO USES ' ( A B) returns the list of functions that use 
the variables A or B. 

() 

(~ 
\ J . / 

IN EXPRESSION [Masterscope Set Specification] () 
The form EXPRESSION is evaluated, and its value is treated as a list of the elements '-

@ PREDICATE 

LIKE ATOM 

of a set. For example, IN. GLOBAL VARS specifies the list of variables in the value 
of the variable GLOBAL VARS. 

[Masterscope Set Specification] 
A set may also be specified by giving a predicate which the elements of that 
set must satisfy. PREDICATE is either a function name, a LAMBDA expression, 
or an expression in termS of the variable X. The specification @ PREDICATE 
represents all atom for which the value of PREDICATE is non-NIL. For example. 
@ EXP RP specifies all those atams which have EXPR defintions: @ ( STRPOSL 
X CLISPCHARRAY) specifies those atoms which contain CLISP characters. Toe 
universe to be searched is either determined by the context within the command 
(e.g., in WHO IN FOOFNS CALLS ANY NOT @ GETD, the predicate is only 
applied to functions which are called by any functions in the list FOOFNS). or 
in the extreme case, the universe defaults to the entire set of things which have 
been noticed by Masterscope, as in the command WHO IS @ EXPRP. 

[Mascerscope Set Speciftcation] 
ATOM may contain ES Cs; it is used as a pattern to be matched (as in the• editor). 

13.10 

() 



0 

() 
'-

0 

0 

MASTERSCOPE 

For example. WHO LIKE /RS IS CALLEO BY ANY would find both /RPLACA 
and /RPLNOOE. 

A set may also be specified by giving a relation its members must have with the members of another set: 

RELATIONING SET • [Masterscope Set Specification] 
RELATIONING is used here generically to mean any of the relation words in 
the present participle form (possibly with a modifier), e.g., USING. SETTING. 
CALLING, BINDING. RELATIONING SET specifies the set of all objects which have 
that relation with some element of SET. For example. CALLING X specifies the 
set of functions which call the function X; USING ANY IN FOOVARS FREELY 
specifies the set of functions which uses freely any variable in the value of F OOV A RS. 

RELATIONE0 BY SET [Masterscope Set Specification] 
RELATIONED IN SET [Masterscope Set Specification] 

This is similar to the RELATIONING construction. For example, CALLED BY ANY c·-·". 
IN FOOFNS represents the set of functions which are called by any element of 
FOOFNS; USED FREELY BY ANY CALLING ERROR is the set of variables which 

> . 

are used freely by any function which also calls the function ERROR. 

BLOCKTYPE OF FUNCTIONS [Masterscope Set Specification] 
BLOCKTYPE ON FILES [Masterscope Set Specification] 

These phrases allow the user to ask about BLOCKS declarations on files (see page 
12.14). BLOCKTYPE is one of LOCALVARS, SPECVARS. GLOBALVARS. ENTRIES, 
BLKFNS. BLKAPPLYFNS. or RETFNS. 

BLOCKTYPB OF FT;"'NCTIONS specifies the names which are declared to be BLOCKTYP:; 
in any blocks declaration which contain any of FUNCTIONS (a "set" of func­
tions). The .. functions" in FUNCTIONS can either be block names or just functions 
in a block. For example, WHICH ENTRIES OF ANY CALLING 'Y BIND A?-!Y 
GLOBALVARS OtJ 'FOO. 

BLOC"ATYPE ON FILES specifies all names which are declared to be BLOCXTY?E 
on any of the given FILES (a "set" of files). 

FIELDS OF SET [Masterscope Set Specification] 
SET is a set of records. This denotes the field names of those records. For 
example. the command WHO USES ANY FIELDS OF BRECORD returns the list 
of all functions which do a fetch or rep 1 ace with any of the field names 
declared in the record declaration of BRECORD. 

( ·.: __ 

--· 

KNOWN 

THOSE 

[Masterscope Set Specification} 
Toe set of all functions which have been analyzed. For example, the command 
WHO IS KNOWN will print out the list of functions which have been analyzed. 

[Masterscope Set Specification} 
The set of things printed out by the last Masterscope question. For example. 
following the command WHO IS USED FREELY BY PARSE. the user could ask 
WHO BINDS THOSE to find out where those variables are bound. 

ON PATH PATHOPTIONS • [Masterscope Set Specification) 
Refers to the set of functions which would be printed by the command SHOW PAT HS 

13.11 C 



Set Determiners 

PATHOPTIONS. For example, IS FOO BOUND BY ANY ON PATH TO 'PARSE 
tests if FOO might be bound "above" the function PARSE. PATHOPTIONS are 
explained in detail on page 13.14. 

Note: sets may also be specified with "relative clauses" introduced by the word THAT, e.g. THE 
FUNCTIONS THAT BIND 'X. 

13.1.3.2 Set Determiners 

Set phrases may be preceded by a determiner. A determiner is one of the words THE, ANY, WHO or WHICH. 
Toe "question" determiners (WHO and WHICH) are only meaningful in some of the commands, namely 

--" ( ' 
\ ) 

those that take the form of questions. ANY and WHO (or WHOM) can be used alone; they are "wild·card" ('") 
elements. e.g., the command WHO USES ANY. f REEL Y, will print out the names of all (known) functions ' 1 

-... · which use any variable freely. If the determiner is omitted. ANY is assumed; e.g. the command WHO 
CALLS ' ( PRINT PRINl PRIN2) will print the list of functions which call any of PRINT, PRIN1. 
PRINZ. THE is also allowed, e.g. WHO USES THE RECORD FIELD FIELDX. 

k 
'-.:..· 

13.1.3.3 Set Types 

Any set phrase has a zype: that is, a set may specify either functions, variables. files. record names. record 
field names or propez:ty names. The type may be determined by the context within the command ( e.g., 
in CALLED BY ANY ON FOO. the set ANY ON FOO is interpreted as meaning the fanctions on FOO 
since only functions can be CALLED), or the type may be given explicitly by the user (e.g., FUNCTIONS 
ON FIE). Toe following cypes are recognized: FUNCTIONS, VARIABLES. FILES. PROPERTY NAMES .. · 
RECORDS, FIELDS, I.S.OPRS.8 

Toe type is used by Masterscope in a variety of ways when interpreting the set phrase: 

(1) Set types are used to disambiguate possible parsings. For example, both commands WHO SETS ANY 
BOUND IN X OR USED BY Y and WHO SETS ANY BOUND IN X OR CALLED BY Y have the same 
general form. However, the first case is parsed as WHO SETS ANY ( BOUND BY X OR USED BY Y) 
since both BOUND BY X and USED BY y refer to variables; while the second case as WHO SETS ANY 
BOUND IN ( X OR· CALLED BY Y), since CALLED BY Y and X must refer to functions. Note that 
parentheses may be used to group phrases. ' 

(2) The type is used to determine the modifier for USE: FOO USES WHICH RECORDS is equivalent to 
FOO USES WHO AS A RECORD FIELD. 

(3) The interpretation of CONTAIN depends on the type of its object: the command WHAT FUNCTIONS 
ARE CONTAINED IN MYFILE prints the list of functions in MYFILE: WHAT RECORDS ARE ON 
MY FI LE prints the list of records. 

(4) The implicit "universe" in which a set expression is interprete~ depends on the type: ANY VARIABLES 
@ GETO is inFerpreted as the set of all variables which have been noticed by Masterscope (i.e., bound or 

8or abbreviations FNS, VARS, PROPNAMES or the singular forms FUHCTIOH, FN. VARIABLE, VAR. FILE, 
PROPfJAME. RECORD, FIELD. Note that most of these cypes correspond to built-in "file package types .. 

n 

\__.· 
(see page 11.14). n 

13.U 



0 

CJ 

0 

-o 

MASTERSCOPE 

used in any function which has been analyzed) that also have a definition. ANY FUNCTIONS @ ( NEQ 
( GETTOPVAL X) 'NOB IND) is interpreted as the set of all functions which have been noticed (either 
analyzed or called by a function which has been analyzed) that also have a top-level value. 

13.1.4 Conjunctions 

Sets may be joined by the conjunctions ANO and OR or preceded by NOT to form new sets. AND is always 
interpreted as meaning "intersection": OR as "union", while NOT means "complement". For e.i:ampie, 
the set CALLING X AND NOT CALLED BY Y specifies the set of all functions which call the function 
X but are not called by Y. 

Masterscope's interpretation of AND and OR follow LISP conventions rather than the conventional English 
interpretation. For example "calling X and Y". would, in English, be interpreted as the intersection of 

(: 

(CALLING X) and (CALLING Y); but Masterscope interprets CALLING X AND y as CALLING (IX (' __ ··. 
ANO 'Y}: which is the null set. Only sets may be joined with conjunctions: joining modifiers, as in '­
US ING X AS A RECORD FIELD OR PROPERTY NAME, is not allowed: in this case, the user must say 
USING X AS A RECORD FIELD OR USING X AS A PROPERTY NAME. 

As described above. the type of sets is used to disambiguate parsings. The algorithm used is to first try to 
matcll the type of the phr-ases being joined and then try to join with the longest preceding phrase. In any 
case, the user may group phrases with parentheses to specify the manner in which conjunctions should 
be parsed. 

13.1. PATHS 

In trying to work with large programs, the user can lose track of the hierarchy of functions. The 
Masterscope SHOW PATHS command aids the user by providing a map showing the calling structure of 
a set of functions. SHOW PATHS prints out a tree structure showing which functions call which other 
functions. For example, the command SHOW PATHS FROM MSPARSE will print out the structure of 
Masterscope's parser: 

1.MSPARSE 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

MSINIT MSMARKINVALID 
I MSINITH MSINITH 
MSINTERPRET MSRECORDFILE 
I MSPRINTWOROS 
I PARSECOMMAND GETNEXTWORD CHECKAOV 
I I PARSERELATION {a} 
I I PARSESET {b} · 
I I PARSEOPTIONS {c} 
I I MERGECONJ GETNEXTWORD {5} 
I GETNEXTWORD {5} 
I FIXUPTYPES SUBJTYPE 
I I OBJ TYPE 
I FIXUPCONJUNCTIONS MERGECONJ {9} 
I MATCHSCORE 
MSPRINTSENTENCE 

------------------------------------------------------ overflow - a 

13.13 

( ... ·-
.> 



I' 
\.. :-~-

l 

( -· '-. ,. 

() 
Path Options 

16.PARSERELATION GETNEXTWORD {5} 
17. CHECKADV 

------------------------------------------------------ overflow - b 
19.PARSESET PARSESET 
20. GETNEXTWORD {5) 
21. PARSERELATION {6) 
22: • SUB PAR.SE GETNEXTWORD {5) . 
------------------------------------------------------ overflow - c 
23.PARSEOPTIONS GETNEXTWORD {5} 
24. PARSESET {19} 

The above printout displays that the function MSPARSE calls MSINIT, MSINTERPRET, and MSPRINTSENTENCE. 
MS INTERPRET in turn calls MSRECORDFILE, MSPRINTWOROS, PARSE COMMAND, GETNEXTWORD, FIXUPTYPr,. 
and FIXUPCONJUNCTIONS. Toe numbers in braces {} after a function name are backward references: '--) 
they indicate that the tree for that function was expanded on a previous line. The lowercase letters in 
braces are forward references: they indicate that the tree for that function will be expanded below, since 
there is no more room on the line. Toe ve~cal bar is used to keep the output aligned. 

Note: In lnterlisp·D, the Browser Llspusers package modifies the SHOW PATHS command so the 
command's output is displayed as an undirected graph (see page 18.9). 

13.l.l Path Options 

The SHOW PATHS command takes the fo..m: SHOW PATHS followed by some combination of the 
following path options: 

FROM S,ET [Masterscope Path Option} 
Display the function calls from the elements of srr. 

TO SET [Masterscope Path Option] 
Display the function calls leading to e!ements of SET. If TO is given before FROM () 
(or no FROM is given), the tree is "inverted" and a message, (inverted tree} 
is printed to warn the user that if F N 1 appears after F N 2 it is because F N 1 is called 
by FN2. 

When both FROM and TO are given. the first one indicates a set of functions which are to be displayed 
while the second restricts the paths that will be traced: Le., the command SHOW PATHS FROM X TO Y 
will trace the elements of the set CALLED SOMEHOW BY X ANO CALLING Y SOMEHOW. 

If TO is not given. TO KNOWN OR NOT @ GETD is assumed: that is. only functions which have been 
analyzed or which are undefined will be included.. Note that Masterscope will analyze a function while 
printing out the tree if that function has not previousiy been seen and it currently has an EXP R definition: 
thus. any function which can be analyzed will be displayed. 

AVOIDING SET [Ma..cterscope Path Option} 
Do not display any function in .SET. AMONG is recognized as a synonym 
for AVOIDING NOT. For example, SHOW PATHS TO ERROR AVOIDfNG ON 
FILE2 will not display (or traee) any function on FILE2. 

13.14 
0 



0 

....... 

0 

NOTRACE SET 

SEPARATE SET 

LINELENGTH N 

MASTERSCOPE 

[Masterscope Path Option] 
Do not trace from any element of SET. NOTRACE differs from AVOIDING in that 
a function which is marked N0TRACE will be printed. but the tree beyond it will 
not--be expanded: the functions in an AVOIDING set will not be printed at all. 
For example. SHOW PATHS FROM AHY ON FILEl NOTRACE ON FILE2 will 
display the tree of calls eminating from FILEl, but will.not expand any function 
on FILE2. . 

[Masterscope Path Option] 
Give each element of SET a sepa...-a_te tree. Note that FROM and TO only insure t.~at 
the designated functions will be displayed. SEPARATE can be used to guarantee 
that certain functions will begin new tree strucwres. SE PARA TE functions are 
displayed in the same manner as overflow lines; i.e.. when one of the functions 
indicated by SE PA RATE is found. it is printed followed by a forward reference ~a 
lower-case letter in braces) and the tree for that function is then expanded below . 

[Masterscope Path Option] 
Resets LINELENGTH to N before displaying the tree. The linelength is used to 
determine when a part of the tree should "overfl.o~" and be expanded lower. 

13.3 ERROR l\1ESSAGES 

When the user gives Masterscope a command. the command is first parsed. Le. · translated to an internal 
representation. and then the internal representation is interpreted. If a command cannot be parsed. e.g. 
if the user typed SHOW WHERE CALLED BY X, the message .. Sorry, I can't parse that! .. is 
printed and an error is generated. If the command is of the correct form but cannot be interpreted ( e.g .• 
the command EDIT WHERE ANY CONTAINS ANY) Masterscope will print the message .. Sorry, that 
i s n ' t imp 1 eme n te d ! " and generate an error. If the eommand requires that some functions having 
been analyzed (e.g., the command WHO CALLS X) and the database is empty, Masterscope will print the 
message "Sorry, no functions have been analyzed!" and generate an error. 

13.4 'MACRO EXPANSION 

As part of analysis. Masterscope will expand the macro definition of called functions. if they are 
not otherwise defined (see page 5.17). Masterscope macro expansion is controlled by the ·variable 
MSMACROPROPS: 

MSMACROPROPS [Variable] 
Value is an ordered list of macro-property names that Masterscope will search to 
find a macro definition. Only the kinds of macros that appear on MSMACR0PR0PS 
will be expanded. All others will be treated· as function calls and left unexpanded. 

Initially (MACRO). 

Note: MSMACR0PR0PS initially contains only MACRO {and not 10MACR0, DMACR0, 

13.15 

( ·· . 
. . 

(_ 



I 
(.,. 
! 

-· 

\.;:.: 

Affecting Masterscope Analysis 

etc.) ·in the theory that the machine-dependent macro .definitions are more likely 
.. optimizers". · 

Note that if you edit a macro. Masterscope will know to reanalyze the functions which call that macro~ 
However. if your macro is of the .. computed-macro' .. style. and it calls functions· which you edit. 
Masterscope will not notice. You must be careful to tell masterscope to REANALYZE the appropriate 
functions (e.g., if you edit FOOEXPANDER which is used to expand FOO macros. you have to·. REAto.LYZE 
ANY CALLING FOO. 

13.S AFFECTING MASTERSCOPE ANALYSIS 

Masterscope analyzes the EXPR definitions of functions and notes in its database the relations that function 
has with other functions and with variables. To perform this analysis. Masterscope uses templazes which 
describe the behavior of functions. For example. the information that SORT SMASHes its first argument 
is contained in the template for SORT. Masterscope initially contains templates for most syStem functions 
which set variables. test their arguments. or perform destructive· operations. 

A template is a list structure containing any of the following atoms: 

PPE 

NIL 

[in Masterscope template] 
If an expression appears in th.is location. there is most likely a parenthesis error. 

Masterscope notes this as a "call" to the function "ppe" (lowercase). Therefore. 
SHOW WHERE ANY CALLS ppe will print out all possible parenthesis errors. 
When Masterscope finds a possible parenthesis error in the course of analyzing a 
function definition. rather than printing the usual ... ", it prints out a "?" instead. 

[in Masterscope template] 
The expression occuring at this location is not evaluated. 

SET [in Masterscope template] () 

SMASH 

TEST 

PROP 

FUHCTiml 

A variable appearing at this place is set. 

[in Masterscope template] 
The value of this expression is smashed. 

[in Masterscope template] 
This expression is used as a predicate (that is. the only use of the value of the 
expression is whether it is NIL or non·N IL). 

[in Masterscope template] 
The value of this expression is used as a propeny name. If the expression is 
of the form (QUOTE ATOM), Masterscope will note that ATOM is USED AS A 
PROPERTY NAME. For example. the template for GETPROP is ( EVAL PROP • 
PPE ). 

[in Master.:ieope template] 
The expression at this point is used as a functional argument. For example. the 
·template for MAPC is ( SMASH FUNCTION FUNCTION . PPE ). 

13.16 

() 



0 

FUNCTIONAL 

EVAL 

RETURN 

0 TESTRETURN 

"'· 

EFFECT 

FETCH 

REPLACE 

RECORD 

MASTERSCOPE 

[in Masterscope template] 
Toe expression at this point is used as a functional argument. This is like 
FUNCTION. except that Masterscope distinguishes between functional arguments to 
functions which "compile open,. from those that do not. For the latter (e.g. SORT 
and APPLY), FUNCTIONAL should be used rather than FUNCTION. 

· • ' [in Masterscope template]. 
Toe expression at this location is evaluated (but not set, smashed. tested. used as a 
functional argument., etc.). 

[in Masterscope template] 
Toe value of the function (of which this is the template) is the value of this 
expression. 

('·. 

[in Masterscope template] c··, 
A combination of TEST and RETURN: If the value of the function is non·N IL. 
then it is remrned. For instance, a one-element COND clause is this way. 

[in Masterscope template] 
Toe expression at this location is evaluated. but the value is not used. 

[in Masterscope template] 
An atom at this location is a field which is fetched. 

[in Masterscope template] 
An atom at this location is a field ·which is replaced. 

[in Masterscope template] 
An atom at this location is used as a record name. 

CREATE [in Masterscope template] 

BIND 

0 
CALL 

CLISP 

0 

An atom at this location is a record which is created. ~1 

[in Masterscope template] 
An atom at this location is a variable which is bound. 

[in Masterscope template} 
An atom at this location is a function which is called. 

[in Masterscope template] 
An atom at this location is used as a CLISP word. 

[in- Masterscope template] 
This atom, which can only occur as the first element of a template, allows one to 
specify a template for the CAR of the function form. If ! doesn't appear, the CAR 
of the form is treated as if it had a CALL specified for it. In other words, the 
templates ( • . EVAL) and ( ! CALL • • EVAL) are equivalent. 

If the next atom after a ! is N IL. this. specifies · that the· function name should 
not be remembered. For example. the template for ANO is ( ! NIL • . TE ST 
RETURN), which means that if you see an .. AND", don't remember it as being 
called. This keeps the Masterscope database from being cluttered by too many 
uninteresting relations: Masterscope also throws away relations for cmm. CAR, 

13.17 

( ·:-· .. 

C 



i 

't 
' ... , .. 

A.ff ecting Masterscope Analysis 

CDR. and a couple of others. 

In addition to the above atoms which occur in templates, there are some "special forms" which are lists 
keyed by their CAR. 

TEMPLATE [in Masterscope template] 
Any part of a template may be preceded by the atom . . (two periods} which 
specifies that the template should be repeated an indefinite number (N> 0} of times 
to fill. out the expr:ssion. For example. the template for COND might be ( .. 
(TEST .. EFFECT RETURN)) while the template for SELECTQ is {EVAL .. 
(NIL .. EFFECT RETURN) RETURN). 

( BOTH TEMPLATE1 TEMPLATE2) [in Masterscope template] 
Analyze the current expression twice, using the each of the templates in turn. 

{IF EXPRESSION TEMPLATE1 TEMPLATE2) . [in Masterscope template] 
Evaluate EXPRESSION at analysis time (the variable EXPR will be bound to the 
expression which corresponds to the IF). and if the result is non·N IL, use 
TEMPLATE1, otherwise TEMPLATE2- If EXPRESSION is a literal atom. it is APPL Y'd 
to EXPR. For example. ( IF LISTP -( RECORD FETCH) FETCH) specifies that if 
the current expression is a list, then the first element is a record name and the 
second element a field name, otherwise it is a field name. 

(@ EXPR.r:•oR.M TEMPLATEFORM) [in Masterscope template] 
Evaluate EXPR.FORM giving EXPR, evaluate TEMPLATEFORM giving TEMPLATE. 
Then analyze EXPR with TEMPLATE. m lets the user compute on the fly both a 
template and an expression to analyze it with. Toe foims can use the variable 
EXPR. which.is bound to the current expression. 

( MACRO . MACRO) [in Masterscope template] 
MACRO is interpreted in the same way as a macro (see page 5.17) and the resulting 
form is analyzed. If the template is the atom MACRO alone, Masterscope will use 

Cl 

(\ 
~ ' . / 

the MACRO property of the function itself. This is useful when analyzing code (-, 
which contaiDs calls to user-defined macros. If the user changes a macro property ) 
(e.g. by editing it} of an atom which has template of MACRO, Masterscope will \_. 
mark any function which used that macro as needing co be reanalyzed. 

Some examples of templates: 

template 

(SM~SH. PPE) 

(! NIL TEST .• RETURN) 

(EVAL FUNCTION FUNCTION) 

function 

DREVERSE 

AND 

MAPCAR 

COtlD (! NIL .. (IF CDR (TEST .. EFFECT RETURN) {TESTRETURN . PPE))) 

Templates may be changed and new templates defined using the functions: 

(GET'ftEMPLA TE FN) 
Returns the current template of FN. 

13.18 

[Function} 

I\ \ ' j 



0 

0 

0 

0 

MASTERSCOPE 

{ SETTEMP'LATE FN TEMPLATE) [Function] 
Changes the template for the function FN and returns the old value. If any 
functions in the database are marked as calling FN, they will be marked as needing 
re-analysis. 

13.6 DATA BASE UPDATING 

C·-

Masterscope is interfaced to the editor and file package so that it notes whenever a function has been 
changed, either through editing or loading in a new definition. Whenever a command is given which 
requires knowing the information about a specific function. if that function has been noted as being 
changed. the function is automatically re-analyzed before the command is interpreted. If the command 
requires that all the information in tfie database be consistent (e.g., the user asks WHO CALLS X) then c···-­
all functions which have been marked as changed are re-analyzed. 

13.i MASTERSCOPE ENTRIES 

( CALLS FN USEDAT.ABASE -) [Function] 
FN can be a function name. a definition. or a form. Note: CALLS will also work 
on compiled code. CALLS returns -a list of four elements: a list of all the functions 
called by FN, 9 a list of all the variables bound in FN, a list of all the variables 
used freely in FN, and a list of the variables used globally in FN. For the purpose 
of CALLS. variables used freely which are on GL0BALVARS or have a propercy 
GL0BALVAR value T are considered to be used globally. If USEDATABASE is NIL 
(or FN is not a litatom), CALLS will perform a one-time analysis of FN. Otherwise 
(i.e. if USEDATABASE is non-NIL and FN a function name}, CALLS will use the 
information in Masterscope's database (FN will be analyzed first if necessary}. 

(CALLSCCO0E FN -) _ [Function] c·.,. 
Toe sub-function of CALLS which analyzes compiled code. CALLSCC00E returns •:- .· 
a list of five elements: a list of all the functions called via "linked" function calls. 
a list of all functions called regularly, a list of variables bound in FN, a list of 
variables used freely, and a list of variables used globally. 

( FREEVARS FN USED.AT.AB.ASE) [Function] 
Equivalent to { CA00R ( CALLS FN USEDATA.BASE)). Returns the list of variables 
used freely within FN. 

(MASTERSCOPE COMMAND -) [Function] 
Top level entry to Masterscope. If COMMA.ND is NIL, will enter into a USE REX EC 
in which the user may enter commands. If COMMAND is not NIL, the command 

9Functions called via .. linked" calls from compiled code are indicated by semicolons PACKed around 
their name: e.g. {CALLS 'MASTERSC0PE) might return {(:MASTERSC0PEXEC: ;MSINTERPRET; 
; PRUT: HELP) --). This feature can be suppressed by setting N0PACKCALLSFLG to T. 

13.19 C 



I 
I 

I 

I 

1,. 
' .._._.: 
i 
! 
,: 

!,· 

l 
i 

Masterscope ·Entries 

is interpreted and MASTERSC0PE will return the value that would be printed by 
the command. Note that only the question commands return meaningful values. 

( SET·SYN0NYM PHRASE MEANING -) [Function] 
Defines a new synonym for Masterscope's parser. Both PHRASE and MEA,...,7NG 
are lists of words; anywhere PHRASE is seen in a command. MEANING will be sub· 
stinned.. For example, ( SET SYNONYM 'G,L0BALS I (VARS IN GLOBAL VARS 
OR @(GETPROP X 'GLOBALVAR))) wouldallowtheusertoreferwiththesingle 
word GLOBALS to the set of variables which are either in GLOBALVARS or have a. 
GLOBAL VAR property. 

The following functions are provided for users who wish to write their own routines using Masterscope's 
database: 

.. 

n 

c PARSERELATI0N RELATION) . [Function] O 
RELATION is a relation phrase; e.g., ( PARSE RELATION ' ( USE FREELY)). 
PARSERELATI0N returns an internal representation for RELATION. For use in 
conjunction with GETRELATI0N. 

( GETRELATION ITEM RELATION .INVERTED) [Function] 
RELATION is an internal representation as returned by PARSERELATI0N (if not, 

• GETRELATI0N will first perform (PARSERELATI0N RELATION)); ITEM is an 
atom; GETRELATI0N returns the list of all atoms which have the given relation 
to ITEM. For example. (GETRELATI0N 'X '(USE FREELY)) recurns the list of 
variables that X uses freely. If .INVERT.ED is T, the inverse relation is used; e.g. 
(GETRELATI0N 'X '(USE FREELY) T}recurnsthelistoffunctionswhic:huse 
X freely. . 

If .l'n:M is NIL. GETRELATI0N will return the list of atoms which have RELATION 
with any other item; Le., answers the question WHO RELATIONS ANY. Note that 
GETRELATI0N does nol check to see if"h'EM has been analyzed, or that other 
functions that have been changed have been re-analyzed. 

(TESTRELATI0N ITEM RELATION ITEM2 lN'VER'TED) [Function] n 
\.:-:;:· equivalent to (MEMB 1TEM2 (GETRELATI0N ITEM RELATION LN'VZRT.ED) ). that \ · 

is, tests if ITEM and ITEM2 are related via RELATION. If I'TEM2 is NIL, the call 
is equivalent to ( NOT ( NULL { GETRELATI0N ITEM RELATION IN'v.ERTED)) }. 
i.e .. TESTRELATI0N tests if ITEM has the given RELATION with any other item. 

(MAPRELATI0N RELATION MA.PFN) [Function] 
Calls the function MAPFN on every pair of items related via RELATION. If ( NARGS 
MAPFN) is l. then M.A.PFN is called on every item which has the given RELATION 
to any other item. · 

( MSNEEDUNSAVE FNS MSG MA.RKCHANGEFLG) [Function] 
Used to mark functions which depend on a changed record declaration (or macro. 
etc.), and which must be LOADed or UNSA VEd (see below). FNS is a list of 
functions to be marked, and MSG is a string describing the records. macros. eu:. 
on which they depend. If M.ARKCH.A.NGEFLG is non-NIL, each function in the list 
is marked as needing re-analysis. · 

13.20 
() 



0 

o· 

0 

0 

l\.-1ASTERSCOPE 

(UPDATEFN FN EVENIFVALlD -) [Function} 
Equivalent to the command ANALYZE 'FN: that is. UPDATEFN will analyze FN if 
FN has not been analyzed before or if it has been changed since the time it was 
analyzed. If EVENlFVAL.lD is set. UP0ATEFN will re-analyze FN even if Masterscope 
thinks it has a valid analysis in the database. 

( UPDATE CHANGED) [Function] 
Performs (UPDATEFN FN) on every function which has been marked as changed. 

( MSMARKCHANGED FN TYPE REASON) [Function] 
Mark that FN has been changed and needs to be reanalyzed. See MARKASCHANGED, 
page 11.11. 

( DUMP DAT ABASE FNLST} [Function] 
Dumps the cUITent Masterscope database on the current output file in a L0ADable 
form. If FNLST is not NIL. DUMPDATABASE will pnly dump the information 
for the list of functions in FNLST. The variable DATABASEC0MS is initialized 
to (( E (DUMPDATABASE)) ); thus. the user may merely perform (MAKEF·ILE 
'DATABASE.EXTENSION) to save the CUITent Masterscope database. If a 
Masterscope database already exists when a DAT ABASE file is loaded, the database 
on the file will be merged with the one in core. Note that functions whose 
definitions are different from their definition when the database was made must be 
REANAL YZEd if their new definitions are to be noticed. 

Tpe Databasefns package (page 23.15) provides a more convenient way of saving 
data bases along with the source files which they correspond to. .. 

13.8 NOTICING CHANGES THAT REQUIRE RECOMPILING 

When a record declaration, iterative statement operator or macro · is changed, and Masterscope has 
"noticed" a use of that declaration or macro (Le. it is used by some function known about in the data 
base), Masterscope will alert the user about those functions which might need to be re-compiled (e.g. 
they do not CUITently have EXPR definitions).10 The functions which need recompiling are added to the 
list MSNEEDUNSAVE and a message is printed out: 

The functions FNl, FN2, ••• use macros which have changed. 
Call UNSAVEFNS() to load and/or unsave them. 

In this simation, the following function is useful: 

(UNSAVEFNS -) [Function] 
Uses L0ADFNS or UNSAVEDEF to make sure that all functions in the list 
MSNEEDUNSAVE have EXPR definitions. and then sets MSNEEDUNSAVE to NIL. 

10Extra functions may be noticed: for example if FOO contains (fetch (REC X) --), and some 
declaration other than REC which contains ~ is changed, Masterscope will still think that FOO needs to 
be loaded/unsaved. 

13.21 

c·-

.. c·,. 



' \._; .. 

Implementation Notes 

13.9 IMPLEMENTATION NOTES 

Masterscope keeps a database of the relations noticed when functions are analyzed. The relations are 
intersected to form .. primitive relationships" such that there is little or no overlap of any of the primitives. 
For example, the relation SET is stored as the union of SET LOCAL and SET FR'EE. The BIND relation is 
divided into BIND AS ARG, BIND ANO NOT USE. and SET LOCAL, SMASH LOCAL; etc. Splitting the 
relations in this ~anner reduces the size of the database considerably, to the point where it is reasonable 
to maintain a Masterscope database for a large system of functions during a normal debuggin-g session. 

Each primitive relationship is stored in a pair of hash-tables, one for the .. forward" direction and one for 
the ''reverse". For example, there are two hash tables, USE AS PROPERTY and USED AS PROPERTY. 
To retrieve the information from the database, Masterscope performs unions of the hash-values. For 
example, to answer FOO BINDS WHO Masterscope will look in all of the tables which make up the BIND n 
relation. The "internal representation" returned by PARSERELATION is just a list of dotted pairs of 
hash-tables. To perform GETRELATION requires only mapping down that list, doing GETHASH's on the 
appropriate hash-tables and UNIONing the result. 

Hash tables are used for a variety of reasons: storage space is smaller, it is not necessary to maintain separate 
lists of which functions have been analyzed (a special table, DOESN'T DO ANYTHING is maintained for 
functions which neither call other functions nor bind or use any variables): and accessing is relatively fast. 
Within any of the tables, if the hash-value would be a list of one atom, then the atom itself, rather than. 
the list, is stored as the hash-value. This also reduces the size of the database significantly. 

13.22 

n 

() 



Q 

0 '-=-· 

(SYSTEMTYPE) 

CHAPTER 14 

MISCELLANEOUS 

[Function] 
The SYSTEMTYPE function is intended to allow programmers to write system· 
dependent code. SYSTEMTYPE returns a litatom corresponding to the implemen­
tation of Interlisp: D (for lnterlisp-D). TOPS-20. TENEX. JERICO, or VAX. 

In lnterlisp-D (and Interlisp-10). (SELECTQ (SYSTEMTYPE) ···) expressions 
are expanded at compile time so that this is an effective way to perform conditional 
compilation. 

{USERNAME A FLG) [Function] 
If A= NIL. returns login directory name; if A= T, returns connected directory 
name; if A is a number, USERNAME returns the user name corresponding to that 
user number. 

The value is usually returned as a string. If FLG is a string ptr, it is smashed. If 
FLG is not a string pointer and is non-NIL. USERNAME remms the value as an 
atom. 

( STORAGE FLG GCFLG) [Function] 
Prints the amount of storage used for various data types. Toe exact printout is 
implementation-dependent. STORAGE returns NIL. 

In Interlisp· 10. the storage used by a panicular type is only accurate immediately 
following a garbage collection of a related type. If GCFLG=T, STORAGE will 
perform the necessary garbage collections before printing its results. If FLG= T, 
includes storage used by and assigned to the system. 

0 {DISMISS MSECSWAlT TIMER} [Function] 

( APROPOS STRING 

0 

In Interlisp· 10, dismisses the program for MSECSWAIT milliseconds, during which 
time the program uses no CPU time. Can be aboned by control-D. control-E. or 
control-B. 

In Interlisp-D. dismisses the current process for MSECSWAIT milliseconds, using the 
timer T.IMER if given (see page 14.11). 

ALLFLG) [Function} 
(Currently only in Interlisp-O) Prints information about all litatoms in the Interlisp 
system which contain the string STRING. APROPOS will print the argument lists 
of Hr.atoms with function definitions. the values of litatoms with variable bindings. 
and the propeny names defined for litatoms with propeny lists. If ALLFLG is N I L. 
this scan does not include "system internal .. litatoms: otherwise, all litatoms are 
scanned. 

14.l 



(NEGATE x) 

Saving Interlisp State 

[Function] 
Returns the negation of x. For example: 

(NEGATE '(MEMBER X Y)) => {NOT {MEMBER X Y)) 

(NEGATE '{EQ X Y)) => {NEQ X Y) 

(NEGATE '(AND X {NLISTP X))) => (OR (NULL X) {LISTP X)) 

The following two functions are useful writing programs that wish to reuse a scratch list to collect together 
some result (Both of these compile open): 

( SCRATCH LIST LST x1 x2 · • · XN} ~bda NoSpread Function] 
SCRATCHLIST sets up a context in which the value of LST is used as a Hscratch" 
list. Toe expressions x 1, X-i, • • • xN are evaluated in turn. During the course of 
evaluation. any value passed to ADDT0SCRATCHLIST_ will be save~ reusing CONS 
cells from the value of LST. If the value of LST is not long enough. new CONS 
cells will be added onto its end. If the value of LST is NIL, the entire value of 
SCRATCHLIST will be "new·· (i.e. no CONS cells will be reused). 

(AD0TOSCRATCHLIST VALUE) [Function] 
For use under calls to SCRATCHLIST. VALUE is added on to the end of the value 
being collected by SCRATCHLIST. When SCRATCHLIST returns. its value is a list 
containing all of the things that A0DT0SCRATCHLIST has added. 

14.1 SAVING INTERLISP STATE 

( LOGOUT FAST) [Function] 
Stops Interlisp, and returns· control to the operating system. From there, it is 
possible to continue Interlisp as of the LOGOUT. LOGOUT will not affect the state 
of open files. 

In Interlisp-D. LOGOUT writes out all altered pages from real memory to the file 
Lisp.vi rtua 1 mem. This usually takes about 30 seconds on the Xerox 1100. If 
FAST is non-NIL. Interlisp is stopped without updating Lisp . v i rt u a 1 mem. Note 
that it will not be possible to restart Interlisp from the point of the LOGOUT, and 
it may not be possible to restart it at all. Typing ( LOGOUT T) is preferable to 
just booting the machine. because it also does other cleanup operations (closing 
network connections. etc.). 

In Interlisp-LO. if Interlisp was started as a subsidiary fork (see SUB SYS. page 
22.21), control is returned to the higher fork. 

The function SY SOUT saves the current state of the Interlisp ~inual memory on a file. The file package 
(page 11.1) can be used to save particular function definitions and other arbitrary objecrs on files. but 
SYS0UT saves the total state of the system. 

The file produced by SY SOUT (known as ··a sysout fiie ... or simply ··a sysout") can be restarted from the 
operating system (by typing LISP SYSOUTFII..E in Interlisp-O or RUN SYSOUTFTLE in Interlisp-LO). Tnis 

14.2 

() 
r-.-. 
"- -

n 
\ /._ 

...::;.· 



l\1ISCELLANEOUS 

will restan Interlisp, and restore the virtual memory to the exact state that it had when the sysout file was 
made. 

(SYS0UT FILE) [Function] 
Saves the current state of the Interlisp vinual memory on the file FILE, in a form 
that can be subsequently restarted. The current state of program execution is saved 
in the sysout file, so (PROGN (SYSOUT 'FOO) (PRINT 'HELLO)) will cause 
HELLO to be printed after the sysout file is restarted. 

If FILE is non-NIL, the variable SYS0UTFILE is set to the body of FILE. If FILE 
is NIL, then the value of SYS0UTFILE instead. Therefore, (SYS0UT) will save 
the current state on the next higher version of a file with the same name as the 
previous SYSOUT. Also, if the extension for FILE is not specified. the value of 
SYS0UT. EXT is used. This is initially SYS0UT in Interlisp·D, SAV in Tenex 
Interlisp-10, and EXE in '.fops-20 Interlisp-10. · 

SYSOUT sets SYSOUTDATE to (DATE), the time and date that the SYSOUT was 
performed. 

If SYS0UT was not able to create the sysout file, because of disk or computer error, 
or because there was not enough space on the directory, SYSOUT returns NIL. 
Otherwise it. retums the full file name of FILE. 

Actually, SYSOUT "returns" twice: when the sysout file is first created, and 
when it is subsequently restarted. In the latter case, SYS0UT. returns the list 
(FILE • MAKES"YSFILE), where FILE is the sysout file, and MAKESYSFILE is the 
original Interlisp makesys file {see MAKESYS, below). For example, (if ( LISTP 
( SYS0UT 'FOO)) then ( PRINT 'HELLO)) will cause HELLO to be printed 
when the sysout file is restarted, but not when SYSOUT is initially performed. 

Note: SYSOUT does not save the state of any open files. WHENCLOSE (page 6.11) 
can be used to associate certain operations with open files so that when a SYS0UT 
is staned up, these files will be reopened, and file· pointers repositioned. 

In Interlisp· 10, a sysout file only contains the pans of the virtual memory that the user has changed. 
When the sysout file is restaned, the other pages are taken from the makesys file of the Interlisp system 
within which the sysout file was made (see MAKESY S, below). Therefore, whenever the Interlisp system 
is reassembled and/or reloaded, old sysout files are not compatible with the new system. 

In lnterlisp·D, a sysout file contaµ15 a copy of the entire allocated virtual memory, so it is very large. A 
normal sized sysout file contains about 4000 pages. Unlike in Interlisp· 10. a sysout file is copied into the 

• virtual memory when it is restarted, to it is perfectly pennissible to overwrite a sysout file· on top of the 
currentlyrunning sysout. for example, (SYS0UT '{DSK}F0O.SYS0UT:1) to overwrite FOO.SYS0UT 
on the local disk .. Not·only is this pennissible, it is much faster than making a new sysout file (almost 
twice as fast. due to less disk overhead). Making a sysout file on the Xerox 1100 currently takes at least 
5 minutes. · 

SYS0UT evaluates the expressions on BEF0RESYS0UTF0RMS before creating the sysout file. This variable 
initially includes expressions to: (1) Set the variables SYSOUT0ATE and SYS0UTFILE as described 
above: (2) Default the sysout file name FILE according to the values of the variables SY S0UT FI LE and 
SYS0UT. EXT. as described above: and (3) Perform any necessary operations on open files as specified 
by calls to WHENCL0SE (page 6.11). 

14.3 



( 

Saving Interlisp State 

After a sysout file is restaned (but nol when -it is initially created), SYS0UT evaluates the expressions 
on AFTERSYS0UTF0RMS. This initially includes expressions to: (1) Perform any necessary operations on 
previously-opened files as specified by calls to WHENCL0SE (page 6.11); (2) [Interlisp-10 only] Reset the 
terminal line length with SETLINELENGTH (page 6.8); (3} [Interlisp·l0 only] Reset the terminal control 
characters using SETTERMCHARS (page 17.59) if the operating system has changed from Tenex to Tops-20 
or vice versa: (4) Possibly print a message, as determined by the value of SYS0UTGAG (see below); and 
(5) Call SETUHTIALS to reset the initials used for time-sramping (page 17.60}. 

SYSOUTGAG 

( SYS IN F'ILE) 

( SYS0UTP Fn:.E) 

[Variable] 
The value of SYS0UTGAG determines what is printed when a sysout file is restarted. 
If the value of SYS0UTGAG is a list. the list is evaluated. and no additional message 
is printed. This allows the user to print a message. If SYS0UTGAG is non-NIL 
and not a list. no me~ge is printed. Finally, if SYS0UTGAG is NIL (its initial 
value), and the sysout file is being restarted by the same user that made the sysout . 
originally, the user is greeted by printing the value of HERALDSTRING (see below) 
followed by a greeting message. If the SYS0UT file was made by a different user, a 
message is printed. warning that the user profiles may be different (see page 14.S}; 

[Function] 
[Interlisp· IO only] Restores the state of Interlisp from a sysout file. This is essentially 
the same as exiting Interlisp, and restarting a· sysout file from the operating system 
executive. If SYS IN rewrns NIL. there was a problem in reading the file. If FILE 
was not found. generateS a FILE NOT FOUND error. 

. · [Function] 
[Interlisp-10 only] Returns the name of the original Interlisp makesys file (see 
MAKESYS, below) if FILE is a sysout file, otherwise NIL. 

FILE may also be a JFN. 

{ MAKE SYS FILE NAME) [Function] 
Used to store a new Interlisp system on the "makesys file" F'ILE. Before this is 
done. the system is "initialized .. by undoing the greet history, and clearing the 
display [Interlisp-OJ. 

When the system is first started up. a "herald" is printed identifying the system. 
typically "Interl i sp-x:x DATE ••• ". If NAME is non-NIL. MAKESYS will use 
it instead of Interl i sp-x:x in the herald. MAKESYS sets HERALDSTRING to the 
herald string printed out. 

MAKESYS also sets the variable MAKESYSOATE to (DATE), i.e. the time and date 
the system was made. 

[n [nterl!sp·D. MAKESYS is almost the same as SYS0UT. except that it d(?es some cleaning-up operations 
(such as clearing the screen). In [nterlisp-10. however, MAKESYS is considerably different from SYS0UT, 
because it saves all of the pages in the [ncerlisp vinual memory, and allows the makesys file to be shared 
between multiple users. 

The Interlisp-10 system initially obtained by the ·user is shared: that is. all active users of lncerlisp-10 
are actually using the same pages of memory. As a user adds to the system. private pages are added to 
his memory. Similarly, if the user changes anything in the original shared Interlisp· 10. for example. by 
advising a system function. a private copy of the changed page is created. 

14.4 

() 
c.·· 

() 
t· - ·• \... -~· 



MISCELLANEOUS 

In addition to the swapping time saved by having several users accessing the same memory, the sharing 
mechanism permits a large saving in garbage collection time, since it is not necessary to garbage collect 
any data in the shared system. and thus Interlisp· IO does not need to chase from any pointers on shared 
pages during garbage collections. 

This reduction in garbage collection time is possible because the shared system usually is not modified 
very much by the user. If the shared system is changed extensively, the savings in time will vanish. 
because once a page that was initially shared is made private, every pointer on it must be assumed active, 
because it may be pointed lo by something in the shared system. Since every pointer on an initially 
shared but now private page can also point to private data, they must always be chased. 

A user may create his own shared system with the function MAKESYS. If several people are using the 
same system. making the system be shared will result in a savings in swapping tiI;ne. Similarly, if a system 
is large and seldom modified, making it be shared will result in a reduction of garbage collection time, 

() and may therefore be worthwhile even if the system is only being used by one user. 

One problem with using MAKESYS in Interlisp-10 is that it may protect large amounts of useless data from 
being garbage collected. For example, suppose that during the course of building an Interlisp system. 
a large number of list cells are used and discarded. If MAKESYS is now executed to store the system. 
all of that list cell space.is stored, and protected from garbage collection (unless the user changes those 
pages, making a personal copy). To solve this problem, it is necessary to make sure that as little storage 
as possible is allocated while creating a new system, perhaps by setting MIN F S (page 22.10) to a very low 
value. Of course, this will slow down Interlisp considerably, so making a new system will take a long 
time. 

14.2 GREETING AND USER PROFILES 

Many of the feamres of Interlisp are parameterized to allow the user to adjust the system to his or her own 
tastes. Among the more commonly adjusted parameters are PROMPT#FLG (page 8.18), DWIMWAIT (page 

·· 15.11), CHANGES LICE (page 8.18), LOWERCASE (page 16.21), #UNOOSAVES (page 8.33}, IN ITIALSLST (J (pag7 17 .60), etc. ~ addition. the user can modify the action of system functions in ways not specifically 
· · proV1ded for by usmg ADVISE (page 10.9). 

In order to encourage this procedure, and to make it as painless and automatic as possible. the 
programmeer's assistant includes a facility for both a site-defined profile and a user-defined profile. 
When Interlisp is first run. it calls the function GREET (see below). This provides a way of setting defaults 
for a particular community of users. patching bugs. etc. 

Greeting (i.e., the initialization) is undoable. and is stored as a separate event on the history list (page 
8.25). The user can explicitly invoke the greeting operation at any time via the function GREET. This can 
also be use to effect another user's initialization. 

(GREET NAME -) [Function] 
Performs the greeting for the user whose username is NAME ( if NAME= N IL, uses 
the login name). When [nterlisp first starts up, it performs (GREET). 

Before GREET performs the indicated initialization. it first undoes the effects of the 
previous greeting. The side effects of the greeting operation are stored on a global 
variable as well as the history list. thus enabling the previous greeting to be undone 

14.5 



(GREETFILENAME 

GREETOATES 

Manipulating· File Directories 

even lf it is no longer on the history list. In addition, MAtESYS is advised to undo 
the effects of the previous greeting. thereby returning the system to a pristine state. 

GREET initializes in the following way: It first evaluates each item in the list 
PREGREETFORMS, then it loads the file returned from ( GREETF ILEHAME• T ), 
then it loads the file returned from {GREETFILENAME tTSERNAME), then it 
evaluates each item on POSTGREETFORMS, and finally it prints a greeting such 
as .. He 11 o , xxx. ", where x:xx is the FmsTNAME component of the user's entry 
on INIT IALSLST (page 17.60}. The loads are performed "silently" by rebinding 
PRETTYHEAOER (page 11.36) to NIL. 

O'SER) [Function] 
G RE ETF I LE NAME is a system-dependent function. Its purpose is to locate existing 
files used for greeting and return them. If USER is T, then it returns the filename 
of the site-defined profile (ifit exists). Otherwise, USER is interpreted to be a user's 
system name, and it returns the filename for the user-defined profile (if it exists). 

[Variable] 
The value of GREETDATES can be used to specify special greeting messages for 
various dates. GREETOATES is a list of elements of the form (DA.TESTRING • 
STRlNG), e.g. ( "25-DEC" . "Merry Christmas"). The user can add entries 
to this list in his/her INIT. LISP file by using a ADOVARS file package command 
like (AOOVARS (GREETDATES ("8-FEB" • "Happy Birthday"))). On 
the specified date, the GREET will use the indicated salutation. 

14.3 MAl"lIPULATING·FILE DIRECTORIES 

The _following function allows the user to conveniently specify and/or program a variety of directory 
operations: 

( DIRECTORY FILES COMMANDS DEFACI.TEXT DEFAULTVERS) [Function) 
F'!LES is either [11 NIL (which is equivalent to •.•:•):or [2] an atom which can 
concain S's or •'s (equivalent) which match any number of characters or ?'s which 
match a single character. or else [3] FILES is a list of the form ( FILES + FILES). 
( FILES - FILES), or ( FILES • FILES), l e.g., { T $ + $ L) will match with any 
file beginning with T or ending in L, ( TS - •. DCOM) matches all files that begin 
with T and are not . DCOM files. · 

For each file that matches, each command in COMMANDS is executed with the following interpretation: 

p 

PP 

a string 

Print file name. 

Print file name ( except for version number). 

Prints the string. 

10R can be used for +. and ANO for •. 

14.6 

C). 
... 

( \ ... .... .•.. 
~:",• . 

I~ ' :;. 



c? 

C) t~ 

; . 

l'vIISCELLANEOUS 

READDATE.WRITEDATE. CREATIONDATE 
SIZE, LENGTH,BYTESIZE 
PROTECTION, AUTHOR, TYPE 

COLLECT 

COUNT SIZE 

PAUSE 

PROMPT MESS 

OLDERTHAN N 

OLDVERSIONS 

BY USER 

© X 

DELETED 

OUT FILE 

COLUMNS N 

N 

Prints the appropriate information returned by GETFILEINFO (page 6.6). 

Toe value of DIRECTORY~ be a list of file names; add the complete file name 
of this file to that lisL 

The value of DIRECTORY will be a sum: add the size of this file to that sum. 

Wait until the user types any char before proceeding with the rest of the commands 
(good for display if you want to ponder). 

Prompts with MESS; if user responds with No, abort command processing for this 
file. 

Continue command processing if the file hasn't been referenced (read or written) 
in N days. 

Continue command processing if there are at least N more recent versions of the 
same file. 

Continue command processing if the file was last written by the given user. 

xis either a function of one argument (JFN), a function of two arguments (JFN 
FILENAME) or an arbitrary expression which uses the variablers J FN and/or the 
variables FILENAME freely. If x returns NIL, abort command processing for this 
file. 

Allows DIRECTORY to examine deleted files (normally, they are not mapped over. 

Directs output to FILE. 

~ 

U TRIMTO N 

Attempt to format output in N columns (rather than just l}. 

Deletes all but N versions of file (N2::0). 

DELETE 

UNDELETE 

Deletes file. If this is specified.. the value of DIRECTORY is NIL if no COLLECT 
command is specified, otherwise the list of files deleted. 

Undeletes the indicated files that have been deleted. 

DIRECTORY uses DIRCOMMANDS to correct spelling, which also provides a way of defining abbreviations 
and synonyms (page 15.13}. Currently the following abbreviations are recogni%ed: 

AU 

COLLECT? 

DA 
TI 

=> AUTHOR 

=> PAUSE 

=> PROMPT"? "COLLECT 

=> WRITEDATE 

14.7 



I 
t 

I 
! 

Sorting Lists 

DEL => DELETE 

DEL? 
DELETE? => PROMPT "delete? "DELETE 

OLD => OLDERTHAN 90 

PR => PROTECTION 

SI => SIZE 

( FI LO IR FILEGROUP - ) • [Function] 
FILEGROUP is a file group descriptor. i.e., it can contain sws. FI LO IR returns 
a list of the files which match FILEGROUP. a la the DIRECTORY function. e.g .. 
(FILDIR '•.COM;0). 

There is also a programmer's assistant command DIR which calls the function DIRECTORY: 

0 IR FILES • COMMANDS [Prog. Asst. Command} 
Calls the function DIRECTORY with (P • COMMANDS) as the command list and 
• and • as the default extension and default version respectively. 

For example. to DELVER only those files which you ok. do DIR FILES PROMPT "?" TRIMTO 1. 

14.4 SORTING· LISTS 

( SORT DATA COMPAREFN} [Function] 
DATA is a list of items to be sorted using coMPAREFN, a predicate function of two 
arguments which can compare any two items on DATA and return T if the first 
one belongs before the second. If COMPAREFN is NIL, ALPHORDER is used; thus 
( so RT DATA} will alphabetize a list. If COMPAREFN is. T. CAR's of items that 
are lists are given to ALP HORD ER, otherwise the items themselves: thus ( SORT 
A-LIST T} will alphabetize an assoc list by the CAR of each item. ( SORT X 
'ILESSP) will sort a list of integers. 

The value of SORT is the sorted list. The sort is destructive and uses no extra 
storage. The value returned is EQ to DATA but elements have been swicched 
around. Interrupting with control D. E. or B may cause loss of data. but concrol 
H may be used at any time. and SORT will break at a clean state from which 1' or 
control characters are safe. The algorithm used by SORT is such that the maximum 
number of compares is N*log2N, where N is ( LENGTH DATA). 

. . 
Note: if ( COMPAREFN A B ) = ( COMPAREFN B A). then the ordering of A and 
B may or may not be preserved. 

For example. if ( FOO • FIE) appears before ( FOO . FUM) in X. ( SORT X T) 
may or may not reverse the order of these two elements. Of course. the user can 
always specify a more precise COMPAREFN. 

14.8 

0 
(._ ,. 

() .. 
l::?: 

,/\. 
\ ). . 

. ..... ; .. 



() 
(_.. 

l\1ISCELLANEOUS 

(MERGE AB COMPAREFN) [Function] 

(ALPH0RDER AB) 

A and Bare lists which have previously been saned using SORT and COMPAREFN. 
Value is a destructive merging of the two lists. It does not matter which list is 
longer. After merging both A and B are equal to the merged list. (In fact. ( CDR 
A) is EQ to ( CDR B)). MERGE may be aboned aft.er control-H. 

[Function] 
A predicate function of two arguments. for alphabetizing. Returns T if its arguments 
are in order, Le •• if B does not belong before A. Numbers come before literal atoms, 
and are ordered by magnirude (using GREATERP). Literal atoms and strings are 
ordered by comparing the character codes in their pnames. Thus ( AL PHO RD ER 23 
123) is T. whereas (ALPH0R0ER 'A23 'A123) is NIL. because the character 
code for the digit 2 is greater than the code for L 

Atoms and strings are ordered before all other data types. If neither A nor B are 
atoms or strings, the value of ALPH0RDER is T, i.e~ in order. 

Note: ALPH0RDER does no UNPACKS, CHCONs, CONSes or NTHCHARs. It is several 
times faster for alphabetizing than anything that can be written using these other 
functions. 

(MERGEINSERT NEW LST O.NEFLG) [Function] 
LST is NIL or a list of partially soned items. MERGEINSERT tries to find the 
.. best" place to (destn1ctively) insen NEW, e.g., 

~ . 

(MERGEINSERT 'FIE2 '(FOO F001 FIE FUM)) 
=> (FOO F001 FIE FIE2 FUM) 

Rerurns LST. MERGEINSERT is undoable. 

If Om:FLG=T and NEW is already a member of LST, MERGE INSERT does nothing 
and returns LST. 

·'\ MERGEINSERT is used by A0DT0FILE (page 11.33) to insen the name of a new function into a list of 
\~. functions. The algorithm is essentially to look fot the item with the longest common leading sequence of 

characters with respect to NEW. and then merge NEW in staning at that point. 

0 

( COMPARELISTS X Y) [Function] 
Compares x and Y and prints their differences, i.e .• COMPARE LISTS is essentially 
a SRCC0M for list structures. 

14.5 DATE/TIME FUNCTIONS 

(DATE -) [Function] 
Obtains date and time. returning it as a single string with format "DD-MM- YY 

BF.: MMM: ss". where DD is day, MM is month. YY year. HH hours. MM¥ minutes. 
ss seconds. e;g., "14-MAY-71 14: 26: 08". 

In Interlisp· 10. DA TE will accept FORMATBITS as ·an argument. which can be used 

14.9 



(IDATE STR) 

Timers and Duration Functions 

·to specify other formats, e.g., day of week, time · zone, etc., as described in the 
JSYS manual. 

[Function} 
sra is a date and time string. Value of IDATE is STR converted to a number 
such that if DATE1 is before (earlier than) DATE2- then ( I DATE DATE1) ( ( I DATE 
DATE2 ). (IDATE) returns ( IOATE (DATE)). --

(GOATE DATE FOBMA.TBITS STRPTR) [Function} 
Interlisp-10 function for obtaining time-date formatted string, DATE is in internal 
date-and-time format. If NIL. current time and date is used, i.e. value of 
( IDATE ). FO.RM.ATBITS is 36 bit quantity to be passed to TENEX/TOPS 20 
time-date conversion routines (see JSYS manual). For example, FO.RM.ATBrrs=-1 
gives a "long" date, e.g. "FRIDAY. JUN 16. 1978. 23:41:52-PDT". If 

1 FO.RMA.TBrrs= NIL. defaults to a value which will produce the same format as that 
of (DATE), Le. "DD-MM-YY HH: MMM: ss". STRPT.R is an optional string pointer 
to be reused. In this case, the string characters are stored in an internal scrar.ch 
string, MACSCRATCHSTRING. so that a subsequent call to GOATE will overwrite 
the characters returned by this one. Note that this internal scratch string is also 
used by several other functions in this section. 

(CLOCK N -) 

Toe dateformat package (page 23.57) provides a convenient way of specifying the 
format bits in terms of keywords. 

For N=O, 

For N=2. 

For N=3. 

[Func~on] 

returns the current value of the time of day clock i.e.. number of 
milliseconds since last system start up. 

returns the value of the time of day clock when the user started up 
this Interlisp, Le .• difference between ( CLOCK O) and ( CLOCK 
1) is number of milliseconds (real time) since this Interlisp was 
started. 

returns the number of milliseconds of compute· time since user 
started up this Interlisp (garbage collection time is subtracted off). 

returns the number of milliseconds of compute time spent in 
garbage collections (all cypes).2 

14.6 TIMERS AND DURATION FUNCTIONS 

Often one needs to loop over some code. stopping when a cenain interval of time has passed. Some 
systems provide an "alarmclock" facility, which provides an asynchronous interrupt when a time interval 
runs out. This is not oanicularlv feasible in che current Interliso-D envirornmenc. so the following; facilities 
are supplied for efficiently tes~g for the expiration of a time· interval in a loop context. -

2 In Interlisp-10, this number is directly accessible via che COREVAL GCTIM. 

14.10 

'\ ( ) 
i•""-~ r··· ·., . '- .. 



.,-,. 
\J 
\.': . 

0 

MISCELLANEOUS 

Three functions are provided: SETUPTIMER, SETUPTIMER.OATE, and TIMEREXPIRED?. Also several 
new Ls.oprs have been defined: forDuration, during, untilDate, timerUnits, usingTimer, 
and resourceName (reasonable variations on upper/lower case are permissible). 

These functions use an object called a TIII1er, which encodes a future clock time at which a signal is 
desired. A Timer is constructed by the functions SETUPTIMER and SETUPTIMER.DATE, and is created 
with a basic clock .. unit" selected from among SECONDS, MILLISECONDS, or TICKS. Toe first two timer 
units provide a machine/system independent interface, and the latter provides access to the "real". basic 
strobe unit of the machine's clock on which the program is running. Toe default unit is MILLISECONDS. 

Currently, the TICKS unit is the same as the MILLISECONDS unit for Interlisp-IO and Interlisp/VAX. 
In lnterlisp-D, the TICKS unit is a function of the particular machine that Interlisp-Dis running on: The 
Xerox 1100 and 1132 have about 0.5952 microseconds per tick (1680 ticks per millisecond); Toe Xerox 
1108 has about 28.78 microseconds per tick (34.746 ticks per millisecond). Toe advantage of using TIC-KS 
rather than one of the·uniform interfaces is primarily speed; e.g., on a Xerox 1100, it may take as much as 
400 microseconds to interface the milliseconds clock (a software facility actually based over the real clock), 
whereas reading the real clock itself should take less than about ten microseconds. Toe disad-vantage 
of the TICKS unit is its short roll-over interval (about 20 minutes) compared to the MILLISECOtH>S 
roll-over interval (about about two weeks), and also the dependency on particular machine parameters. 

( SETUPTIMER lNTERV.AL OI.DTIMER? TIMER.UNITS lNTERVALtlMTS) [Function] 
SETUPTIMER returns a Timer that will .. go off" (as tested by TIMEREXPIRED?) 
after a specified time-interval measured from the current clock time. SETUPTIMER 
has one required and three optional arguments: 

INTERVAL must be a integer specifying how long an interval is desired. TIMERUNITS 
specifies the units of measure for the interval (defaults to MILLISECONDS) •. 

If OLDTIMER? is a Timer, it will be reused and returned. rather than allocating 
a new Tuner. ZNTERV.ALt."N'ITS specifies the units in which the OLDTIMER? is 
expressed (defaults to the yalue of TIMERTJNITS. · 

( SETUPTIMER .DATE DTS O.LDTIMER?) [Function] 
SETUPTIMER.DATE returns a Timer (using the SECONDS time unit) that will "go 
off" at a specified date and time. DTS is a Date/Time string such as IDA TE accepts 
(page 14.10). If OI.DTIMER? is a Timer, it will be reused and returned. rather than 
allocating a new TIII1er. 

SETUPTIMER.DATE operates by first subtracting (IOATE) from (IDATE DTS), 
so there may be some large integer creation involved. even if OLDTIMER? is given. 

(TIMEREXPIREO? TIMER CLOCKVALVE.OR.TIMERUNITS) [Function] 
If TIM.pl is a Timer. and CLOCKVALVE.OR. TIMERUNITS is the time-unit of TIMER. 
TIMEREXPIRED? recums true if :rIMER has .. gone off'. 

CLOCKVALVE.OR.TIMERUNITS can also be a Timer, in which case TIMEREXPIRED? 
compares the two timers (using the same time units}. If X and Y are Timers, then 
(TIMEREXPIRED? X, Y) is true if Xis set for a later time than Y. 

There are a number of i.s.oprs that make it easier to use Timers in iterative Statements (page 4.5). These 
Ls.oprs are given below in the "canonical'" form. with the second ·.'word" capitalized. but the all~aps and 
all-lower-case versions are also acceptable. 

14.11 



Timers and Duration Functions 

forOuration .INTERVAL 
during INTERVAL 

[I.S. Operator] 
[1.S. Operator]· 

INTERVAL is an integer specifying an interval of time during which the iterative 
statement will loop. 

timerUnits UNITS [LS. Operator] 
UNITS specifies the time units of the INTERVAL specified in f o rO u rat ion. 

unt i 1 Oa te DTS [I.S. Operator] 
DTS is a Date/Time string (such as IDA TE accepts} specifying when the iterative 
statement should stop looping. · 

us in g Ti mer TIMER [LS. Operator} 
If us in g Ti mer is given, TIMER is reused as the timer for f o rD u ration or (\_ 
until Date, rather than creating a new timer. This can reduce allocation if one · 
of these i.s.oprs is used within another loop. ~\}}

1 

resourceName RESOURCE [I.S. Operator] 
RESOURCE specifies a GLOBALRESOURCES name to be used as the timer storage. 
If RESOURCE=T, it will be convened to a common internal name. 

Some examples: 

(during 6MONTHS timerUnits 'SECS 
until {TENANT-VACATED? HouseHolde~) 
do (DISMISS <for-about-a-day>) 

(HARRASS HouseHolder) 
finally (if (NOT (TENANT-VACATED? HouseHolder)) 

then (EVICT-TENANT HouseHolder))) 

This humorous little example shows that how is is possible to have two termination condition: (1) when the 
time interval of 6MONTHS has elapse4 or (2) when the predicate (TENANT-VACATED? HouseHol der) 
becomes true. Note that the ·~finally" clause is executed regardless of which termination ·condition caused 
it. 

{do (forOuration (CONSTANT (!TIMES 10 24 60 60 1000)) 
do (CARRY.ON.AS.USUAL) 
finally ( PROMPTPRINT "Have you- had your 10-day check-up?"))) 

This infinite loop breaks out with a warning message every 10 days. One could question whether the 
millisecond clock, which is used by defaul~ is appropriate for this loop. since it rolls-over about every 
two weeks. 

{SETQ \RandomTimer (SETUPTIMER 0)) 
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer 

when (WINNING?) do (RETURN) 
finally (ERROR "You've been losing this whole year!")) 

Here we see a usage of an explicit date for the time incervat also. the user has squirreled away some 
storage (as the value of \RandomTimer) for use by the call to SETUPTIMER in this loop. 

(forDuration SOMEI~TERVAL 
resourcename '\INNERLOOPBOX 

14.12 



() c.. .. 

-----I ) 

~-

MISCELLAI\1EOUS 

timerunits 'TICKS 
do (CRITICAL.INNER.LOOP)) 

For this loop, the user doesn't want any C0NSing to take place. so \INNERL00PB0X will be defined as 
a GL0BALRES0URCES which "caches" a timer cell (if it isn't already so defined), and wraps the entire 
statement in a GL0BALRES0URCE call. Furthermore, he has specified a time unit of TICKS. for lower 
overhead in this critical inner loop. In fact specifying a resourcename ofT would have been the same as 
specifying it to be \ForDuration0fBox; this is just a simpler way to specify that a GL0BALRESOURCE 
is wanted, without having to think up a name. 

14.7 GAINSPACE 

For users with large programs and data bases, the user ma)' sometimes find himself in a situation where 
he needs to obtain more space, and is willing to pay the price of eliminating some or all of the context 
information that the various user-assistance facilities such as the programmer's assistant, file package, 
CUSP, etc., have accumulated during the course of his session. The following function is available for 
this purpose. 

(GAINSPACE) 

For example: 

._ {GAINSPACE) 

[Function] 
Prints a list of deletable objects, allowing the user to specify at each point what 
should be discarded and what should be retained. · 

purge history lists? Yes 
purge e~erything, or just the properties, e.g., SIDE, LISPXPRINT, etc. ? 
just the properties 
discard definitions on property lists? Yes 
discard old values of variables ? Yes 
erase properties? No 
erase CLISP translations? Yes 

GAINSPACE is driven by the list GAINSPACEFORMS. Each element on GAINSPACEFORMS is of the 
form (PRECHECK MESSAGE FORM KEYI.ST). If PRECHECK. when evaluated. returns NIL. GAINSPACE 
skips to the next entrj'. ·For example. the user will not be asked whether or not to purge the histor; 
list if it is not enabled. Otherwise. AS KUSER (page. 6.57) is called "'.ith the indicated MESSAGE and the 
(optional) KEYI...ST. If the user responds No. i.e .. A.$KUSER returns N. GAIN SPACE skips to the next entry. 
Otherwise. FORM is evaluated with the variable RESPONSE bound to ihe value of ASKUSER. In the 
above example. the FORM for the ··purge history 1 ists .. question calls ASKUSER to ask "purge 
everything, ···"only if the user had responded Yes. If the user had responded with Everything. the 
second question would not have been asked. · 

The .. erase properties" question is driven by a list SMASHPR0PSMENU. Each element on this list 
is of the form (MESSAGE-. PROPS}. The user is prompted with MESSAGE (by ASKUSER}. and if he 

14.13 



i. 

Performance Measuring Functions 

responds Yes. PROPS is added to the list SMASHPROPS. Toe .. discard definitions on property 
1 i sts" and .. discard old va 1 ues of var i ab 1 es" questions also add to SMASHPROPS. The user 
will not be prompted for any entry on SMASHPROPSMENU for which all of the corresponding properties 
are already on SMASHPROPS. SMASHPROPS is initially set to the value of SMASHPROPSLST. This permits 
the user to specify in advance those properties which he always wants to be discarded. and not be asked 
about them subsequently. After fiDisbiDg all the entries on GAINSPACEFORMS. GAINSPACE checks to 
see if the value of SMASHPROPS is non-NIL. and if so, does a MAPATOMS, Le .. looks at every atom in 
the system. and erases the indicated properties. 

Note that the user can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU. so that 
GAINSPACE can also be used to purge strUctureS that the user's programs have accumulated. 

•. 14.8 PERFORMANCE MEASURING FUNCTIONS 

(CONSCOUNT N) [Function] 
( CONSCOUNT) returns the number of CONSes since Interlisp started up. If N is 
not NIL. resets CONSCOUNT to N. 

( BOX COUNT. Tn'E N) [Function] 

(PAGEFAULTS) 

RetumS the number of boxing operations for the data type Tn'E (see page 2.36) 
since Interlisp staned up. If N is not NIL. the corresponding counter is reset to N. 

In Interlisp-10, if TYPE=NIL. BOXCOUNT rerums the number of large integer 
boxes: if TYPE is non-NIL. it returns the number of floating boxes. These counters 
are directly accessible via the COREVALs IBOXCN and FBOXCN. 

In Interlisp·D, TYPE can be any datatype name. in addition to FI~P and FLOATP. 

[Function] 
Returns the number of page faults since Interlisp staned up. 

(TIME TIMEX TIMEN TIMETYPE) [NLambda Function] 
An nlambda function. It executes the computation TlMEX, and prints out the 
number of conses and computation time. Garbage collection time is subtracted 
out. For example, in Interlisp· 10: 

~TIME((LOAD (QUOTE PRETTY) (QUOTE PROP] 
FILE CREATED l-AUG-78 14:56:12 
PRETTYCOMS 
collecting lists 
582, 10291 free cells 
13169 CONSES 
29.484 SECONDS 
PRETTY 

ff T'IMEN is greater than 1 (T'IMEN=NIL is equivalent to TIMEN=l). T!MEX 
is executed TIMEN times. and T !ME prints out (number of conses)/TrMEN. and 
(computation time)/TIMEN. This is useful for more accurate measurement on small 
computations. e.g. 

14.14 



Q 

'\ u 

l\1ISCELLAi"'IBOUS 

~TIME{(COPY (QUOTE {ABC))) 10) 
30/10 = 3 CONSES 
.055/10 = .0055 SECONDS 
(ABC) 

If TIMET'YPE is 0, TIME measures and prints total real time as well as computation 
time, e.g. 

~TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)) 1 OJ 
FILE CREATED 7-MAY-71 12:47:14 
GC: 8 
582, 10291 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
11.193 SECONDS 
27.378 SECONDS, REAL TIME 
PRETTY 

If TIMET'YPE = 3, TIME measures and prints garbage collection time as well as 
computation time, e.g. 

~TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)) 1 3] 
FILE CREATED 7-MAY-71 12:47:14 
GC: 8 
582, 1091 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
10.597 SECONDS u 
1.487 SECONDS, GARBAGE COLLECTION TIME 
PRETTY 

Another option is TIMET'YPE= T, in which case TIME measures and printS· the 
number of pagefaults. 

Toe value of TIME is the value of the last evaluation of TIMEX. 

14.8.1 BREAKDOWN 

TIME collects statistics for whole computations. BREAKDOWN is available to analyze the breakdown of 
computation time (or any other measureable quantity} function by function. 

{ BREAKDOWN F'N1 • • • FNN) [NLambcia NoSpread Function] 
Toe user calls BREAKDOWN giving it a list of function names (unevaluated). These 
functions are m0dified so that they keep crack of various statistics. 

To remove functions from those being monitored.. simply U~JBREAK (page 10.6) 
the functions. thereby restoring them to their original state. To add functions. 
call 8 REAKDOWN on the new functions. This will not reset the counters for any 
functions not on the new lisL However (BREAKDOWN) will zero the counters of 

14.15 



·."_· 

BREAKDOWN 

all functions being monitored. 

Toe procedure used for measuring is such that if one function calls other and both 
are .. broken '1own .. , then the time (or whatever quantity is oeing measured) spent -
in the inner function is nor charged to the outer function as well. 

Note: BREAKDOWN will nol give accurate results if a function being measured is 
not returned from normally, e.g., a lower RETFROM {or ERROR) bypasses it. In this 
case. all of the time ( or whatever quantity is being measured) between the time 
that function is entered and the time the next function being measured is entered· 
will be charged to the first function. 

{BRKDWNRESULTS RETtmNVALUESFLG) [Function] 

Example: · 

BRKDWNRESULTS prints the analysis of the statistics requested as well as the number 
of calls to each function. If RETVR.NVALOESFLG is non-NIL. BRKDWNRESULTS 
will not to print the results. but instead return them in the form of a list of elements 
of the form (FNN.AME #CALLS VALUE). 

~ (BREAKDOWN SUPERPRINT SUBPRINT COMMENT!) 
(SUPERPRINT SUBPRINT COMMENT!) 
~ (PRETTYDEF '(SUPERPRINT) 'FOO) 
FOO.: 3 
~ (BRKDWNRESULTS) 
FUNCTIONS TIME #CALLS 

365 
141 
8 
514 

PER CALL 
0.023 
0.226 
0.201 
0.081 

% 
20 
76 
4 

SUPERPRINT 8.261 
SUBPRINT 31.910 
COMMENT! 1.612 
TOTAL 41.783 
NIL 
~ (BRKDWNRESULTS T) 
{(SUPERPRINT 365 8261) (SUBPRINT 141 31910) (COMMENT! 8 1612)) 

BREAKDOWN can be used to measure other statistics. by setting the following variables: 

BRKDWNTYPE 

BRKOWNTYPES 

[Variable] 
To use BREAKDOWN to measure other statistics, before calling BREAKDOWrt set the 
variable BRKDWNTYPE to the quantity of interest. e.g .• TIME. CONSES. etc. or a 
list of such quantities. Whenever BREAKDOWN is called with BRKDWNTYPE not 
NIL. BREAKDOWN performs the necessary changes to its internal state to conform 
to the new analysis. ln particular. if this is the first time an analysis is being run 
with a p~cular statistic. a measuring function will be defined. and the compiler 
will be called to compile it. The functions being broken down will be redefined 
to call this measuring· function. When BREAKDOWN is through initializing. it sets 
BRKOWNTYPE back to NIL. Subsequent calls to BREAKDOWN will measure the new 
statistic until BRKOWNTYPE is again set and a new BREAKDOWN performed.. 

[Variable} 
The list BRKDWNTYPES contains the information used to analyze new statistics. 
Each entry on BRKDWNTYPES should be of the form (TYPE FOR.M FUNCTION). 
where TYPE is a statistic name (as would appear in BRKDWNTYPE). FOR.\! 

14.16 

CJ 
r,.-,. 
\~·~:~ 

(---", 
\ J c·.,) 

n \_ /" .. 
\c.·· ... ~-· 



MISCELLANEOUS 

computes the statistic, and FUNCTION (optional) convens the value of form to 
some more interesting quantity. For example, ( TIME ( CLOCK 2) ( LAMBDA 
( X) ( FQUOTIENT X 1000))) measures computation time and reportS the result 
in seconds instead of milliseconds. BRKDWNTYPES cU1Tently con.rains entries for 
TIME, COHSES, PAGE FAUL TS, BOXES, and FBOXES. 

·Example: 

+- (SETQ BRKDWNTYPE '{TIME C0NSES)) 
{TIME C0NSES) 
+- (BREAKDOWN MATCH CONSTRUCT) 
{MATCH CONSTRUCT) 
+- (FLIP '{ABC DEF G H CZ) '( •• $1 
{AB DEF GHZ) 

i,-..)' +- (BRKDWNRESULTS) 
~, FUNCTIONS TIME 

MATCH 0.036 
CONSTRUCT 0.031 
TOTAL 0.067 
FUNCTIONS CONSES 
MATCH 32 
CONSTRUCT 49 
TOTAL 81 
NIL 

#CALLS 
1 
1 
2 

#CALLS 
1 
1 
2 

PER CALL 
0.036 
0.031 
0.033 

PER CALL 
32.000 
49.000 
40.500 

#2 •• ) '( •• #3 •• )) 

% 
54 
46 

% 
40 
60 

Occasionally, a function being analyzed is sufficiently fast t.i.at the overhead involved in measuring it 
obscures the actual time spent in the function. If the user were using TIME, ·he would specify a value 
for TIMEN greater than l to give greater accuracy. A similar option is available for BREAKDOWN. Toe 
user can specify that a function(s) be executed a multiple number of times for each measurement. 
and the avera~e value reported. by including a number in the list of functions given to BREAKDOWN, 
e.g., BREAKC0WN(EDITCOM EDIT4F 10 EDIT4E EQP) means normal breakdown for EDITCOM and 
ED IT 4F but executes (the body of) ED IT 4E and EQP 10 times each time they are called. Of course, the 
functions so measured must not cause any harmful side effects., since they are executed more than once 

,:-----t for each call. The printout from BRKDWNRESUL TS will look the same as though each function were run 
~ only once, except that the measurement will be more accurate. 

Another way of obtaining more accurate measurement is to expand the call to the measuring function 
in-line. If the value of BRKDWNCOMP FLG is non-NIL- (initially NIL), then whenever a .function is broken­
down. it will be redefined to call the measuring function. and then recompiled. Toe measuring function is 
expanded in-line via an appropriate macro. In addition. whenever BRK0WNTYPE is reset. the compiler is 
called for"a/1 functions for which BRKDWNC0MPFLG was set at the time they were originally broken-down. 
i.e. the. sening of the flag at the time a function is broken-down determines whether the call to th~ 
measuring code is compiled in-line. 

14.9 . PAGE MAPPED FILES 

This facility allows paged access to files. It manages a set of paging buffers as a least-recently-used queue. 
with each buffer being a full·page block. Facilities are provided for allocating and deallocating buffers. 

14.17 



Page Mapped Files 

locking down pages. mapping a given page of the file into core, and getting the in-core location to which 
a given word of the file has been mapped. Any ~umber of files can be mapped in at one time. 

Note: Interlisp·D implements the page-mapping primitives of Interlisp-10 with some notable differences 
that might require major reworking of programs that rely on these facilities. The major difference is that 
an Interlisp·D page contains 256 16-bit words, rather than the 512 36-bit words of Interlisp· 10. A given 
page number or file address for MAPPAGE or MAPWORD will correspond to a very different number of 
bits from the beginning of the file. and WORDC0NTENTS and SETWOROC0NTENTS move smaller amounts 
of information. A second difference is that buffers are completely integrated into the Interlisp·D storage 
management system so that a page is guaranteed to be locked down as long as the user holds a pointer to 
it. The functions L0CKMAP and UNL0CKMAP are therefore unnecessary, but for compatibility are defined 
with dummy definitions . 

. · --~e following scenario illustrates the use of these facilities: The user first opens the file (or files) that 
..• 1e wants to access by page-mapping using any of the ordinary file-opening functions. Then. to examine 
a particular word in one of the files. the user simply gives the word number and the file's name to the 
function MAPWORD, which returns a pointer to the in-core location that that word is mapped to (i.e. the 
address as an unboxed number). When he has finished processing, the user simply closes the file (e.g. 
using CL0SEF) and the buffers are automatically unmapped. . 

Toe basic functions are: 

( A0DMAPBUFFER TEMP ERRORFLG) [Function] 

-

Initially, a single buffer is allocated. so that page-mapping may be done without 
funher initialization. More buffers can be allocated by ADDMAPBUF FER. which may 
help to avoid thrashing. ADDMAPBUFFER attempts to allocate a single new buffer. 
and returns non·N IL if successful. If there is not enough space to allocate a new 
buffer. then if ERRORFLG is NIL. AD0MAPBUFFER simply returns NIL. Otherwise. 
AD0MAPBUFFER causes an error UNABLE TO ALLOCATE PMAP BUFFER. 

If TEMP= T, the buffers are allocated on a "temporary .. basis: allocation takes place 
via a RESETSAVE whose restoration form will de-allocate the buffers. 

\':c,- (MAPBUFFERC0UNT ONLYONI.OCKED) [Function] 
Returns the number of buffers currently allocated. If ONLYUNLOCKED= T, countS 
only unlocked buffers: otherwise. counts all buffers. - Thus. to insure that at 
least 3 (unlocked) buffers are allocated. the user could perform ( wh i 1 e ( LESSP 
(MAPBUFFERC0UNT T) 3) do (AD0MAPBUFFER NIL T)). 

(MAPPAGE PAGE# FILE -) [Function] 
The primitive function for mapping in pages from FTLE into the queue of buffers. 
'PAGE# is a page number in F'ILE. The value of MAP PAGE is a pointer to the word 
in memory at which the first word of the page is located. which will always be af 
a page-boundary. 

If FILE is NIL. the value of0EFAULTMAPFILE is used. 

MAP PAGE searches the buffers to see if the given page for the given file has already 
. been mapped in. [f so. it returns the core address to which it was previously 
mapped. Otherwise. it replaces the previous contencs of the least-recently-used 
buffer with the specified file page. lt is important to note that the contencs of a 
given core buffer are not guaranteed across calls to MAPPAGE. unless the page has 

14.18 

0 ( .... : ,_., 

(~ 
1.....·" .. 

(\ 
\ .,.:;:. 



0 ( ·'"-... 

0 

MISCELLANEOUS 

been locked down via LOCKMAP. MAPPAGE compiles open. and in the case where 
the desired page ;s already in the buffer it is quite efficienL 

MAPPAGE will allocate an additional buffer if no unlocked buffers are available 
(and the desired page is not already mapped in). 

In Interlisp·lO, FILE may also be a fork handle (i.e. a value of SUBSYS. page 
22.21), in which case the specified page from that fork will be mapped in. 

(MAPWORD FILEA.OR FILE) [Function] 
Like MAPPAGE, except that it allows the specification of a word-address in FILE. 
not just a page number. MAPWORD determines what page that address is on, maps 
that page into a buffer (using MAPPAGE). and returns a pointer into the middle 
of the buffer where the indicated word appears. The rest of the words on the · 
same file page appear at the appropriate word offsets from the value returned by 
MAPWORD. 

(WORDOFFSET PTR N} [Function} 
If PTR is a pointer into a buffer as returned by MAPPAGE. or MAPWORD, 
WOROOFFSET returns a pointer to the Nth following word. WORDOFFSET compiles 
open. 

( WORDCONTENTS PTR) [Function] 
Returns the contents of the word atPTR as an integer. For example, (WORDCONTENTS 
(MAPWORO 10 FILE)) will.return the value stored in word 10 of a (binary) file. 
WORDCONTENTS compiles open. . 

( SETWOROCONTENTS PTR N) [Function] 
· Sets the contents of the word pointed to by PTR to be the number N. Interpreted. 

SETWORDCONTENTS checks that PTR actually is a pointer as returned by MAP PAGE 
or MAPWORO. SETWORDCONTENTS compiles open with no error·checks. 

( CLEARMAP FILE PAGES RELEASE) [Function] 

(LOCKMAP PTR) 

FILE specifies a file or fork as for MAPPAGE. or it is T. PAGES is a single page number 
or a list of page numbers. CLEARMAP unmaps any of those pages that are currently 
mapped in. making those buffers available for other mappings. F.r:.E=T means all 
files; PAGES=NIL means all pages. Thus (CLEARMAP T) will completely clear 
the buffers. 

Note that CLEARMAP unmaps any pages. whether or not they are currently locked. 
i.e .. CLEARMAP takes precedence over LOCKMAP. 

If RELE.ASE=T, then not only will the buffers containing the specified pages be 
unmapped. but the buffers themselves will oe released. i.e. returned to the Interlisp 
storage manager. 

[Function] 
For those situations in which a program needs prolonged access to a particular file 
page. LOCKMAP can be used to prevent MAPPAGE from shifting or unmapping t.~e 
contents of the given core page.· PTR. is a pointer into a mapped page (i.e. a value 
or MAPWORD or MAPPAGE). LOCKMAP locks the indicated page in core until a 
corresponding UNLOCKMAP has been performed. If a page has been locked.twice. 

14.19 



. Page Mapped Files 

it must be unlocked twice before it is available for reuse. Returns PTR. 

( UNLOCKMAP PTR) [Function] 
PTR is a pointer into a mapped page. UNLOCKMAP removes the most recent lock 
for that page. 

14.20 

Cl, 
C·:. 



0 t; 

CHAPTER 15 

DWIM 

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be 
corrected by another LISP programmer without any information about the purpose of the program or 
expression in question. e.g., misspellings. certain kinds of parentheses errors, etc. To correct these types 
of errors we have implemented in Interlisp a DWIM facility, shon for Do-What-I-Mean. DWIM is called 
auromatically whenever an error occurs in the evaluation of an Interlisp expression. (Currently, DWIM 
only operates on unbound aroms and undefined function errors.) DWIM then proceeds t0 try to correct 
the mistake using the current context of computation plus information about what the user had previously 
been doing, (and what mistakes he had been making) as guides to the remedy of the error. If DWIM 
is able to make the correction. the computation continues as though no error had occurred. Otherwise, 
the procedure is the same as though OWIM had not intervened: a break occurs, or an unwind to the last 
ERRORSET (page 9.15). The following protocol illustrates the operation of DWIM. 

For example, suppose the user defines the factorial function (FACT N) as follows: 

~oEFINEQ((FACT (LAMBDA (N) (CONO 
((ZEROP N9 1) ((T (!TIMS ff (FACCT BSUBl N] 
{FACT) 

Note that the definition of FACT contains several mistakes: IT IMES and FACT have been misspelled; the 
9 in N9 was intended to be a right parenthesis, but the shift key was not depressed; similarly, the 8 in 
8SUB 1 was intended to be a left parenthesis; and finally, there is an extra left parenthesis in front of the 
T that begins the final clause in the conditional. 

. ~PRETTYPRNT({FACCTJ 
(': =PRETTYPRINT 
~ =FACT 

0 

(FACT 
[LAMBDA (N) 

(CONO 
((ZEROP N9 1) 

((T {!TIMS N (FACCT 8SUB1 N]) 
(FACT) 
~ 

After defining FACT, the user wishes to look at itS definition using PRETTYPRINT, which he unfortunately 
misspells. Since there is no function PRETTYPRNT in the system, an undefined'function error occurs. and 
DWIM is called. DWIM invokes its spelling corrector. which searches a list.of functions frequently used 
(by this user) for the best possible match. Finding one that is extremely close, DWIM proceeds on the 
assumption that PRETTYPRNT meant PRETTYPRINT, notifies the user of this. and calls PRETTY PRINT. 

At this point. PRETTYPRINT "40Uld nonnally print ( FACCT NOT PRitHABLE) and exit. since FACCT 
has no definition. Note that this is no1 an Interlisp error condition. so that DWIM would not be called 

15.1 



as described above. However. it is obviously not what the user meant. 

This son of mistake is corrected by having PRETTYPRINT itself explicitly invoke the spelling corrector 
portion of DWIM whenever given a function with no EXPR definition. Thus. with the aid of DWIM 
PRETTYPRINT is able to determine that the user wants to see the definition of the function FACT, and 
proceeds accordingly • 

.-FACT(3] 
N9 [IN FACT]-> N)? YES 
[IN FACT] (CONO -- {{T --))) -> 

. (CONO -- {T --)) 
!TIMS (IN FACT]-> !TIMES 
FACCT (IN FACT]-> FACT 
8SUB1 [IN FACT]-> ( SUBl? YES 

-· .. pp FACT 
(FACT 

[LAMBDA (N) 
(CONO 

{(ZEROP N) 
1) 

(T (ITIMES N (FACT (SUB1 NJ) 
FACT 

The user now calls FACT. During its execution, five errors occur, and DWIM is called five times. At 
each point. the error is corrected. a message is printed describing the action taken, and the computation 
is allowed to continue as if no error had occurred. Following the last correction, 6 is printed. the value 
of ( FACT 3 ). Fmally, the user prettyprints the new, now correct. definition of FACT. 

In this particular example, the user was shown operating in TRUSTING mode. which gives DWIM cane 
blanche for most corrections. Toe user can also operate in CAUTIOUS mode, in which case DWIM will 
inform him of intended corrections before they are made, and allow the user to approve or disapprove of 
~1em. If DWIM was operating in CAUTIOUS mode in the examp~e above. it would proceed as follows: 

+-FACT(3) 
N9 [IN FACT]-> N ) ? YES 

_U.D.F. T [IN FACT] FIX? YES 
[IN FACT] (COND -- {(T --))) -> 

!TIMS [IN 
FACCT [IN 
SSUBl [IN 
U.B.A. 

( COND -- { T -- ) ) 
FACT]-> !TIMES? 
FACT]-> FACT? 
FACT]-> ( SUBl? 

... YES 
... YES 

NO 

(8SUB1 BROKEN) 

. 
For most corrections. if the user does not respond in a specified interval of time. DWIM automatically 
proceeds with the correction. so that the user need intervene only when he does not approve. Note that 
the ~ser responded to the first. second. and fifth questions: DWIM responded for him on the third and 

15.2 

() 
~,'. 

'-.::~··' 

0 (.,·_,. .. 

(} 
l ".'' .• , ~--~ 



0 (- .. 

{:J -·-

DWIM 

fourth.1 

A great deal of effort has gone into making DWIM "smart", and experience with a large number of users 
indicates that DWIM works very well; DWIM seldom fails to correct an error the user feels it should 
have, and almost never mistakenly corrects an error. However, it is important to note that even when 
DWIM is wrong. no harm is done:2 since an error had occurred. the user would have had to intervene 
anyway if DWIM took no action. Thus, if DWIM mistakenly corrects an error, the user simply interrupts 
or aborts the computation. UN00es the DWIM change using UNDO (page 8.11), and makes the correction 
he would have had to make without DWIM. It is this benign quality of DWIM that makes it a valuable 
part of Interlisp. 

(DWIM X) [Function] 
Used to enable/disable DWIM. If x is the litatom C, DWIM is enabled in 
CAUTIOUS mode, so that DWIM will ask the user before making corrections. If x 
is T, DWJM is enabled in TRUSTING mode, so DWIM will make most corrections 
automatically. If x is NIL. DWIM is disabled. Interlisp initially has DWIM 
enabled in CAUTIOUS mode. 

DWIM returns CAUTIOUS, TRUSTING or NIL, depending to what mode it has just 
been put into. 

For corrections to expressions typed in by the user for immediate execution.3 DWIM always acts as 
though it were in TRUSTING mode, Le., no approval. necessary. For certain types of corrections, e.g.. 
run-on spelling corrections, 8-9 errors, etc., DWIM always acts like it was in CAUTIOUS mode, and asks 
for approval. In either case, DWIM always informs the user of its action as described below. 

15.1 SPELLING CORRECTION PROTOCOL 

One type of error that DWIM can correct is the misspelling of a function or a variable name. When ;J-- an unbound litatom or undefined function error occurs, DWIM tries to correct the spelling of the bad 
~ litatom. If a litatom is found whose spelling is "close" to the offender, DWIM proceeds as follows: 

If the correction occurs in the typed-in expression, DWIM prints =coRRECT-SPELLINGc" and continues 
evaluating the expression. For example: 

1 DWIM uses AS KUSER for its interactions with the user (page 6.57). Whenever an interaction .is about 
to ~e place and the user has typed ahead. ASKUSE R types several bells to warn the user to stop typing, 
then clears and saves the input buffers. restoring them after the intei::-action is complete. Thus if the user 
has typed ahead before a DWIM interaction. DWIM will not confuse his type ahead with the answer to 
its question. nor will his typeahead be losL Toe bells are printed by the function PRINTBELLS. which 
can be advised or redefined for specialized applications. e.g. to flash the screen for a display terminal. 
2Except perhaps if DWIM's correction mistakenly caused a destructive computation to be initiated. and 
information was lost before the user could interrupL We have not yet had such an incident occl.!lr. 

:Q 3Typed into LISPX (see page 8.28}. 

15.3 

; 



~(SETQ FOO (IPLUSS 1 2)) 
=!PLUS 
3 

Spelling Correction Protocol 

If the correction does not occur in type-in. DWIM prints' 

BAD-SPELLING CI N FUNCTION-NAME] - > CORRECT-SPELLING 

Then. if DWIM is in TRUSTING mode. it prints a carriage return. makes the correction. and continues the 
computation. If DWIM is in CAUTIOUS mode. it prints a few spaces and? and then wait·for approval. 
The user then has six options: 

(1) Type Y. DWIM types as, and proceeds with the correction. 

. .,) Type N. DWIM types a, and does not make the correction. 
~-

. . 
(3) Type "'. DWIM does not make the correction, and. furthermore guarantees that the error will not 
cause a break. 

(4) Type control·E. For error correction. this has the same effect as typing N; 

(S) Do nothing. In this case DWTM wairs for OWIMWAIT seconds, and if the user has not responded, 
DWIM will type ••• followed by the default answer. 

The default on spelling corrections is determined by the value of the variable FIXSPELLDEFAULT. whose 
top level value is initially Y. .. 

(6) Type space or carriage-return. In this case DWIM will wait indefinitely. This option is intended for 
those cases where the user wanrs t0 think about his answer. and wanrs tO insure that DWIM does not get 
"impatient" and answer for him. 

The procedure for spelling correction on other than Interlisp errors is analogous. If the· correction is 
being handled as cype-in, DW1M prinrs = followed by the correct spelling, and returns it to the function 
r.hat called DWIM. Otherwise. DWIM prinrs the incorrect spelling, followed by the correct spelling. 

hen. if DWIM if in TRUSTING mode. DWIM prints a carriage-rerum and returns the correct spelling. 
< · Otherwise. DWIM prints a few spaces and a ? and waits for approval. The user can then respond with 

Y. N. concrol-E. space. carriage return. or do nothing as described above~ 

Note that the spelling corrector itself is not ERRORSET protected like the DWIM error correction routines. 
Therefore. typing N and typing control-E may have different effects when the spelling corrector is called 
directly. The former simply instructs the spelling corrector to rerum NIL. and lets the calling function 

~The appearance of - > is to call attention to the fact that the user's· function will be or has been changed. 
'·--· 

15.4 



0 c~, 
DWIM 

decide what to do next; the latter causes an error which unwinds to the last ERRORSET, however far back 
_that may be. 

15.2 PARENTHESES ERRORS PROTOCOL 

When an unbound litatom or undefined error occurs. and the offending litatom contains 8 or 9, DWIM 
tries to correct errors caused by typing 8 for left parenthesis and 9 for right parenthesis.~ In these cases, 
the interaction with the user is similar to that for spelling correction. If the error occurs in type-in, DWIM 
types =coRRBCTION~, and continues evaluating the expression. For example: 

r~ +-(SETQ FOO SIPLUS 1 2] 
~- = ( IPLUS 

.. 

CJ ~-

£0 ., 

3 

If the correction does not occur in type-in, DWIM prints 

BAD-ATOM [IN FUNCTION-NA.ME] -> CORRECTION ? 

and then waits for approval. The user then has the same six options as for spelling correction. except 
the waiting time is 3*DWIMWAIT seconds. If the user types Y, DWIM then operates as if it were in 
TRUST I NG mode, i.e .. it makes the correction and prints its message. 

15.3 U.D.F. T ERRORS PROTOCOL 

When an undefined function error occurs, and the offending function is T, DWIM tries to correct certain 
types of parentheses errors involving a T clause in a conditional. DWIM recognizes errors of the following 
forms: 

( COND -- ) ( T -- } 

(COND 

(COND 

( -- & ( T -- ) ) ) 

((T --)) ) 

The T clause appears outside and immediately 
following the COND. 

Toe T clause appears inside a previous clause. 

Toe T clause has an extra pair of parentheses 
around it. 

For U. D. F. T errors that are not one of these three types. DWIM takes no ,corrective action at all. and 
the error will occur. · · 

5Acrually, DW!M uses the value of the variables LPARKEY and RPARKEY to determine the corresponding 
lower case character for left and right parentheses. LPARKEY and RPARKEY. are initially 8 and 9 
respectively. but they can be reset for other keyboard layouts .. e.g .• on some terminals left parenthesis is 
over 9. and right parenthesis is over O. 

15.5 



DWIM Operation· 

If the error occurs in type-in. DWIM simply types T. FIXED and makes the correction. Otherwise if 
DWIM is in TRUST I NG mode. DWIM makes the correction and prints the message: 

C IN FUNCTION-NAME] {BAO-CO NO} -> 
{CORRECTEO-coim} 

If DWIM is in CAUTIOUS mode. DWIM prints 

U.D.F. T 
[IN FUNCTION-NAME] FIX? 

and waits for approval. The user then has the same options as for spelling corrections and parenthesis 
errors. If the user types Y or defaults, DWIM makes the correction and prints its message. 

T{aving made the correction. DWIM must then decide how to p_roceed with the computation. In the n· 
,_' .... .£St case. ( CONO -- ) ( T -- ) , DWIM cannot know whether the T clause would have been executed . . . 
. if it had been inside of the COND. Therefore DWIM asks the user CONTINUE WITH T CLAUSE (with a \::::" 

default of YES). If the user types N. DWIM continues with the form after the COND. i.e.. the form that 
originally followed the T clause. · 

In the second case. ( COND -- (-- & (T --) ) ). DWIM has a different problem. After moving the 
T clause to its proper place. DWIM must return as the value of & as the value of the COND. Since this 
value is no longer around. DWIM asks the user, OK TO REEVALUATE and then prints the expression 
corresponding to &. If the· user types Y, or defaults, DWIM continues by reevaluating &. otherwise DWIM 
aborts; and a U. O. F. T error will then oa:ur (even though the COND has in fact been fixed).6 

In the third case, ( COND -- ( ( T. -- ) ) ) , there is no problem with continuation. so no· further interaction 
is necessary. 

15.4 DWIM OPERATION 

'< .. #henever the interpreter encounters an atomic form with no binding, or a non-atomic form CAR of which 
is not a function or function object, it calls the function FAULTEVAL. Similarly, when APPLY is given an 
undefined function. FAUL TAP PLY is called. When DWIM is enabled. FAULTEVAL and FAULT APPLY are 
redefined to first call the DWIM package, which tries to correct the error. If DWIM cannot decide how 
to fix the error, or the user disapproves of DWIM's correction (by typing N), or the user types control-E. 
then FAULTEVAL and FAULTAPPLY cause an error or break.7 

If DWIM can (and is allowed to) correct the ~rror. it exits by performing RETEVAL of the corrected fonn. 
as of the position of the call to FAUL TE.VAL or FAULTAPPLY. Thus in the example at the beginning 
of the chapter. when OWIM determined that IT IMS was ITIMES misspelled. DWIM called RETEVAL 

. . 

6If DWIM can detennine for itself that the form can safelv be reevaluated. it does not consult the user 
before reevaluating. DWIM can do this if the fonn is atomic. or CAR of the form is a member of the 
list OKREEVALST. and each of the arguments can safely be reevaluated. For example. ( SETO X ( CONS 
( IPLUS Y Z) W)) is safe to reevaluate because SETO. cor,s. and I PLUS are all on OKREEVALST. 
7If the user types 1" to DWIM. DWIM exits by performing ( RETEVAL 'FAUL TEVAL ' (ERROR!)), so 
t..hat an error will be generated at the position of the call to FAULTEVAL. 

15.6 



CJ 
( :: 

·-· 
DWIM 

with (ITIMES N (FACCT 8SUB1 N)). Since the interpreter uses the value returned by FAULTEVAL 
exactly as though it were the value of the erroneous form. the computation will thus proceed exactly as 
thou~ no error had occurred. 

In addition to continuing the computation. DWIM also i:ePairs the cause of the error whenever possible: 
in the above example, DWIM also changed (with RPLACA) the expression (-ITIMS N ( FACCT ·8SUB1 
N)) that caused the error. Note that if the user's program had computed the form and called EVAL, it 
would not be pos$ible to repair the cause of the error, although DWIM could correct the misspelling each 
time it occurred. 

Error correction in DWIM is divided into three categories: unbound atoms. undefined CAR of form. and 
undefined function in APPLY. Assuming that the user approves DWIM's corrections, the acticn taken by 

':] DWIM for the various types of errors in each of these categories is summarized below. 
i 

~/, 15.4.1 DWII\1 Correction: Unbound Atoms · .· -

If DWIM is called as the result of an unbound atom error, it proceeds as follows: 

{l) If the first character of the unbound atom is ', DWIM assumes that the user (intentionally) typed 
'ATOM for (QUOTE ATOM'} and makes the appropriate change. No message is typed, and no approval 
is requested. 

If the· unbound atom is just ' itself, · DWIM assumes the user wants the next expression quoted:, e.g .. 
(CONS X '(A B C)) will be changed to (CONS X (QUOTE (A B C) )). Again no message will be 
printed or approval asked. If no expression follows the ', DWIM gives up.8 

(2) If CUSP (page 16.1) is enabled, and the atom is part of a CUSP construct, the CUSP transformation 
is performed and the result returned. For example, N-1 is transformed to ( SUB 1 N ), and ( · · · F00 .. 3 
···) is transformed into(··· (SETQ FOO 3) ···). 

.. (3) If the atom contains an 8 (actually LPARKEY, see page 15.U), DWIM assumes the 8 was intended 
() . to be a left parenthesis, and calls the edi~r tO mak~ approp~ate rC1;'aiIS on the exp!ession CO~taining 
l:-/ the atom. DWIM assumes that the user did not nonce the mistake, i.e., that the entire expression was 

affected by the missing left parenthesis. For example, if the user types ( SETQ X ( LIST {-CONS SCAR 
Y) (CDR Z)) Y), the expression will be changed to (SETQ X (LIST (CONS (CAR Y) (CCR Z)) 
Y) ). Note that the 8 does not have to be the first character of the atom: DWIM will handle { CONS 
X8CAR Y) correctly. 

(4) If the atom contains a 9 (actually RPARKEY, see page 15.U), DWIM assumes the 9 was intended to 
-be a right parenthesis and operates as in the case above. 

(5) If the atom begins with a 7, the 7 is treated as a '. For example, 7FOO becomes 'FOO, and then 
{QUOTE FOO). . . 

(6) If the atom is an edit command (a member of EDITCOMSA). and the error occurred in type-in. the 
effect is the same as though the user typed ED ITF ( ), followed by the atom. i.e., DWIM assumes the 
user wantS to be in the editor editing the last thing he referred to. Thus. if the user defines the function 

- 8 ' is nonnally defined as a read-macro character which converu • FOO to ( QUOTE FOO) on input. so ,Q DWIM will not see the ' in the case of expressions that are typed-in. 

15.7 



Undefined CAR of Form 

FOO and then types P, he will see =FOO, followed by EDIT, followed by the printout associated with the 
execution of the P command. followed by •, at which point he can continue editing F 00. 

(7) The expressions on DWIMUSERFORMS (see page 15.10) are evaluated in the order that they appear. If 
any of these expressions returns a non·N IL value, this value is tteated as the form to be used to continue 
the computation. it is ev~uated and its value is returned by OWIM. 

(8) If the unbound atom occurs in a function. DWIM attempts spelling correction using the LAMBDA and 
P ROG variables of the function as the spelling list. 

(9) If the unbound atom occurred in a type-in to a break.. DWIM anemptS spelling correction using the 
LAMBDA and PROG variables of the broken function as the spelling list. 

<10) Otherwise, DWIM attempts spelling correction using SPELLINGS3 (see page 15.14). 

\11) If all of the above fail. DWIM gives up. 

15.4.2 Undefined CAR of Form 

. . 

If DWIM is called as the result of an undefined CAR of form error. it proceeds as follows: 

(1) If CAR of the form is T, DWIM assumes a misplaced T clause and operates as described on page 15.5. 

(2) If CAR of the form is F /L, DWIM changes the .. F /L'" to '"FUNCTION( LAMBDA... For example, 
(FIL (Y) (PRINT (CARY))) is changed to (FUNCTION (LAMBDA (Y} (PRINT (CARY))). 
No message is printed and no approval requested. If the user omitS the variable list. DWIM supplies ( X ) , 
e.g.. ( F /L (PRINT ( CAR X))) is changed to ( FUN CT ION ( LAMBDA ( X) (PRINT ( CAR X)))). 
DWIM determines that the user has supplied the variable list when more than one expression follows 
F /L, CAR of the first expression is not the name of a function. and every element in the first expression 
is atomic. For example, DWIM will supply ( X) when correcting ( F /L ( PRINT ( CDR X)) ( PRINT 
( CAR X)) ). 

(' ._) 
r,,,_ 
\.:~i~~ 

}) If CAR of the form is a CLISP word (IF, FOR. DO, FETCH, etc.), the indicated CLISP tranSformation n 
-is performed. and the result is returned as the corrected form. See page 16.L C:':i . 
(4) If CAR of the form has a function definition. DWIM attemptS spelling correction on CAR of the 
definition using as spelling list the value of LAMBDASPLST. initially ( LAMBDA NLAMBOA ). 

(5) If CAR of the form has an EXPR or CODE property, DWIM prints CAR-OF-FORM UNSAVED, performs 
an UNSAVEDEF, and continues. No approval is requested. 

(6) If CAR of the form has a FILEDEF propeny, the definition is loaded from a file.9 If the value of 
the propeny is atomic. the entire file is to be loaded. If the value is a list. CAR is the name of the _file 
and CDR the relevant functions, and LOADFNS will be used. For both cases. LDFLG will be SYSLOAD 
(see page 11.4). DWIM uses FINDFILE (page 15.20); so that the file can be on any of the directories 
on DIRECTORIES, initially (NIL NEWLISP LISP LISPUSERS). ff the file is found. DWIM types 
SHALL I LOAD followed by the file name or list of functions. If the user approves. DWIM loads the 
function(s) or file. and continues the computation. 

··?xcept when DWIMIFYing. 

15.8 



CJ C:.-
DWIM 

(7) If CLISP is enabled, and CAR of the form is pan of a CLISP construct. the indicated transformation 
is performed, e.g., ( N+-N-1) becomes ( SETQ N ( SUBl N} }. 

(8) If CAR of the fonn contains an a. DWIM assumes a left parenthesis was intended e.g., ( C0NSSCAR 
X). 

(9} If CAR of the fonn contains a 9, DWIM assumes a right parenthesis was intended. 

(10) If CAR of the fonn is a list., DWIM attempts spelling correction on CAAR of the fonn using 
LAMBDASPLST as spelling list. If successful, DWIM rerurns the corrected expression itself. 

(11) If CAR of the fonn is a small number. and the error occurred in type-in. DWIM assumes the form 
is really an edit command and operates as described for unbound atom errors above. 

Q · (12) If CAR of the form is an edit command (a member of_ ;D ITC0MSL), DWIM operates as in the 
~> previous case. _ . 

(13) The expressions on DWIMUSERF0RMS are evaluated in the order they appear. If any rerurns a 
non-NIL value, this value is treated as the corrected form. it is evaluated, and DWIM remms its value. 

(14) Otherwise, DWIM attempts spelling correction using SPELLINGS2 as the spelling list (~ee page 
15.14). When DWIMIFYing, OWIM also attemps spelling correction on function names not defined but 
previously encountered, using N0FIXFNSLST ~ a spelling list (see page 16.16}. 

(15) If all of the above fail, DWIM gives up. 

15.4.3 Undefined Function in APPLY 

If DWIM is called as the result of an undefined function in APPLY error. it proceeds as follows: 

(1) If the function has a definition. DWIM attempts spelling correction on CAR of the definition using 
(_)- LAMBDASPLST as spelling list. 

'-- (2) If.the function has an EXPR or CODE propeny, DWIM prints FN UNSAVED, performs an UNSAVEDEF 
and continues. No approval is requested. 

(3) If the function has a propeny FILE0EF, DWIM proceeds as in case 6 of undefined CAR of form. 

(4) If the error resulted from type-in, and CUSP is enabled. and the function name contains a CLISP 
operator. DWIM perfonns the indicated transformation. e.g .• the user types F00+-(APPEND FIE FUM). 

(5) If the function name contains an 8, DWIM assumes a left parenthesis was intended. e.g .. E0iiSF00]. 

"(6) If the .. function" is a lisi DWIM a;tempts spelling correction on CAR of the list using LAMB0ASPLST as 
spelling list. · 

(7) If the function is a number and the error occurred in type-in. DWIM assumes the function is an edit 
command. and operates as described in case 6 of unbound atoms. e.g .. the usenypes (on one line) 3 -1 
P. . 

(8) If the function is the name of an edit command (on either EDITC0MSA or EDITC0MSL). DWL\t1 
~ operates as in the previous case. e.g .• user types F C0N0. u 

15.9 



DWIMUSERFORMS 

{9) Toe expressions on DWIMUSERFORMS are evaluated in the order they appear, and if any returns a 
non-NIL value, this value is treated as the function used to continue the computation, i.e., it will be 
applied to its arguments. 

{10) DWIM attemptS spelling correction using SPELLINGSl as the spelling list. 

(ll) DWIM attempts spelling_correction using SPELLINGS2 as the spelling list. 

(12) If all fail. DWIM gives up. 

lS.S DWil\fl.JSERFORMS 

{ The variable DWIMUSERFORMS provides a convenient way of adding to the transformations that DWIM 
performs. For example, the user might want to change -atoms of the form SX to (QA4LOOKUP X). 
Before attempting spelling correction, but after performing other tranSformations (FIL. a. 9, CLISP, er.c.). 
DWIM evaluates the expressions on DWIMUSERFORMS in the order they appear. If any expression returns 
a non-NIL value, this value is treated as the transformed form to be used. If DWIM was called from 
FAULTEVAL, this form is evaluated and the resulting value is returned as the value of FAULTEVAL. If 
DWIM is called from FAULTAPPLY, this form is treated as a function to be applied to FAULTARGS. and 
the resulting value is returned as the value of FAULTAPPLY. If all of the expressions on DWIMUSERFORMS • 
return NIL, DWIM proceeds as though DWIMUSERFORMS=NIL, and attempts spelling correction. Note 

\ 

. that DWIM simply takes the value and returns it; the expressions on DWIMUSERFORMS are responsible 
for making any modifications to the original expression.10 

In order for an expression on OWIMUSERFORMS to be able to be effective, it needs to know various 
things ·about.the context of the error. Therefore, several of DWIM's internal variables have been made 
SPECVARS (see page 12:4) and are therefore "visible" to DWIMUSERFORMS. Below are a list of those 
variables that may be useful 

FAULTX 

FAULTARGS 

FAULTAPPLYFLG 

[Variable] 
For unbound atom and undefined car of form errors. FAUL TX is the atom or form. 
-For undefined fµnction in APPLY errors, FAUL TX is the name of the function. 

[Variable] 
For undefined function in APPLY errors. FAULT ARGS is the list of arguments. 
FAULTARGS may be modified or reset by expressions on OWIMUSERFORMS. 

[Variable] 
Value is T for ~defined function in APPLY errors: NIL otherwise. Toe value 
of FAULTAPPLYFLG after an expression on OWIMUSERFORMS returns a non­
NIL value determines how the latter value is to be treated. Following an· 
undefined function in APPLY error, if an expression on OWIMUSERFORMS sets 
FAULTAPPLYFLG to NIL. the value rerurned is treated as a form to be evaluated.. 
rather than a function to be applied. 

10Toe expressions on DWIMUSERFORMS-shculd make the transformation permanent. either by associating 
it with FAULTX via CLISPTRAN. or by physically smashing FAULTX. 

·,~-. 
15.10 

n ·c., 



0 \::. 

.. 

(j 

TAIL 

PARENT 

TYPE-IN? 

FAULTFN 

DWIMIFYFLG 

EXPR 

DWIM 

FAUL TAPPL YFLG is necessary to distinguish between unbound atom and undefined 
function in APPLY errors. since FAULTARGS may be NIL and FAUL TX atomic in 
both cases. 

[Variable] 
For unbound atom errors, TAIL is the tail of the expression CAR of which is the 
unbound atom. DWIMUSERFORMS expression can replace the atom by another 
expression by performing { /RPLACA TAIL BXPR) 

[Variable] 
For unbound atom errors. PARENT is the form in which the unbound atom appears. 
TAIL is a tail of PARENT. 

[Variable] 
True if the error occurred in type-in-. -

[Variable] 
Name of the function in. which error occurred. FAULT F N is TYPE - IN when the 
error occurred in type-in. and EVAL or APPLY when the error occurred under an 
explicit call to EVAL or APPLY. 

[Variable] 
True if the error was encountered while OWIMIFYing (as opposed to happening 

· while running a program). 

[Variable] 
Definition of FAULT F N, or argument to EVAL. Le., the superform. in which the 
error occurs. 

The initial value ofDWIMUSERFORMS is ( (MACROTRAN) (DWIMLOADFNS?) ). MACROTRAN is a pack.age 
for running interpreted programs containing ASSEMBLE statements or calls to .. functions" defined only 
by MACRO properties (see page 5.19). DWIMLOAOFNS? is a function for automatically loading functions 
from files. If DWIMLOADFNSFLG is T (its initial value), and CAR of the form is the name of a function. 
and the function is contained on a file that has been noticed by the file package, the function is loaded, 
and the computation continues. 

15.6 DWIM FUNCTIONS AND VARIABLES 

OWIMWAIT [Variable] 
Value is the number of seconds that DWIM will wait before it assumes tha'.t 
the user is not going to respond to a question and uses the default response 
FIXSPELLDEFAULT. 

DWIM operates by dismissing for 250 milliseconds. then checking to see if anythµlg 
has been typed. If not. it dismisses again. etc. until DWIMWAIT seconds have 
elapsed. Thus. there will be a delay of at most 1/4 second before DWIM responds 
to the user's answer. 

15.11 



. 
;_·~ 

DWIM Functions and Variables 

FIXSPELLDEFAULT [Variable} 
If approval is requested for a spelling correction, and user does not respond. defaults 
to value of FIXSPELLDEFAULT, initially Y. FIXSPELLOEFAULT is rebound to N 
when OWIMIFYing . 

. ADOSPELLFLG [Variable] 

NOSPELLFLG 

RUNONFLG 

DWIMLOAOFNSFLG 

LPARKEY 
RPARKEY 

OKREEVALST 

OWIMFLG 

APPROVEFLG 

LAMBDASPLST 

If NIL, suppresses calls to ADOSPELL Initially T. 

[Variable] 
If T, suppresses all spelling correction. If some other non-NIL value, suppresses· 
spelling correction in programs but not type-in. NOSPELLFLG is initially NIL. It 
is rebound to T when compiling from a file. 

[Variable] 
If NIL, suppresses nm-on spelling corrections. Initially T • 

[Variable] 
If T, tells DWIM that when it encounters a call to an undefined function contained 
on a file that has been noticed by the file package, to simply load the function. 
DWIMLOAOFNSFLG is initially T. See page 15.11. 

[Variable] 
[Variable} 

DWIM uses the value of the variables LPARKEY and RPARKEY (initially 8 and 9 
respectively) to deteimine the corresponding lower case character for left and right· 
parentheses. LPARKEY and RPARKEY can be reset for other keyboard layouts., 
For example, on· some terminals left parenthesis is over 9, and right parenthesis is 
over 0. 

[Variable] 
Toe value of OKREEVALST is a list of functions that DWIM can safely reevaluate. 
If a form is atomic, or CAR of the form is a member of OKREEVALST, and each of 
the arguments can safely be reevaluated. then the form can be safely reevaluated. 
For example, ( SETQ X ( CONS ( I PLUS Y Z) W) ) is safe to reevaluate because 
SETQ, CONS, and IPLUS are all on OKREEVALST. 

[Variable] 
OWIMFLG=NIL, all DWIM operations are disabled. (OWIM 'C) and (DWIM T) 
set.OWIMFLG to T; (DWIM NIL) sets DWIMFLG to NIL. 

[Variable] 
APPROVEFLG=T if DWIM should ask the user for approval before malting a 
correction that will modify the definition of one of his functions; NIL otherwise. 

When DWIM is put into CAUTIOUS mode with (OWIM 'C). APPROVEFLG is set 
to T; for TRUSTIHG mode. APPROVEFLG is set to NIL. 

. [Variable] 
DWIM uses the value of LAMBOASPLST as the spelling list when correcting .. bad'" 
function definitions. lnitially ( LAMBDA NLAMBOA). Toe user may wish to add 
to LAMBDASPLST if he elects to define new .. function types·· via an appropriate 
OWIMUSERFORMS entry. For example. the QLAMBOAs of SRI's QLISP are handled 

15.12 

n. 
?;.,_ l .. __ .· 

n 
V,· 



n ( .__., 
-~·;· . ,. 

DWIM 

in th.is way. 

15.7 SPELLING CORRECTION 

The spelling corrector is given as arguments a misspelled word (word means literal atom). a spelling list (a 
list of words). and a number: XWORD, SPLST, and REL respectively. Its task is to find that word on SPLST 
which is closest to XWORD, in the sense described below. This word is called a respelling of XWOR.O. REL 
specifies the minimum .. closeness" between XWOR.O and a respelling. If the spelling corrector cannot find 
a word on SPLST closer to XWORD than REL, or if it finds two or more words equally close, its value is 
NIL, otherwise its value is the respelling. Toe spelling corrector can also be given an optional functional Q argument, FN, to be used for selecting out a subset of SPLST, i.e., only those members of SPLST that 

~ satisfy FN will be considered as possible respellings. : · 

The exact algorithm for computing the spelling metric is described later, but briefly "closeness" is inversely 
proportional to the number of disagreements• between the two words. and directly proportional to the 
length of the longer word. For example, PRTTYPRNT is .. closer" to PRETTYPRINT than CS is to CONS 
even though both pairs of words have the same number of disagreements. Toe spelling correct0r operates. 
by proceeding down SPLST, and computing the closeness between each word and XWOR.O, and keeping 
a list of those that are closest. Certain differences between words are not counted as disagreements. for 
example a single transposition. e.g .. CONS to CNOS, or a doubled letter, e.g., CONS to CONSS, etc. In the 
event that the spelling corrector finds a word on SPLST with no disagreements, it will stop· s~hi.ng and 
return this word as the respelling. Otherwise, the spelling corrector continues through the entire spelling 
list. Then if it has found one and only one "closest" word. it returns th.is word as the respelling. For 
example, if XWORD is VONS. the spelling corrector will probably return CONS as the respelling. However, 
if XWORD is CONZ. the spelling corrector will not be able to return a respelling, since CONZ is·equally 
close to both CONS and corm. If the spelling corrector finds an acceptable respelling, it interacts with the 
user as described earlier. 

· _ In the special case that the misspelled word contains one or more Ss (<esc>s. alt-mode on some 
(~ terminals), the spelling corrector s~hes for those words on SPLST that match xwoRD. where a S can 
~..) match any number of characters (including 0). e.g.. FOOS matches FOOl and FOO, but not NE'WFOO. 

SFOOS matches all three. Both completion and correction may be involved, e.g. RPETTYS will match 
PRETTYPRINT, with one mistake. Toe entire spelling list is always s~hed. and if more than one 
respelling is found. the spelling corrector prints AMBIGUOUS, and rerums NIL. For example, CONS would 
be ambiguous if both CONS and CONO were on the spelling list. If the spelling corrector finds one and 
9nly one respelling, it interacts with the user as described earlier. 

For both spelling correction and spelling completion, regardless of whether or not the user approves of 
the spelling corrector's choice, the respelling is moved to the front of SPLST. Since many respellings are of 
the type with ·no disagreements. this procedure has· the effect of considerably reducing the time required 
to correct the spelling of frequently misspelled words. 

15.7.1 Synonyms 

Spelling lists also provide a way of defining synonyms for a particular context. If a dotted pair appe~ 
on a spelling list (instead of just an atom), CAR is interpreted as the correct spelling of the misspelled 

_:..---, word. and CDR as _the antecedent for that word. If CAR is identical with the misspelled word. the 
{0 

15.13 



Spelling Lists 

antecedent is returned without any· interaction or approval being necessary. If the misspelled word 
co"ects to CAR of the dotted pair. the usual interaction and approval will take place. and then the 
antecedent. i.e.. CCR of the dotted pair. is returned. For example. the user could make IFLG synonymous 
with CLISPIFTRANFLG by adding ( IFLG • CLISPIFTRANFLG) to SPELLIHGS3, the spelling list 
for unbound atoms. Similarly, the user could make OTHERWISE mean the same as ELSEIF by adding 
(OTHERWISE • ELSE IF) to CLISPIFWOROSPLST, or make L be synonymous with LAMBDA by adding 
( L • LAMBDA) to LAMBDASPLST. Note that L could also be used as a variable without confusion. since 
the association of L with LAMBDA occurs only in the appropriate context. · 

15. 7.2 Spelling Lists 

' . 
_Any list of atoms can-be used as a spelling list. e.g.. BROKENFNS, FILELST, etc. Various system packages 

1 .... we their own spellings lisrs, e.g., LISPXCOMS, CU:SPFORWORDSPLST, EDITCOMSA. etc. These are 
:~ :...1.ocumented under their corresponding sections, and are also indexed under .. spelling lists." In addition 

to these spelling lists. the system maintains. i.e.. automatically adds to, and occasionally prunes. four lists 
used solely for spelling correction; SPELLINGS 1, SPELLINGS2, SPELLINGS3, and USERWORDS. These 
spelling lists are maintained only when AOOSPELLFLli is non-NIL. AOOSPl::LLFLG is initially T. 

SPELLINGS! 

'PELLINGS2 

SPELLINGS3 

[Variable] 
SPELLINGS! is a list of functions used for spelling correction when an input 
is typed in apply format. and the function is undefined. e.g., EDT IF ( F 00 ) . 
SPELLINGS! is initialized to contain DEFINEQ, BRE"AK, MAKEFILE, EDITF, 
TCOMPL, ~OAD, ere. Whenever LI SPX, is given an input in apply format. Le., a 
function and arguments, the name of the function is added to SPELLINGSl if the 
function has a definition. 

For example. typing CALLS( EDITF) will cause CALLS to be added to SPELLINGS 1. 
Thus if the user typed CALLS( EDITF) and later typed CALLLS( ED ITV), since 
SPELLINGSl would then contain CALLS. DWIM would be successful in correcting 
CALLLS to CALLS. 

[Variable] 
SPELLINGS2 is a list of functions used for spelling correction for all other 
undefined functions. It is initialized to contain functions such as A001, APPEND. 
CONO. CONS, GO. LIST. NCONC. PRINT. PROG. RETURN. SETQ, ere. Whenever 
LISPX is given a non-atomic form. the name of the function is added to 
SPELLINGS2. For example. typing (RETFROM (STKPOS (QUOTE FOO) 2)) 
to a break would add RETFQOM to SPELLINGS2. Function names are also added 
to SPELLINGS2 by DEFINE. OEFINEQ. LOAD (when loading compiled code), 
UNSAVEOEF, EDITF, and PRETTYPRINT. 

• . [Variable] 
SPELLINGS3 is a list of words used for spelling correction on all unbound atoms. 
SPELLINGS3 is initialized to EDITMACROS. BREAKMACROS. BROKENFNS. and 
AOVISEOFNS. Whenever LISPX is given an atom to evaluate. the name of the 
atom is added to SPELLINGS3 if the atom has a value. Atoms are also added 
to SPELLINGS3 whenever they are edited by EDITV. and whenever they are set 
via RPAQ or RPAQQ. For example. when a file is loaded. all of the variables set in 
the file are added to· SP&µ.INGS3. Atoms are also added to SPELLINGS3 when 
they are set by a LI SPX input, e.g., typing { SETQ FOO ( REVERSE -{ SETQ FIE 

15.14 

0-. 
r-.. ( .. .:: 
...... ~··. 

r\_ ~~::) 
'.·.r 

n 
\ J.. . t-:.:' .. ' 



0 , .. • 

USERWORDS 

DWIM 

· · ·))) will add both FOO and FIE to SPELLINGS3. 

[Variable] 
USERWORDS is a list containing both functions and variables that the user has 
referred to, e.g., by breaking or editing. USERWORDS is used for spelling 
correction by ARGLIST, UNSAVEOEF, PRETTYPRINT, BREAK, EDITF, ADVISE, 
etc. USERWORDS is initially NIL. Function names are added to it by DEFINE, 
DEFINEQ, LOAD, (when loading compiled code, or loading exprs to property 
lists) UNSAVEOEF, EDITF, EOITV, EDITP, PRETTYPRINT, etc. Variable names 
are added to USERWOROS at the same time as they are added to SPELLINGS3. 
In addition, the variable LASTWORD is always set to the last word added to 
USERWORDS, i.e .. the last function or variable referred to by the user, and the 
respelling of NIL is defined to be the value of LASTWORD. Thus. if the user 
has just defined a function, he can then edit it by simply typing ED IT F ( ) , or 
prettyprint it by typing PP ( ) • · 

Each of the above four spelling lists are divided into two sections separated by a special marker. The first 
section contains the .. permanent" words; the·second section contains the temporary words: New words are 

. added to the corresponding spelling list at the front of its temporary section (except that functions added 
to SPELLINGS! or SPELLINGS2 by LI SPX are always added to the end of the .permanent section. If 
the word is already in the temporary section, it is moved to the front of that section; if the word is in 
the permanent section, no action is taken. If the length of the temporary section Ltien exceeds a specified 
number, the last (oldest} word in the temporary section is forgotten. i.e., deleted. This procedure prevents 
the spelling lists from becoming cluttered with unimportant words that are no longer being used, and 
thereby slowing down spelling correction time. Since the spelling corrector usually moves each word 
selected as a respelling to the front of its spelling list. the word is thereby moved into the permanent 
section. Thus once a word is misspelled and corrected, it is considered important and will never be 
forgotten. 

#SPELLINGS! 
#SPELLINGS2 
#SPELLINGS3 

------ #USERWORDS 
(__) 

[Variable] 
[Variable] 
[Variable] 
[Variable] 

,/\.-u 

The maximum length of the temporary section for SPELLINGS 1, SPELLINGS2, 
SPELLINGS3 and USERWORDS is given by the value of #SPELLINGS 1, #SPELLINGS2, 
#SPELLINGS3. and #USERWORDS, initialized to 30. 30, 30, and 60 respectively. 

Users can alter these values to modify the performance behavior of spelling 
correction. 

15.7.3 Generators for Spelling Corre¢on . 
For some applications, it is more convenient to generate candidates for a respelling one by one. rather 
than construct a complete list of all possible candidates. e.g., spelling correction involving a large directory 
of files. or a narural language data base. For these purposes. SPLST can be an array (of any_ size}. The 
first element of this array is the generator function. which is called with the array itself as its argument. 
Thus the function can use the remainder of the array to store "state" information. e.g., the last position 
on a file. a poi~ter into a data structure. etc. The value returned by the function is the next candidate 
for respelling. If N IL is returned.. the spelling "'list" is considered to be exhausted. and the closest match 
is returned.. If a candidate is found with no disagreements. it is rerurned immediately without waiting for 

15.15 



Spelling Corrector Algorithm 

the "list'' to exhaust. 

SPLST ~ also be a generator, Le. the value of the function GENERATOR (page 7.13). The generator 
SPLST will be staned up whenever the spelling corrector needs the next candidate. and it should return 
candidates via the function PRODUCE. For example. the following could be used as a "spelling list" which 
effectively contains all functions in the system: 

[GENERATOR 
(MAPATOMS (FUNCTION (LAMBDA (X) (if (GETO X) then (PRODUCE X] 

15.7.4 Spelling Corrector Algorithm 

__ The basic philosophy of DWIM spelling correction is to count the number of disagreements between two 
· words, and use this number divided by the length of the longer of the two words as a measure of their 

, relative disagreement; One minus this number is then the relative agreement or closeness. For example. 
CONS and CONX diner only in their last character. Such substitution errors count as one disagreement. 
so that the two words are in 75% agreement. Most calls to the spelling corrector specify a relative 
agreement of 70. so that a single substitution error is permitted in words ·of four characters or longer. 
However. spelling correction on shoner words is possible since certain cypes of differences such as single 
transpositions are not counted as disagreements. For example. ANO and NAO have a relative agreement 
of 100. Calls to the spelling corrector from OWIM use the value of FIXSPELLREL. which is initially 
70. Note that by setting FIXSPELLREL to 100. only spelling corrections with .. zero .. mistakes. will be 
considered. e.g.. transpositions. double characte.."'S, etc. 

The central function of the spelling corrector is CHOOZ. CHOOZ takes as arguments: a word. a minimum 
relative agreement. a spelling list, and an optional functional argument. XWORD, REL, SPLST, and FN 
resp~vely. 

CHOOZ proceeds down SPLST E!xamining each word. Words not satisfying FN (if FN is non-NIL), or those 
obviously too long or too shon to be sufficiently close to XWORD are immediately. rejected. For example, 
if REL= 10. and XWORD is 5 characters long, words longer than 7 characters will be rejected. 

Special treatment is necessary for words shoner than XWORD. since doubled letters are not counted as 
disagreemencs. For example. CONNSSS and CONS have a relative agreement of 100. (keyboard bounce 
on many different kinds of keyboards actually produce this son of stuttering.) CHOOZ handles this by 
counting the number of doubled characters in XWORD before it begins scanning SPLST. and ta.king this 
into account when deciding whether to reject shoner words. 

If TWORD. the current word on SPLST, is not rejected. CHOOZ computes the number of disagreements 
between it and .xwo.RD by calling a subfunction. SKOR. 

SKOR operates by scanning both words from left to right one character at a time. SKOR operates on the 
list of character codes for each word. This list is computed by CHOOZ b_efore calling SKOR. Characters 
are considered to agree if they are the same characters: or appear on the same key (i.e., a shift mistake). 
for example, • agrees with : • 1 with ! . etc.; or if the character in XWORD is a lower case version of the 
character in TWORD. Characters that agree are discarded. and the SKORing continues on the rest of the 
characters in XWORD and TWORD. 

If the first character in xworu, and TWO.RD do not agree. SKOR chedcs to see if either character is the 
same as one previously encountered. and not accounted-for at that time. (In other words. transpositions 

15.16 

0. 
(·, 
-....··· 

.. 

n.,. 
·---.{_;,.-



CJ 
~--

0 

DWIM 

···are not handled by lookahead. but by lookback.) A displacement of two or fewer positions is counted 
as a tranposition: a displacement by more than two positions is counted as a disagreement.In either case. 
both characters are now considered as accounted for and are discarded. and SKORing continues. 

If the first character in XWORD and TWORD do not agree. and neither agree with previously unaccounted· 
for characters. and TWORD h'as more characters remaining than xwoRD. SKOR removes and saves the first 
character of TWORD. and continues by comparing the rest of TWORD with XWORD as described above. If 
TWORD has the same or fewer characters remaining than XWORD, the procedure is the same except that 
the character is removed from XWORD. In ·this case, a special check is first made to see if that character 
is equal to the previous character in XWORD, or to the nexz character in XWO.RD, i.e .. a double character 
typo. and if so, the character is considered accounted-for. and not counted as a disagreement. In this 
case, the "length" of XWORD is also decremented. Otherwise ma.king XWORD sufficiently long by adding 
double characters would make it be arbitrarily close to TWORD, e.g., XXXXXX would correct to PP. 

When SKOR has finished processing both xwom,-and TWORD in this fashion. the value of SKOR is the 
number of unaccounted-for characters. plus the number of disagreements. plus the number of tranpositions, 
with two qualifications: (1) if both XWORD and ·TWO.RD have a character unaccounted-for in the same 
position. the two characters are counted only once, i.e •• substitution errors count as only one disagreement, 
not two: and (2) if there are no unaccounted-for characters and no disagreements, transpositions are not 
counted. This permits spelling correction on very short words. such as edit commands, e.g .. XRT->XTR. 
Transpositions are also not counted when FASTYPEFLG=T, for example. IPULX and IPLUS will be in 
80% agreement with FASTYPEFLG=T, only 60% with FASTYPEFLG=NIL. Toe rationale behind this is 
that transpositions are much more common for fast typists, and should not be counted as disagreements. 
whereas more deliberate typists are not as likely to combine tranpositions and other mistakes in a single 
word. and therefore can use more conservative metric. FASTYPEFLG is initially NIL 

15.7.5 Spelling Corrector Functions and Variables 

{ADOSPELL X SPLST N) [Function] 
Adds x to one of the four spelling lists as follows: 

If xis already on the spelling list. and in its temporary section. ADDSPELL moves 
x to the front of that section. 

If SPLST=NIL. adds x to USERWORDS and to SPELLINGS2. Used by DEFINEQ. 

If SPLST=O. adds X to USERWORDS. Used by LOAD when loading EXPRs to 
property lists. 

If SPLST=l, adds x to SPEL~INGS1 (at end of permanent section). Used by 
LISPX. 

If SPLST=2. adds x to SPELLIHGS2 (at end of permanent section). Used by 
LI SPX. . 

If SPLST=3. adds X to USERWORDS and SPELLINGS3. 

SPLST can also be a spelling list. in which case N is the ( optional) length of the 
temporary section. 

AOOSPELL sets LASTWORD to x when SPLST=NIL. 0 or 3. 

15.17 



··:_ .. 

Spelling Corrector Functions and Variables 

If x is not a literal atom. AOOSPELL takes no action. 

Note that the various systems ~ to ADDSPELL, e.g. from DEFINE, EDITF, LOAD, etc .. can all be 
suppressed by setting or binding ADOSPELLFLG to NIL (page 15.12). 

(MISSPELLED? XWORD .REL SPLST FLG TAIL FN) [Function] 
If XWORD=NIL or $ (<esc>), MISSPELLED? prints = followed by the value 
of LASTWORO, and returns this as the respelling, without asking for approval. 
Otherwise, MISSPELLED? checks to see if XWORD is really misspelled, Le.. if FN 
applied to XWORD is true, or XWORD is already contained on SPLST. In this case, 
MISSPELLED? simply returns XWORD. Othe,wise MISSPELLED? computes and 
returns ( FIXSPELL XWORD REL SPLST FLG TAIL FN). 

( FIXSPELL XWORD .REL SPLST FLG 'I'AJZ. FN Tm'LG DONTMOVETOPFLG - -) [Function] 
The value of FIXSPELL is either the respelling of XWORD or NIL. If for some 
reason X'W'ORD itself is on SPLST, then FIXSPELL aborts and calls ERROR!. If 
there is a possibility that XWORD is spelled correctly, MISSPELLED? should be 
used instead of F IXSPELL. FIXSPELL performs all of the interactions described 
earlier, including requesting user approval if necessary. 

If XWORD=NIL or $ (<esc>), the respelling is the value of LASTWORO, and no 
approval is requested. 

If xwoRD. contains ·1owercase. characters. and the corresponding uppercase word 
is correct. Le. on SPLST or satisfies FN, the uppercase word is returned and no 
interaction is performed. · 

If REL=NIL, defaults to the value of FIXSPELLREL (initially 70). 

If FLG =NIL, the correction is handled in type-in mode. Le.. approval is never 
requested, and XWORD is not typed. If FLG = T. XWORD is typed (before the =) and 
approval is requested if APPROVEFLG=T. If FLG=NO-MESSAGE. the correction 
is returned with no further processing. In this case, a run-on correction will be 
returned· as a dotted pair of the two pans of the word, and a synonym correction 
as a list of the form ( wo&01 wo&02). where WORDl is (the corrected version of) 
XWOR.O, and WORD2 is the synonym. Note that the effect of the function CHOOZ 
can be obtained by calling FIXSPELL with FLG=NO-MESSAGE. 

If T.A.JL is not NIL. and the correction is successful CAR of T.A.JL is replaced by 
the respelling (using /RPLACA). In addition. FIXSPELL will correct misspellings 
caused by running two words together.11 In this case, CAR of T.A.JL is replaced 
by the two words, and the value of FIXSPELL is the first one. For example, 
if FIXSPELL is called to correct the edit command (MOVE TO AFTERCONO 3 
2) with l!'A.lL=(AF-TERCOND 3 2), T.A.JL would be changed to (AFTER CONO 

11 Iri this case. user approval is always requested. In addition. if the first word contains either fewer than 
3 characters. or fewer characters than the second word. the default will be N. 'Run-on' spelling corrections 
can be suppressed by setting the variable RUNONFLG to NIL (initially T). 

G 
15.18 

n. 
·-c--



(J· 

DWIM 

2 3 ), and FIXSPELL would return AFTER (subject to user approval where 
necessary).12 

If TlEFLG =NIL and a tie occurs. Le., more than one word on SPLST is found 
with the same degree of "closeness''. FIXSPELL returns NIL. i.e.. no correction. 
If TlEFLG=PICKONE and a tie occurs. the first word is taken as the correct 
spelling. If TlEFLG=LIST, the value of FIXSPELL is a list of the respellings 
(even if there is only one). and F IXSPELL will not perform any interaction with 
the user. nor modify TA.II.. the idea being.that the calling program will handle those 
tasks. Similarly. if TlEFLG= EVERYTHING. a list of all candidates whose degree 
of closeness is above REL will be returned. regardless of whether some are better 
than others. No interaction will be performed. 

If DONTMOVETOPFLG = T and a correction occurs. it will not be moved· to the 
front of the spelling list.-

The time required for a call to FIXSPELL with a spelling list of length 60 when the entire list must be 
searched is .5 seconds. If FI XS PELL determines that the first word on the spelling list is the respelling 
and does not need to search any further, the time required is .02 seconds. In other words. the time 
required is proportional to the number of words with which XWORD is compared. with the time for one 
comparison. Le .. one call to SKOR takes roughly .01 seconc;l.s (varies slightly with the number of characters 
in the words being compared). 

( FNCHECK.- FN NOERRORFLG SPELLFLG PROPFLG T.A.ZI.) [Function} 
.. The task of FNCHECK is to check whether FN is the name of a function and if 

not, to correct its spelling. If FN is the name of a function or spelling correction 
is successful FNCHECK adds the (corrected) name of the function to USERWOROS 
using AODSPELL. and returns it as its value. 

Since FNCHECK is called by many low level functions such as ARGLlST. 
UNSAVEDEF, etc .. spelling correction only takes place when OWIMFLG=T. so that 
these functions can operate in a small Interlisp system which does not contain 
DWIM. 

NOERRORFLG informs FNCHECK whether or not the calling function wants to 
handle the unsuccessful case: if NOERRORFLG is T, FNCHECK simply returns NIL. 
otherwise it prints f n NOT A FUNCTION and generates a non-breaking error. 

If FN does not have a definition. but does hav.e an EXPR property, then ·spelling 
correction is not attempted. Instead. if PROPFLG= T. FN is considered to be the 
name of a function. and is returned. If PROPFLG =NIL. FN is not considered to 
be the name of a function. and NIL is returned or an error generated. depending 
on the value of NOERRORFLG. 

FNCHECK calls MISSPELLED? to perform spelling correction. so that if FN=NIL. 
the value ofLASTWORD will be returned. SPELLFLG corresponds to MISSPELLEO?'s 

12If TALL=T. FIXSPELL will also perform run-on corrections. returning a dotted pair of the two words 
in the event the correction is of this cype. 

15.19 



\ 

·, 
\·, 

Spelling Corrector Functions and Variables 

.fourth argument, FLG. If SPELLFLG=T, approval will be asked if DWIM was en· 
abled in CAUTIOUS mode. i.e •• if APPROVEFLG=T. TAlL corresponds to the fifth 
argument to MISSPELLED?. 

FNCHECK is currently used by ARGLIST, UNSAVEDEF, PRETTYPRINT, BREAK0, BREAKIN, ADVISE, 
CALLS, and EDITA. For example. BREAK0 calls FNCHECK with NOERRORFLG=T since if .FNCHECK 
cannot produce a function. BREAK0 w~ts to define a dummy one. CALLS however calls FNCHECK with 
NOBRRORFLG=tiIL, since it cannot operate without a function. 

Many other system functions call MISSPELLED? or FIXSPELL directly. For example. BREAK1 calls 
F IXSPELL on unrecognized atomic inputs before attempting to evaluate them. using as a spelling list a 
list of all break commands. Similarly. LISPX calls FIXSPELL on atamic inputs using a list of all LI SPX 
commands. When UNBREAK is given the name of a function that is not broken. it calls FIXSPELL with 
two different spelling lists, first with BROKENFNS, and if that fails, with USERWORDS. MAKEFILE calls 
,.-"'SPELLED? using FILELST as a spelling list. FUlally. LOAD. BCOMPL, BRECOMPILE. TCOMPL. and 

'.'_ .. .,;QMPILE all call MISSPELLED? if their input file(s) won't open. 

{ SPELLFILE FILE NOPRJNTFLG NSFLG .C.r:R.LST) [Function] 
If FILE does not have a directory field. SPELLFILE look.~ on !he directories given 
by the value of DIRECTORIES. initially { NIL LISP). (NIL corresponds to login 
directory.) This correction will not require user approval. (but SPELLFILE will 
indicate the correction in the usual way, by printing = followed by the new file 
name}. Otherwise, SPELLF IL£ attempts spelling correction against the files in the 
directory. In this case: user approval will be requested ( except if NOPRINTFLG = T, 
s~e below). Returns corrected file. if any. otherwise NIL. 

If NOPRINTFLG=T. SPELLFILE does not do any printing, nor.ask for approyal. 

If NSFLG=T (or NOSPELLFLG=T). no spelling correction is attempted. though 
searching through DIRECTORI_ES will still be performed. 

If DIRLST is non-NIL. it is used instead of the value of DIRECTORIES. 

S:RRORTYPELST {page 9.16) is initially 

..;__,{(23 (SPELLFILE {CADR ERRORMESS) NIL.NOFILESPELLFLG))) . 
This causes SPELLF ILE to be called in case of a FILE NOT FOUND error. If the variable 
NOFILESPELLFLG is T (its initial value). then spelling correction is not done on the file name, but 
DIRECTORIES is still searched. If SPELLFILE is successful. the operation will be reexecuted with the 
new (corrected) file name. 

{ FINDFILE F'!I.E NSFLG DlRLST) • [Function] 
• £f F'!I.E is not the name of a file. calls SPELLFILE specifying no interaction or 

printing. FI NO F I LE could be defined as: 

(if (INFILEP FII.E) 
else (SPELLFILE FILE T NSFLG DDU.ST)} 

15.20 

()":.:. _; 

( \ 
' j 

r=·-. I.". 

_() 

- ···- ------•. ·- --·--:-:---..,,_?...i_LP __ 1~-:--, .... :.z ..;ix,.;..,.· 



o--
CHAPTER 16 

CUSP 

The syntax of LISP is very simple, in the sense that it can be described concisely, but not in the sense that 
LISP programs are easy to read or write! This simplicity of syntax is achieved by, and at the expense of. 
extensive use of explicit structuring, namely grouping through parenthesization. Unlike many languages, 
there are no reserved words in LISP such as IF, THEN, FOR, DO, etc., nor reserved characters like +, - , =, 
.-, etc. The only special characters are left and right parentheses and period, which are used for indicating 
structure, and space and end-of-line. which are used for delimiting identifiers. This eliminates entirely the 
need for parsers and precedence rules in the LISP interpreter and compiler, and thereby makes program 
manipulation of LISP programs straightforward. In other words, a program that "looks at" other LISP 
programs does not need to incorporate a lot of syntactic information. For example, a LISP interpreter can 
be written in one or two pages of LISP code. It is for this reason that LISP is by far the most suitable, 
and frequently used, programming language for writing programs that deal with other programs as data, 
e.g., programs that analyze, modify, or construct other programs. 

However, it is precisely this same simplicity of syntax that makes LISP programs difficult to read and write 
(especially for beginners}. 'Pushing down' is something programs do very well. and people do poorly. As 
an example, consider the following two "equivalent" sentences: 

"The rat that the cat that the dog that I owned chased caught ate the cheese." 

versus 

"I own the dog that chased the cat that caught the rat that ate the cheese." 

Natural language contains many linguistic devices such as that illustrated in the second sentence above 
for minimiring embedding, because embedded sentences are more difficult to grasp and understand than 

/,:-- equivalent non-embedded ones (even if the latter sentences are somewhat longer). Similarly, most high U . · level programming languages offer syntactic devices for reducing apparent depth and complexity of a 
program: the reserved words and infix operators used in ALGOL-like languages simultaneously delimit 
operands and operations. and also convey meaning to the programmer. They are far more intuitive 
than parentheses. In fact, since LISP uses parentheses (i.e., lists) for almost all syntactic forms; there is 
very little information contained in the parentheses for the person reading a LISP program. and so the 
parentheses tend mostly to be igncred: the meaning of a particular LISP expression for people is found 
almost entirely in the words, not in the structure. For example. the expression 

6 

{CONO {EQ N 0) 1} (T TIMES N FACTORIAL {{SUB1 Nf)) . 
is recognizable as factorial even though there are five misplaced ·or missing parenth.eses. Grouping words 
together in parentheses is done more for LISP's benefit, than for the programmer's. 

CUSP is designed to ma,ke Interlisp programs easier to read -and write by pennitting the user to 
employ various infix operators. IF statements (page 4.4), and iterative statements (page 4.5), which are 
automatically converted to equivalent Interlisp expressions when they are first interpreted. For example, 
factorial could be written in CUSP: 

16.1 



{IF N=O THEN 1 ELSE N*(FACTORIAL N-1)) 

Note that this expression would become an equivalent cmrn after it had been interpreted once, so that 
programs that might have to analyze or otherwise process this expression could take advantage of che 
simple syntax. 

There have been similar efforts in other LISP syste1ns. CLISP differs from these in that it does not 
attempt to replace the LISP syntax so much as to augment it In fact. one of the principal criteria in the 
design of CLISP was that users be able to freely intermix LISP and CLISP without having to identify 
which is which. Users can write programs, or type in expressions for evaluation, in LISP, CLISP, or a 
mixture of both. In this way, users do not have to learn a whole new language and syncax in order to be 
able to use selected facilities of CLISP when and where they find them useful. 

CLISP is implemented via the error correction machinery in Interlisp (see page 15.1). Thus. any expression 
,, that is well-formed from Interlisp's standpoint will never be seen by CLISP (i.e., if the user defined a 
\.__ function IF, he would effectively tum off that pan of CLISP). This means that interpreted programs 

- that do not use CLISP constructs do not pay for its availability by slower execution time. In fact. the 
Interlisp interpreter does not "know·· about CLISP at all. It operates as before, and when an erroneous 
form is encountered, the interpreter calls an error routine which in tum invokes the Do-What-I-Mean 
(DWIM) analyzer which contains CLISP. If the expression in question cums out to be a CUSP construct. 
the equivalent Interlisp form is returned to the interpreter. In addition. the original CLISP expression. is 
modified so that it becomes the correctly translated Interlisp form. In this way, the analysis and translation 
are done only once. 

Integrating CLISP into the Interlisp system (instead of. for example. implementing it as a separate 
preprocessor) makes possible Do-What-I-Mean features for CLISP constructs as well as for pure LISP 
expressions. For example, if the user has defined a function named GET-PARENT, CLISP would know not 
to attempt to interpret the form {GET-PARENT) as an arithmetic infix operation. (Actually, CLISP would 
never get to see this fo~ since it does not contain any errors.) If the user mistakenly writes (GET­
P RAE NT), CLISP would know he meant (GET-PARENT), and not {DIFFERENCE GET PRAENT). by 
using the information that PRAENT is not the name of a variable, and that GET-PARENT is the name of 
a user function whose spelling is "very close" to that ofGET-PRAENT. Similarly, by using infonnation 
about the program's environment not readily available to a' preprocessor, CLISP can successfully resolve 

( · ~e following sorts of ambiguities: 

{l) { LIST X*FACT N ), where FACT is the name of a variable. means { LIST ( X*FACT) N ). 

{2) ( LIST X*FACT N ), where FACT is not the name of a variable but instead is the name of a function. 
means ( LIST X*( FACT N) ), i.e., N is FACT's argument 

(3) (LIST X*FAC.T(N) ), FACT the name ofa function (and not the name of a variable), means (LIST 
X*(FACT N)). 

: 
(4) cases {1), (2) and (3) with FACT misspelled! 

The first expression is correct both from the standpoint of CL.ISP syntax and semantics and the change 
would be made without the user being notified. In the other cases. the user would be informed or 
consulted about what was taking place. For example. co take an extreme case. suppose the expression 
(LIST X*FCCT N) were encountered. where there was both a function named FACT and a vari:!ble 
named FCT. Tne user would first be asked if FCCT were a misspelling of FCT. If he said YES. :.he 
expression would be interpreted as (LIST ( X * F CT) N). If he said NO, che user would be asked 1f 
FCCT were a misspelling of FACT. i.e .• if he intended X • F CCT N to mean X • (FACT N). If he said YES 

16.2 

/~ 
" \_ )l 

--'(_ .· 

() 
\ .• 



o---­
(.,. CLISP 

to this question. the indicated transformation would be performed. If he said NO, the system would then 
ask if x•FCCT should be ueated as CLISP, since FCCT is not the name of a (bound) variable.1 If he said 
YES, the expression would be transformed, if NO, it would be left alone. i.e., as ( LIST X • FCCT N). 
Note that we have not even considered the case where X*FCCT is itself a misspelling of a variable name, 
e.g.. a variable named XFCT (as with GET-PRAENT). This son of transformation would be considered 
after the user said NO to X*FCCT N -> X•( FACT N). 

Note: Through the discussion above, we speak of CLISP or DWIM asking the user. Actually, if the 
expression in question was typed in by the user for immediate execution. the user is simply informed of 
the transformation. on the grounds that the user would prefer an occasional misinterpretation rather than 
being continuously bothered, especially since he can always retype what he intended if a mistake occurs, 
and ask the programmer's assistant to UNDO the effects of the mistaken operations if necessary. For 
transformations on expressions in user programs. the user can inform CLISP whether he wishes to operate 
in CAUTIOUS or TRUSTING mode. In the former case (most typical) the user will be asked to approve 
transformations, in the latter, CLISP will operate as it does on type-in, i.e.. perform the uansformation 
after informing the user. 

CLISP can also handle parentheses errors caused by typing 8 or 9 for .. (., or") ... (On most terminals, 8 
and 9 are the lower case characters for " (" and ") ", i.e., •• {" and 8 appear on the same key, as do .. ) " 
and 9.) For example, if the user writes N*BFACTORIAL N-1. the parentheses error can be detected and 
fixed before the infix operator• is convened to the Interlisp function TIMES. CLISP is able to distinguish 
this situation from cases like N • 8 • X meaning (TI MES N 8 X ) , or N • 8 x. where 8 X is the name of a 
variable, again by using information about the programmine environment. In fact, by integrating CLISP 
with -DWIM, CLISP has been made sufficiently tolerant of errors that almost everything can be misspelled! 
For example, CLIS-P ean successfully tranSlate the definition of FACTORIAL: 

{IFF N=0 THENNl ESLE N•SFACTTORIALNN-1) 

to the corresponding COND. while making 5 spelling corrections and fixing ·the parenthesis error.2 

This son of robustness prevails throughout CUSP. For example. the iterative statement permits the user 
to say things like: 

(FOR OLD X FROMM TON DO {PRINT X) WHILE {PRIMEP X)) 

However, the user can also write OLD ( X +-M). ( OLD X +-M). { OLD ( X +-M) ) , permute the order of the 
operators, e.g .• (DO PRINT X TO N FOR OLD X+-M WHILE PRIMEP X), omit either or both sets of 
parentheses, misspell any or all of the operators FOR. OLD, FROM. TO, DO. or WHILE. or leave out the 
word DO entirely! And. of course. he can also misspell PRINT, PRIMEP, M or N! In this example. the 
only thing the user could not misspell is the first X. since it specifies the name of the variable of iteration. 
The other two instances of X could be misspelled. · 

: 

1This question is important because Interlisp users may have programs that employ identifiers containing 
CLISP operators. Thus. if CLISP encounters the expression A/B in a context where either A or B are noc 
the names of variables. it will ask the user if A/8 is intended to be CLISP, in case the user really does 
have a free variable named A/B. 
:?CUSP also contains a facility for converting from Interlisp back to CUSP. so that after running the 
above incorrect definition of FACTORIAL. the user could "clispify'' the now correct version to obtain (IF 
N=O THEN l ELSE N•(FACTORIAL N-1)). 

16.3 



CUSP Interaction with User 

CLISP is well integrated into the Interlisp system. For example. the above iterative statement translates 
into an following equivalent Interlisp form using PR0G. COND. GO. etc. When the intell)reter subsequently 
encounters this CLISP expression. it automatically obtains and evaluates the translation. Similarly, the 
compiler "knows" to compile the translated. form. However. if the user PRETTYPRIHTs his program. 
PRETTYPRIHT "knows" to print the original CLISP at the corresponding point in his function. Similarly, 
when the user edits his program. the editor keeps the translation invisible to the user. If the user modifies 
the CLISP, the translation is automatically discarded and recomputed the next time the expression is 
evaluated. 

In short, CLISP is not a language at all. but rather a system. It plays a role analagous to that of the 
programmer's assistant (page 8.1). Whereas the progr..mmer's assistant is an invisible intermediary agent 
between the user's console requests and the Interlisp executive, CLISP sits between the user's programs 
and the Interlisp intell)reter. 

( - Only a small effon has been devoted to defining the core syntax of CLISP. Instead, most of the effort has 
... oeen concentrated on providing a facility which "makes sense" out of the input expressions using context 

information as well as built·in and acquired information about user and system programs. It has been 
said that communication is based on the intention of the speaker to produce an effect in the recipient. 

r 
\ 

CLISP operates under the assumptioµ that what the user said was intended to represent a meaningful 
operation, and therefore tries very hard to make sense out of it. The motivation behind CLISP is nae 
to provide the user with many different ways of saying the same thing, but to enable him . to worry less 
about the syntactic aspects of his communicatibn with the system. In other words. it gives the user a 
new degree of freedom by permitting him to concentrate more on the problem at hand, rather than on 
translation into a formal and unambiguous language. 

DWIM and CLISP are invoked on iterative statements because CAR of the iterative statement is not the 
name of a function. and hence generates an error. If the user defines a function by the same name as 
an i.s. operator. e.g .. WHIL.E, TO, etc .. the operator will no longer have the CLISP intell)retation when it 
appears as CAR of a form. although it will continue to be treated as an i.s. operator if it appears in the 
interior of an i.s. To alert the user. a warning message is printed, e.g .• {WHILE DEF !NED, THEREFORE 
DISABLED IN CLISP). 

. -- · 16.l CLISP INTERACTION WITH USER 

Syntactically and semantically well formed CLISP transformations are always performed without informing 
the user. Other CLISP transformations described in the previous section. e.g .• misspellings of operands. 
infix operators, parentheses errors, unary minus - binary minus errors, all follow the same protocol as 
other DWIM transformations (page 15.1). That is. if DWIM has been enabled in TRUST I NG mode. or 
the transformation is in an expression typed in by the user for immediate execution. user approval is not 
requested. but the user is informed.3 However. if the transformation involves a user program. and OWTM 
was enabled in CAUTIOUS mode. the user will be asked to approve. If he says NO. the transformation is 
not performed. Thus, in the previous section. phrases such as ·'one of these (transformations) succeeds" 
and "the transformation LAST-ELL -> LAST-EL would be found,. etc .• all mean if the user is in 

3However. in certain situations. DWIM will ask for approval even if DWIM is enabled in TRUST ING 
mode. For example. the user will always be asked co approve a spelling correction that might also be 
interpreted as a. CUSP transformation. as in LAST-ELL -> LAST-EL. 

16.4 

0-.. "\.. .. 

0 



0 t.-.. CUSP 

CAUTIOUS mode and the error is in a program. the corresponding transformation will be performed only 
if the user approves (or defaults by not respo~ding). If the user says NO, the procedure followed is the 
same as though the transformation had not been found. For example, if A•B appears in the function 
FOO, and B is not bound (and no other cransformations are found) the user would be asked A·B [ rn 
FOO] TREAT AS CLISP 74 

If the user approved. A•B would be transformed to ( I TIMES A B ). which would then cause a U. B. A. 
B error in the event that the program was being run (remember the entire discussion also applies to 
OW IM IF Ying). If the user said NO. A •B would be left alone.5 

16.2 CLISP CHARACTER OPERATORS o-
~ CLISP recognizes a number of special characters operators. both prefix and infix. which are translated 

into common expressions. For example, the character + is recognized to represent addition. so CUSP 
translates the litatom A+B to the form { IP LUS A B). Note that CUSP is envoked. and this translation 
is made, only if an error occurs. such as an unbound atom error or an undefined function error for the 
perfectly legitamate litatom A+B. Therefore the user may choose not to use these facilities with no penalty. 
similar to other CLISP facilities. 

The user has a lot of flexability in using CLISP character operators. A list, can always be substituted for 
a litatom. and vice versa, without changing the interpretation of a phrase. For example. if the value of 
( FOO X) is A, and the value of ( FIE Y) is B, then ( LIST ( FOO X )+( FIE Y)) has the same value as 
( LIST A+B ). Note that the first expression is a list of four elements: the atom "LIST", the list"( FOO 
X)", the atom"+''. and the list "(FIE X)", whereas the second expression. (LIST A+B), is a list 
of only two elements: the litatom "LIST" and the litatom "A+B". Since {LIST (FOO X)+(FIE Y)) 
is indistinguishable from ( LIST ( F 00 X) u+u ( FIE Y) ) because spaces before or after parentheses 
have no effect on the Interlisp READ program. 6 to be consistent, extra spaces have no effect on atomic 
operands either. In other words. CLISP will treat ( LIST A+UB ), ( LIST AU+B ), and ( LIST AU+UB) 
the same as ( LIST A+B ). 

• 
I 
1" 

[CLISP Operator] 
[CLISP Operator] 
[CLISP Operator] 
[CUSP Operator] 
[CLISP Operator] 

CLISP recognizes +, -, •, /, and t as the normal arithmetic infix operators. - is 
also recognized as the prefix operator, unary minus. These are converted to I PLUS. 
!DIFFERENCE (or in the case of unary minus. !MINUS). !TIMES, !QUOTIENT. 
and EXPT. . 

"'The waiting time on such interactions is three times as long as for simple corrections, i.e .• 3*0WIMWAIT . 

. 3If the value of CLISPHELPFLG=NIL (initally T), the user will not be asked to approve any clisp 
transformation. Instead. in those situations where approval would be required. the effect is the same as 
though the user had been asked and said NO. 

0-
6CLISP does not use its own special READ program because this would require the user to explicitly 
identify CUSP expressions. instead of being able to intermix Interlisp and CUSP. 

16.5 



.. 

r-· 
·. 

= 
GT 
LT 
GE 
LE 

CLISP Character Operators 

-
The I in !PLUS denotes integer arithmetic. i.e .• IPLUS converts its arguments 
to integers, and rerums an integer value. Interlisp also contains floating point 
arithmetic functions as well as mixed arithmetic functions. Floating point arithmetic 
functions are used in the translation if one or both of the operands are themselves 
floating point numbers, e.g •• X+l. 5 translates as ( FPLUS X 1. 5 ). In addition. 
CLISP contains a facility for declaring which type of arithmetic is to be used. 
either by ma.king a global declaration. or by separate declarations about individual 
functions or variables (see page 16.9). 

The usual precedence rules apply (although these can be easily changed by the 
user}, i.e .. • has higher precedence than+ so that A+a•c is the same as A+(B*C). 
and both • and / are lower than 1" so that 2 • X 1" 2 is the same as 2 • ( X 1' 2 ) • 
Operators of the same precedence group from left to right, e.g.. A/B/C is equivalent 
to ( A/B) IC. Minus is binary whenever possible. i.e .. except when it is the first 
operator in a list. as in (-A) or (-A), or when it immediately follows another 
operator. as in A•-a. Note that grouping with parentheses can always be used 
to override the normal precedence grouping. or · when the user is not sure how 
a panicular expression will parse. The complete order of precedence for CLISP 
operators is given below. 

Note that + in front of a number will disappear when the number is read, e.g .• 
(FOO X +2) is indistinguishable from (FOO X 2). This means that (FOO X 
+2 ) will not be interpreted as CLISP. or be convened to ( F 00 ( IP LUS X 2 ) ) . 
Similarly. (FOO X -2) will not be interpreted the same as (FOO X-2). To 
circumvent this. always type a space between the + or - and a number if an infix 
operator is intended. e.g .• write ( F 00 X + 2 ) • 

[CLISP Operator] 
[CUSP Operator] 
[CLISP Operator) 
[CUSP Operator] 
[CUSP- Operator] 

These are infix operators for "Equal ... "Greater Than", "Less Than'', "Greater 
Than or Equal", and "Less Than or Equal". 

GT. LT. GE. and LE are all affected by the same declarations as + and •. with the 
initial default to use IGREATERP and ILESSP. 

Note that only single character operators. e.g .• +, ~. =, etc .• can appear in the 
interior of an atom. All other operators must be set off from identifiers with spaces. 
For example, XL TY will not be recognized as CLISP. In some cases, DWlM will 
be able co diagnqse Chis siruation as a run-on spelling error. in which case after the 
atom is split apart. CLISP will be able to perform the indicated transformation. 

. . 
A number of lisp functions. such as· EQUAL. MEMBER. ANO, OR. etc .. can also be treated as CUSP infix 
operacors.1 ANO is higher than OR. and both ANO and OR are lower than the other infix operators. so 

1Curremly the complete list is MEMBER. MEMB. FMEMB. ILESSP, IG.REATERP, LESSP. GREATERP. FGTP. 
EQ, NEQ, EQP. EQUAL. OR, and ANO. :--iew infix operacors can be easily added. as described in page 16.21. 
Spelling correction on. misspelled infix oper:uors is peformed using CLISP Hff IXSPLST as a spelling 
list. 

16.6 

n. 
"-{:,. 



(5. 

0--· 

CLISP 

( X OR y AND z) is the same as { X OR ( y AND z) ), and ( X AND y EQUAL z) is the same as ( X 
AND ( Y EQUAL Z) ) • All of the infix predicates have lower precedence than Interlisp forms, since it is 
far more common to apply a predicate to two forms, than to use a Boolean as an argument to a function. 
Therefore, (FOO X GT FIE Y) is translated as {(FOO X) GT {FIE Y)), rather than as (FOO (X 
GT { FIE Y)) ). However. the user can easily change this. 

.. . . 

.. 

[CLISP Operator] 
x: N extracts the Nth element of the list x. F 00: 3 specifies the third element of 
FOO, or { CADDR. FOO). If N is less than zero, this indicates elements counting 
ftom the end of the list; i.e. F 00 : -1 is the last element of F 00. : operators can 
be nested, so FOO: 1: 2 means the second element of the first element of FOO, or 
(CADAR FOO). . 

The : operator can also be used for extracting substructures of records {see page 
3.1). Record operations are implemented by replacing expressions of the form 
X: FOO by' (fetch FOO of X ). Both lower and upper case are acceptable. 

: is also used to indicate operations in the pattern match facility (page 23.1). 

[CLISP Operator] 
x: N, returns the Nth tail of the list x. For example. FOO:: 3 is { COD DR FOO), 
and FOO: :-1 is ( LAST FOO). 

. [CLISP Operator] 
+- is used to indicate assignment. For example, X+-Y translates to { SETQ X Y). If 
X does not have a value, and is not the name of one of the bound variables of the 
function in which it appears, spelling correction is attempted. However, since this 
may simply be a case of assigning an initial value to a new free variable, DWIM 
will always ask for approval before making the correction. 

In conjunction with : and : : , +- can also be used to perform a more general 
type of assignment, involving structure modification. For example, X: 2+-Y means 
"make the second element of X be Y", in Interlisp terms { RPLACA ( CDR X) Y ). 
Note that the value of this operation is the value of RPLACA, which is ( CCR X ), 
rather than Y. Negative numbers can also be used, e.g., X :-2+-Y, which translates 
to {RPLACA {HLEFT X 2) Y). 

The user can indicate he wants /RPLACA and /RPLACD used (undoable version 
of RPLACA and RPLACD, see page 8.22), or FRPLACA and FRPLACD (fast versions 
of RPLACA and RPLACD, see page 2.15), by means of CUSP declarations (page 
16.9). The initial default is to use RPLACA and RPLACD • 

.. is also used to indicate assignment in record operations (X: FOO+-Y translates to 
{replace _FOO of X with Y).), and pattern match operations (page 23.~). 

+- has different precedence on the left from on the right. On the left. .. is a "tight" 
operator, i.e .• high precedence. so that A+B+-C is the same as A+{B+-C). On the 
right. +- has broader scope so that A+-B+C is the same as A+-( B+C). 

On typein, $+-FORM (<esc>+-FORM) is equivalent to set the "last thing men-

16.7 -



CLISP Char:icter Operators 

n -c-

tioned".8 For example. immediately after examining the value ofLONGVARIABLENAME. 
the user could set it by typing S+- followed by a form. 

Note that an atom of the form X+-Y, appearing at the top level of a PROG. will not be recognized as 
an assignment statement because it will be interpreted as a P ROG label by the Interlisp interpreter. and 
therefore will not cause an error. so DWIM and CLISP will never get to see it. Instead, one must write 
(X+-Y). 

< 
> 

c·-. 

[CUSP Operator] 
[CLISP Operator) 

Angle brackets are used in CLISP to indicate list construction. The appearance of 
a"<" corresponds to a"( .. and indicates that a list is to be constructed containing 
all the elements up to the corresponding">". For example. <A B <C>> translates 
to (LIST A B (LIST C) ). 1 can be used to indicate that the next expression 
is to be inserted in the list as a segmen~ e.g .• <A B ! C> translates to ( CONS A 
(CONS B C)) and<! A ! B C> to (APPEND A B (LIST C}). ! t is used 
to indicate that the next expression is to be inserted as a segment, and funhermore. 
all list structure to its right in the angle brackets is to be physically attached co 
it. e.g •• < ! ! A B> translates to ( NCONC 1 A B ). and < ! ! A 1 B ! C> to ( NCO NC 
A (APPEND B C)). Not ( NC0NC (,;PPEN0 A B) C), which would have the 
same value. but would attach C to B, and not attach either to A. Note that <. 
! , ! ! , and > need not be separate atoms, for example, <A B ! C> may be 
written equally well as < A B ! C >. Also. arbitrary Interlisp or CLISP forms 
may be used within angle brackets. For example, one can write < F 00 .. { FIE X) ! 
Y> which translates to (CO.NS (SETQ FOO (FIE X)) Y). CLISPIFY convens 
expressions in CONS. LIST, APPEND, NC0NC, NC0NC1. /NC0NC, and /NC0NC1 
into equivalent CLISP expressions using <. >. ! , and l I • 

r 
\ .... ___ ,. ' 

Note: brackets differ from other CLISP operators. For example, <A B 'C> 
translates to ( LIST A B ( QUOTE C)) even though following ', all operators are 
ignored for the rest of the identifier. (This is true only if a previous unmatched < 
has been seen. e.g.. ( PRINT 'A>B) will print the atom A>B.) Note however that 
<AB 'UC> D>isequivalentto(LIST AB (QUOTE C>) 0). 

[CLISP Operator) 
CLISP recognizes ' as a prefix operator. ' means QUOTE when it is the first 
character in an identifier. and is ignored when it is used in the interior of an 
identifier. Thus, X =' Y means ( EQ X (QUOTE Y) ) , but X =CAN'T means ( EQ 
X CAN'T), not (EQ X CAN) followed by (QUOTE T). This enables users to 
have variable and function names with ' in them {so long as the ' is not the first 
character). 

Following ' • all operators are ignored for the rest of the identifier, e.g., ' • A means 
{QUOTE *A}, and 'X=Y means (QUOTE X=Y}, not (EQ (QUOTE X) Y}. To 
write ( EQ ( QUOTE X) Y}. one writes Y =' X, or 'X =Y. This is one place where 
an extra space does make a difference . 

. 8i.e.; is equivalent to { SET LASTW0RD FORM}. See page 15.15. 

16.3 

() .. 
-\..' 



CLISP 

On typein. '$ (i.e., '<esc>} is equivalent to (QUOTE VALUE-OF-LASTWORD) (see 
page 15.15}. For example. after calling PRETTYPRINT on L0NGFUNCTI0N, the 
user could move its definition to F 00 by typing ( M0VD ' S ' F 00). 9 

[CLISP Operator] 
CLISP recognizes - as a prefix operator meaning NOT. - can negate a form. as in 
-( ASSOC X Y ) • or - X. or negate an infix operator, e.g.. ( A -GT B ) is the same 
as(A LEQ B). Notethat-A=Bmeans(EQ (NOT A) B). 

When - negates an operator, e.g., -=, -LT. the two operators are treated as a 
single. operator whose precedence is that of the second operator. When - negates 
a function. e.g.. ( -F 00 X Y ) , it negates the whole form. i.e.. { -( F 00 X Y)) . 

Order of Prededence of CLISP Operators: ry , 
\. , , v: 

,.. {left precedence} 

0 

- (unary}, -,. 
•, I 
+. - (binary} 
,.. (right precedence} 

= 
Interlisp forms 
LT, GT, EQUAL, MEMBER, eu:. 
AND 
OR 
IF, THEN, ELSEIF, ELSE 
iterative statement operators 

16.3 DECLARATIONS 

CLISP declarations are used to affect the choice of Interlisp function used as the translation of a panicular 
operator. For example. A+B can be translated as either ( I PLUS A B ), ( FPLUS A B ), or ( PLUS A 
B ). depending on the declaration in effect. Similarly X: 1~v can mean ( RPLACA X Y), ( FRPLACA X 
Y), or (/RPLACA X Y), and<! !A B> either (NC0NCl A B) or (/NC0NCl A B). Note that the. 
choice of function on all CLISP transformations are affected by the CLISP declaration in effect. i.e., 
iterative statements. pattern matches, record operations. as well as infix and prefix operators. 

( CLISPDEC DECLST) . [Function] 
Puts into eff~t the declarations in DECLST. CLISP0EC performs spelling corrections 
on words not recognized as declarations. CLISPDEC is undoable. 

9Not (M0VD S 'FOO). which would be equivalent to (MOV0 L0NGFUNCTION 'FOO), and would 
(probably) cause a U. 8. A. L0NGFUNCT ION error. nor M0V0 ( S FOO), which would actually move the 
definition of S to FOO. since DWIM and the spelling corrector would never be invoked. 

16.9 



i 

Local Declarations 

Toe user can makes (changes) a global declaration by calling CLISPDEC with DECLST a list of declarations. 
e.g.. (CLISPOEC ' ( FLOATING UNOOABLE) ). Changing a global declaration does not affect the speed 
of subsequent CLISP transformations. since all CLISP transformation are table driven (i.e., property list). 
and global declarations are accomplished by making the appropriate internal changes to CUSP at the time 
of the declaration. If a function employs local declarations (described below), there will be a slight loss 
in efficiency owing to the fact that for each CUSP transformation, the declaration list must be searched 
for possibly relevant declarations. 

Declarations are implemented in the order that they are given. so that later declarations override earlier 
ones. For example, the declaration FAST specifies that FRPLACA, FRPLACD, FMEMB, and FLAST be used 
in place of RPLACA. RPLACD, MEMS. and LAST; the declaration RPLACA specifies that RPLACA be used. 
Therefore.; the declarations ( FAST RPLACA RPLACO) will cause FMEMB, FLAST, RPLACA, and RPLACO 
to be used. 

,.~- .. 

l fhe initial global declaration is INTEGER and STANDARD. 

,,~ 

The table below gives the declarations available in CLISP, and the Interlisp functions they indicate: 

Declaration 

INTEGER or FIXED 

FLOATING 

MIXED 

FAST 

UNDOABLE 

STANDARD 

Interlisp Functions to be used 

IPLUS, !MINUS, IDIFFEREliCE, ITIMES, !QUOTIENT, ILESSP, 
IGREATERP 

FPLUS. FMINUS', FOIFFERENCE, FTIMES. FQUOTIENT. LESSP, 
FGREATERP 

PLUS.MINUS.DIFFERENCE. TIMES.QUOTIENT, LESSP,GREATERP 

FRPLACA, FRPLACD, FMEMB, FLAST, FASSOC 

/RPLACA, /RPLACO, /NCONC, /NCONC1, /MAPCONC, /MAPCON 

RPLACA,RPLACD,MEMB, LAST.ASSOC. NCONC,NCONC1,MAPCONC. 
MAPCON 

\ .... _ .. · 
RPLACA, RPLACD, /RPLACA, 
etc. 

16.3.1 Local Declarations 

corresponding function 

The user can also make local declarations affecting a selected function or functions by inserting an 
expression of the form ( CL ISP: • DECLARATIONS) immediately following the argument list. i.e .• as 
CADDR of the definition. Such local declarations cake precedence over global declarations. Declarations 
affecting selected variables can be indicated by lists, where the first element is the name of a variable. 
and the rest of the list the declarations for that variable. For example. (CLISP: FLOATING (X 
INTEGER)) specifies that in this function integer arithmetic be used-for computations involving X. and 

16.10 

() 
C. 

(! 
I -J; ,···· 

.n .. 
c_,--:. 



0-

0-

CLISP 

floating arithmetic for all other computations.10 The user can also make local record declarations by 
inserting a record declaration. e.g., (RECORD --). (ARRAYRECORD --). etc., in the local declaration 
list. In addition. a local declaration of the form ( RECORDS A B C) is equivalent to having copies of 
the global declarations A. s.· and C in the local declaration. Local record declarations override global 
record declarations for the function in which they appear. Local declarations can also be used to override 
the global setting of certain DWIM/CLISP parameters effective only for transformations within that 
function. by including in the local declaration an expression of the form ( VA.R1.ABLE = VALUE), e.g .. 
(PATVARDEFAULT = QUOTE). 

The CLISP: expression is converted to a comment of a special form recognized by CLISP. Whenever a 
CLISP transformation that is affected by declarations is about to be performed in ,a function. this comment 
will be searched for a relevant declaration. and if one is found, the corresponding function will be used. 
Otherwise, if none are found, the global declaration(s) currently in effect will be used. 

Local declarations are effective in the order that they are given. so that later declarations can be used to 
override earlier ones. e.g .. {CLISP: FAST RPLACA RPLAC0) specifies that FMEMB, FLAST, RPLACA, 
and RPLAC0 be used. An exception to this is that declarations for specific variables take precedence of 
general. function-wide declarations. regardless of the order of appearance, as in { CLISP: ( X INTEGER) 
FLOATING). 

CLISPIFY also checks the declarations in effect before selecting an infix operator to ensure that the 
corresponding CLISP construct would in fact translate back to this form. For example, if a FLOATING 
declaration is in effect. CLISPIFY will convert (FPLUS X Y) to X+Y, but leave ( !PLUS X Y) as is. 
Note that if ( FPLUS X Y) is CLISPIFYed while a FLOATING declaration is under effect. and then the 
declaration is changed to INTEGER, when X+Y is translated back to Interlisp. it will become ( I PLUS X 
Y). 

16.4 CLISP OPERATION 

CLISP is a part of the basic Interlisp system. Without any special preparations, the user can include CLISP 
constructs in programs. or type them in directly for evaluation (in EVAL or APPLY format}, then. when the 
.. error" occurrs. and DWIM is called. it will destructively transform the CUSP to the equivalent Interlisp 
expression and evaluate the Interlisp expression. CUSP transformations, like all DWIM corrections, are 
undoable. User approval is not requested. and no message is printed.11 

However. if a CUSP construct contains an error, an appropriate diagnostic is generated. and the form 
is left unchanged. For example. if the user writes (LIST X+Y•), the error diagnostic MISSING 
OPERAND AT X+Y• IN ( LIST X+Y•) would be generated. Similarly, if the user writes ( LAST+EL 
X ) • CUSP knows that ( ( IP LU S LAST EL ) X ) is not a valid Interlisp expression. so the error diagn9stic 
MISSING- OPERATOR IN ( LAST+EL X) is generated. (For example, the user might have meant to 

100involving" means where the variable itself is an operand. For example. with the declaration (FLOAT I NG 
(X INTEGER)) in effect. (FOO X)+{FIE X) would translate to FPLUS. i.e .. use floating arithmetic. 
even though X appears somewhere inside_ of the operands. whereas X+( FIE X) would translate to I PLUS. 
If there are declarations involving both operands. e.g .. X+Y. with (X FLOATING) (Y INTEGER), 
whichever appears first in the declaration list will be used. 

11This entire discussion also applies to CLISP transformation initiated by calls to DWIM from DWIMIFY. 

16.11 



CLISP Operation 

say( LAST+EL •X).) Note that if LAST+EL were the name of a defined function. CLISP would never see 
this form. · 

Since the bad CLISP transformation might not be CLISP at all. for example. it might be a misspelling 
. of a user function or variable, DWIM holds all CLISP error messages until after trying other corrections. 
If one of these succeeds, the CLISP message is discarded. Otherwise. if all fail. the message is printed 
(but no change is made).12 For example. suppose the user types (R/PLACA X Y). CLISP generates 
a diagnostic. since {{ I QUOT I EHT R PLACA} X Y) is obviously not right. However, since R/PLACA 
spelling corrects to /RPLACA. this diagnostic is never printed. 

If a CLISP infix construct is well formed from a syntactic standpoint. but one or both of its operands are 
atomic and not bound.13 it is possible that either the operand is misspelled. e.g •• the user wrote X+YY for 
X+Y, or that a CLISP transformation operation was not intended at all. but that the entire expression is 
a misspelling. For example, if the user has a variable named LAST-EL. and writes ( LIST LAST-E~L). 

. ··, Therefore, CLISP computes, but does not actually perform. the indicated infix transformation. DWIM 
l then continues. and if it is able to make another correction. does so. and ignores the CLISP interpretation. 

For example, with LAST-ELL. the transformation LAST-ELL -> LAST-EL would be found. 

If no other transformation is found. and DWIM is about to interpret a construct as CLISP for which 
one of the operands is not bound. DWIM will ask the user whether CLISP was intended. in this case by 
printing LAST-ELL TREAT AS CLISP ?14 

The same sort of procedure is followed with S and 9 errors. For example. suppose the user writes F 008 • X 
where FOOS is not bound. The CLISP transformation is noted. and DWIM proceeds. It next asks the 

· user to approve Fooa•x -> FOO· ( •x. (For example. this would make sense if the user has (or plans 
to define) a function named •x.) If he refuses. the user is asked whether Fooa•x is to be treated as 
CLISP. Similarly, if FOOS were the name of a variable, and the user writes F0O0a•x, he will first be 
asked to approve Foooa•x -> F000 ( XX,15 and if he refuses. then be offered the F0O0B -> FOOS 
correction. 

CLISP also contains provision for correcting misspellings of infix operators (other than single characters}, 
IF words, and i.s. operators. This is implemented in such a way that the user who does not misspell them 
is not penalized. For example. if the user writes IF N=O THEN 1 ELSSE N•( FACT N-1) CLISP does 

, not operate by checking each word to see if it is a misspelling of IF, THEN, ELSE. or ELSEIF, since 
,. this would seriously degrade CLISP's performance on all IF statements. Instead. CLISP assumes that all 

of the IF words are spelled correctly, and transforms the expression to { C0ND ( { ZER0P N) 1 ELS SE 
N • (FACT N-1) } ) . Later. after DWIM cannot find any other interpretation for E LSSE. and using the 

12Except that CLISP error messages are not printed on type-in. For example. typing X+•y will just 
produce a U. B. A. X+•Y message . 

• 13For the purpose of OWIM I FYing, .. not bound,. means no top level value. not on list of bound variables 
built up by OWIMI FY during its analysis of the expression. :µid not on H0FIXVARSLST, i.e., not previously 
seen. 

··-· 

14 lf more than one infix operator was involved in the CUSP construct. e.g., X+Y+Z, or the operation 
was an assignment to a variable already noticed. or TREATASCLISPF-LG is T (initially NIL), the user will 
simply be informed of the correction. e.g., X+Y+Z TREATED AS CLISP. Otherwise, even if DWI~{ was 
enabled in TRUST ING mode. the user will be asked to approve the correction. 
15The 8-9 transformation is tried before spelling correction since it is empirically more likely chat an 
unbound atom or undefined function containing an 8 or a 9 is a parenthesis error, rather chan a spelling 
error. 

16.12 

n ··-·r 
I.':. 

...... ·.· 

(}_., 
-c·--. 

~~li. 
( I. \ ,. .. ,, 

. -· 



CLISP 

fact that this atom originally appeared in an IF statement, DWIM attempts spelling correction. using ( I F 
THEN ELSE ELSEIF) for a spelling list. When this is successful DWIM "fails" all the way back to the 
original IF statement. changes ELSSE to ELSE, and swts over. Misspellings of AND, OR, LT, GT, etc. 

· are handled similarly. 

CLISP also contains many Do-What-I-Mean features besides spelling corrections. For example. the form 
(LIST +X Y) would generate a MISSING OPERATOR error. However, (LIST -x Y) makes sense. if 
the minus is unary, so DWIM offers this interpretation to the user. Another common error, especially for 
new users. is to write (LIST x • F 00 ( Y)) or ( LI ST X • FOO Y), where FOO is the name of a function. 
instead of ( LIST x• ( FOO Y) ). Therefore. whenever an operand that is not bound is also the name of 
a function (or corrects to one), the above interpretations are offered. 

,,--·y, 
'.~) '16.5 CLISP TRANSLATIONS 

Toe translation of CLISP character operators and the CLISP word IF are handled by replacing the CLISP 
expression with the corresponding Interlisp expression. and discarding the original CLISP.16 This is done 
because (1) the CLISP expression is easily recomputable (by CLISPIFY) and (2) the Interlisp expressions 
are simple and straightforward. Another reason for discarding the original CLISP is that it may contain 
errors that were correctea. in the course of translation (e.g., FOO.-FOOO: 1. N*BFOO X ), etc.}. If the 
original CLISP were retained. either the user would have to go back and fix these errors by hand. thereby 
negating the advantage of having DWIM perform these corrections. or else DWIM would have to keep 
correcting these errors over and over. 

Note that CLISPIFY is sufficiently fast that it is practical for the user to configure his Interlisp system so 
that all expressions are automatically CLISPIFYed immediately before they are presented to him. For 
example, he can define an edit macro to use in place of P which calls CL ISP IF Y on the current expression 
before printing it. Similarly, he can inform PRETTYPRINT to call CL ISP I FY on each expression before 
printing it, etc. 

,,-- · Where (1) or (2) are not the case, e.g., with iterative statements, pattern matches, record expressions, etc. 
(. ) the original CLISP is retained ( or a slightly modified version thereof), and the translation is stored1 7 

elsewhere, usually in the hash array CLISPARRAY.18 Toe interpreter automatically checks this array when 

0 

16If CLISPIFTRANFLG is T, the original CUSP for IF statements (modified to correct errors} is retained. 
See page 16.20. 
17by the function CLISPTRAN (page 16.19). 
18The user can also indicate that he wants the original CLISP retained by embedding it in an expression 
of the fortn (CLISP . CLISP-EXPRESSION}, e.g .• (CLISP X:5:3} or (CLISP <A B C ! D>}. In 
such cases. the translation will be stored remotely as described in the. text. Furthermore. such expressions 
will be treated as CUSP even if infix and prefix transformations have been disabled by setting CLISPFLG 
to NIL (page 16.19). In other words. the user can instruct the system to interpret as CUSP infix or ;,refix 
constructs only those expressions that are specifically flagged as such. The user can also include CUSP 
declarations by writing (CLISP DECLARATIONS • FORM), e.g .. {CLISP (CUSP: FLOATING) ... 
}. These declarations will be used in place of any CUSP declarations in the function definition. Note 
this fearure provides a way of including CUSP declarations in macro definitions. 

16.13 



DWIMIFY 

given a form CAR of which is not a function.19 Similarly, the compiler performs a GETHASH when given 
a form it does not recognize to see if it has a translation. which is then compiled instead of the form. 
Whenever the user changes a CUSP expresson by editing it. the editor automatically deletes its translation 
(if one exists). so that the next time it is evaluated or dwimified. the expression will be retranslated. 20 The 
function PPT and the edit commands PPT and CLISP: are available for examining translations (page 
16.20). If PRETTYTRANFLG is T. PRETTYPRINT will print the translations instead of the corresponding 
CLISP expression (see page 16.20). This can be used for exporting programs to systems that do not 
provide CLISP. and to examine translations for debugging purposes. 

16.6 DWirvllFY 

.......... 

l JIIMIFY is effectively a preprocessor for CLISP. OWIMIFY operates by scanning an expression as though 
it were being interpreted. and for each form that would generate an error, calling DWIM to "fix" 
it. OW IM I FY performs ail DWIM transformations. not just CUSP transformations, so it does spelling 

· correction. -fixes 8-9 errors. handles FIL. etc. Thus the user will see the same messages. and be asked for 
approval in the same situations. as he would if the expression were actually run. If DWIM is unable to 
make. a correction. no message is printed. the form is left as it was. and the analysis proceeds. 

r 

DWIMIFY knows exactly how the interpreter works. It knows the syntax of PROGs, SELECTQs. LAMBDA 
expressions, SETQs, et al. It knows that the argument of NLAMBOAs are not evaluated.21 It also knows 
how variables are bound. 22 In the course of its analysis of a particular expression. OW IM I FY builds a list · 
of the bound variables from the LAMBDA expressions and PROGs that it encounters. It uses this list for 
spelling corrections. OWIMIFY also knows not to try to .. correct" variables that are on this list since they 
would be bound if the expression were actually being run. However. note that DWIMIFY cannot. a priori. 
know about variables that are used freely but would be bound in a higher function if the expression were 
evaluated in its normal context. Therefore. OWIMIFY will try to .. correct" these variables.23 Similarly, 
DWIMIFY will attempt to correct forms for which CAR is undefined. even when the form is not in error 
from the user's standpoint, but the corresponding function has simply not yet been defined. 

19CLISP translations can also be used to supply an interpretation for function objects. as well as forms. 
either for function objects that are used openly, i.e .• appearing as CAR of form. function objects that are 
explicitly APPLYed. as with arguments to mapping functions, or function objects contained in function 
definition cells. In all cases, if CAR of the object is not LAMBDA or NLAMBOA, the interpreter and compiler 
will check CLISPARRAY. .,, 
20If the value of CLISPRETRANFLG is T, OWIMIFY will also (re)translate any expressions which have 
translations stored remotely. See page 16.16. · · 

21The user can inform OWIMIFY that an NLAMBDA function does evaluate its arguments (presumably by 
direct calls to EVAL). by including on its property list the property INFO with value EVAL or a list which 
contains the atom EVAL. 
22The user can inform DWIMIFY that a particular function or constrUct binds variables by including the 
atom BINDS on the INFO property for CAR of the form. [n this case. DWIMIFY assumes that CADR of 
the form is the variable list. i.e. a list of atoms. or lists of the form ( VAL VALUE). LAMBDA. NLAMBOA. 
PROG, and RESETVARS are handled in this fashion. . 
230WIMIFY rebinds FIXSPELLDEFAULT co N. so that if the user is not at the terminal when dwimifying 
'or compiling). spelling corrections will not be performed. 

16.14 

(l 
( . .-

(~ 
•. ·, J . 

G'!:.' 

() 
I•.- -~ : ' .~ 



CLISP 

·DWIMI FY will ·also inform the user when it encounters an expression with too many arguments,24 because 
such an occurrence, although does not cause an error in the Interlisp interpreter, nevertheless is frequently 
symptomatic of a parenthesis error. For example, if the user wrote ( CONS { QUOTE FOO X)) instead 
of (CONS (QUOTE FOO) X), DWIMIFY will print: . 

POSSIBLE PARENTHESIS ERROR IN 
{QUOTE FOO X) 
TOO MANY ARGUMENTS {MORE THAN 1) 

DWIMIFY will also check to see if a PROG label contains a clisp character,25 and if so, will alen the user 
by printing the message SUSPICIOUS PROG LABEL, followed by the label. The PROG label will not be 
treated as CLISP. 

Note that in most cases, an attempt to transform a form that is already as the user intended will have 
(---~\ no effect {because there will be nothing to which that form could reasonably be transformed). However.- . 
'--k-· in order to avoid needless calls to DWIM or to avoid possible confusion, the user can inform DWIMI FY 

not to attempt corrections or transformations on certain functions or variables by adding them to the list 

O· 

NOFIXFNSLST or NOFIXVARSLST respectively. Note that the user could achieve the same effect bY. 
simply' setting the corresponding variables, and giving the functions dummy definitions. 

DWIMI FY will never attempt corrections on global variables, i.e., variables that are a member of the 
list GL0BALVARS, or have the propeny GLOBALVAR with value T, on their propeny list. Similarly, 
DWIMIFY will not attempt to correct variables declared to be SPECVARS in block declarations or via 
DECLARE expressions in the function body. Toe user can also declare variables that are simply used 
freely in a function by using the USEDFREE declaration. 

DWIMIFY and DWIMIFYFNS (used to DWIMIFY several functions) maintain two internal lists of those 
functions and variables for which corrections were unsuccessfully attempted. These lists are initialized to 
the values of NOFIXFNSLST and NOFIXVARSLST. Once an attempt is made to fix a particular function 
or variable. and the attempt fails. "the function or variable is added to the corresponding list. so that 
on subsequent occurrences (within this call to DWIMIFY or DWIMIFYFNS), no attempt-at correction is 
made. For example, if FOO calls FIE several times, and FIE is undefined at the time FOO is dwimified. 
DWIMIFY will not bother with FIE after the first occurrence. In other words. once DWIMIFY "notices" 
a function or variable, it no longer attempts to correct it. 0WIMIFY and DWIMIFYFNS also "notice" 
free variables that are set in the expression being processed. Moreover, once DWIMIFY "notices" such 
functions or variables. it subsequently treats them the same as though they were actually defined or set. 

Note that these internal lists are local to each call to DWIMIFY and DWIMIFYFNS, so that if a function 
containing FOOO. a misspelled call to FOO, is DWIMI FYed before FOO is defined or mentioned. if rhe 
function is OWIMIFYed again after FOO has been defined, the correction will be made. 

The user can undo selected transformations performed by DWIMIFY, as described on page 8.11. 

(0WIMIFY X QUIETFLG L-) . [Function] 
Performs all DWIM and CLISP corrections and transformations on x thac would 
be performed if x were run, and prints· the result unless QUIETFLG = T. 

24unless DWIMCHECK#ARGSFLG=NIL (initially T}. 

25unless DWIMCHECKPR0GLABELSFLG=NIL (initially T), or the label is a member of N0FIXVARSLST. 

16.15 



,,,... 
( 

(OWIMIFYFNS FN1 

OWL'\-IIFY 

If x is-an atom and L is NIL. x is treated as the name of a function. and its entire 
definition is dwimi.fied. If x is a list or L is not NIL. x is the expression to be 
dwimified. If L is not NIL. it is rJle edit push-down list leading to x. and is used 
for determining context. i.e •• what bound variables would be in effect when x was 
evaluated. whether xis a form or sequence of forms, e.g., a COND clause. etc. 

If xis an iterative statement and Lis NIL. OWIMIFY will also print the translation. 
i.e., what is stored in the hash array. 

• • • FNN) [NI.ambda NoSpread Function] 
"Dwimifi.es each of the functions given. If only one argument is given. it is evalued. 
If its value is a list. the functions on this list are dwimifi.ed. .If enly one argument 
is given. it is atomic. its value is not a list. and it is the name of a known 
file. DWIMIFYFNS will operate on (FILEFNSLST FN1), e.g. (DWIMIFYFNS 
FOO.LSP) will dwimify every function in the file FOO.LSP. ·-(~ ... -

NOFIXFNSLST 

NOFIXVARSLST 

NOSPELLFLG 

CLISPHELPFLG 

DWIMIFYCOMPFLG 

Every 30 seconds. DWIMIFYFNS prints the name of the function it is processing, .. 
· a la PRETTYPRINT. 

Value is a list of the functions dwimi.fied. 

[Variable] 
List of functions that OWIMIFY will not try to correct. 

[Variable] 
List of variables that DWI MI FY will not try to correct. 

[Variable] 
IfT. OWIMIFY will not perform any spelling corrections. Initially NIL. NOSPELLFLG 
is reset to T when compiling functions whose definitions are obtained from a file. 
as opposed to being in core. 

[Variable] 
If NIL. DWIMIFY will not ask the user for approval of any CLISP transformations. 
Instead. in those situations· where approval would be required. the effect is the 
same as though the user had been asked and said NO. Initially T. 

[Variable] 
If T. DWIMIFY is called before compiling an expression. Initially NIL. 

OWIMCHECK#ARGSFLG [Variable] 
If T, causes OWIMIFY to check for too many arguments in a form. Initially T • . 

O.WIMCl:IECKPROGLABELSFLG [Variable] 
If T, causes DWIMIFY to check whether a PROG label contains a CLISP character. 
Initially T. . 

DWIMESSGAG [Variable] 
If T, suppresses all OWIMIFY error messages. Initially NIL. 

CLISPRETRANFLG [Variable! 
If T, informs OWIMIFY co (re)translace all expressions which have remote 

16.16 

'·-(/: 

(;. 
.... _,.,,,-



0-

r 
0 

0 

CLISP 

translations in the CLISP hash array. Initially NIL. 

16.7 CLISPIFY 

CLISPIFY converts Interlisp expressions to CLISP. Note that the expression given to CLISPIFY need not 
have originally been input as CLISP. i.e •• CLISPIFY can be used on functions that were written before 
CLISP was even implemented. CLISPIFY is cognizant of declaration rules as well as all of the precedence 
rules. For example. CLISPIFY will convert ( I PLUS A ( IT IMES B C}) into A+B•C. but ( IT IMES 
A {IPLUS B C)) into A•(B+C). CLISPIFY handles such cases by first OWIMIFYing the expression. 
CLISPIFY also knows how to handle expressions consisting of a mixture of Interlisp and CLISP. e.g .• 
( IPLUS A B•C) is convened to A+B•C. but { !TIMES A B+C) to (A•(B+C) ). CLISPIFY convens 
calls to the six basic mapping functions, MAP, MAPC, MAPCAR, MAPLIST, MAPCONC. and MAPCON. into 
equivalent iterative statements. It also convens certain easily recognizable internal PROG loops to the 
corresponding iterative statements. CLISPIFY can convert all iterative statements input in CLISP back 
to CLISP, regardless of how complicated the translation was. because the original CLISP is saved. 

CL ISP I FY is not destructive to the original Interlisp expression. i.e., CL ISP IF Y produces a new expression 
without changing the original.26 CL ISP I FY will not convert expressions appearing as argumenrs to 
NLAMBOA functions.2 7 

Note: Disabling a CLISP operator with CLOISABLE (page 16.19) will also disable the corresponding 
CLISPIFY transformation. Thus, if+- is "turned off', A+-B will not transform to ( SETQ A B ), nor vice 
versa. 

(CLISPIFY XL) [Function] 
Oispifies x. If x is an atom and L is NIL, x is treated as the name of a function, 
and irs definition (or EXPR property) is clispified. After CLISPIFY has finished. x 
is redefined (using /PUTD) with its new CLISP definition. The value of CLISPIFY 
is x. If x is atomic and not the name of a function, spelling correction is attempted. 
If this fails, an error is generated. 

If x is a list, or L is not NIL, x itself is the expression to be clispified. If L is not 
NIL, it is the edit push-down list leading to x and is used to determine context 
as with DWIMI FY, as well as to obtain the local declarations, if any. The value of 
CLISPIFY is the clispified version of x. 

(CLISPIFYFNS FN1 •• • FNN) . [NLambda NoSpread Function} 
Like OWIMIFYFNS (page 16.16) except calls CLISPIFY instead of DWIMIFY. 

26The new expression may however contain some ·'pieces" of the original. since CL ISP IF Y attempts to 
minimize the number of CONSes by not copying structure whenever possible. 
27Except for those functions whose INFO property is or contains the atom EVAL. CLISPIFY also contains 
built in infonnation enabling it to process special fonns such as PROG. SELECTQ, etc. If the INFO 
property is or contains r.he atom LABELS. CLISPIFY will never create an atom (by packing) at the top 
level of the expression. PROG is handled in this fashion. 

16.17 



CL:FLG 

CLREMPARSFLG 

c, 

CLISPIFY 

[Variable] 
Affects CLISPIFY's handling of forms beginning with CAR. COR. · ·· COOOOR. as 
well as pattern match and record expressions. If CL: FLG is NIL. these are not 
transformed into the equivalent : expressions. This will prevent CL ISP IFY from 
constructing any expression employing a : infix operator. e.g., ( CAOR X) will not 
be transformed to X:2. IfCL:FLG is T, CLISPIFY will convert to: notation 
only when the argument is atomic or a simple list {a function name and one atomic 
argument}. IfCL:FLG is ALL. CLISPIFY will convert to: expressions whenever 
possible. 

CL: FLG is initially T. 

[Variable] 
If T, CLISPIFY will remove parentheses in certain cases from simple forms. 
where "simple" means a function name and one or two atomic arguments. For 
example, (COND ({ATOM X) --)) willCLISPIFY to (IF ATOM X THEN -­
). However, ifCLREMPARSFLG is set to NIL, CLISPIFY will produce ( IF (ATOM 
X) THEN -- ) • Note that regardless of the setting of this flag, the expression ·can 
be input in either form. 

CLREMPARSFLG is initially NIL. 

CLISPIFYPACKFLG [Variable] 

CLISPIFYUSERFN 

FUNNYATOMLST 

CLISPIFYPACKFLG affects the treatment of infix operators with atomic operands. 
If CLISPIFYPACKFLG is T, CLISPIFY will pack these into single atoms. e.g .. 
( I PLUS A ( !TIMES B C)} becomes A+B•c. If CLISPIFYPACKFLG is NIL, 
no packing is done. e.g., the above becomes Au+ueu•uc. 
CLISPIFYPACKFLG is initially T. 

,. [Variable] 
If T. causes the function CLISPIFYUSERFN, which should be a function of one 
argument. to be called on each form (list) not otherwise recognized by CLISPIFY. 
If a non-NIL value is returned. it is treated as the clispi:fied form. Initially NIL 

Note that CLISPIFYUSERFN must be both set and defined to use this feature. 

[Variable] 
Suppose the user has variables named A. B. and A*B. IfCLISPIFY were to conven 
( IT IMES A B) to A*B. A*B would not translate back correctly to ( I TIMES A 
B), since it would be the name of a variable. and therefore would not cause 
an error. The user· can prevent this from happening by adding A*B to the list 
FUNNYATOMLST. Then. (.IT IMES A B) would-CLISPIFY to AU*UB. 

Note that A*B's appearance on FUNNYATOMLST would no& enable DWIM and 
CUSP to decode A*B+C as ( !PLUS A*B C); FmJNYATOMLST is used only by 
CLISP I FY. Thus. if an identifier contains a CUSP character, it should always be 
separated (with spaces) from other operators. For example. if x• is a variable. the 
user should write ( SETQ x• FORM) in CUSP as X*U+-FORM. not x•+-FOR.W. In 
general. it is best to avoid use of identifiers containing CUSP character operators 

16.18 

(; 
-c-

('t ___ ._ .. 



o-

CLISP 

as much as possible. 

16.8 MISCELLANEOUS FUNCTIONS AND VARIABLES 

CLISPFLG [Variable] 
If set to NIL, disables all CLISP infix or prefix transformations (but does not affect 
IF /THEN/ELSE statements, or iterative statements}. 

If CLISPFLG=TYPE-IN, CLISP transformations are performed only on expres· 
sions that are typed in for evaluation. i.e., not on user programs. 

If C LISP F LG = T, CLISP transformations are performed on all expressions.- · 

The initial value for CLISPFLG is T. CLISPIFYing anything will cause CLISPFLG 
to be set to T. 

CLISPCHARS [Variable] 
A list of the operators that can appear in the interior of an atom. Currently ( + -
• I 1' - I = ... : < > +- -= © ! ). 

CLISPCHARRAY [Variable] 
A bit table of the characters on CLISPCHARS used for calls to STRPOSL (page 
2.31). CLISPCHARRAY is initialized by performing ( SETQ CLISPCHARRAY 
(MAKEBITTABLE CLISPCHARS)). 

CLIS·PINFIXSPLST [Variable] 

CLISPARRAY 

A list of infix operators used for spelling correction. 

[Variable] 
Hash array used for storing CLISP translations. CLISPARRAY is checked by 
FAULTEVAL and FAULTAPPLYon erroneous forms before calling DWIM, and by 
the compiler. 

(CLISPTRAN x TRAN) [Function] 
Gives x the translation TRAN by storing (key x. value TRAN) in the hash array 
CLISPARRAY. CLISPTRAN is called for all CUSP translations. via a non-linked. 
external function call. so it can be advised. 

( CLISPDEC DECLST) [Function] 

(CLDISABLE OP} 

Puts into effect the 'cieclarations in DECLST (see page 16.9}. CLISPDEC performs 
spelling corrections on words not recognized as declarations. CLISPDEC is 
undoable. 

[Function] 
Disabl~s the CUSP operator OP. For example. (CLDISABLE '-) makes - be 
just another character. C LD I SABLE can be used on all CUSP operators. e.g .. 
infix operators. prefix operators. iterative statement operators. ete. C LD I SABLE is 

16.19 



Miscellaneous Functions and Variables 

undoable. -

Note: Simply removing a character operator from CLISPCHARS will prevent it 
from being treated as a CLISP operator when it appears as part of an atom. but it 
will continue to be an operatar when it appears as a separate atom. e.g. (FOO + 
X) vs FOO+X. 

CLISPIFTRANFLG (Variable] 
Affects handling of translations of IFITHENIELSE statements (see page 4.4). If T, 
the translations are stored elsewhere. and the (modified) CUSP retained. If N IL. 
the corresponding CONO expression replaces the CLISP. Initially T. 

CLISPIFYPRETTYFLG [Variable} 
lfnon·NIL. causes PRETTYPRINT {and therefore PP and MAKEFILE) to CLISPIFY 
selected function definitions before printing them according to the following- inter­
pretations of CLISPIFYPRETTYFLG: 

ALL 

Tor EXPRS 

CHAtlGES 

a list 

Clispify all functions. 

Clispify all functions currently defined as EXP Rs. 

Clispify all functions marked as liaving been changed. 

Clispify all functions in that list. 

CLISPIFYPRETTYFLG is (temporarily) reset to T when MAKEFILE is called with 
the option CLISPIFY. and reset to CHANGES when the file being dumped has the 
property FILETYPE value CLISP. CLISPIFYPRETTYFLG is initially NIL. 

Note: If CLISPIFYPRETTYFLG is non-NIL. and the only transformation per· 
formed by DWIM are well formed CLISP transformations. i.e .• no spelling correc­
tions. the function will not be marked as changed, since it would only have to be 
re-clispified and re-prettyprinted when the file was written out. • 

()-
- \. 

r PRETTYTRANFLG [Variable] r:t. 
f 

{PPT X) 

CLISP: 

CL 

If T. causes PRETTYPRINT to print translations instead of CLISP expressions. \ _,,~ 
This is useful for exporting to a LISP system that does not have CUSP. 
PRETTYTRANFLG is (temporarily) reset to T when ~AKEFILE is called with the 
option NOCLISP. PRETTYTRANFLG is initially NIL. 

[NLambda NoSpread Function] 
Both a function and an edit macro for prenyprinting translations. It performs a 
PP .µter first resetting PRETTYTRANFLG to T. thereby causing any translations to 
be printed instea4 of the corresponding CLISP. . · 

[Editor Command) 
Edit macro that obtains the translation of the correct expression. if any, from 
CLISPARRAY, and calls EDITE on it. 

[Editor Command! 
Edit macro. Replaces current expression with CLISP I FYed current expression. 
Current'. expression can be an element or tail. 

16.20 



ow 

CUSP 

[Editor Command] 
Edit macro. DWIM-IFYs current expression, which can be an element (atom or list) 
or tail. 

Both CL and OW can be called when the current expression is either an element or a tail and will work 
properly. Both consult the declarations in the function being edited, if any. and both are undoable. 

(LOWERCASE FLG) [Function] 
If FLG=T, LOWERCASE makes the necessary internal modifications so that 
CLISPIFY will use lower case versions of ANO, OR, IF. THEN, ELSE. ELSE IF, and 
all i.s. operators. This produces more readable output. Note that the user can 
always type in either upper or lower case (or a combination}. regardless of the 
action of LOWERCASE. If FLG= NIL. CL ISP I FY will use uppercase versions of 
ANO, OR, et al. The value of LOWERCASE is its previous "setting". LOWERCASE is 
undoable. The.initial setting for LOWERCASE is T. 

16.9 CLISP INTERNAL CONVENTIONS 

CLISP is almost entirely table driven by the property lists of the corresponding infix or prefix operators. 
For example, much of the information used for translating the + infix operator is stored on the property 
list of the litatom .. + ... Thus it is relatively easy to add new infix or prefix operators or change old ones. 
simply by adding or changing selected property values. (There is some built in information for handling 
minus, : , ', and -. i.e., the user could not himself add such .. special" operators, although he can disable 
or redefine them.} 

Global declarations operate by changing the LISPFN and CLISPitffIX propenies of the appropriate 
operators. 

CLISPTYPE 

UNARYOP 

[Property Name] 
The property value of the property CLISPTYPE is the precedence number of the 
operator: higher values have higher precedence, i.e., are tighter. Note that the 
actual value is unimportant. only the value relative to other operators. For example, 
CLISPTYPE for :, 1", and • are 14. 6. and 4 respectively. Operators with the 
same precedence group left to right, e.g .• / also has precedence 4, so A/8 •c is 
(A/8) •c. 
An operator can have a different left• and right precedence by making the value 
of CLISPTYPE be a dotted pair of two numbers, e.g .. CLISPTYPE of .. is ( 8 . 
-12). In this case, CAR is the left precedence. and CDR the right. i.e .•. CAR is used 
when comparing with operators on the left, and CD R with operators on the right. 
For example, A*B+-C+e is parsed as A•(B+-(C+O)) because the left precedence 
of ~ is 8. which is higher than that of •. which is 4. The right precedence of .. is 
-12, which is lower than that of+, which is 2. 

If the CLISPTYPE property for any operator is removed. the corresponding CUSP 
transformation is disabled. as well as the inverse C LISP IF Y transformation. 

. [Property Namej 
The value of property UNARYOP must be T for unary operators or bracketS. The 

16.21 



BROADSCOPE 

LISPFN 

/ 

~ SETFN 

CLISPINFIX 

CLISPWORO 

CLISP Internal Conventions 

operand is always on the right. i.e .• unary operators or brackets are always prefix 
operators. 

[Propeny Name] 
The value of property BROADSCOPE is T if the operator has lower precedence 
than Interlisp forms, e.g., LT, EQUAL, AND, etc. For example, ( FOO X AND Y) 
parses as ( ( FOO X) AND Y ). If the BROAOSCOPE property were removed from 
the property list of AND, ( FOO X ANO Y) would parse as { FOO { X AND Y) ). 

[Property Name] 
The value of the property LISPFN is the name of the function to which the infix 
operator translates. For example. the value of LISPFN for.,. is EXPT, for ' QUOTE. 
etc. If the value of the property LI SP n, is NIL, the infix operator itself is also 
the function. e.g., AND, OR, EQUAL. 

[Property Name] 
If FOO has a SETFH property FIE, then (FOO --)+-X translates to (FIE -­
X). For example, if the user makes EL T be an infix operator, e.g. #, by putting 
appropriate CLISPTYPE and LISPFN properties on the property list of# then he 
can also make# followed by+- translate to SETA, e.g., X#N+-Y to ( SETA X N Y ), 
by putting SETA on the property list of EL T under the property SETFN. Putting 
the list ( ELT} on the property list of SETA under property SETFN will enable 
SETA forms to CLISPIFY back to ELT's. 

[Propercy Name] 
The value of this property is the CLISP in.fix· to be used in CLI SP I FYing. This 
property is stored on the property list of the corresponding Interlisp function. e.g., 
the value of propeny CLISPINFIX for EXPT is 1-, for QUOTE is ' etc. 

[Property Name] 
Appears on the property list of clisp operators which can appear as CAR of a form. 
such as FETCH, REPLACE. IF, iterative statement operators. etc. Value of propercy 
is of the form ( KEYWORD • NAME), where NAME is the lowercase version of the 

/\,.j. 
\ I ..• 

operator, and KEYWORD is its type, e.g. FORWORD, I FWORD, RECORDWORD. etc. (---""?\ 
\. /-1: 

KEYWORD can also be the name of a function. When the atom appears as CAR 
of a form, the function is applied to the form and the result taken as the correct 
form. [n this case, the function should either physically change the form, or call 
CLISPTRAN (page 16.19) to store the translation. 

As an example. to make & be an infix character operator meaning OR, the user could do the following: 

~(PUTPROP '& 'CLISPTYPE (GETPROP 'OR 'CLIS~TYPE)) 
~(PUTPROP '& 'LISPFN 'OR) 
~(PUTPROP '& 'BROAOSCOPE T) 
~(PUTPROP 'OR 'CLISPINFIX '&) 
~(SETQ CLISPCHARS (CONS '& CLISPCHARS)) 
~(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS)) 

16.22 



0 

(~-\,_ 
"-./.\~ 

--~: 

Q) 

CHAPTER 17 

THE TELETYPE EDITOR 

The Interlisp teletype editor allows rapid. convenient modification of list structures. Most often it is 
used to edit function definitions, (often while the function itself is running) via the function ED ITF, e.g., 
EDITF(FOO). However, the editor can also be used to edit the value of a variable, via ED ITV, to edit a 
property list, via EDITP, or to edit an arbitrary expression, via EDITE. It is an important feature which 
allows good on-line interaction in the Interlisp system. 

In Interlisp-D, most editing is done using the display editor DEdit (page 20.1), which is an extended, 
display-oriented version of the teletype editor. The teletype editor is still available, as it offers a facility 

. for doing complex modifications of program structure under program control. For example, BREAK IN 
(page 10.5) calls the teletype editor to insen a function break within the body of a function. By calling 
the function EDITM0DE (page 20.2) it is possible to set the .. default editor" (TELETYPE or DISPLAY) 
called by Masterscope, the break package. etc. 

This chapter begins with· a lengthy introduction intended for the new user. The reference portion begins 
on page 17.9. 

17.1 INTRODUCTION 

Let us introduce some of the basic editor commands, and give a flavor for the editor's language structure 
by guiding the reader through a hypothetical editing session. Suppose we are editing the following 
incorrect definition of APPEND: 

[LAMBDA (X) 
y 
(COND 

((NUL X) 
Z) 

(T (CONS (CAR) 
(APPEND {COR X Y] 

We call the editor via the function EDITF: 

+-EDITF(APPENO) 
EDIT 
.• 

The editor responds by typing EDIT followed by •. which is the editor's prompt character. This signifies 
that the editor is ready to accept commands. In the examples in this chapter, all lines beginning with • 
were typed by the user, the rest by the editor. 

At any given moment. the editor's attention is centered on some substructure of the expression being 

li.l 



I 

,---
; \ 

) 

.. _.,./ 

Introduction 

edited. This substructure is called the current expression. and it is what the user sees when he gives the 
editor the command P, for print. Initially, the current expression is the top level one. i.e.. the entire 
expression being edited. Thus: 

•p 
(LAMBDA (X) Y (CONO & &)) 
• 
Note that the editor prints the current expression as though printlevel (page 6.18) were set to ( 2 • 2 0 ) • 
i.e .. sublists of sublists are printed as &. tails of long lists printed as --. The command 7 will print the 
current expression as though printlevel were 1000. 

•1 
(LAMBDA {X) Y (CONO ((NUL X) Z) (T (CONS (CAR) (APPEND (COR X Y)))))) 
• 
and the command PP will prettyprint the current expression. 

A positive integer is interpreted by the editor as a command to descend into the correspondingly numbered 
element of the current expression. Thus: 

A negative integer has a similar effect. but counting begins from the end of the current expression and 
proceeds backward. i.e .• -1 refers to the last element in the current expression. ""'.2 the next to the last. 
etc. For either positive integer or negative integer. if there is no such element. an error occurs. "Editor 
errors" are not the same as Interlisp function errors. i.e .• they never cause breaks or even go through the 
error machinery but are direct calls to ERROR! indicating that a command is in some way faulty. What 
happens next depends on the context in which1!he command was being executed. For example. there are 
conditional commands which branch on errors. In most situations, though. an error will cause the editor 
to type the faulty command followed by a ? and wait for more input. Note that typing control-E while 
a command is being executed aborts the command exactly as though it had caused an error. The current 
expression is never changed when a command causes an error. Thus: 

•p 
(X) 
•2 

• 
A phrase of the fonn "the current expression is changed,. or "the current expression becomes·· refers to a 
shift i11 the editor's attention. not to a modification of the structure being edited. 

When the user changes the current expression by descending into it. the old current expression is not lost. 
Instead. the editor actually operates by maintaining a chain of expressions leading to the current one. The 

l7.2 

f\,, 
\ __ ,,i~ 

- '-· ,• 



. 0-, 
.-, 

. .,;• 

THE TELETYPE EDITOR 

__ current expression is simply the last link in the chain. Descending adds the indicated subexpression onto 
the end of the chain. thereby making it be the current expression. The command 0 is used to ascend the 
chain; it removes the last link of the chain. thereby making the previous link be the current expression. 
Thus: 

•p 
X 
•o P 
(X) 
•o -1 P 
(COND (& Z) (T &)) 
• 
Note the use of several commands on a single line in the previous output The editor operates in a line 
buffered mode. the same as EVALQT. Thus no command is actually seen by the editor. or executed. until 
the line is terminated. either by a carriage return. or a matching right parenthesis. The user can thus use 
control-A and control-Q for line-editing edit commands. the same as he does for inputs to the Interlisp 
executive. 

In our editing session. we will make the following corrections to APPEND: delete Y from where it appears. 
add Y to the end of the argument list. change HUL to NULL. change Z to Y. add X after CAR. and insert 
a right parenthesis following CD R X. 

First we will delete Y. By now we have forgotten where we are in the function definition. but we want to 
be at the "top" so we use the command 1', which ascends through the entire chain of expressions to the 
top level expression. which then becomes the current expression. Le.. 1' removes all links except the first 
one. -

*1' p 
(LAMBDA (X} Y (COND & &)) 
• 
Note that if we are already at the top. 1' has no effect. Le .• it is a no-op. However. 0 would generate an 
error. In other words. 1' means "go to the top." while 0 means "ascend one link." 

The basic structure modification commands in the editor are: 

(N) (N>l) [Editor Command] 
Deletes the corresponding element from the current expression. 

( N E1 • • • E~) { N~ 1 ) [Editor Command] 
Replaces the Nth element in the current expression with E 1 • : • EM. 

(-N E1 • .. EM) (N~ 1) [Editor Command] 
Inserts E1 • • • EM before the Nth element in the current expression. 

Thus: 

•p 
(LAMBDA (X) Y {COND & &)) 
*(3) 
*(2 (X Y)) 
•p 

17.3 



-~-

Introduction 

(LAMBDA (X Y) (COND & &)) 
• 
All structure modification done by the editor is destructive. i.e.. the editor uses RPLACA and RPLACO to 
physically change the structure it was given. 

Note that all three of the above commands perform their operation with respect to the Nth element from 
the front of the current expression: the sign of N is used to specify whether the operation is replacement 
or insertion. Thus. there is no way to specify deletion or replacement of the Nth element from the 
end of the current expression, or insertion before the Nth element from the end without counting out 
that element's position from the front of the list. Similarly, because we cannot specify insertion after 
a particular element. we cannot attach something at the end of the cUITent expression using the above 
commands. Instead. we use the command N (for NCOHC). Thus we could have performed the above 
changes instead by: 

•p 
(LAMBDA (X) Y (COND & &)) 
•(3) 
•2 ( N Y) 
•p 
(X Y) 
• .,. p 
•(LAMBDA (X Y) (Corm & &)) 
• 
Now we are ready to change NUL to NULL. Rather than specify the sequence of descent commands 
necessary to reach NUL. and then replace it with ~JULL. e.g .. 3 2 1 ( 1 NULL), we will use F, the find 
command. to find NUL: · · 

•p 
(LAMBDA (X Y) (COND & &)) 
•F NUL 
•p 
(NUL X) 
•(1 NULL) 
•o P 
((NULL X) Z) 
• 
Note that F is special in that it corresponds to two inputs. In other words. F says to the editor, "treat 
your next command as an expression to be searched for." The search is carried out in printout order in 
the current expression. If the target expression is not found there. F automatically ascends and searches 
those portions of the higl\er expressions that would appear after (in a printout) the. current expression. ff 
the search is successful the new current expression will be the structure where the expression was found. 1 

and the chain will be the same as one resulting from the appropriate sequence of ascent and descent 

1 If the search is for an atom. e.g .• F NUL. the current expression will be the structure containing the 
atom. 

17.4 

n 
··-·c-.·.· 

c~ \, .. .,_., 



/J,-~ 
\ . 

THE TELETYPE EDITOR 

. commands. If the search is not successfuL an error occurs, and neither the current expression nor the 
chain is changed:2 

•p 
((NULL X) Z) 
•F COND P 

COND? 
•p 
•((NULL X) Z) 
• 
Here the search failed to find a COND following the current expression. although of course a COND does 
appear earlier in the structure. This last example illustrates another facet of the error recovery mechanism: 
to avoid funher confusion when an error occurs, all commands on the line beyond the one which caused 
the error (and all commands that may have been typed ahead while the editor was computing) are 
forgotten. 

We could also have used the R command (for Replace) to change NUL to NULL. A command of the form 
( R E1 E2) will replace all occurrences of E1 in the current expression by E2• There must be at least one 
such occurrence or the R command will generate an error. Let us use the R command to change all Z"s 
(even though there is only one) in APPEND to Y: 

•1' (R Z Y) 
•F Z 

Z 1 
•pp 
[LAMBDA (X Y} 

(COND 
((NULL X} 

Y) 
(T (CONS (CAR} 

(APPEND (CDR X Y] 
• 
The next task is to change (CAR) to (CAR X). We could do this by (R (CAR) (CAR X) ), or by: 

•F CAR 
•(N X) . 
•p 
{CAR X) 
• . . 
The expression we now want to change is the next expression after the current expression: i.e .. we· are 
currently looking at (CAR X) in (~ONS (CAR X) (APPEND (CDR X Y)) ). We could get to the 

2F is never a no-op, i.e.: if successful. the current expression after the search will never be the same as the 
current expression before the search. Thus F EXPR repeated without intervening commands that change 
the edit chain can be used to find successive instances of EXPR. 

17.5 



Introduction 

APPEND expression by typing 0 and then 3 or -1, or we can use the command NX, which does both 
operations: 

•p 
(CAR X) 
•NX P 
(APPEND (COR X Y)) 
• 
Finally, to change ( APPEND ( COR X Y)) to ( APPEND ( CCR X) Y), we could perform ( 2 ( CCR 
X) Y), or (2 (CCR X)) and (N Y), or 2 and (3), deleting the Y, and then 0 (N Y). However. if 
Y were a complex expressio~ we would not want to have to. retype it. Instead. we could use a command 
which effectively inserts and/or removes left and right parentheses. There are six of these commands: BI 
("Both In"}, BO ("Both Out"), LI ("Left In'"}, LO ("Left Out"), RI ("Right In"), and RO ("Right Out"). 
Of course. we will always have the same number of left parentheses as right parentheses. because the (l:j 
parentheses are just a notational guide to strucrure that is provided by our print program. Herein lies one 
of the principal advantages of a LISP oriented editor over a text editor: unbalanced parentheses errors 
are not possible. Thus. LI. LO. RI, and RO actually do not insen or remove just one parenthesis, but this 
is very suggestive of what acrually happens. 

In this case, we would like a right parenthesis to appear following X in ( CO R X Y). Therefore, we use 
the command ( RI 2 2 ) • which means insen a right parentheses after the second element in the second 
element (of the current expression): 

•p 
(APPEND (COR X Y)) 
•(RI 2 2) 
•p 
(APPEND (CDR X) Y) 
• 
We have now finished our editing, and can exit from the editor, to test APP ENO, or we could test it while 
still inside of the editor, by using the E command: 

•E APPENO((A B) (COE)) 
(ABC DE) 
• 
The E command causes the next input to be evaluated ·by Interlisp. If there is another input following 
it. as in the above example. the first will be applied (with APPLY) to the second. Otherwise. the input is 
evaluated (with EVAL}. · 

We prenyprint APPEND, and leave the editor. 

•pp 
(LAMBDA {X Y) 

(CONO 
((NULL X) 

Y) 
(T (CONS (CAR X) 

(APPEND (CDR X) Y] 
*OK 

17.6 



; 0 -~ 

THE TELETYPE EDITOR 

APPEND 
+-

17.2 COMMANDS FOR THE NEW USER 

As mentioned earlier. the Interlisp manual is intended primarily as a reference manual. and the remainder 
of this chapter is organized and presented accordingly·. While the commands introduced in the previous 
scenario constirute a complete set. i.e.. the user could perform any and all editing operations using just 
those commands. there are many siruations in which knowing the right comrn:md(s) can save the user 
considerable effort. We include here as pan of the introduction a list of those commands which are not 
only frequently applicable but also easy to use. They are not presented in any particular order, and are 
all discussed in detail in the reference portion of the chapter. 

UNDO 

BK 

BF 

\ 

\P 

[Editor Command] 
Undoes the last modification to the strucrure being edited, e.g .• if the user deletes 
the wrong element. UNDO will restore it. The availability of UNDO should give the 
user confidence to experiment with any and all editing commands. no matter how 
complex. because he can always reverse the effect of the command. 

(Editor Command] 
Like NX, ·except makes the expression immediately before the current expression 
become current. 

[Editor Command] 
Backwards Find. Like F, except searches backwards. i.e., in inverse print order. 

[Editor Command] 
Restores the current expression to the expression before the last .. big jump", e.g .. 
a find command. an 1', or another\. For example. if the user types F COHO, and 
then F CAR, \ would take him back to the COND. Another \ would take him back 
to the CAR. 

(Editor Command] 
Like \ except it restores the edit chain to its state as of the last print, either by P, 
? , or PP. If the edit chain has not been changed since the last print, \ P restores it 
to its state as of the printing before that one, i.e., two chains are always saved. 

Thus if the user types P followed by 3 2 1 P, \P will take him back to the first P, i.e., would be 
equivalent to O O 0. Another \P would then take him back to the second P. Thus the user can use \P 
to flip back and fonh between two current expressions. 

The search expression given to· the F or BF command need nor be a literal expression. Instead. it can be 
a pattern. The symbol & can be used anywhere within this pattern to match with any single elemem of a 
list. and -- can be used to match with any segment of a list. Thus. in the incorrect definition of APPEND 
used earlier. F ( NUL & ) could have been used to find ( NUL X ).· and F ( CDR --) or F ( CDR & & ). 
but not F (CDR &), to find (CDR X Y). 

Note that & and -- can be nested arbitrarily deeply in the pattern. For example. if there are many places 
where the variable Xis ser. F SETO may not find the desired expression. nor may F {SETO X &). It 

17.7 



Commands for the New User 

. · may be necessary to use F ( SETQ X ( LIST --) ). However. ·the usual technique in such a case is to 
pick out a unique atom which occurs prior to the desired expression. and perform two F commands. This 
"homing in" process seems to be more convenient than ultra-precise specification of the pattern. 

S (<esc>) is equivalent to -- at the character level. e.g .. VER$ will match with VERYLONGATOM, as will 
SA TOM, SLOrms. (but not $LONG) and SVSNSMS. s can be nested inside of a pattern. e.g .. F { SETQ 
VER$ ( CONS -- ) ). 

If the search is successful. the editor will print = followed by the atom which matched with the S-atom. 
e.g., 

*F {SETQ VERS &) 
=VERYLOHGATOM 
• 
Frequently the user will want to replace the entire current expression. or insert something before it. In 
order to do this using a command of the form {N B1 ··· Eu) or {-N B1 ··· Eu), the user must be 
above the current expression. In other words. he would have to perform a O followed by a command 
with the appropriate number. However. if he has reached the current expression via an F command. he 
may not know what that number is. In this case. the user would like a command whose effect would be 
to modify the edit chain so that the current expression became the first element in a new, higher current 
expression. Then he could perform the desired operation via ( 1 E1 EM) or ( -1 E1 • • • EM). UP 
is provided for this purpose. 

UP [Editor Command} 
After UP operates. the old current expression is the first element of'"the new current 
expression. Note that if the current expression happens to be the first element 
in the next higher expression. then UP is exactly the same as o. Otherwise, UP 
modifies the edit chain so that the new current expression is a proper tail (page 
2.19) of the next higher expression: 

•F APPEND P 
{APPEND (CDR X) Y) 
•up P 
·· · (APPEND & Y)) 
•o P 
(CONS {CAR X) (APPEND & Y)) 
• 
The · · · is used by the editor co indicate· that the current expression is a tail of 
the next higher expression as opposed to being an element (i.e .• a member) of the 
next higher expression. Note: if the current expression is already a tail. UP has no 
effect. 

[Editor Command) 
lnsens E 1 · • • EM before the current expression. i.e., does an UP and then a. ( -1 
E1 .. • EM). 

[Editor Command] 
Insens E 1 • • • E!>t after the current expression. i.e .. does an UP and then either a 
( - 2 E 1 · · • EM) · or an { N e I EM). if the current expression is the last one 
in the next higher expression~ · 

17.8 

r'\ 
\ -~ -, ... 



.. . 
,,...~ ~ 
\__)'J 

I ,,._,. O .'i 

DELETE 

THE TELETYPE EDITOR 

[Editor Command] 
Replaces the current expression by E1 • • • EM• i.e., does an UP and then a ( 1 E1 
... EM)• 

[Editor Command] 
Deletes the current expression: equivalent to ( : ) • 

Earlier, we introduced the RI command in the APPEHD example. The rest of the commands in this 
family: BI, BO, LI, LO, and RO, perform similar functions and are useful in cenain situations. In addition, 
the commands MBD and XTR can be used to combine the effects of several commands of the BI-BO 
family. MBD (page 17.28) is used to embed the current expression in a larger expression. For example, 
if the current expression is (PRINT bige:cpreuioa), and the user wants to replace it by {C0ND { FLG 
{PRINT bigezpresaioa))).hecouldaccomplishthisby (LI 1). (-1 FLG), (LI 1),and (-1 C0N0), 
or by a single MBD command. 

XTR (page 17.27) is used to eXTRact an expression from the current expression. For example, extracting 
the PRINT expression from the above COND could be accomplished by ( 1 ), ( LO 1 ), { 1 ), and ( LO 1) 
or by a single XTR command. The new user is encouraged to include XTR and MBD in his repertoire as 
soon as he is familiar with the more basic commands. 

17.3 LOCAL ATTENTION-CHANGING COMMANDS 

This section describes commands that change the current expression (Le •• change the edit chain) thereby 
"shifting the editor's attention." These commands depend only on the structure of the edit chain. as 
compared to the search commands (presented later). which search the contents of the structure. 

UP [Editor Command] 
UP modifies the edit chain so that the old current expression (i.e .• the one at the 
time UP was called) is the first element j.n the new current expression. If the 
current expression is the first element in the next higher expression UP simply does 
a O. Otherwise UP adds the corresponding tail to the edit chain . 

If a P command would cause the editor to type · · · before typing the current 
expression. ie.. the current expression is a tail of the next higher expression. UP 
has no effect. 

For Example: 

•pp 
(C0ND ((NULL X) (RETURN Y))) 
•1 p 
COND 
•up P 
(C0ND (& &)) 
•-1 p 
((NULL X) {RETURN Y)) 
•up P 

{(NULL X) {RETURN Y)) 
*UPP 

17.9 



'-. 

.. __,,.' 

Local Attention-changing Commands 

••• ((NULL X) (RETURN Y))) 
•F NULL P 
(NULL X) 
•up P 
((NULL X) (RETURN Y)) 
•UPP 
••• ((NULL X) (RETURN Y))) 

The execution of UP is straightforward. except in those cases where the current expression appears more 
than once in the next higher expression. For example, if the current expression is ( A NIL B NIL C 
NIL) and the user performs 4 followed by UP, the current expression should then be • • • NIL C NIL). 
UP can determine which tail is the correct one because the commands that descend save the last tail on an 
internal editor variable, LASTAIL. Thus after the 4 command is executed. LASTAIL is (NIL C NIL). 
When UP is called. it first determines if the current expression is a tail of the next higher expression. If it 
is, UP is finished. Otherwise, UP computes ( MEMB CURRENT-EXPRESSION NEXT-HIGHER-EXPRESSION) 
to obtain a tail beginning with the current expression.3 If there are no other instances of the current 
expression in the next higher expression. this tail is the correct one. Otherwise UP uses LAST A IL to select 
the correct tail. 4 

N (N~l) 

-N (N~l) 

0 

[Editor Command} 
Adds the Nth element of the current expression to the front of the edit chain. 
thereby making it be the new current expression. Sets LASTAIL for use by UP. 
Generates an error if the current expression is not a list that contains at least N 
elements. 

[Editor Command} 
Adds the Nth element from the end of the current expression to the front of the 
edit chain. thereby making it be the new current expression. Sets LAST A IL for 
use by UP. Generates an error if the current expression is not a list that con rains 
at least N elements. 

[Editor Command] 
Sets the edit chain to CDR of the edit chain, thereby making the next higher 
expression be the new current expression. Generates an error if there is no higher 
expression, i.e., CD R of edit chain is NIL. 

Note that O usually corresponds to going back to the next higher left parenthesis, but not always. For 
example: 

3The current expression should always be either a tail or ·an element of the next higher expression. If it 
is neither, for e,;ample the user has directly (and incorrectly) manipulated the edit chain. UP generates· an 
error. 
4Occasionally the user can get the edit chain into a state where LASTAIL cannot resolve the ambiguity, 
for example if there were two non-atomic structures in the same expression that were EQ, and the user 
descended more than one level into one of them and then tried to come back out using UP. In this case. 
UP prints LOCATION UNCERTAIN and generates an error. Of course. we could have solved this problem 
completely in our implementation by saving at each descent both elements and C.'.l.ils. However. this would 
be a costly solution co a situation that arises infrequently, and when it does. has no detrimental effects. 
The LAST AIL solution is cheap and resolves 99% of the ambiguities . 

17.10 

(}_ 
--l''· ... 



O.~ 

•p 
(ABC DEF B} 
•3 UPP 
... CD EFG} 
*3 UPP 
• • • E F G) 
•o P 
.•• CD EFG} 

THE TELETYPE EDITOR 

If the intention is to go back to the next higher left parenthesis, regardless of any intervening tails, the 
command l 0 can be used. 

!0 

NX 

BK 

[Editor Command] 
Does repeated O's until it reaches a point where the current expression is not a 
tail of the next higher expression, i.e., always goes back to the next higher left 
parenthesis. 

[Editor Command] 
Sets the edit chain to LAST of edit chain. thereby making the top level expression 
be the current expression. Never generates an error. 

[Editor Command] 
Effectively does an UP followed by a 2. thereby making the current expression be 
the next expression. Generates an error if the current expression is the last one in 
a list. (However. ! NX described below will handle this case.} 

[Editor Command] 
Makes the current expression be the previous expression in the next higher 
expression. Generates an error if the current expression is the first expression 
in a list. 

For example. 

•pp 
(COND ((NULL X) (RETURN Y))} 
*F RETURN P 
(RETURN Y) 
*BK P 
(NULL X) 

Both NX and BK operate by performing a ! 0 followed by an appropriate number, i.e., there won't be 
an extra tail above the new current expression. as there would be if N X operated by performing an UP 
followed by a 2. 

(NX N} 

(BK N) 

[Editor Command) 
(N ~ 1} Equivalent to N N X commands, except if an error occurs, the edit chain 
is not changed. 

[Editor Command] 
(N ~ 1) Equivalent to N BK commands, except if an error occurs, the edit chain 
is not changed. 

17.11 



Loc~l Attention-changing Commands 

Note: ( NX -N) is equivalent to ( BK N}, and vice versa. 

!NX [Editor Command] 
Makes the current expression be the next expression at a higher level. i.e.. goes 
through any number of right parentheses to get to the next expression. For 
example: 

•pp 
{PROG ((LL) 

(UF L)) 
LP (COND 

((NULL (SETQ L (CDR L})) 
( ERROR 1)) 

([NULL {COR (FMEMB {CARL} (CADR L] 
{GO LP))) 

(EDITCOM (QUOTE NX)) 
(SETQ UNFIND UF) 
(RETURN L)) 

*F CDR P 
(CDR L) 
*NX 

NX ?. 
*!NX P 
(ERROR!) 
• rnx P 
((NULL&) (GO LP)) 
•tNX P 
(EDITCOM (QUOTE NX)) 
• 

! NX operates. by doing O's until it reaches a stage where the current expression is not the last expression 
in the next higher expression. and then does a NX. Thus ! NX always goes through at least one unmatched 
right parenthesis. and the new current expression is always on a different level. i.e .• ! NX and NX always 
produce different results. For example using the previous current expression: 

•F CARP 
(CARL) 
*!NX P 
(GO LP) 
*\Pp 
(CARL) 
*NX P .. · 
(CAOR L} 
• 

( fHH N} [Editor Command) 
(N i: 0) Equivalent to N followed by UP. i.e .. causes the list starting with the NT.h 
element of the current expression ( or Nth from the end if N < 0) to become the 
current expression. Causes an error if current expression does not have at least N 

elements. 

17.12 



0/ 

0) 

0 

THE TELETYPE EDITOR 

· (NTH 1) is a no-op. as is {NTH -L) where L is the length of the current 
expression. 

line-feed [Editor Command] 
Moves to the "next,. expression and prints it, i.e. performs a NX if possible. 
otherwise performs a ! NX. (Toe latter case is indcated by first panting "> ".} 

control-X (Editor Command] 
Conttol·X5 moves to the "previous" thing and then prints it, Le. performs a BK if 
possible, otherwise a ! O ·followed by a BK. 

control-Z [Editor Command] 
Conttol·Z6 moves to the last expression and prints it, Le. does -1 followed by P. 

Line-feed. conttol·X, and control·Z are implemented as immediaie read macros; as soon as they are read. 
they abort the current printout. They thus provide a convenient way of moving around in the editor. 
In order to facilitate using different control characters for those macros, the function SETTERMCHARS is 
provided (see page 17.59}. 

17.4 COMMANDS THAT SEARCH 

All of the editor commands that search use the same pattern matching routine (the function ED IT 4 E. page 
17.57). We will therefore begin our discussion of searching by describing the pattern match mechanism. 
A pattern PAT matches with x if any of the following conditions are true: 

(1) 

·c2> 
(3) 

(4) 

(5) 

(6) 

If PAT is EQ to X. 

If PAT is&. 

If PAT is a number and EQP to x. 

If PAT is a string and ( STREQUAL PAT X) is true. 

If { CAR PAT) is the atom •ANY•, ( CDR PAT) is a list of patterns, and one of the patterns on 
( CDR PAT) matches x. 

If PAT is a literal atom or string containing one or more Ss ( <esc>s), each S can match an 
indefinite number (including 0) of contiguous characters in the atom or string x. e.g.. VE RS 
matches both VERYLONGATOM and "VERYLONGSTRING" as do $LONG$ (but not $LONG), 
and SVSLSTS. Note: the atom S (<esc>) matches only with itself. . . 

(7) If PAT is a literal atom or string ending in two <esc>s. PAT matches with the atom or string x 
if it is "close" to PAT, in the sense used by the spelling corrector (page 15.13). E.g. cor,ssss 
matches with CONS, CNONC:SS with NCONC or NCONC1. 

5Concrol·A in Interlisp on TOPS-20. 
6Control·L in Interlisp on TOPS-20. 

17.13 



Commands That Search 

The pattern matching routine always· types a message of the form =MATCHING-ITEM to inform the user 
of the object matched by a pattern of the above two types. unless EOITQUIETFLG=T. For example. if 
VERS matches VERYLONGATOM. the eclitor would print =VERYLONGATOM. 

(8) If (CAR PAT) is the atom --, PAT matches x if (CDR PAT) matches with some tail of x. 
Forexample, (A -- (&)) will match with (ABC (D)). but not (ABC 0), or (ABC 
(0) E). However. note that (A -- (&) --) will match with (A B C (D) E). In other 
words. - - can match any interior segment of a list. 

If (CCR PAT)= NIL. i.e .. PAT=(--), then it matches any tail of a list. Therefore. (A --) 
matches (A), (A B C) and (A • B ). 

(9) If { CAR PAT) is the atom ==. PAT matches x if and only if { CDR PAT) is EQ to x. 

This pattern is for use by programs that call the editor as a subroutin~ since any non-atomic 
expression in a command typed in by the user obviously cannot be E Q to already existing 
structure. 

(10) If ( CAOR PAT) is the atom • • (two" periods), PAT matches x if ( CAR PAT) matches ( CAR 
x) and { COOR PAT) is contained in x. as described on page 17.20. 

(11) Otherwise if xis a list, PAT matches x if (CAR PAT) matches (CAR X), and (CCR PAT) 
matches ( COR x). 

When the editor is searching. the pattern matching routine is called to match with elements in the structure. 
unless the pattern begins with ••• (three· periods}, in which case CCR of the pattern is matched against 
proper tails in the structure. Thus, · 

•p 
(A B C (B C)) 
•F (B --) 
•p 
(BC) 
•o F ( .•• B --) 
•p 
... B C (B C)) 

Matching is also attempted with atomic tails ( except for NIL). Thus, 

•p 
(A (B . C)) 
•F C 
•p 
•. : . C) 

-Although the current expression is the atom C after the final command, it is printed as . . . . C ) to 
alert the user to the fact· that C is a /ail. not an element. Note that the pattern C will match with either 
instance of C in ( A C ( B . C) ) • whereas ( . . . . C) will match- only the second C. The pattern NIL 
will only match with NIL as an element. i.e .. it will not match in ( A B), even though COD R of ( A B) 
is NIL. However. ( . . . . NIL) (or equivalently ( ... ) ) may be used to specify a NIL rail, e.g., { ... 

17.14 



THE TELETYPE EDITOR 

;· NIL) will match with CD R of the third subexpression of ( ( A 

17.4.1 Search Algorithm 

8) (C • D) (E)). 

Searching begins with the current expression and proceeds in print order. Searching usually means find 
the next instance of this pattern. and consequently a match is not attempted that would leave the edit 
chain unchanged. At each step. the pattern is matched against the next element in the expression currently 
being searched, unless the pattern begins with • • • (three periods) in which case it is marched against 
the next tail of the expression. 

If the mar.ch is not successful. the search operation is recursive first in the CAR direction. and then in the 
CDR direction. i.e., if the element under examination is a list. the search descends into that list before 

_,..~)-... , attempting to match with other elements (or tails) at the same level. Note: A find command of the form 
~ ,; ( F PATTERN NIL) will only attempts matches at the top level of the current expression. i.e .• it does not 

descend into elements. or ascend co higher expressions. 

However. at no point is the tocal recursive depth of the search (sum of number of CARs and CDRs 
descended inco) allowed to exceed the value of the variable MAXLEVEL. Ac that point. the search of 
chat element or tail is abandoned. exactly as though the element or tail had been completely searched 
without finding a mar.ch. and the search continues with the element or tail for which the recursive depth is 
below MAXLEVEL. This fearure is designed co enable the user to search circular list structures (by setting 
MAXLEVEL small), as well as protecting him from accidentally encountering a circular list strucrure in the 
course of normal editing. MAX LEVEL can also be set to NIL. which is equivalent to infinity. MAX LEVEL 
is initfally set to 300. 

If a successful match is not found in the current expression. the search automatically ascends to the next 
higher expression, and continues searching there on the next expression after the expression it just finished 
searching. If there is none. it ascends again, etc. This process continues until the entire edit chain has 
been searched. at which point the search fails, and an error is generated. If the search fails ( or is aborted 
by control·E). the edit chain is not changed (nor are any C0NSes performed). 

If the search is successful. i.e .• an expression is found that the pattern matches. the edit chain is set to the 
value it would have had had the user reached that expression via a sequence of integer commands. 

If the expression that matched was a list. it will be the final link in the edit chain. i.e .• the new current 
expression. If the expression that matched is not a list, e.g.. is an atom. the current expression will be 
the tail beginning with that atom. unless the atom is a tail. e.g.. B in ( A • B ) • In this case. the current 
expression will be B, but will print as . . • • B). In other words. the search effectively does an UP .7 · 

17.4.2 . Search Commands 

. . . 
All of the commands below set LAST AIL for use by UP, set UNFIND for use by\ (page 17.21}. and d9 
not change the edit chain or perform any C0NSes if they are unsuccessful or aborted. 

F PATTERN [Editor Command] 
Actually two commands: the F informs the editor that the next command is co be 

7Unless UPFINDFLG=NIL (initially set to T). For di~ussion. see "'Form Oriented Editing", page 17.26. 

17.15 



Search Commands 

interpreted as a pattern. This is the most common and useful form of the find 
command. If successful. the edit chain always changes. i.e.. F PATTERN means 
find the next instance of .PATTERN. 

If (MEMB PATTERN CCJRRBNT-EXPRESSION) is true. F does not proceed with 
a full recursive search. If the value of the MEMB is NIL. F invokes the search 
algorithm described on page 17.15. -. 

Note that if the current expression is ( PROG NIL LP ( COND ( -- ( GO LP1))) • · · LPl · · ·), then 
F LPl will find the PROG label. not the LPl inside of the GO expression. even though the latter appears 
first (in print order} in the current expression. Note that typing 1 (making the atom PROG be the current 
expression) followed by F LPl would find tlie first LPl. 

F PATTERN H 

F PATTERN T 

{ F PATTERN N) 

{F PATTERN) 
F PATTERN NIL 

[Editor Command] 
Same as F PATTERN. i.e.. Finds the Next instance of PATTERN, except that the 
MEMB check of F PATTERN is not performed. 

_[Editor Command] 
Similar to F PATTERN, except that it may succeed without changing the edit chain. 
and it does not perform the MEMB check. 

For example. if the current expression is ( COND ... ), F corm will look for the 
next CONO, but ( F CONO T} will .. stay here". 

[Editor Command} 
(N ~ 1) Finds the Nth pl~e that .PATTERN matches. Equivalent to ( F PATTERN 
T) followed by ( F PATTERN N ) repeated N-1 times. Each time PATTERN 

successfully matches, N is decremented by 1. and the search continues. until N 
reaches 0. Note that PATTERN does not have to match with N identical expressions; 
it just has to match N times. Thus if the current expression is ( FOOl F002 
F003 }. ( F FOOS 3) will find F003. 

If PATTERN does not match successfully N times. an error is generated and the edit 
chain is unchanged (even if PATTERN matched N-1 times). 

[Editor Command] 
[Editor Command] 

Similar to F PATTERN, except that it only matches with elements at the top level of 
the current expression. i.e .• the search will not descend into the current expression. 
nor will it go ourside of the current expression. May succeed without changing the 
edit chain. 

For example1 if the current expression is ( PROG NIL ( SETQ X ( CONO & & ) ) ( COND & ) ••• ). the 
command F corm will find the corm inside the SETQ, whereas ( F ( COND -- ) ) will find the top level 
corm. i.e .. the second one. . 

(FS PATTERN1 PATTERN N) [Editor Command] 
Equivalent to F PATTERN1 followed by F PATTERN:z • • • followed by F PATTERN:-,1, 

so that if F PATTEE.Nu fails. the edit chain is left ac the place PATTERN.\f.z 

matched. 

17.16 

n (~ 

(} 
._ -(::.~ 



O' . 
.. -·.•" 

) 
'\" u 

THE TELETYPE EDITOR 

( F = 'EXPRESSION X) [Editor Command) 
Equivalent to ( F ( == • EXPRESSION) x), i.e .• searches for a structure EQ to 
EXPRESSION (see page 17.13). 

{ ORF PATTERNi • • • PATTE.RNN) [Editor Command] 

BF PATTERN 

Equivalent to {F (•ANY•PATTERNz ••• PATTERNN) N). i.e., searches for an 
expression that is matched by either PATTERNi, PATTERN2, • • • or PATTE.RNN (see 
page 17 .13 ). 

[Editor Command] 
"Backwards Fmd". Searches in reverse print order, beginning with the expression 
immediately before the current expression (unless the current expression is the top 
level expression, in which case BF searches the entire expression. in reverse order). 

BF uses the same pattern match routine as F. and MAXLEVEL and UPFINOFLG 
have the same effect. but the searching begins at the end of each list. and descends 
into each element before attempting to match that element. If unsuccessful, the 
search continues with the next previous element. etc.. until the front of the list is 
reached, ~t which poirlt BF ascends and backs up, etc. 

For example, if the current expression is 

(PROG NIL (SETO X (SETO Y (LIST Z)~) (CONO ((SETO W --) --)) --), 

the command F LIST followed by BF SETQ will leave the current expression as { SETO Y ( LIST Z) ), 
as will F COND followed by BF SETQ. .. 

BF PATTERN T [Editor Command] 
Similar to BF PATTERN, except that the search always includes the current 
expression. i.e., starts at the end of current expression and works backward, then 
ascends and backs up, etc. 

Thus in the previous example, where F COND followed by BF SETQ found ( SETQ Y { LIST Z)), F 
COND followed by (BF SETO T) would find the (SETO W --) expression. 

{BF PATTERN) 
BF PATTERN NIL 

(GO LABEL) 

Same as BF PATTERN. 

[Editor Command] 
[Editor Command] 

[Editor Command] 
Makes the current expression be the first thing after the PROG label LABEL, i.e. 
goes where an executed GO would go. 

17.4.3 Location Specification 

Many of the more sophisticated commands described later in this chapter use a more general method of 
specifying positiot1 called a location specification. A location specification is a list of edit commands that 
are executed in the normal fashion with two exceptions. First. all commands not recognized by the editor 
are interpreted as though they had been preceded by F; normally such commands would cause errors. 
For example. the location speci~cation ( COND 2 3) specifies the Jrd element in the first clause of the 

17.17 



Location Specification 

next CON0.8 

Secondly. if an error occurs while evaluating one of the commands in the location specification. and the 
edit chain had been changed. i.e.. was not the same as it was at the beginning of that execution of the 
location specification. the location operation will continue. In other words. the location operation keeps 
going unless it reaches a state where it ,4etects that it is "looping", at which point it gives up_. Thus. if 
( COND 2 3) is being located. and the first clause of the next COND contained only two elements. the 
execution of the command 3 would cause an error. The search would then continue by looking for the 
next COND. However, if a point were reached where the.re were no funher CONDs. then the first command. 
COND. would cause the error; the edit chain would not have been changed. and so the entire location 
operation would fail. and cause an error. 

The IF command (page 17.46) in conjunction with the II# function (page 17.46) provide a way of using 
arbitrary predicates applied to elements in the current expression. IF and ## will be described in detail 
later in the chapter. along with examples illustrating their use in location specifications. 

Throughout this chapter. the meta-symbol @ is used to denote a location specification. Thus ct is a list of 
commands interpreted as described above. ft can also be atomic. in which case it is interpreted as { LI ST 
@). 

( LC • @) 

(LCL • @) 

(2ND. @) 

(3ND. ct) 

( ._ PATTE&'I) 

[Editor Command} 
Provides a way of explicitly invoking the location operation. e.g., { LC COND 2 
3 ) will perform the the search described above. 

[Editor Command} 
Same as LC except the search is confined to the current expression. i.e., the edit 
chain is rebound during the search so that it looks as though the editor were called 
on just the curre~t expression. For example, to find a CONO containing a RETURN. 
one might use the location specification ( COND ( LCL RETURN) \) where the 
\ would reverse the effects of the LCL command, and make the final current 
expression be the COND. 

[Editor Command] 
Same as { LC • @) followed by another { LC • @) except that if the first succeeds 
and second fails. no change is made to the edit chain. 

[Editor Command] 
Similar to 2ND. 

[Editor Command] 
Ascends the edit chain looking for a link which matches PATTERN. In other words. 
it keeps doing O's until it gets to a specified point. If PATTERN is atomic. it is 
matched with the first element of each link\ otherwise with the entire link. If no 
match is found. an error is generated. and the edit chain is unchanged. 

Note: If PATTERN is of the form ( IF EXPRESSION), EXPRESSION °is' evaluated 
at each link. and if its value is NIL. or the evaluation causes an error. the ascent 
continues. See page 17.46. 

8Note that the user could always write F CONO followed by 2 and 3 for ( CONO 2 3) if he were not 
sure whether or not CONO was the name of an atomic command. 

17.18 

0( .... : .. 

,~-­
\ __ L;;• 



0, 

(_} 

0 

For example: 

•pp 
(PROG NIL 

ccmrn 

THE TELETYPE EDITOR 

[(NULL {SETQ L {CDR L))) 
{COND 

{FLG {RETURN L] 
{[NULL (CDR (FMEMB (CARL) 

(CADR L]] 
•F CADR 
•(+- COND) 
•p 
(COND (& &) (& &)) 
• 
Note that this command differs from BF in that it does not search inside of each link., it simply ascends. 
Thus in the above example, F CADR followed by BF COND would find (COND (FLG {RETURN L)) ), 
not the higher COND. 

(BELOW COM x) 

(BELOW COM) 

[Editor Command] 
Ascends the edit chain looking for a link specified by COM, and stops x links below 
that (only links that are elements are counted. not tails). In _other words BE LOW 
keeps doing O's until it gets to a specifi,ed point, and then backs off x O's. 

Note that xis evaluated. so one can type (BELOW COM ( !PLUS X Y) ). 

[Editor Command] 
Same as ( BELOW COM 1 ). 

For example, ( BELOW COND) will cause the corm clause containing the current expression to become 
the new current expression. Thus if the current expression is as shown above, F CADR followed by 
(BELOW COND) willmakethenewexpressionbe([NULL (CDR (FMEMB (CARL) (CADR L] (GO 
LP)). and is therefore equivalent to a O O 0. 

The BELOW command is· useful for locating a substrucrure by specifying something it contains. For 
example, suppose the user is editing a list of lists, and wants to find a sublist that contains a FOO (at any 
depth). He simply executes F F 00 (BE LOW \). 

{NEX COM) [Editor Command] 
Same as { BELOW COM) followed by NX. 

For example. if the user is deep inside of a SELECTQ clause. he can advance to the next clause with 
{NEX SELECTQ). : 

·. NEX [Editor Command] 
Same as ( NE X .- ) . 

The atomic form of NE X is useful if the user will be performing repeated executions of (NE X COM). By 
simply MARKing (see page 17.21) the chain corresponding to cou. he can use NEX to step through the 

17.19 



sublists. 

-(NTH COM) 

Commands That Save and Restore the Edit Chain 

[Editor Command} 
Generalized NTH command. Effectively performs ( LCL • COM). followed by 
(BELOW \), fqllowed by UP. 

If the search is unsuccessful. NTH generates an ermr and the edit chain is not 
changed. 

Note that ( NTH NUMBER) is just a special case of ( NTH COM). and in fact. no 
special check is made for COM a number; both commands are executed identically. 

In other words, NTH locates; COM, using a search restricted to the current expression, and then backs up 
to the current level. where the new current expression is the tail whose first element contains. however 
deeply. the expression that was the terminus of the location operation. For example: 

•p 
(PROG (&&)LP {COND & &) (EDITCOM &) (SETQ UNFINO UF} {RETURN L)} 
*(NTH UF) 
•p 
••• (SETQ UNFIND UF) {RETURN L)) 
• 
PATTERN [Editor Command} 

E.g., (COND RETURN). Finds a COHO that contains a RETURN. at any depth. 
Equivalent to (but more efficient than) (F PATTERN N}, (LCL • @) followed 
by ( ._ PATTERN). 

An infix command, " •• ., is not a meta-symbol. it is the name of the command. @ 

is COD R of the command. Note that ( PATTERN • • @} can also be used directly 
as an edit pattern as described on page 17.13, e.g. F (PATTERN • • @). 

For example, if the current expression is 

(PROG NIL (CONO ((~ULL L) (COND (FLG (RETURN L] --). 

then ( CONO • • RETURN) will make ( COND ( FLG ( RETURN L))) be the current expression. Note 
that it is the innermost COND that is found, because this is the first COND encountered when ascending 
from the RETURN. In other words. ( PATTERN • • @) is not always equivalent to ( F PATTERN N), 
followed by ( LCL • @) followed by \. 

Nace that@ is a location specification. not just a pattern. Thus { RETURN • • CONO 2 3) can be used 
to find the RETURN which contains a COND whose first clause contains (at least) three elements. Note also· 
that since @ permits any edit command, the user can write commands of the fonn ( COHO • • { RETURN 

CONO) ), which will locate the first COND that contains a RETURN that contains a CmJO. 

17.5 COi\'lMANDS THAT SAVE AND RESTORE THE EDIT CHAIN 

Several facilities are available for saving the current edit chain and later retrieving it: MARK, which marks 

17.20 

() 
-- (: 

...... 

()>.-. 
'-. 

(\., 
\ )· 

< ..._ .. If' 



I 
f),.~ 
\._,,,-· 

THE TELETYPE EDITOR 

the current chain for future reference .... which returns to the last mark without destroying it. and ..... 
which returns to the last mark and also erases it. 

MARK 

.. 

-

[Editor Command] 
Adds the current edit chain to the front of the list MARKLST. 

[Editor Command] 
Makes the new edit chain be (CAR MARKLST). Generates an error if MARKLST 
is NIL. i.e .. no MARKs have been performed., or all have been erased. 

This is an atomic command; do not confuse it with the list command ( +­

PATTERN). 

[Editor Command] 
Similar to +- but also erases the last MARK. i.e .. performs ( SETQ MARKLST (CCR .. 
MARKLST) ). 

Note that if the user has two chains marked, and wishes to return to the first chain. he must perform .... , 
which removes the second mark. and then +-. However. the second mark is then no longer accessible. If 
the user wants to be able to return to either of two (or more) chains. he can use the following generalized 
MARK: 

( MARK UTA.TOM) [Editor Command} 
Sets LITA.TOM to the current edit chain. 

( \ UT.ATOM) [Editor Command] 
Makes the current edit chain become the value of LIT.ATOM. 

If the user did not prepare in advance for returning to a particular edit chain. he may still be able to 
return to that chain with a sing!e command by using \ or \P. 

\ · [Editor Command} 
Makes the edit chain be the value ofUNFIND. Generates an error if UNF IND= NIL. 

UN FIND is set to the current edit chain by each command that makes a "big jump''. i.e .• a command that 
usually performs more than a single ascent or descent. namely 1', +-, -. ! NX. all commands that involve 
a search. e.g., F, LC, •• , BELOW, et al and\ and \P themselves. One exception is that utffIND is not 
reset when the current edit chain is the top level expression. since this could always be returned to via 
the 1' command. 

For example, if the user types F COHO, and then F CAR, \ would take him back to the COND. Another . 
\ would take him back to the CAR, etc. 

\P [Editor Command} 
Restores the edit chain to its state as of the last print operation. i.e.. P, ? , or PP. 
If the edit chain has not chq.I1ged since the last printing, \P restores it to its" state 
as of the printing before that" one, i.e., two chains are always saved. 

For example, if the user types P followed by 3 2 1 P, \P will rerurn to the first P, i.e .• would be 
equivalent to O O 0. Another \P would then cake him back to the second P, i.e .• the user could use \P 
to flip back and forth between the two edit chains. 

Note that if the user had typed P followed by F COND. he could use either\ or \P to return to the P. 

17.21 



Commands That Modify Structure 

i.e .. the action of\ and \P are independent. 

5 LITATOM @ [Editor Command} 
Sets UTATOM (using SETQ) to the current expression after performing ( LC • @). 
The edit chain is not changed. 

Thus ( s F 00) will set F 00 to the current expression. and ( S F 00 -1 1 ) will set F 00 to the first 
element in the last element of the current expression. 

17.6 COMMANDS THAT MODIFY STRUCTIJRE 

The basic structure modification commands in the editor are: 

{N} {N>l) . [Editor Command} 
Deletes the corresponding element from the current expression. 

(N Bz . .• • EM) (N~ 1) [Editor Command] 
Replaces the Nth element in the current expression with Ez • • • EM. 

( -N Bz • • • EM} ( N~ 1} [Editor Command) 
Inserts E1 • • • EM before the Nth element in the current expression. 

[Editor Command} 
Attaches B1 • • • EM at the end of the current expression. · 

As mentioned earlier: all structure modification done by the editor is destructive. i.e_ the editor uses 
RPLACA and RPLACD to physically change the structure it was giveTL However. all structure modification 
is undoable. see UNDO (page 17.50). 

All of the above commands generate errors if the current expression is not a list. or in the case of the first 
three commands, if the list contains fewer than N elements. In addition. the command ( 1 ) , i.e.. delete 
the first element. will cause ·an error if there is only one element. since deleting the first element must 
be done by replacing it with the second element. and then deleting the second element. Or. to look at it 
another way, deleting the first element when there is only one element would require changing a list to 
an atom (i.e .• to NIL) which cannot be done. However, the command DELETE will work even if there is 
only one element in the current expression. since it will ascend to a point where it can do the deletion. 

If the value of CHANGESARRAY is a hash array, the editor will mark all structures that are changed 
• by doing { PUTHASH STRUCTURE FN CHANGE SAR RAY), where FN is the name of the function. The 

algorithm used for marking is as follows: (U If the expression is inside of another expression alreldy 
marked as being changed. do nothing. (2) If the change is an insertion of or replacement wit.I\ a list. 
mark the list as changed. (3) If the change is an i_nsertion of or replacement with an atom. or a deletion. 
mark the parent as changed. · 

CHANGESARRAY is primarily for use by PRETTYPRINT (page 6.47). When the value of CHANGECHAR is 
non-NIL. PRETTYPRINT; when printing to a file or display tenninal. prints CHANGECHAR in the right 
margin while printing an expression marked as having been changed. CHANGECHAR is initially I -

17.22 

(\~ 
·. I,.• ...... -



o; 

I~, 
V 

0 

THE TELETYPE EDITOR 

17.6.1 Implementation of Structure Modification Commands 

Note: Since all commands that insert. replace. delete or attach structure use the same low level editor 
junctions. the remarks made here are valid for all struc1ure changing commands. 

For all replacement. insertion, and attaching at the end of a list. unless tb.e command was typed in directly 
to the editor, 9 copies of the corresponding structure are used, because of the possibility that the exact 
same command, (Le., same list structure) might be used again. Thus if a program constructs the command 
( 1 ( A B C ) ) e.g., via { LIST 1 F 00), and gives this command to the editor, the ( A B C ) used for 
the replacement will not be EQ to F00.10 . 
The rest of this section is included for applications wherein the editor is used to modify a data structure. 
and pointers into that data strucrure are stored elsewhere. In these cases, the actual mechanics of structure 
modification must be known in order to predict the effect that various commands may have on th.ese 
outside pointers. For example. if the value of FOO is COR of the current expression, what will the 
commands { 2 ) , ( 3 } , ( 2 X Y Z), ( -2 X Y Z ) , etc. do to F 00? 

Deletion of the fir.lt element in the current expression is performed by replacing it with the second 
element and deleting the second element by patching around it. Deletion of any other element is done by 
patching around it, Le .. the previous tail is altered. Thus if FOO is EQ to the current expression which is 
{A B C 0),-and FIE is COR of FOO, after executing the command { 1), FOO will be (B C 0) (which 
is EQUAL but not EQ to FIE). However, under the same initial conditions, after executing { 2} FIE will 
be unchanged., Le., FIE will still be { B C D } even though the current expression and F 00 are now { A 
C 0).11 

Both replacement and insertion are accomplished by smashing both CAR and COR of the corresponding 
tail. Thus, if FOO were EQ to the current expression, { A B C O), after { 1 X Y Z}, FOO would be { X 
Y . Z B C O ) . Similarly, if F 00 were E Q to the current expression. { A B C O ) • then after ( - 1 X Y 
Z), FOO would be (X Y Z A B C 0). 

The N command is accomplished by smashing the last CDR of the current expression a la NCONC. ·Thus 
if FOO were EQ to any tail of the current expression. after executing an N command, the corresponding 
expressions would also appear at the end of FOO. 

In summary, the only situation in which an edit operation will not change an external pointer occurs when 
the external pointer is to a proper tail of the data structure, i.e .• to COR of some node in the structure. 
and the operation is deletion. If all external pointers are to elements of the structure, i.e., to CAR of some 

9Some editor commands take as arguments a list of edit commands, e.g., ( LP F FOO ( 1 ( CAR FOO))). 
In this case, the command ( 1 { CAR FOO)) is not considered to have been "typed in" even though the 
LP CDillihand itself may have been typed in. Similarly, commands originating from macros. or commands 
given to the editor as arguments to EDITF, EDITV, et al, e.g., EOITF( FOO F <;ONO {N. --) ) are not 
considered typed in. . 

10The user can circumvent ·this by using the I command (page 17.45), which computes the structure co 
be used. In the above example, the form of the command would be ( I 1 FOO). which would replace 
the first element with the value of F 00 itself. · 
11 A general solution of the problem just isn't possible. as it would require being able to make two lists 
EQ to each other that were originally different. Thus if FIE is CDR of the current expression. and FUM is 
COOR of the current expression. performing ( 2) would have to make FIE be EQ to FUM if all subsequent 
operations were to update both FIE and FUM correctly. 

17.23 



The A, B. and : Commands 

node. or if only insertions, replacements. or attachments are performed. the edit operation will always 
have the same effect on an external pointer as it does on the current expression~ 

17.6.2 The A, B, and: Commands 

In the ( N). ( N E1 • • • EM). and ( -N E 1 • • • EM) commands. the sign of the integer is used to indicate 
the operation. As a result, there is no direct way to express insertion after a particular element. (hence 
the necessity for a separate N command). Similarly. the user cannot specify deletion or replacement of 
the Nth element from the end of a list without first converting N to the corresponding positive integer. 
Accordingly. we have: 

[Editor Command} 
Inserts E1 • • • EM before the current expression. Equivalent to UP followed by ( ~ i 
E1 ••• EM)• 

For example. to insert FOO before the_ last element in the current expression. perform -1 and then (B 
FOO). 

DELETE 
( : ) . 

[Editor Command] 
Inserts E1 • • • EM after the current expression. Equivalent to UP followed by ( -2 
E1 • •• EM) or ( N E1 • • • EM)• whichever is appropriate. 

[Editor Command] 
Replaces the current expression by E 1 • •• EM: Equivalent to UP followed by ( l 
E1 .•• EM)• 

Deletes the current expression. 

[Editor Command] 
[Editor Command] 

DELETE first tries to delete the current expression by performing an UP and then a ( 1). This works 
in most cases. However, if after performing UP. the new current expression contains only one element. 
the command ( l) will not work. Therefore, DELETE starts over and performs a BK. followed by UP. 
followed by (2). For example.µ the current expression is (C0N0 ( (MEMB X Y)) (T Y) ). and the 
user performs -1. and then DELETE. _the BK-UP-( 2) method is used. and the new current expression 
will be ••. ((MEMB X Y)) ). 

However. if the next higher expression contains only one element, BK will not work. So in this case, 
DELETE performs UP. followed by ( : NIL), i.e .• it replaces the higher expression by NIL. For example. 
if the current expression is ( C0N0 { { MEMB X Y) ) ( T Y) ) and the user performs F MEMB and then 
DELETE. the new current expression will be . . . NIL ( T Y ) ) and the original expression would now 
be (C0N0 NIL (T Y) ). The rationale behind this is that deleting (MEMB X Y) from ( (MEMB X Y)) 
changes a list of one element to a list of no elements •. i.e.. { ) or N IL. · · . 
If the· current expression is a tail. then B. A, : , and DELETE all work exactly the same as though the 
current expression were the first element in that tail. Thus if the current expression were . . . ( PRINT 
Y) (PRINT Z)),(B (PRINT X))wouldinsert(PRINT X)before(PRINT Y),leavingthecurrent 
expression ... (PRINT X) (PRIHT Y) (PRINTZ)). 

17.24 

O·;_ 
...__. 

r-v­
\ )· . 

. ~LJ". 



Q 
THE TELETYPE EDITOR 

.. The following forms of the A, B, and : commands incorporate a location specification: 

(INSERT Ei ••• E1,1 BEFORE. @) [Editor Command] 
(@ is (CCR (MEMBE.R 'BEFORE COMMAND))) Similar to {LC .@) followed by 

•p 

(8 Bi •• • EM)• 

Waming:-If@ causes an error. the location process does not continue as described 
on page 17.17. For example if II= ( COND 3) and the next CONO does not have a 
3rd element. the search stops and the INSERT fails. Note that the user can always 
write ( LC COND 3) if he intends the search to continue. 

(PROG {& & X) ••COMMENT•• (SELECTQ ATM & NIL) {OR & &) {PRINl & T) 
(PRINl & T) (SETQ X & a~ •(INSERT LABEL BEFORE PRINl) 
•p 
(PROG (& & X) ••COMMENT•• (SELECTQ ATM & NIL) (OR & &) LABEL 
( PR IN 1 & T) ( user typed control-E 

• 
Current edit chain is not changed. but urff IND is set to the edit chain after the B was performed. i.e., \ 
will make the edit chain be that chain where· the insertion was performed. 

{ INSERT Ei • • • E1,1 AFTER • @) 
Similar to INSERT BEFORE except uses A instead of B. 

[Editor Command] 

( INSERT Ei •• • E1,1 FOR • @) 
Similar to INSERT BEFORE except uses : for B. 

[Editor Command] 

-(REPLACE @ BY Ei ••• EM) [Editor Command] 
( REPLACE @ WITH E1 • • • Eu) [Editor Command} 

Here @ is the segment of the command between REPLACE and WITH. Same as 0 ( I~SERT E1 • •• EM FOR • @). 

0. 

Example: (REPLACE CONO -1 WITH (T (RETURN L))) 

(CHANGE @ TO E1 ••• Eu) [Editor Command] 

(DELETE • @) 

Same as REPLACE WITH. 

[Editor Command] 
Does a { LC • @} followed by DELETE.12 Toe current edit chain is not changed. 
but UN FIND is set to the edit chain after the DELETE was performed. 

Note: the edit chain will be changed if the current expression is no longer a part 
of the expression being edited. e.g .• if the current expr-ession is . . • C) and the 
user performs (DELETE 1), the tail. (C), will have been cut off. Similarly. if t..1'1e 

12See warning about INSERT. page 17.25. 

17.25 



Form Oriented Editing and the Role of UP 

current expression is ( CDR V) and the user performs ( REPLACE WITH ( CAR 
X)}. 

Example: (DELETE -1), (DELETE COND 3) 

Note: if@ is NIL (i.e.. empty). the con-esponding operation is perfonned on the cun-ent edit chain. 

For example, (REPLACE WITH (CAR X)) is equivalent to {: (CAR X)). For added readabilicy, 
HERE is also permitted, e.g .• (INSERT (PRINT X) BEFORE HERE) will insert (PRINT X) before the 
current expression (but not change the edit chain). 

Note: @ does not have to specify a location within the current expression. i.e.. it is perfectly legal to ascend 
to INSERT, REPLACE. or DELETE 

For example, ( INSERT (RETURN} AFTER 1' PROG -1) will go to the top. find the first PROG, and 
insert a (RETURN) at its end, and not change the current edit chain. 

The A, B. and : commands. commands, (and consequently INSERT, REPLACE, and CHANGE), all make 
special checks in z1 thru EM for expressions of the form ( ## • coMs). In this case, the expression 
used for inserting or replacing is a copy of the current expression after executing COMS. a list of edit 
commands (the execution of coMs does not change the current edit chain). For example, ( INSERT {## 
F COND -1 -1) AFTER 3) will make a copy of the last form in the last clause of the next COND. and 
insert it after the third element of the current expression. Note that this is not the same as ( INSERT F 
COND -1 {## -1) AFTE~ 3 ), which inserts four elements after the third element, namely F. COND. 
-1. and a copy of the last element in the current expression. 

17.6.3 Form Oriented<Editing and the Role of UP 

The UP that is performed before A, B, and : commands13 makes these operations form-oriented. For 
example, if the user types F SETQ, and then DELE;rE. or simply ( DELETE SETQ }. he will delete the 
entire SETQ expression. whereas ( DELETE X) if X is a variable. deletes just the variable X. In both 
cases. the operation is performed on the corresponding form, and in both cases is probably what the 
user intended. Similarly, if the user types ( INSERT (RETURN Y) BEFORE SETQ), he means before 
the SETQ expression, not before the atom SETQ.14 A consequent of this procedure is that a pattern of 
the form { SETQ V -- ) can be viewed as simply an elaboration and further refinement of the pattern 
SETQ. Thus (INSERT (RETURN V) BEFORE SETQ) and (INSERT (RETURN V) BEFORE {SETQ 
Y -- ) } perform the same operation15 and. in fact. this is one of the motivations behind making the 
current expression after F SETQ, and F ( SETQ Y _:,.) be the same. 

• 
Occasionally, however, a user may have a data structure in which no special significance qr meaning is. 
attached to the position of an acorn in a list. as lnter!isp attaches co atoms that appear as CAR of a list. . 

l 3and therefore in INSERT, CHANGE. REPLACE. and DELETE commands after the location ponion of 
the operation has been performed. 

L4Toere is some ambiguity in ( INSERT EXPR AFTER FUNCTIONNAME}, as the user might mean make 
EXPR be the function's first argument. Similarly. the user cannot write ( REPLACE SETQ WITH SETQQ) 
meaning ch::mge the name of the function. The user must in these cases write ( INSERT EXP?.. AFTER 
FUNCTIONNAME 1 }. and ( REPLACE SETQ 1 WITH SETQQ ). 

tsassuming the next SETQ is of the fonn ( SETQ Y --). 

17.26 



~ u· 
,._;.' 

-0: \ . 

0 

THE TELETYPE EDITOR 

versus .those appearing elsewhere in a list. In general, the user may not even know whether a particular 
atom is at the head of a list or not. Thus, when he writes ( INSERT EXPR BEFORE FOO), he means 
before the atom FOO,-whether or not it is CAR of a list. By setting the variable UPFINDFLG to NIL 
(initially T), the user can suppress the implicit UP that follows searches for atoms, and thus achieve the 
desired effect. With UPFIHDFLG=NIL, following F FOO, for example, the current expression will be 
the atom FOO. In this case, the A. B, and : operations will operate with respect to the atom FOO. If the 
user intends the operation to refer to the list which FOO heads, he simply uses instead the pattern ( FOO 
--). 

17.6.4 Extract and Embed 

Extraction involves replacing the current expression with one of its subexpressions (from any depth). 

(XTR • @} . [Editor Command} 
Replaces the original current expression with the expression that is current after 
performing (LCL • @}.16 If the current expression after (LCL • @} is a tail of 
a higher expression. its first element is used. 

If the extracted expression. is a list. then after XTR has finished. the current 
expression will be that list: !f. ¢.e extracted expression is not a list, the new current 
expression will be a tail whose first element is that non-list. 

For example, if the current expression is ( COHO (( NULL X) ( PRINT Y) )). ( XTR PR INT}, or ( XTR 
2 2) will replace the COND by the PRINT. The current expression after the XTR would be ( PRINT Y ). 

If the current expression is (COND ( (NULL X) Y) (T Z) ), then (XTR Y) will replace the CONO with 
Y, even though the current expression after performing (LCL Y) is ••• Y). The current expression 
after the XTR would be • • • Y followed by whatever followed the COND. 

If the current expression initially is a tail. extraction works exactly the same as though the current 
expression were the first element in that tail. Thus if the current expression is • • • ( COHO ( ( NULL 
X) ( PRINT Y))) ( RETURN Z )). then ( XTR PRINT) will replace the COND by the PRINT, leaving 
(PRINT Y) as the current expression. 

Toe extract command can also incorporate a location specification: 

( EXTRACT @1 FROM • @2) [Editor Command} 
(@1 is the segment between EXTRACT and FROM.) Performs ( LC • @2 ) 17 and 
then· ( XTR • @1). The current edit chain is not changed. but UHF I ND is set co 
the edit chain after the XTR was performed. 

For example: If the current expression is ( PRINT .( COND (( NULL X) Y) ( T Z))), then following 
(EXTRACT Y FROM COND), the current expression will· be (PRINT Y). (EXTRACT 2 -1 FROM 
corm), ( EXTRACT Y FROM 2 ), and ( EXTRACT 2 -1 FROM 2) will all produce the sam~ ~esult. 

16See warning about INSERT, page 17.25. 
17See warning about INSERT, page 17.25. 

17.27 



Extr:ict and Embed 

. - . While extracting replaces the current expression-by a subexpression. embedding replaces the current 
expression with one containing it as a subexpression. 

Examples: 

[Editor Command] 
MBD substitutes the current expression for all instances of the atom & in E1 • • · EM, 
and replaces the current expression with the result of that substitution. As with 
SUBST, a fresh copy is used for each substitution. 

If & does not appear in E1 • • • Eu, the MBO is interpreted as ( MBO ( E1 • • • EM 
&)). 

MBD leaves the edit chain so that the larger expression is the new current expression. 

\,_ If the current expression is (PRINT Y), (MBO (CONO ((NULL X) &) ( (NULL {CAR Y)) & (GO 
LP)))) would replace (PRINTY) with (CONO ((NULL X) (PRINTY)) {(NULL {CARY)) 
( PRINT Y) (GO LP))}. 

... 

If the current expression is (RETURN X), (MBO (PRINT Y) (ANO FLG &}) would replace it with 
the two expressions {PRINT Y) and {ANO FLG (RETURN X)) i.e .• if the (RETURN X) ·appeared in 
the cond clause (T (RETURN X) ), after the MBO, the clause would be (T (PRINT Y) (ANO FLG 
(RETURN X))). 

If the current expression is ( PRINT Y ), then (MBO SETQ X) will replace it with ( SETO X ( PRINT 
Y)). If.the current expression is (PRINT Y), (MBO RETURN) will replace it with (RETURN (PRINT 
Y}). 

If the current expression initially is a rail. embedding works exactly the same as though the current 
expression were the first element in that tail. Thus if the current expression were • • • ( PRINT Y) 
(PRI?H Z)), {MBO SETQ X) would replace (PRINTY) with (SETQ X (PRINTY)). 

The embed command can also incorporate a location specification: 

( EMBED @ IN • x) [Editor Command] 
(@ is the segment between EMBED and IN.) Does {LC • @)18 and then (MBO • 
x). Edit chain is not changed. but UNFINO is set to the edit chain after the MBO 
was performed. 

Examples: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN), (EMBED CONO 3 1 IN (OR 
& (NULL X) )). 

WITH can be used for IN, and SURROU,ND can be used for EMBED. e.g •• ( SURROUND NUMB ERP WITH 
(ANO & (MINUSP X))). : 

EDITEMBEOTOKEN . [Variable) 
The special atom used in the MBD ·and EMBED commands is the value of this 
variable. initially &. 

tSSee warning about INSERT, page 17.25. 

17.28 0 



THE TELETYPE EDITOR 

17.6.5 The MOVE Command 

The MOVE command allows the user to specify {l} the expression to be moved, {2) the place it is to be 
moved· to, and {3) the operation to be perfonned there, e.g .. insert it before, insert it after, replace, etc. 

(MOVE @1 TO COM • @2) [Editor Command} 
(@1 is the segment between MOVE and TO.) COM is BEFORE, AFTER, or the name 
of a list command. e.g., : , N, etc. Perfonns ( LC • @1 ) , 19 and obtains the current 
expression there {or its first element, if it is a tail), which we will call EXPR; MOVE 
then goes back to the original edit chain. performs ( LC • @2) followed by ( COM 
BXPR) (setting an internal flag so EXPR is not copied), then goes back to @1 and 
deletes EXPR. The edit chain is not changed. UNFIND is set to the edit chain after 
.C COM EXPR) was performed. 

If @2 specifies a location inside of the expression to be moved. a message is printed 
and an error is generated. e.g., (MOVE 2 TO AFTER X), where X is contained 
inside of the second element. 

For example, if the current expression is (ABC D), (MOVE 2 TO AFTER 4) will make the new 
current expression be ( A C D B ) . Note that 4 was executed as of the original edit chain, and that the 
second element had not yet been removed. . 

As the following examples taken from actual editing will show, the MOVE command is an extremely 
versatile and powerful feature of the editor. 

•? 
(PROG ((LL)) (EDLOC (COOR C)) (RETURN (CARL))) 
•(MOVE 3 TO: CAR) 
•? 
(PROG ({L l)) (RETURN (EDLOC (COOR C}})} 
• 
•p 

(SELECTQ OBJPR & &} (RETURN&) LP2 {COND & &)) 
•(MOVE 2 TON 1) 
•p 

(SELECTQ OBJPR & & &) LP2 (COND & &)) 

• 

•p 
(OR (EQ X LASTAIL) (NOT&) (ANO & & &)) 
•(MOV; 4 TO AFTER (BELOW CONO)) 
•p 
(OR (EQ X LASTAIL) (NOT&)) 
., p 

(& &) (AND & & &) {T & &)} 
• 

19See warning about INSERT. page 17.25. 

17.29 



.. -- ... 

The MOVE Command 

•p 
((NULL X) ••COMMENT•• (COND & &}) 
•(-3 (GO NXT] 
•(MOVE 4 TON{ .. PROG)) 
•p 
((NULL X) ••COMMENT•• (GO NXT)) 
., p 

(PROG (&) ••COMMENT•• {COND & & &) (CONO & & &) (CONO & &)) 
•(INSERT NXT BEFORE -1) 
•p 
(PROG (&) ••COMMENT•• (COND & & &) {CONO & & &) NXT (COND & &)) 

Note that in the last example, the user could have added the PROG label NXT and moved the COND in one 
operation by performing (MOVE 4 TO N c.- PROG) (N NXT)). Similarly, in the next example, in 
the course of specifying @2, the location where the expression was to be moved to, the user also perfonns 
a structure modification, via ( N { T ) ) , thus creating the structure that will receive the expression being 
moved. 

•p 
((CCR&) ••COMMENT•• (SETQ CL&) (EDITSMASH CL & &)) 
•MOVE 4 TON O (N (T)} -1] 
•p 
((CCR&) ••COMMENT•• (SETQ CL&)) 
., p 

•(T (EDITSMASH CL & &)) 
• 
lf@2.is NIL, or (HERE), the current position specifies where the operation is to take place. In this case. 
UNFIND is set to where the expression that was moved was originally located. i.e .• @1. For example: 

•p 
(TENEX) 
•(MOVE~ F APPLY TON HERE) 
•p 
(TENEX {APPLY & &)) 
• 
•p 
(PROG (& & & ATM 
(PRINl & T) ( 
PRIN1 & T} ( SETQ 

IND VAL) {OR & &) ••COMMENT•• 

IND user typed control-£ 

•(MOVc·• TO BEFORE HERE) 
•p 

(OR & &) 

{PROG (& & & ATM IND VAL) (OR & &) {OR & &) (PRINl & 

•p 
{T (PRINl C-EXP T)) 
•(MOVE~ BF PRINl TON HERE) 
•p 
(T (PRINl C-EXP T} (PRINl & T)) 

17 . .30 

r~ 
\_ ) .. 

\,.. 

(\. 
\ l: 



o-

r·\) ·0·· 

(J 

THE TELETIPE EDITOR 

• 
Finally. if @1 is NIL. the MOVE command allows the user to specify where the current expression is to 
be moved to. In this case. the edit chain is changed. and is the chain where the current expression was 
moved to; UNF IND is set to where it was. 

•p 
(SELECTQ OBJPR (&) (PROGN & &)) 
•(MOVE TO BEFORE LOOP) 
•p 
•.. (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP 
&) ( SELECTQ user typed control-E 

• 

17.6.6 Commands That Move Parentheses 

Toe commands presented in this section permit modification of the list structure itself. as opposed to 
modifying components thereof. Their effect can be described as inserting or removing a single left or 
right parenthesis. or pair of left and right parentheses. Of course. there will always be the same number 
of left parentheses as right parentheses in any list structure. since the parentheses are just a notational 
guide to the structure provided by PRINT. Thus. no command can insen or remove just one parenthesis. 
but this is suggestive of what actually happens. 

In all six commands. N and M are used to specify an element of a list. usually of the current expression. 
In practice. N and M are usually positive or negative integers with the obvious interpretation. However. 
all six commands use the generalized NTH command ( NTH COM) to find their element(s). so that Nth 
element means the first element of the tail found by performing ( NTH N). · In other words. if the 
currentexpressionis(LIST (CAR X) (SETQ Y (CONS W Z)}),then(BI 2 CONS). (BI X -1). 
and ( BI · X Z ) all specify the exact same operation. 

All six commands generate an error if the element is not found. i.e., the NTH fails. All are undoable. 

{BI NM) [Editor Command] 
'"Both In". Insens a left parentheses before the Nth element and after the Mth 
element in the current expression. Generates an error if the Mth element is not 
contained in the Nth tail. i.e., the Mth element must be "to the right" of the J\'th 
element. 

. Example: If the current expression is ( A B ( C a E) F G ), then (BI 2 4} will modify it to be ( A 
(8 (C D E} F} G). 

(BI N) [Editor Command] 
Same as (BI N N). 

Example: If the current expression is ( A B ( C D E) F G). then {BI - 2 ) will modify it to be ( A B 
{C O E) {F) G). 

(BON) [Editor Command] 
"Both Out". Removes both parentheses from the Nth element Generates an error 
if Nth element is not a list · 

l7.Jl 



TO and THRU 

Example: If the current expression is ( A B ( C D E) F G), then ( BO D) will modify it to be ( A B 
C D E F G). 

(LI N) [Editor Command] 
"Left rn··. Insens a left parenthesis before the Nth element (and a matching right 
parenthesis at the end of the current expression), i.e. equivalent to ( B I N -1 ) . 

Example: if the current expression is ( A B ( C D E) F G). then ( LI 2 ) will modify it to be ( A ( B 
(CD E) F G)). 

{LO N) [Editor Command] 
"Left Out". Removes a left parenthesis from the Nth element. All elements 
following the Nth element are deleted. Generates an error if Nth element is not a 
list. 

Example: If the current expression is ( A B ( C D E ) F G ) , then ( LO 3 ) will modify it to be ( A B 
C D E). 

{ RI N M) [Editor Command] 
"Right In". Inserts a right parenthesis after the Mth element of the Nth elemenL 
The rest of the Nth element is brought up to the level of the current expression. 

Example: If the current expression is ( A ( B C D E ) F G), ( RI 2 2) will modify it to be ( A ( 8 
C ) D E F G ) • Another way of thinking about RI is to read it as "move the right parenthesis at the 
end of the Nth element in co after its Nth element." · 

(RO N) [Editor Command] 
"Right Out". Removes the right parenthesis from the Nth element. moving it to 
the end of the current expression. All elements following the Nth element are 
moved inside of the Nth element. Generates an error if Nth element is not a lisL 

Example: If the current expression is ( A B ( C D E) F G ). ( RO 3) will modify it to be ( A B ( C D 
E F G) ) • Another way of thinking about RO is to read it as "move the right parenthesis at the end of 
the Nth element out to the end of the current expression." 

17.6.7 TO and THRU 

EXTRACT. EMBED. DELETE. REPLACE. and MOVE can be made to operate on several contiguous elements. 
i.e .• a segment of a list. by using in their respective location specifications the TO or THRU command. 

(@1 THRU @2) • . [Editor Command] 
Does a ( LC • @1). followed by an UP, and then a (BI 1 @2). thereby grouping 
the segment into a single element. and finally does a 1. making the final current 
expression be that element. 

For example. if the current expression is ( A ( B ( C D) ( E) ( F G H) I) J K ), following ( C THRU 
G ) • the current expression will be ( ( C D ) ( E ) ( F G H ) ) • 

(@1 TO @z) [Editor Comm::mdl 
Sarne as THRU except the last element not included. i.e .• after the BI. an (RI 1 
- 2 ) is performed. 

17.32 



o--__ . 
,·:,I" 

(-~-., ·0 , 

TiiE TELETYPE EDITOR 

If both @1 and @2 are numbers, and @2 is greater than @1, then @2 counts from the beginning of the 
current expression. the same as @ 1 · In other words. if the current expression is ( A B C D E F G ) , ( 3 
THRU 5) means (C THRU E) nqt {C THRU G). In this case, the corresponding BI command is {BI 
1 @2-@1+1). 

THRU and TO are not vecy useful commands by themselves: they are intended to be used in conjunction 
with EXTRACT, EMBED, DELETE, REPLACE. and MOVE. After THRU and TO have operated. they set an 
internal editor flag informing the above commands that the element they are operating on is actually a 

. segment. and that the extra pair of parentheses should be removed when the operation is complete. Thus: 

•p 
{PROG (& & ATM IND VAL WORD) (PRIN1 & i) (PRINl & T) (SETQ IND&) 
(SETQ VAL &) ••COMMENT•• (SETQQ user typed comrol-E 

•(MOVE (3 THRU 4) TO BEFORE 7) 
•p 
(PROG (& & ATM IND VAL WORD) (SETQ IND&) (SETQ VAL&) (PRINl & T) 
( PR!Hl & T) ••COMMENT•• user typed control-E 

• 
•p 
(• FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR 
AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL 
HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.) 
*{DELETE (USER THRU CURRS)) 
=CURRENT FORM. 
•p 
(• FAIL RETURN FROM EDITOR. CURRENTFORM IS user typed control-E 

• 
•p 

LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y)) 
•(MOVE {1 TO OUT) TON HERE] 
•p 

OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &)) 
• 
•pp 
[ PROG ( RF. TEMP1 TEMP2) 

(COND 
((NOT (MEMB REMARG LISTING)) 

(SETQ TEMP1 (ASSOC REMARG 
(SETQ TEMP2 (CAOR TEMP1)) 
(GO SKIP)) 

(T ••COMMENT•• 
(SETQ TEMP1 REMARG))) 

{NCONC1 LISTING REMARG) 
ccorm 

{{NOT (SETQ TEMP2 (SASSOC 

. 
NAMEDREMARKS)) ••COMMENT•• 

1_7.33 



TO and THRU 

•(EXTRACT (SETQ THRU CADR) FROM CONO) 
•p 
(PROG (RF TEMPI TEMP2) (SETQ TEMP1 &) ••COMMENT•• (SETQ TEMP2 &) (NCONC1 LISTING 
REMARG) ( COND & & user typed contro/·E 

• 
TO and THRU can also be used directly with XTR, because XTR involves a location specification while A, 
B, : , and MBO do not. Thus in the previous example, if the current expression had been the CONO, e.g., 
the user had first performed F COND, he could have used ( XTR ( SETQ THRU CAOR)) to perform the 
extraction. 

(@1 TO) 
i (@1 THRU) ........ 

[Editor Command] 
[Editor Command] 

· Both are the same as (@1 THRU -1), i.e., from @1 through the end of the list. 

---·· 

Examples: 

•p 
(VALUE (RPLACA OEPRP &) {RPLACD &) (RPLACA VARSWORO &) {RETURN)) 
•(MOVE (2 TO) TON{~ PROG)) • 
•(N {GO VAR)) 
•p 
{VALUE {GO VAR)) 

•p 
{T ••COMMENT•• (CONO &) ••COMMENT•• (EDITSMASH CL & &) (CONO &)) 
•(-3 (GO REPLACE)) 
•(MOVE (CONO TO) TON? PROG (N REPLACE)) 
•p 
(T ••COMMENT•• (GO REPLACE)) 
., p 
( PROG (&) •.•COMMENT•• (CONO & & &) (CONO & & &) DELETE ( corm & &} REPLACE 
(COND &) ••COMMENT•• (EDITSMASH CL & &) (CONO &)) 
• 
•pp 
[LAMBDA (CLAUSALA X) 

(PROG (AD) 
(SETQ A CLAUSALA} 

LP (COND . 
((NULL A) 

(RETURN))) 
• (SERCH X A) 

(RUMARK (CDR A)) 
(NOTICECL {CAR A)) 
(SETQ A (CDR A)) 
(GO LP] 

*(EXTRACT (SERCH THRU NOTS) FROM PROG) 
=NO_TICECL 
•p 

17.34 



--. 

0 

THE TELETYPE EDITOR 

(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) {NOTICECL &}} 
•(EMBED (SERCH TO} IN {MAP CLAUSALA {FUNCTION {LAMBDA (A}•] 
•pp 
[LAMBDA (CLAUSALA X) 

• 

(MAP CLAUSALA 
(FUNCTION (LAMBDA (A) 

(SERCH ·x A) 
(RUMARK {CCR A)) 
(NOTICECL (CAR A] 

17.6.8 The R Command 

{RX Y) [Editor Command] 
Replaces all instances of x by Yin the current expression. e.g .. ( R CAAD R CADA R ) • 
Generates an error if there is not at least one instance. 

The R command operates in conjunction with the search mechanism of the editor. The search proceeds 
as described on page 17.15, and x can employ·any of the patterns on page 17.13. Each time x mar.ches 
an element of the structure, the element is replaced by (a copy of) r. each time x mar.ches a tail of the 
structure, the tail is replaced by (a copy of) Y. 

For example, if the current expression is ( A ( B C) ( B • C} ) • · 

{ R C D ) will change it to ( A ( B D ) ( B • D )) , 

{ R ( • • • • C) D ) will change it to ( A ( B C ) ( B • D )) , 

(R C {D E)) will change it to {A (B (D E}) {B ·o E)). and 
-

{R ( •••• NIL) D) will change it to {A (B C • D} (B • C) • D). 

If x is an atom or string containing Ss {<esc>s), Ss appearing in Y stand for the characters mar.ched 
by the corresponding S in x. For example, ( R fOOS FIES) means for all atoms or strings that 
begin with FOO, replace the characters "FOO" by "FIE".20 Appliea to the list ( FOO F002 XF001 ), 
(R FOO$ FIE$) would produce (FIE FIE2 XF001), and (R $FOO$ $FIES) would produce (FIE 
FIE2 XFIEl). Similarly, {R $0$ $A$) will change (LIST (CADR X) (CADDR Y)) to (LIST 
{CAAR X) (CAAOR)). Note that CADDR was not changed to CAAAR, i.e •. (R $0$ $AS) does not 
mean replace every D with A, but replace the first D in every atom or string by A. If the user wanted to. 
replace every D by A, he could perform ( LP ( R $OS SAS)). 

The user will.be informed of all such S replacements by a message of the form x->Y, e.g., CAOR->CAAR. . . . . . 
Note that the S feature can be used to delete or add characters. as well as replace them. · For example, 
( R S 1 S) will delete the terminating 1 's from all literal atoms and strings. Similarly, if an S in x does 

20 If x mar.ches a string, it will be replaced by a string. Note that it does not matter whether x or 
Y themselves are strings, i.e. (R $OS SAS). (R "$0$" $A$), (R SOS "SAS"), and (R "SDS" 
"SAS") are equivalent. Note also that x will never match with a number, i.e .• ( R $1 $2) will not 
change 11 to 12. 

17.35 



i . 

._./ 

The R Command 

not have a mate in Y, the characters matched by the $ are effectively deleted. For example, { R SIS S) 
will change ANO/OR to AND.21 Y can also be a list containing Ss. e.g •• ( R $ 1 ( CAR $)} will change 
F001 to (CAR FOO), FIEl to {CAR FIE}. 

If x does not contain Ss, $ appearing in Y refers to the entire expression matched by x. e.g., { R 
LONGATOM '$) changes LONGATOM to 'LONGATOM, (R (SETQ X &) {PRINT S}) changes every 
( SETQ X &) to ( PRINT { SETQ X & )).22 

Since ( R SxS SYS) is a frequently used operation for Replacing Characters. the following command is 
provided: 

(RC X Y) [Editor Command] 
Equivalentto ( R SxS $ YS ) 

R and RC change all instances of x to Y. The commands Rl and RCl are available for changing just one. 
(i.e •• the first) instance of x to Y. 

( Rl X Y) [Editor Command} 
Find the first instance of x and replace it by Y. 

(RCl X Y) [Editor Command] 
(Rl S.XS SYS). 

In addition. while R and RC only operate within the current expression. Rl and RCl will continue 
searching. a la the F command. until they find an instance of :r, even if the search carries them beyond 
the current expression. 

(SW NM) [Editor Command] 
Switches the Nth and Mth elements of the current expression. 

Forexample,ifthecurrentexpressionis{LIST (CONS (CAR X) (CARY)) (CONS (COR X) (CDR 
Y) )), {SW 2 3) will modify it to be (LIST (CONS {CCR X) (COR Y)) ,(CONS ·(CAR X) {CAR 
Y) ) ) . The relative order of N and M is not important. i.e.. ( SW 3 2 ) and ( SW 2 3 ) are equivalent. 

(; 
( 

::rr::.sn:~ generalized NTH command { NTH COM} to find the Nth and Mth elements. a la the B I·BO · (-~~ 
-..... : 

Thus in the previous example. ( SW CAR CCR} would produce the same result. 

[Editor Command] 
Like SW except switches the expressions specified by @1 and @2, not the 
corresponding elements of the current expression. i.e. @1 and @2 can be at different 
levels in current expression. or one or both be outside of current expression. 

21There is no similar operation for changing ANO/OR to OR. since the first S in y always corresponds to 
the first S in X. the second S in Y to the second in x. etc. · 
22 rf x is a pattern containing an S pattern somewhere within it. the characters matched by the Ss are not 
available. and for the purposes of replacement. the effect is the same as though x did not contain J.ny 
Ss. For example, if the user types ( R ( CAR F S) (PRINT S)), the second S will refer to the entire 
expression macched by ( CAR F S ) . 

17.36 Q. 



0 .. 

/'\\ U1 

/:.:. ·. . \. 
,____ ___ / 

THE TELETYPE EDITOR 

Thus. using the previous example, (SWAP CAR CDR) would result in (LIST (CONS (CDR X) (CAR 
Y)} (CONS (CAR X) (CDR Y)) ). 

17.7 COMMANDS THAT PRlNT 

PP (Editor Command] 

p 

(P M) 

(P 0) 

(P MN) 

(P O N) 

? 

Prettyprints the current expression. 

[Editor Command] 
Prints the current expression as though PRINTLEVEL (page 6.18) were set to 2. 

[Editor Command] 
Prints the Mth element of the current expression as though PRINTLEVEL were set 
to 2. 

(Editor Command] 
Same as P. 

. [Editor Command] 
Prints the Mth element of the current expression as though PRINT LEVEL were set 
to N. 

(Editor Command] 
Prints the current expression as though PRINTLEVEL were set to N. 

[Editor Command] 
Same as ( P 0 10 0 ) • 

Both ( P M) and ( P M N) use the generalized NTH command ( NTH COM} to obtain the corresponding 
element. so that M does not have to be a number, e.g., ( P COND 3) will work. PP causes all comments 
to be printed as --COMMENT•• (see page 6.50). P and? print as ••COMMENT•• only those comments 
that are (top level) elements of the current expression. Lower expressions are not really seen by the 
editor; the printing command simply sets PRINTLEVEL and calls PRINT. 

PPV 

PPT 

?= 

[Editor Command] 
Prettyprints current expression, including comments. 

PP• is equivalent to PP except that it first resets --cOMMENT**FLG to NIL (see 
page 6.50). 

[Editor Command] 
Prettyprints the current expression as a variable; Le., no special treatment for 
LAMBDA, COND, SETQ, etc., or for CLISP. 

[Editor Command} 
Prettyprints the current expression, printing <;LISP translations. if any. 

. [Editor Command! 
Prints the argument names and corresponding values for the current expression. 
Analagous to the ? = break command (page 9.5). For example. 

17.37 



Commands for Leaving the Editor 

•p 
(STRPOS "AO???" X N (QUOTE?) T) 
•?= 
.X = "AO???" 
y = X 
START= N 
SKIP= (QUOTE?) 
ANCHOR= T 
TAIL= 

The command MAKE (page 17.44) is an imperative form of?=. It allows the user to specify a change to 
the element of the current expression that corresponds to a particular argument name. 

All printing functions print to the terminal. regardless of the primary output file. All use the readtable T . 
No printing function ever changes the edit chain. All record the current edit chain for use by \ P (page 
17.21). All can be aborted with control·E. · 

17.8 COMMANDS FOR LEAVING THE EDITOR 

OK [Editor Command] 

STOP 

Exits from the editor. 

[Editor Command] 
Exits from the ·editor with an error. Mainly for use in conjunction with TTY: 
commands (page 17 .40) that the user wants to abort. 

Since .dl of the commands in the editor are errorset protected. the user must exit from the editor via a 
command. STOP provides a way of distinguishing between a successful and unsuccessful (from the user's 
standpoint) editing session. For example. if the user is executing ( MOVE 3 TO AFTER CONO TTY: ) , 
and he exits from the lower editor with an OK. the MOVE command will then complete its operation. If 
the user wants to abort the MOVE command. he must make the TTY: command generate an error. He 
does. this by exiting from the lower editor with a STOP command. In this case, the higher editor's edit 
chain will not be changed by the TTY : command. 

Actually, it is also possible to exit the editor by typing control-O. STOP is preferred even if the user is 
editing at the EVALQT level as it will perform the necessary "wrapup .. to insure that the changes made 
while editing will be undoable. 

SAVE 

For example: 

•p 
(NULL X) 
*F cmm P 

[Editor Command] 
Exits from the editor and saves the "state of the edit .. on the property list of the 
function or variable being edited under the property EDIT-SAVE. If the editor is 
called again on the same structure. the editing is effectively .. continued;· i.e .• the 
edic chain. mark list. value of UN FINO and UNOOLST are restored. 

l7.J8 

(J ---c· · .. ,· 

. G 
\ /":. 
- '- ' 

: 

(; ..• 
,. _ ... -



(:J' . 
.......... 

0 

THE TELETYPE EDITOR 

(COND (& &) (T &) ) 
•SAVE 
FOO .. 
+-EDITF(FOO) 
EDIT 
•p 
(COND (& &) (T &)) 
., p 

(NULL X) 
• 
SAVE is necessary only if the user is editing many different expressions: an exit from the editor .via OK 
always saves the state of the edit of that call to the editor on the property list of the atom EDIT. under 
the property name LASTVALUE. OK also remprops EDIT-SAVE from the property list of the function or 
variable being edited. · 

Whenever the editor is entered, it checks to see if it is editing the same expression as the last one edited. 
In this case, it restores the mark list and UNOOLST, and sets UNFINP to be the edit chain as of the 
previous exit from the editor. For example: 

+-EDITF(FOO) 
EDIT 
•p 
(LAMBDA (X) (PROG & & LP & & & &)) 

•p 
(COND & &) 
•OK 
FOO ... 

any number of LISP X inputs 
except for calls to the editor 

+-EDITF(FOO) 
EDIT 
•pt 

(LAMBDA (X) (PROG & & LP & & & &)) 
., p 

(COND & &) 
• 
Furthennore. as a result of the history fearure. if the editor is called on the same expression within a 
certain number of LISPX inputs.23 the state of the edit of that expression is restored.. regardless of how 
many other expressions may have been edited in the meantime. For example: 

23Namely, the size of the history list. which can be changed with CHANGE SLICE. (page 8.18}. 

17.39 



.-EOITF( FOO) 
EDIT 
• 

•p 

Nested Calls to Editor 

(COND (& &) (& &) {&) {T &) ) 
*OK 
FOO 

a small number of LISP X inputs. 
including editing 

/·--. .-EOITF(FOO) 
\....-' EDIT 

·.._..,~ 

., p 
(CONO (& &} (& &) (&) (T &) ) 
• 
Thus the user can always continue editing, including undoing changes from a previous editing session. 
if (1) No other expressions have been edited since that session (since saving takes place at exit time. 
intervening calls that were aborted via conttol-D or exited via STOP will not affect the editor's memory); 
or (2) That session was "sufficiently" recent; or (3) It was ended with a SAVE command. 

17.9 NESTED CALLS TO EDITOR 

TTY: [Edicor Command) 
Calls the editor recursively. The user can then type in commands. and have them 
executed. The TTY : command is completed when the user exits from the lower 
editor. (see OK and STOP above). 

The TTY: command is extremely useful. It enables the user to set up a complex operation. and perform 
interactive attention-changing commands part way through it. For example the command ( MOVE 3 TO 
AFTER COND 3 P TTY:) allows the user to interact. in effect. within the MOVE command. Thus he can 
verify for himself that the correct location has been found. or complete the specification "by hand." In 
effect. TTY: says "I'll tell you what you should do when you get there." 

The TTY: command operates by printing TTY: and then calling the editor. The initial edit chain in the 
lower editor is the one that existed in the higher editor at the time the T.TY: command was entered. Until 
the user e~its from the low~r editor. any attention changing commands he executes only affect the lower 
editor's ~dit chain. df course. if the user performs any strucrure modification commands while under a 
TTY: command. these will modify the strucrure in ·both editors, since it is the same strucrure. When the 
TTY: command finishes. the lower editor's edit chain becomes the edit chain of the higher editor. 

EF 
EV 
EP 

[Editor Command! 
[Editor Command! 
[Editor Command! 

Calls ED I TF or ED ITV or ED IT P on CAR of current expression. 

17.40 

(~) 
(:. 

~'\ 
( /. 

. -...:.' 



(--~--,; 
\ ___ l: 

THE TELETYPE EDITOR 

17.10 MANIPULATING TIIE CHARACTERS OF AN ATOM OR STRING 

RAISE 

LOWER 

CAP 

[Editor Command] 
An edit macro defined as UP followed by ( I 1 ( U-CAS E ( ## 1 ) ) ) , i.e.. it 
raises to upper-case the current expression, or if a tail. the first element of the 
current expression. 

[Editor Command] 
Similar to RAISE, except uses L-CASE. 

[Editor Command] 
First does a RA I SE, and then lowers all but the first character, i.e., the first character 
is left capitalized. 

Note: RAISE, LOWER, and CAP are all no-ops if the corresponding atom or string is already in that state. 

(RAISE X) 

(LOWER X) 

[Editor Command] 
Equivalent to ( I R ( L-CASE x) x), i.e., changes every lower-case x to upper· 
case in the current expression. 

[Editor Command] 
Similar to RAISE. except performs ( I R x ( L-CASE x)). 

Note that in. both ( RAISE x) and ( LOWER x), x should be typed in upper case. 

REPACK [Editor Command} 
Perrnirs the "editing" of an atom or string. 

REPACK operates by calling the editor recursively on UNPACK of the current 
expression. or if it is a list. on UNPACK of its first element. If the lower editor is 
exited successfully, i.e., via OK as opposed to STOP, the list of atoms is made into 

-a single atom or string, which replaces the atom or string being "repacked." Toe 
new atom or string is always printed. 

Q, Example: 

•p 

0 

... "THIS IS A LOGN STRING") 
•REPACK 
•EDIT 
p 
(TH IS% IS% A% LOG N % STRING) 
•(SW G N) 
•QK 
"THIS IS A LONG STRING" 
• 

Note that this could also have been accomplished by ( R SGNS $NG$) or simply ( RC GN NG). 

(REPACK@) [Editor Command] 
Does {LC • @) followed by REPACK. e.g. (REPACK THISS). 

17.41 



'--·. 

Manipulating Predic:ites and Conditional Expressions 

17.11--· MANIPULATING PREDICATES AND CONDmONAL EXPRESSIONS 

JOINC 

(SPLITC x) 

[Editor Command] 
Used to join two neighboring corm's together. e.g. (C0N0 cuusE1 CLAUSE2) 
followed by ( CONO CLAUSE3 CLAUSE4) becomes ( CONO CLAUSE1 CLAUSE2 CLAUSE3 
CI.AUSE4). JO INC does an ( F C0ND T) first so that you don't have to be at the 
first corm. 

[Editor Command) 
Splits one C0ND into two. xspecifies the last clause in the first C0ND. e.g. ( SPLITC 
3) splits ( C0N0 CLAUSE1 CLAUSE:z CLAUSE3 CLAUSE4 ) into ( C0N0 CLAu-SE1 
CLAUSE:z) ( C0N0 CLAUSE3 CLAUSE4), Uses the generalized NTH command ( NTH 
COM), so that x does not have to be a number. e.g •• the user can say ( SPLITC 
RETURN), meaning split after the clause containing RETURN. SPLITC also does 
an ( F C0ND T) first. 

(;. 
NEGATE 

SWAPC 

[Editor Command] 
Negates the current expression. Le. performs {MBD NOT), except that is smart 
about simplifying. For example, if the current expression is: { OR { NULL X) 
{LISTP X)),NEGATEwouldchangeitto{AND X {NLI~TP X)). 

NEGATE is implemented via the function NEGATE (page 14.2). 

[Editor Command] 
Takes a conditional expression of the form {C0N0 (A B)(T C)) and rearranges 
it to an equivalent (C0ND ({NOT A) C){T B)),.or {C0ND (A B) {C 0)) 
to (C0ND ((NOT A) (C0N0 (C 0))) (TB)). 

SWAPC is smart about negations (uses NEGATE) and simplifying C0NDs. It always produces an equivalent 
expression. It is useful for those cases where one wants to insen extra clauses or tests. 

17.12 HISTORY CO.lVIMAJ.'IDS IN THE EDITOR 

As described on page 8.35. all of the user's inputs to the editor are stored on ED ITH I ST ORY, the editor's 
history list, and all of the programmer's assistant commands for manipulating the history list. e.g. REDO. 
USE, FIX, NAME. etc .• are available for qse on evencs on EDITHIST0RY. In addition. the following four 
history commands are recognized specially by the editor. They always operate on the last. i.e. most 
recent. event. 

00 COM • [Editor Command) 
Alfows the user to supply the command name when it was omitted.. 

USE is useful when a command name is incorrect. 

For example. suppose the user wants to perfonn ( -2 ( SETQ X ( LIST Y. z))) but instead types just 
(SETQ X (LIST Y Z)). The editor will cype SETQ ?. whereupon the user can type DO -2. The 
effect is the same as though the user had typed FIX. followed by ( L. I 1). ( -1 - 2). and OK. i.e .. 
the command (-2 ( SETQ X ( LIST Y Z))) is executed. DO also works if the command is a line 

17.42 

'- .. : 

r) ' /" 



0 

----· (J 

0 

THE TELETYPE EDITOR 

command. 

IF [Editor Command] 
Same as DO F. 

In the case of I F, the previous command is always treated as though it were a line command. e.g., if the 
user types (SETQ X &) and then IF, the effect is the same as though he had typed F (SETQ X &), 
not ( F ( SETQ X &)). 

!E [Editor Command] 
Same as DO E. 

!N [Editor Command] 
Same as DO N. 

17.13 MISCELLANEOUS CO1\tll\.1ANDS 

NIL [Editor Command] 
Unless preceded by F or BF, is always a no-op. Thus extra right parentheses or 
square bracketS at the ends of commands are ignored. 

CL [Editor Command] 

ow 

GET• 

{* • X) 

Clispifies the current expression (see page 16.17). 

[Editor Command] 
Dwimifies the current expression (see page 16.14). 

[Editor Command] 
If the current expression is a comment pointer (see page 6.51), reads in the full 
text of the comment. and replaces the current expression by it. 

[Editor Command] 
x is the text of a comment. • ascends the edit chain looking for a "safe" place 
to insert the comment. e.g., in a COND clause. after a PROG statement. etc., and 
insertS ( • • x) after that point. if possible, otherwise before. For example, if the 
current expression is ( FACT ( SUB 1 N) ) in 

[COND 
((ZEROP N} 1) 
(T (!TIMES N (FACT (SUB1 N] 

• . 
(• CALL FACT RECURSIVELY) would insert(•. CALL FACT RECURSIVELY) 
before the 1TIMES expression.24 

24 If inserted after the ITIMES. the comment would then be (incorrectly) returned as the value of the 
CONO. However. if the CONO was itself a PROG statement. and hence itS value was not being used. the 
comment could be (and would be) inserted after the IT IMES expression. 

17.43 · 



\... 

GETD 

Miscellaneous Commands 

• does not change the edit chain. but UNF IND is set to where the comment was 
actually inserted. 

{Editor Command] 
Essentially "expands" the current expression in line: (1) if (CAR of) the current 
expression is the name of a macro, expands the macro in line; (2) if a CLISP word. 
translates the current expression and replaces it with the translation: (3) if CAR is 
the name of a function for which the editor can obtain a symbolic definition. either 
in-core or from a file, substitutes the argument expressions for the corresponding 
argument names in the body of the definition and replaces the current expression 
with the result; ( 4) if CAR of the current expression is an open lambda. substirutes 
the arguments for the corresponding argument names in the body of the lambda. 
and then removes the lambda and argument list. 

(MAKEFN (FN • ACTU.ALARGS) ARGLIST N1 N2) [Editor Command] 
The inverse of GETD: makes the current expression into a function. FN is the 
function name, .AR.GLIST · its arguments. The argument names are substituted for 
the corresponding argument values in ACTUALARGS, and the result becomes· the 
body of the function definition for FN. The current expression is then replaced 
with { FN • ACTU.ALARGS). 

If N1 and N2 are supplied. {N1 THRU N2) is used ·rather than the current 
expression: if just N1 is supplied. ( N 1 THRU -1) is used. 

If ARGLIST is omitted. MAKEFN will make up some arguments. using elements of 
ACTUALARGS, if they are literal atoms. otherwise arguments selected from '( X Y 
Z A B C ••• ), avoiding duplicate argument names. 

Example: If the current expression is {COHO ({CAR X) {PRINTY T)) (T (HELP))). then 
(MAKEFN (FOO {CAR X) Y) (A 8)) will define FOO as (LAMBDA {A B) (COND {A (PRINT B 
T) ) ( T. (HELP) ) ) ) and then replace the current expression with { FOO ( CAR X) Y). 

(MAKE ARGNAME EXP) [Editor Command] 
Makes the value of ARGNAME be EXP in the call which is the current expression. 

1 i.e. a ?= command following a MAKE will always print ARGNAME=EXP. For 
example: 

Q 

D 

•p 
(JSYS) 
*?= 
JSYS(N;AC1,AC2,AC3,RESULTAC] 
*(MAKE N 10} 
*(MAKE RESULTAC 3) 
•p 
(JSYS 10 NIL NIL NIL 3) 

Quotes the current expression. i.e. MBO QUOTE. 
[Editor Command] 

[Editor Command! 
Deletes the current expression. then prints new current expression. i.e. ( : ) I P. 

17.44 

() 
'(:· 



0: ,. 

0 

THE TELETYPE EDITOR 

17.14 COMMANDS THAT EVALUATE 

E 

(E X} 

{EXT) 

[Editor Command] 
Causes the ei:litor to call the Interlisp executive LISPX giving it the next input as 
argument. Example: 

*E BREAK{FIE FUM) 
(FIE FUM) 
*E {FOO) 

(FIE BROKEN) 

Note: E only works when when typed in. e.g. ( INSERT D BEFORE E) will treat 
E as a pattern. and search for E. 

[Editor Command] 
Evaluates x. Le .• performs ( EVAL x), and prints the result on the terminal. 

[Editor Command) 
Same as ( E z) but does not print. 

The ( E x) and ( E x T } commands are mainly intended for use by macros and subroutine calls to the 
editor; the user would probably type in a form for evaluation using the more convenient format of the 
(atomic) E command. 

( I c x1 • • • xN) [Editor Command} 

EVAL 

Executes the editor command ( c Y1 •• • YN) where Y; = ( EVAL X;), If c is not 
an atom. c is evaluated also. 

Examples: 

( I 3 ( GETD ' FOO) ) will replace the 3rd element of the current expression with 
the definition of FOO. 

(I N FOO (CAR FIE)) will attach the value of FOO and CAR of the value of 
FIE to the end of the current expression. 

( I F= FOO T) will search for an expression EQ to the value of FOO. 

(I {CONO ({NULL FLG) '-1) (T 1)) FOO), if FLG is NIL. inserts the 
value of FOO before the first element of the current expression. otherwise replaces 
the first element by the value of FOO. 

The I command sets an internal flag to 'indicate to the structure modification 
commands not to copy expression(s) when inserting, replacing. or attaching. 

[Editor Command] 
Does an EVAL of the current expression. 

Note that EVAL. line-feed. and the GO command together effectively allow the user to "single-step" a 
program through its symbolic definition. 

17.45 



GETVAL 

Commands That Test 

[Editor Command) 
Replaces the current expression by the result of evaluating it. 

••• COMN) · [NLambda NoSpread Function] 
An nlambda. nospread function (not a command}. Its value is what the current 
expression would be after executing the edit commands COM 1 • • • COM N starting 
from the present edit chain. Generates an error if any of cou1 thru COMN cause 
errors. The current edit chain is never changed. 25 

Example: ( I R 'X ( ## { CONS • • Z))) replaces all X's in the current expression by the first CONS 
containing a Z. 

Toe I command is not vecy convenient for computing an entire edit command for execution. since it 
computes the command name and its arguments separately. Also. the I command cannot be used to 
compute an atomic command. The following two commands provide more general ways of computing 
commands. 

[Editor Command] 
Each xi is evaluated and its value is executed as a command. 

For example. ( C0MS ( C0ND ( X ( LIST 1 X) ) ) ) will replace the first element of the current expression 
with the value of X if non-NIL. otherwise do nothing.26 

(COMSQ COM1 ·•• COMN) [Editor Command] 
Executes COM l ••• COM N· 

C0MSQ is mainly useful in conjunction with the C0MS command. For example, suppose the user wishes 
to compute an entire list of commands for evaluation. as opposed to computing each command one at a 
time as does the C0MS command. He would then write ( COMS ( CONS 'COMSQ x) ) where x computed 
the list of commands. e.g •• { COMS { CONS 'COMSQ ( GETP FOO 'COMMANDS))). . 

17.15 COMMA.l'lDS THAT TEST 

( IF X) [Editor Conunand) 
Generates an error unless the value of ( EVAL x) is true. In other words. if ( EVAL 
x) causes an error or { EVAL x) =NIL. IF will cause an error. 

For some editor commands. the occurrence of an error has a well defined meaning, i.e .• they use errors co 
branch on. as C0N0 uses NIL and non·N IL. For example. an error condition in a location specification may 
simply mean .. not this one. cry the next." Thus the location specification (!PLUS (E (OR (NUMBERP 
( ## 3 ) ) ( ERROR ! ) ) T) ) specifies the first IPL US whose second argument is a number. The IF 
command. by equating NIL co error. provides a more natural way of accomplishing the same result. Thus. 
an equivalent location specificatjon is ( I PLUS (-IF ( NUMB ERP ( ## 3)}) ). 

25The A. B. : . INSERT, REPLACE. and CHANGE commands make special checks for # :t forms in the 
expressions used for inserting or replacing, and use a copy of :t # form instead (see page 17 .26 ). Thus. 
{INSERT (## 3 2} AFTER 1) is equivalent co (I INSERT (COPY (## 3 2}) 'AFTER 1}. 
26The editor command NIL is a no-op. see page l 7.43. 

l7.46 

(] .. 
'-· 

( --. . .. 
\ / 



0 
THE TELETYPE EDITOR 

The IF command can also be used to select between two alternate lists of commands for execution. 

( IF X COMS1 COMS2) [Editor Command) 
If ( EVAL x) is true, execute coMs1; if ( EVAL x) causes an error or is equal to 
NIL. execute COMS:2-

Thus IF is equivalent to 

(COMS (CONS 'COMSQ 
(CONO 

((CAR (NLSETQ (EVAL X))) 
COMS1) 

{ T COMS,2)) ) _) 

r/~- For example, the command ( IF ( READ P T) NIL ( P ) ) will print the current expression provided the 
'v . input buffer is empty. 

-,-------,_ u 

0 

[Editor Command} 
If ( EVAL X) is true, execute COMs1; otherwise generate an error. 

( LP COMS 1 • • • COMSN) [Editor Command] 
Repeatedly executes COMS 1 · • • COMSN until an error occurs. 

For example, ( LP F PRINT { N T)) will attach a T at the end of every PRINT 
expression. {LP F PRINT (IF (## 3) NIL ((NT)))) will attach a Tat 
the end of each print expression which does not already have a second argumenL21 

When an error occurs. LP prints N OCCURRENCES where N is the number of 
times the commands were successfully executed. The edit chain is left as of the 
last complete successful execution of coMs1 • • • coMsN. 

( LPQ COMS1 • • • COMSN) [Editor Command] 
Same as LP but does not print the message N OCCURRENCES. 

In order to prevent non-terminating loops, both LP and LPQ terminate when the number of iterations 
reaches MAXLOOP, initially set to 30. MAXLOOP can be set to NIL, which is equivalent co setting it to 
infinity. Since the edit chain is left as of the last successful completion of the loop, the user can simply 
continue the LP command with REDO (page 8.7). 

{SHOW X) [Editor Command] 
X is a list of patterns. SHOW does a LPQ printing all instances pf the indicated 
expression(s), e.g. ( SHOW F 00 ( SE TQ FIE & ) ) will print all F oo·s and all 
(SETQ FIE &)'s. Generates an error if .there aren't any insl:illlces• of the 
expression(s). 

21The fonn ( ## 3) will cause an error if the edit command 3 causes an error. thereby selecting ( ( N 
T) ) as the list of commands to be executed. The IF could also be written as ( IF { COD R ( ##) ) NIL 
{(N T))). 

17.47 



(EXAM X) 

(ORR COMS1 • •• 

.. 
Edit Macros 

[Editor Command] 
Like SHOW except calls the editor recursively (via the TTY: command. see page 
17.40) on each instance of the indicated espression(s) so that the user can examine 
and/or change them. 

COMSN) . [Editor Command] 
ORR begins by executing COMS1, a list of commands. If no error occurs, ORR is 
finished. Otherwise, ORR restores the edit chain to its original value. and continues 
by executing coMs2, etc. If none of the command lists execute without errors. i.e., 
the ORR "drops off the end", ORR generates an error. Otherwise. the edit chain is 
left as of the completion of the first command list which executes without an error.• 

NIL as a command list is perfectly legal, and will always execute successfully. 
Thus. making the last "argument" to ORR be NIL will insure that the ORR never 
causes an error. Any other atom is treated as (ATOM), i.e .. the above example 
couldbewrittenas(ORR NX !NX NIL). 

For example, ( ORR { NX) { ?NX) NIL) will perform a NX, if possible. otherwise a ! NX. if possible. 
otherwise do nothing. Similarly, DELETE could be written as {ORR {UP (1)) (BK UP (2)) (UP 
(: NIL))}. 

17.16 EDIT MACROS 

Many of the more sophisticated branching commands in the editor, such as ORR, IF, etc., are most often 
used in conjunction with edit macros. The macro feature permits the user to define new commands and 
thereby expand the editor's repenoire, or redefine existing commands.28 Macros are defined by using the 
M command: 

(M C COMS1 · •. COMSN) [Editor Command] 
For can atom. M defines c as an atomic command. If a macro is redefined. its 
new definition replaces its old. Executing c is then the same as executing the list 
of commands COMS1 • • • COMSN. 

For example, (M BP BK UP P} will define BP as an atomic command which does three things. a BK. 
and UP, and a P. Macros can use commands defined by macros as well as built in commands in their 
definitions. For example. suppose Z is defined by ( M Z - 1 ( I F { R EAO P T) N IL ( P ) ) ) • i.e.. z does 
a -1. and then if nothing has been typed. a P. Now we can define ZZ by (M ZZ -1 Z ). and ZZZ by 
(M zzz -1 :1 Z) or_{M zzz -1 ZZ). 

Macros can also define list corrunands. i.e .• commands that take arguments. 

{M (c) (ARGz .•. ARGN) COMS1 ... COMSM) . [EditorCommand) 
c an atom. M defines c as a list command. Executing ( c Ez · · · EN) is then 
performed by substituting E1 for ARG1• • •. EN for ARGN throughout coMs1 · · · 
COMSu, and then executing COMSz ••. COMSM-

28To refer to the original definition of a built·in command when redefining it via a macro. use the 
ORIGINAL command (page 17.50). . 

17.48 

,~. 
\ d;· 

n . __ ~· 



o· 

(5) 

THE TELETYPE EDITOR 

For example, we could define a more general BP by (M (BP} (N) (BK N) UP P). Thus. (BP 3) 
would perform { BK 3 ) , followed by an UP, followed by a P. 

A list command can be defined via a macro so as to take a fixed or indefinite number of "arguments". 
as with spread vs. nospread functions. The form given above specified a macro with a fixed number 
of arguments. as indicated by itS argument list. If the "argument list" is atomic. the command ta.lees an 
indefinite number of arguments. 

( M ( c) ARG COMS1 · · • COMSM) [Editor Command] 
If c, ARG are both atoms, this defines c as a list command. Executing ( c Ez 
• • • EN) is performed by substituting ( E1 • • • EN), i.e .. CCR of the command. for 
.ARG throughout COMS1 ••• COMSM, and then executing COMS1 ••• COMS.\{" 

For example, the command ZND (page 17.18), could be defined as a macro by ( M ( 2tm) X ( ORR ( ( LC 
• X) (LC • X)))). 

Note· that for all editor commands. "built in" commands as well as commands defined by macros as 
atomic commands and list definitions are completely independent. In other words. the existence of an 
atomic definition for c in no way affects the treatment of c when it appears as CAR of a list command. 
and the existence of a list definition for c in no way affectS the treaanent of c when it appears as an 

. atom. In particular, c can be used as the name of either an atomic command. or a list command. or 
both. In the latter case, two entirely different definitions can be used. 

Note also that once c is defined as an atomic command via a macro definition, it will not be searched for 
when used in a location specification. unless it is preceded by an F. Thus ( INSERT -- BEFORE BP) 
would not search for BP, but instead perform a BK, and UP, and a P, and then do the insertion. Toe 
corresponding also holds true for list commands. 

Occasionally, the user will want to employ the S command in a macro to save some temporary result. 
For example, the SW command could be defined as: 

(M (SW) (N M) 
(NTH N) 
(S FOO 1) 
MARK 
0 
(NTH M) 
(S FIE 1) 
{I 1 FOO) -{I 1 FIE)) 

Since this version of SW•sets FOO and FIE, using SW may have undesirable side effects. especially when 
the editor was called :from deep in a computation, we would have to be careful to make up unique names 
for dummy variables used in edit macros. which is bothersome. Furthermore, ic would be impossible co 
define a command that called itself recursively while setting free variables. Toe B mo command solves 
both problems. 

(BIND COMSz ••• COMSN) [Editor Comma..'1c} 
Binds three dummy variables # 1. #2, #3. (initialized to rn L). and then executes 
the edit co~ands coMs1 · • • COMSN. Note that these bindings are only in effect 
while the commands are being executed. and that 8 I NO can be used recursiveiy: 

o· 17.49 



·,. ,/ 

Undo 

it will rebind #1, #2, and #3 each time it is invoked. 

BIND is implemented by ( PROG ( #1 #2 #3) ( ED ITC OMS ( COR COM)) ) 
where coM corresponds to the entire arno command. and EDITCOMS is an 
internal editor function which executes a list of commands. 

Thus we could now write SW safely as: 

(M (SW) (N M) 
(BIND (NTH N) 

{S #1 1) 
MARK 
0 
(NTH M) 
(S #2 1) 
(I 1 #1) 

( I · 1 #2))) 

(ORIGINAL COMSz ••• COMSN) [Editor Command) 
Executes cous1 COMSN without regard to macro definitions. Useful for 
redefining a built in command in terms of itself.. Le. effectively allows user to 
"advise" edit commands. 

User macros are stored on a list USERMACROS. The file package command USERMACROS (page 11.24). is 
available for dumping all or selected user macros. 

17.17 UNDO -
Each command that causes strucrure modification automatically adds an entry to the front of UNDOLST 

(;-,_ '- .. 

that contains the information required to restore all pointers that were changed by that command. r-,~ 
\_ _.ii,> 

UNDO 

!UNDO 

[Editor Command) 
Undoes the last. i.e .. most recent. strucrure modification command that has not 
yet been undone, and prints the name of that command. e.g., MBD UNDONE. The 
edit chain is then exactly what it was before the "undone" command had been 
performed. _If there are no commands to undo, UNDO types NOTHING SAVED. 

[Editor Command) 
Undoes all modifications performed during this editing session. i.e. this call co the 
editor. As each command is undone. its name is printed a la UNDO. If there is 
nothing to be undone, ! UNDO prints NOTHING. SAVED. 

Undoing an event containing an I, E. or S command will also undo the side effects of the evaluacion(s}. 
e.g., undoing ( I 3 ( /NC::ONC FOO FIE) ) will not only restore the 3rd element but also restore FOO. 
Similarly, undoing an S command will undo the sec. See the discussion of UNDO in page 8.11. (Note 
that if the I command was typed directly to the editor. /NCONC would automatically be substituted for 
NCONC as described in page 8.22.) 

17.50 



-\--U) 
. \ 

. . 

oi 

THE TELETYPE EDITOR 

Since UNDO and lUNDO cause structure modification. they also add an-entry .to UN0OLST. However. UNDO 
and !UNDO entries are skipped by UNDO. e.g .• if the user performs an INSERT, and then an MBD, the 
first UNDO will undo the MBD, and the second will undo the INSERT. Howeve"r, the user can also specify 
precisely which commands he wants undone by identifying the corresponding entry on the history list. In 
this case, he can undo an UNDO command. e.g., by typing UNDO UNDO, or undo a ! UNDO command. or 
undo a command other than that most recently performed. 

Whenever the user continues an editing session. the undo information of the previous session is protected 
by inserting a special blip, called an undo-block. on the front of UNDOLST. This undo-block will terminate 
the operation of a ! UNDO, thereby confining its effect to the current session, and will similarly prevent ari 
UNDO command from operating on commands executed in the previous session. 

Thus, if the user enters the editor continuing a session. and immediately executes an UNDO or ! UNDO, the . 
editor will type BLOCKED instead of NOTHING SAVED. Similarly, if the user executes several commands 
and then undoes them all, another UNDO or ! UNDO will also cause BLOCKED to be typed. 

UNBLOCK 

TEST 

[Editor Command] 
Removes an undo-block. If executed at a non-blocked state, i.e., if UNDO or ! UNDO 
could operate, types NOT BLOCKED. 

[Editor Command] 
Adds an undo-block at the front of UNDOLST. 

Note that TEST together with ! UNDO provide a .. tentative" mode for editing; i.e., the user can perform 
a number of changes, and then undo all of them with a single ! UNDO command. , 
( UNDO EVll!lcSpec) [Editor Command] 

EvezJcSpec is an event specification (see page 8.5). Undoes the indicated event on 
the history list. In this case, the event does not have to be in the current editing 
session, even if the previous session has not been unblocked as described above. 
However, the user does have to be editing the same expression as was being edited 
in the indicated event. · 

If the expressions differ, the editor types the warning message "different 
expression", and does not undo the event. The editor enforces this to avoid 
the user accidentally undoing a random command by giving the wrong event 
specification. 

17.18 EDITDEFAULT 

Whenever a command is not recognized. i.e.. is not .. built in" or defined as a macro. the editor calls an 
internal function. ED.ITDEFAULT, to determine what action to take.2-9 If a location specification is being 

29Since EDITDEFAULT is part of the edit block, the user cannot advise or redefine it as a means of 
augmenting or extending the editor. However. the user can accomplish this via ED ITU SERF N. If the 
value of the variable EDITUSERFN is T. EDITOEFAULT calls the function EDITUSERFN giving it the 
command as an argument. If EDITUSERFN returns a non-NIL- value. its value is interpreted as a single 
command and executed. Otherwise, the error correction procedure described below is performed. 

17.51 



EDITDEFAULT 

executed. an internal flag informs EDITDEFAULT to treat the command as though it had been preceded 
by an F. 

If the command is a list. an attempt is made to perform spelling correction on CAR of the command30 

using ED ITCOMSL. a list of all list edit commands.31 If spelling correction is successful the correct 
command name is RPLACAed into the command, and the editor continues by executing the command. In 
other words. if the user types ( LP F PRINT ( MBBD AND ( NULL FLG} )). only one spelling correction 
will be necessary to change MBBO to MBD. If spelling correction is not successful. an error is generated. 

If the command is atomic, the procedure followed is a little more elaborate. 

(1) If the command is one of the list commands. i.e., a member of EOITCOMSL, and there is 
additional input on the same terminal line, treat the entire line as a single list command.32 

Thus, the user may omit parentheses for any list command typed in at the top level (provided 
the command is not also an atomic command, e.g. NX, BK. For example. 

•p 
(CONO (& &) (T &)) 
*XTR 3 2] 
*MOVE TO AFTER LP 
• 
If the command is on the list EDITCOMSL but no additional input is on the terminal line. an 
error is generated,· e.g. 

•p 
(CONO (& &) (T &)) 
*MOVE 

MOVE? 
• 
If the command is on EDITCOMSL. and not typed in directly, e.g., it appears as one of the 
commands in a LP command, the procedure is similar. with the rest of the command stream 
at that level being treated as "the terminal line". e.g. ( LP F ( COND ( T & ) ) XTR 2 2) .33 

(2) If the command was cyped in and the first character in the command is an 8, treat the 8 as a 
mistyped left parenthesis. and and the rest of the line as the arguments to the command. e.g., 

•p 
( CONO ( & & ) ( T & ) ) 

. 30unless OWIMFLG=NIL. 
31When a macro is defined via the M command. the command name is added to EOITCOMSA ·or 
EDITCOMSL. depending on whether it is an atomic or Hst command. The USERMACROS file package 
command is aware of this. and provides for restoring EOITCOMSA and EDITCOMSL. · 

:12The line is read using REAOLINE (page 8.30). Thus the line can be terminated by a square bracket. or 
by a carriage return not preceded by a space. 
33Note that if the command is being executed in location context. ED ITOE FAULT does not get this 
far. e.g .• ( MOVE TO AFTER CONO XTR 3) will search for XTR. not execute it. However. ( MOVE TO 
AFTER CONO ( XTR 3)) will work. 

17.52 



0 

o. 

0. ) , 

0 

•a-2 (Y (RETURN Z))) 
=(-2 
•p . 

THE TELETYPE EDITOR 

(COND (Y &) (& &) (T &)) 

(3) If the command was typed in. is the name of a function. and is followed by N ! L or a list 
CAR of which is not an edit command. assume the user forgot to type E and means to apply 
the function to its arguments. type = E and the function name. and perform · the indicated 
computation. e.g. 

(4) 

•BREAK{FOO) 
=E BREAK 
(FOO) 
• 
If the last character in the command is P. and the first N·l characters comprise a number. 
assume that the user intended two commands. e.g .• 

•p 
(COND (& &} (T &)} 
•op 
=Op 
(SETQ X {COND & &)) 

(5) Attempt spelling .correction using EDITCOMSA, and if successful. execute the corrected 
command. 

(6) If there is additional input on the same line, or command stream, spelling correct using 
EDITCOMSL as a spelling list, e.g., 

*MBBD SETQ X 
=MBD 
• 

(6) Otherwise, generate an error. 

17.19 EDITOR FUNCI10NS 

( EDITF NAME COM1 COM2 ••• COMN) • [NLambda NoSpread Function] 
Nlambda. nospread function for ED I Ting a Function. NAME is the name of the 
function. COM1, COM2- • • •• COMn are (optional) edit commands. 

The vajue of ED IT F is NAME. 

The action of ED ITF is somewhat complicated: 

(1) In the most common case. if the definition of NAME is an EXPR (not as a result of its being 
broken or advised). and EDITF simply performs (PUTD NAME (EDITE (GETO 'NAME) 

(LIST 'COM1 'COM2 · · • 'COMN) 'NAME 'FNS) ). 

17.53 



Editor Functions 

(2) If NAME is an EXPR by virtue of its being broken or advised. and the original definition is also 
an EXPR. then the broken/advised definition is given to EDITE to be edited (since any changes 
there will also affect the original definition because all changes are destructive). However. a 
warning message is printed to alert the user that he must first position himself correctly before 
he can begin typing commands such as ( -3 -- ). ( N -- ). etc. 

(3) If NAME is an EXPR by virtue of its being broken or advised. the original definition is not an 
EXPR. there is no EXPR property, and the file package "knows" which file NAME is contained 
in (see EDITLOADFNS?, page 17.58). then the EXPR definition of NAME is loaded onto its 
propeny list as described below, and the ED ITF proceeds to the next possibility. Otherwise. a 
warning message is printed. and the edit proceeds. e.g .• the user may have called the editor to 
examine the advice on a SUB R. 

,,-, (4) 
./ 

If NAME is an EXPR by virtue of its being broken or advised. the original definition is not an 
EXPR, and there is an EXPR propeny, then the function is unbroken/unadvised {latter only (J \..._ . 
with user's approval, since the user may really want to edit the advice) and EDITF proceeds to '..;.;·· 
the next possibility. 

(5) If NAME is not an EXPR, but has an EXPR property, EDITF prints PROP, and per· 
fonns {EDITE (GETPROP 'NAME 'EXPR} (LIST 'COMz 'COM:z ••• 'COMr-,r) 'NAME 
'PROP). In this case. if the edit completes and no changes have been made, EOITE prints 
NOT CHANGED, SO NOT UNSAVED. If changes were made, but the value of DFNFLG (page 
5.9) is PROP. EDITE prints CHANGED. BUT NOT UNSAVED. Otherwise if changes were made, 
EDITE prints UNSAVED and does an UNSAVEDEF. 

(6) If NAME is neither an EXPR nor ?tas an EXPR property, and the file package "knows,. which 
file NAME is contained in (see EDITLOAOFNS?, page 17.58), the EXPR definition of NAME 
is automatically loaded (using LOAOFNS) onto the EXPR propeny, and EOITE proceeds as 
described above.34 In addition. if NAME is a member of a block. the user will be asked whether 
he wishes the rest of the functions in the block to be loaded at the same time. 35 

(7) If NAME is neither an EXPR nor has an EXPR property, but it does have a definition. EDITF 
• generates an NAME NOT ED IT AB LE error. 

(8) If NAME is neither defined. nor has an EXPR propeny, but its top level value is a list. EDITF 
assumes the user meant to call ED ITV, prints =ED ITV, calls ED ITV and returns. Similarly, if 
NAME has a non·NIL propeny list. EDITF prints =EDITP. calls EDITP and returns. 

34 Because of the existence of the file map (see page 11.38). this operation .is extremeiy fast. essentially 
requiring only the time to perfonn the READ to obtain the actual definition. 
35The editor's behaviour in this case is controlled by the value of EDITLOADFNSFLG, which is a dotted 
pair of cwo flags. The CAR of ED ITLOADFNSFLG controls the loading of the function. and the CDR 
controls the loading of the block. A value of NIL for either flag means "load but ask first."' a value of 
T means ·'don't ask. just do it" and anything else means "'don·t ask. don't do it."' The initi.11 value of 
EDITLOADFNSFLG is (T NIL). meaning to load the function without asking. and ask about loading 
the block. 

17.54 



0 

0 

THE TELETYPE EDITOR 

(9) If NAME is neither a function. nor has an EXPR property, nor a top level value that is a 
list, nor a non·N IL property list. ED ITF attempts spelling correction using the spelling list 
USERWORDS,36 and. if successful, goes back to the beginning. 

(10) Otherwise, EDITF generates an NAME NOT EDITABLE error. 

In all cases, if a function is edited, and changes were made, the function is time-stamped (by EDITE}, 
which consists of inserting a comment of the form { • USERS-INITIALS DATE) (see page 17.60). If the 
function was already time-stamped, then only the date is changed. 

(EDITFNS NAME COM1 COM2 ••• COMN) [NI..ambda NoSpread Function] 
"An nlambda. nospread function. used to perform the same editing operations 
on several functions. NAME is evaluated to obtain a list of functions.37 coM1, 
COM2- ••• , coMN are (optional) edit commands. E0ITFNS maps down the list of 
functions, prints the name of each function. and calls the editor (via E0ITF) on 
that function. Toe value of EDITFNS is NIL. 

For example. ( ED IT FNS FOOFNS ( R FIE FUM) ) will change every FIE to FUM 
in each of the functions on F00FNS. 

Toe call to the editor is ERRORSET protected. so that if the editing of one function 
causes an error, EDITFNS will proceed to the next function. In panicular. if an 
error occurred while editing a function via its EXPR property, the function would 
not be unsaved. Thus in the above example, if one of the functions did not contain 
a FIE, the R command would ca.use an error, it would not be unsaved. and editing 
would continue with the next function. 

(EDITV NAME COM1 COM:z ••• COMN) [NI..ambda NoSpread Function] 
Similar to ED IT F, for editing values of variables. 

The value of ED ITV is the name of the variable whose value was edited. 
. 

If NAME is a list. it is evaluated and its value given to EDITE, e.g.. ( ED ITV { CDR ( ASSOC 'F00 
DICTIONARY))). in this case, the value of ED ITV is T. 

However. for most applications, NAME is a variable name. i.e •• atomic, as in ED ITV {FOO). If the value 
of this variable is NOB IND. EDITV checks to see if it is the name of a function, and if so, assumes the 
user meant to call EDITF, prints =EDITF. calls EDITF and returns. Otherwise. ED ITV attempts spelling 
correction using the list USERWOR0S.38 Then E0ITV will call EDITE on the value of NAME (or the 
corrected spelling thereof). and TYPE=VARS. Thus. if the value of FOO is NIL. and the user performs 
{ ED ITV FOO). no spelling correction will occur. since FOO is the name of a variable in the user's system. 
i.e .• it has a value. However, ED IT E will generate an error, since F 00's value is not a list. and hence 

36Unless DWIMFLG=NIL. Spelling correction is performed using the function MISSPELLED? (page 
15.18). If NAME=NIL, MISSPELLED? returns the last "word" referenced. e.g., by DEFINEQ, EDITF. 
PRETTYPRINT etc. Thus if the user defines FOO and then cypes ( EDITF ). the editor will assume he 
meant FOO, type =FOO. and then type EDIT. 
3ilf NAME is atomic. and its value is nor a list. and it is the name of a file, ( FILEFNSLST 'NAME) will 
be used as the list of functions co be edited. 
38Unless DWIMFLG=NIL. MISSPELLED? is also called if NAME is NIL. so that {EDITV) will edit 
LASTWORD. 

17.55 



Editor Functions 

not editable. If the user performs ( ED ITV FOOO), where the value of FO0O is NOBIN0, and FOO is on 
the user's spelling list, the spelling corrector will correct F 000 to F 00. Then ED! TE will be called on. the 
value of FOO. Note that this may still result in an error if the value of FOO is not a list. 

{ EDITP NAME COM1 COM2 .• • COMN) [Nlambda NoSpread Function} 

(EDITE EXPR 

Similar to ED IT F for editing property lists. If the property list of NA.\!E is 
NIL, EDITP attempts spelling correction using USERWOR0S. Then EOITP calls 
ED ITE on the property list of NAME. (or the corrected spelling thereof), with 
TYPE=PR0PLST. When (if) EDITE returns. EDITP calls SETPROPLIST on NA.\.!E 

with the value returned. 

The value of EDITP is the atom whose property list was edited. 

COMS ATM TYPE IFClIANGEDFN) [Function] 
Edits the expression. EXPR. by calling EDITL on {LIST EXPR) and returning the 
last element of the value returned by EDITL. Generates an error if EXPR is not a 
list. 

ATM and TYPE are for use in conjunction with the file package. If supplied. ATM 
is the name of the object that EXPR is associated with, and TYPE describes the 
association (i.e •• TYPE corresponds to the TYPE argument of MARKASCHAflGED. 
page 11.11.) For example, if EXPR is the definition of FOO, ATM= FOO and 
TYPE=FNS. When EDITE is called from EDITP, EXl'R is the property list of ATM, 
and TYPE= PROPLST, etc .. 

EDITE calls EDITL to do the editing (described below). Upon return. if both ATM 
and TYPE are non,;NIL. A00SPELL is called to add ATM to the appropriate spelling 
list. Then. if EXPR was changed.39 and the value of IFCHANGEDFN is not NIL. the 
value of IFCHANGEDFN is applied to the arguments ATM, E!Ja'R. TYPE, and a flag 
which is T for normal edits from editor. NIL for calls that were aborted via control-O 
or STOP. Otherwise. if EXPR was changed. and the value of IFCHANGEDFN is NIL. 
and TYPE is not NIL. MARKASCHANGED (page 11.11) is called on ATM and TYPE. 
~CITE uses RESETSAVE to insure that IFCHANGEDFN and MARKASCHANGE0 are 
called if any change was made even if editing is subsequently aborted via concrol·D. r\ 
(In this case, the fourth argument to IFCHANGEDFN wil be NIL.) 'I. -~.Jj 

{ EDITL L COMS ATM MESS EDITCHANGES) [Function] 
ED ITL is the editor. Its first argument is the edit chain. and its value is an edit 
chain. namely the value of Lat the time EDITL is exited:10 

COMS is an optional list of commands. For interactive editing, cams is NIL. In this 
case. EDITL types EDIT (or MESS. if it not NIL) and then waits for input from 
terminal. All input is done with E0ITR0TBL as the readtable. Exit occurs only 
via· an OK, STOP, or SAVE con:imand. . 

:1 9For TYFE=FNS or TYPE=PROP. i.e .• calls from EDITF, EDITE performs some additional operations 
as described earlier under ED IT F. 

" 0 r. is a SPECVAR. and so can be examined or sec by edit comma~ds. For example. 1' is equivalent w ( E 
( SETQ L ( LAST L} ) T). However. the user should only manipulate or examine L directly as a last 
resort. and then with caution. 

17.56 



0. 

(5-

O· 

0 

THE TELETYPE EDITOR 

If coMs is nol NIL. no message is typed. and each member of cous is treated 
as a command and executed. If an error occurs in the execution of one of the 
commands. no el"!'or message is printed. the rest of the commands are ignored. and 
EDITL exits with an error. i.e .• the effect is the same as though a STOP command 
had been executed. If all commands execute successfully, EDITL returns the 
current value of L. 

ATM is optional. On ~alls from ED IT F. it is the name of the function being edited: 
on calls from ED ITV. the name of the variable. and calls from EDITP. the atom 
whose property list is being edited. The propeny list of ATM is used by the SAVE 
command for saving the state of the edit. Thus SAVE will not save anything if 
ATM=NIL. i.e .. when editing arbitrary expressions via EDITE or EDITL directly. 

EDITCHANGES is used for communicating with EDITE. 

{EDITL0 L COMS MESS -) [Function] 
Like ED ITL. except it does not rebind or initialize the editor's various state 
variables. such as LASTAIL, UNFIND. UNDOLST. MARKLST. etc. Should only be 
called when already under a call to ED IT L. 

( ED IT 4E i'AT X - ) [Function] 
The editor's pattern match routine. Returns T. if PAT matches x. See page 17.13 
for definition of .. match ... 

Note: Before each search operation in the editor begins, the entire pattern is scanned for atoms or strings 
containing $s (<esc>s). Atoms or strings containing Ss are replaced by lists of the form ( $ · · · }, .and 
atoms or strings ending in double Ss are replaced by lists of the form ( SS · · ·). Thus from the standpoint 
of EDIT4E. single and double S patterns are detected by (CAR PAT) being the atom$ (<esc>} or the 
atom SS ( <escXesc> ). Therefore. if the user wishes to call ED IT 4 E directly, he must first conven any 
patterns which contain atoms or strings containing Ss to the form recognized by EDIT 4E. This is done 
with the function EDITFPAT: 

( EDITFPAT PAT -,.) [Function] 
Makes a copy of PAT with all atoms or strings containing Ss (<esc>s) convened to 
the form expected by EOIT4E. 

( EDITFINDP X PAT FLG) [Function] 
Allows a program to use the edit find command as a pure predicate from outside 
the editor. x is an expression, PAT a pattern. The value of ED IT FI ND P is T if the 
command F PAT would succeed. NIL otherwise. ED IT F rn DP calls ED IT F PAT to 
conven PAT to the form expected by ED IT 4 E. unless FLG = T. Thus. if the program 
is applying EDITFINDP to several different expressions using the same pattern. it 
will be more efficient to call ED IT F PAT once, and then call ED IT F IND P with the 
convened pattern and FLG = T. · 

( ESUBST NEW OLD EXPR ERRORFLG CHARFLG) [Function] 
Equivalent to performing ( R OLD NEW) with EXPR as the current expression. 
i.e .. the order of arguments is the same as for SUBST. Note that OLD and/or NEW 

can employ Ss (<esc>s). The value of ESUBST is the modified EXPR. Generates an 
error if OLD not found in EXPR. If ERRORFLG = T. also prints an error message of 
the form OLD ? . 

17.57 



Editor Functions 

If CHARFLG= T and no Ss (<esc)s) are specified in NEW or OLD, it is equivalent 
to ( RC OLD NEW). In ocher words. if CHARFLG=T, and no Ss appear, ESUBST 
will supply them. 

ESUBST is always undoable. 

( EDITLOAOFNS? FN STR ASKFLG FILES) •. [Function) 
FN is the name of a function. EDITLOAOFNS? returns the name of file FN is 
contained in. or NIL. 

EDITLOAOFNS? performs (WHEREIS FN FNS FILES) to obtain the name of 
the file(s) containing FN, if any (see page 11.10). If there is more than one 
file, EDITLOADFNS? asks the user to indicate which file. It then checks the 
FILEDATES property for each file to see if the version that was originally loaded 
still exists. 41 If the file that was originally loaded no longer exists, but there is a ("\, 
different version of the file on that directory, EDITLOADFNS? prints .. ••••can't \ / 
f i n d FrLENAME'', and theI1 uses the version that it could find. Similarly, if the 

. originafvers1on is found. but a newer version is also found. EDITLOADFNS? prints 
" 0 •••Note: FILENAME is not the newest version" and then uses the 
newest version. 

Having decided which file the function is on. if ASKFLG=NIL. EDITLOADFNS? 
prints the value of STR followed by the name of the file, and rerurns the name 
of the file. If ASKFLG=T, EDITLOAOFNS? calls ASKUSER giving ( LIST FN 
STR F'CLEN.AME) as MESS, the message to be printed. If ASKUSER returns Y, 
EDITLOADFNS? returns the filename. If STR=NIL, ~loading from" is used. 

EDITLOAOFNS? is used by the editor, LOADFNS (when the file name is not supplied), by PRETTYPRIHT, 
and by DWIM . 

• ( CHANGE NAME FN FROM TO) [Function] 
- Replaces all occurrences of FROM by TO in the definition of FN. If FN is an EXPR. 
-CHANGE NAME perfonns ( NLSETQ ( ESUBST TO FROM ( GETD FN)) ). If FN 

is compiled. CHANGENAME searches the literals of FN (and all of its compiler 
generated subfunctions), replacing each occurrence of FROM with TO. This will 
succeed even if FROM is· called from FN 11ia a linked call. In chis case. the call will 
also be relinked to call TO instead. 

The value of CHANGENAME is FN if at least one instance of FROM was found. 
otherwise N I L. 

CHANGENAME is used by BREAK and ADVISE for changing calls to FN1 to calls co FN1- IN-:-FN2, . . 
The function EDITCALLERS provides a way of rapidly searching a file or entire set of files. even files • 
not loaded into Interlisp or "noticed" by the file package, for the appearance of one or more key words 
(atoms) anywhere in the file. 

u [n the case that FILES= T and che WHEREIS package has been loaded (page 23.40). files(s) may be 
found that have not been loaded or otherwise noticed. and thus will not have FILEDATES property. In 
this case. EDITLOADFNS? does not do any version checks. but simply uses the latest version. 

'•• 17.58 ( <,:. 
. \ ) 



Q_, 

0. } 
.. ,· 

0 

THE TELETYPE EDITOR 

( EDITCALLERS ATOMS FILES COMS} [Function] 
Uses FF I LE POS to search the file(s) FTLES for occurrences of the atom(s) ATOMS. 
It then calls ED IT E on each of those objects;'2 performing the edit- commands 
COMS. If COMS = N IL. then ( EXAM • ATOMS) is used. Both ATOMS and FlI..ES 
may be single atoms. If FILES is NIL, FILELST is used. Elements on ATOMS may 
contain $s (<esc>s). 

EDITCALLERS prints the name of each file as it searches it. and when it finds 
an occurrence of one of ATOMS, it prints out either the name of the containing 
function or, if the atom occurred outside a function definition, it prints out the 
byte position that the atom was found. 

EDITCALLERS will read in and use the filemap of the file. In the case that the 
editor is actually called, EDITCALLERS will LOADFROM the file if the file has not 
previously been noticed. 

( FINDCALLERS ATOMS FILES} [Function] 
Like EDITCALLERS. except does not call the editor, but instead simply returns 
the list of files that contain one of ATOMS. 

( EDITRACEFN COM) [Function] 

-

Is available to help the user debug complex edit macros. or subroutine calls to the 
editor. If EDITRACEFN is set to T, the function EDITRACEFN is called whenever 
a command that was not typed in by the user is about to be executed. giving it 
that command as its argument. However. the TRACE and BREAK options described 
below are probably sufficient for most applications. .. 

If EDITRACEFN is set to TRACE. the name of the command and the current 
expression are printed. If EDITRACEFN=BREAK. the same information is printed. 
and the editor goes into a break. Toe user can then examine the state of the editor. 

EDITRACEFN is initially NIL. 

( SETTERMCHARS NEXTCilAR. BKCilAR. LASTC'RAR UNQUOTECH.AR .2C'HAR PPCHAR) [Function] 
Used to set up the immediate read macros used by the editor, as well as the 
concrol·Y read macro (page 6.39). NEXTCH.AR., BKCHAR., LASTCHAR • .2cHAR and 
PPCHAR specify which control character should perform the edit commands N X P. 
BKP, -lP, 2P and PP•, respectively; UNQUOTECHAR corresponds to concrol·Y. 
For each non-NIL argument, SETTERMCHARS makes the corresponding control 
character have the indicated function. The arguments to SETTERMCHARS can 
.be character codes. the control characters themselves. or the alphabetic letters 
corresponding to the control characters. 

If an argument to SETTERMCHARS is currently assigned as an interrupt character. it cannot be ·'a read 
macro (since the reader will never see it): SETTERMCHARS prints a message to that effect and makes no 
change to the control character. However. if SETTERMCHARS is given a list as one of its arguments. it 
uses CAR of the list even if the character is an interrupt. In this case. if CADR of the list is non-NIL. 
SETTERMCHARS reassigns the interrupt function to CADR. For example. if control-X is an interrupt. 

42EDITCALLERS uses GETDEF (page 11.17) co obtain the "'definition .. for each object. When EDITE 
rerurns. if a change was made. PUTDEF is called to store the changed object. · 

17.59 



Time Stamps 

( SETTERMCHARS ' ( X W)} assigns control·W the interrupt concrol·X had, and makes control·X be the 
NEXTCHAR operator. 

As part of the greeting operation. SETTERMCHARS is applied to the value of EOITCHARACTERS, which 
is initially ( J X Z Y N } in Interlisp· D and in Interlisp· 10 under Tenex. { J A L Y K ) under Tops-20 
(concrol·J is line-feed). SETTERMCHARS is called after the user's init file is loaded, so it works to reset 
EOITCHARACTERS in the init file; alternatively, SETTERMCHARS can be called explicitly. 

17.20 TIME STAl'1PS. 

Whenever a function is edited, and changes were made, the function is time-stamped (by EOITE), which 
consists of inserting a comment of the form { • USERS-IMTIALS DATE}. USERS-INITIALS is the value 
of the variable INITIALS. After greeting. or following a SYS IN, the function SET INITIALS is called. 
SETINITIALS se~hes INITIALSLST, a.list of elements of the form ( USER.NAME • INITIALS) or 
{ us:emi.A..VE-FIRSTNAME INITIALS). If the user's name is found; INITIALS is set accordingly. If the 
user's name is not found on INITIALSLST, INITIALS is set to the value of OEFAULTINITIALS, 
initially edited:. Thus. the default is to always time stamp. To suppress time stamping. the user must 
either include an entry of the form (USERNAME) on INITIALSLST, or set DEFAULTINITIALS to NIL 
before greeting, i.e. in his user profile; or else, after greeting, explicitly set INITIALS to NIL. 

If the user wishes his functions to be time stamped with his initials when edited. he should include a file 
package command command of the form (AOOVARS ( INITIALSLST ( USERNAME • INITIALS})) in 
the user's INIT. LISP file (see page 14.5). 

The following three functions may be of use for specialized applications with respect co time-stamping: 
( F IXEO ITDA TE EXPR} which. given a lambda expression. inserts or smashes a time-stamp commenc: 
{EOITDATE? COMMENT} which returns T if COMMENT is a time stamp: and (EOITOATE OLDATE 

IMTLS) which returns a new time-stamp comment. If OLDATE is a time-stamp coJillI].ent. it will be reused. 

17.60 

n-~\.. 

n ._ J 

'"" ~ .. j) 



0-

0 

0 

CHAPTER 18 

INTERLISP·D. SPECTF1CS 

. . 
Interlisp·D is an implementation of the Interlisp language that runs on the Xerox llOJ. 110~. and 1132 
machines. it is completely upward compatajle with t.l-te older Interlisp· 10. exce;:t as s;,ed:ieci in t.:0.is 
manual. The most significant extension to Interlisp is the window display package, described on page 
19.1. However, lnterl.isp-D also offers many other extensions, which are described in detail below. 

18.1 INTERLISP·D ~"TERRUPT CHARACTERS 

The table below gives the i:lterrupt characters currently enabled in Interlisp·D. Many of these are the 
same as those used in the Tenex version of Interlisp-IO. but some have been removed. and some have 
had their meanings changed. It is possible to change the assignments of control characters to interrupts 
using IHTERRUPTCHAR (page 9.17). 

Note: In lnterlisp·D with multiple processes. it is not sufficient to say that .. the computation .. is broken. 
aborted, etc: it is necessary to specify which process is being acted upon. Most of the interrupt characters 
below refer to the TIT process. which is the one currently r~civing keyboard input. Concrol-H can be 
used to break arbiti.--ary processes. For more information. see page 18.35. 

control-B 

concrol-C 

control-D 

concrol-E 

control-P 

control-I 

Causes a brealc within the TTY process. Use control·H to break a panicular process. 
Note that this break occurs at the next function call so it is like control-H in Interlisp-
10; it is always safe to resume the computation. There is no interrupt cha..-acter like 
control· B in lnterl.isp-10 

On the Xerox 1100 and Xerox 1132. brings the user into the Raid low-level debugger. 
From Raid, typing ccmrol·N resumes the Lisp computation. a..,d control-D resets ~e 
stack. On the Xerox 1108, after typing control-C, the system stops a.,d wai.s for t.~e 
next cha.racter typed. Pressing the STOP key will do a HARD RESET, rerurning cont:ol 
to the us~r. Pressing the mmo k.ey will scan up the TeleRaid debugger." 

Aborts the TTY process, and unwinds its stack to the top leveL Calls RESET (page 
9.14). 

Aborts the 1TY process. and unwinds its stack to the last ERRORSET. Calls ERROR 1 
{page 9.14). 

Pops up a menu listing all of the currently-running processes. Selecting one of the 
processes will cause the break to take place in that process. 

Changes t.s-ie PRINTLEVEL setting, as described on page 6.18. 

Prints status information for the TrY process. 

18.1 



(_--

Garbage Collection 

Note: The control-0, and control..S interrupt characters from the Tenex version of Interlisp-10 are not 
enabled in Interlisp-D. 

18.2 GARBAGE COLLECTION 

(}· 

In:erlisp-D has a reference-counting garbage collector (Interlisp-10 uses the more familia' tr.ark-and-sweep 
:tlgorit.~). A reference-counting garbage collector uses time proportional to t."le garbage being coil-?Cted 
and not to the size of the address space. This is a crucial adva.-,,cage fer a large address space system such 
as Interlisp-D. It does have a disadvantage in that circular lists are never reclaimed. as t."l.eir reference 
count never goes to zero. In addition, atoms are currently not garbage collected: and non-ator.Jc hash 
array keys are not collected (in Interlisp-IO. when a non-atomic hash key is no longer referenced exce?t 
by the hash array itseif. the hashlink goes away and both the key and the value, if it is nowhere else 
referenced. are reclaimed). (}: 

Garbage collection in Interlisp-D is controlled by the following functions and variables: 

( RECLAIM) [Function} 
Initiates a garbage collection. RECLAIM always recums O. independent of the acrual 
number of cells collected. 

( RECLAIMMIN N) [Function] 

RECLAIMWAIT 

( GCGAG MESSAGE) 

(GCTRP} 

The frequency of garbage collection is user settable via the function RECLAIMMIU 
(which plays a role similar to lnterlisp·lO's MI NFS. which is a no-op in Interlis;,-D). 
Lisp' keeps track of the number of cells of any type that have been alloc:ited: wilen 
it rezches the RECLAIMMHI number. a garbage collection occurs. ( RECLAIMMIN 
N} returns the current setting of the parameter. and. if N is non-NIL. sets it to N. 

As there is no motivation for the Interlisp-10 CT RL -s interrupt. it is not enabled. 

[Va.1fable} 
Interlisp-D will invoke a RECLAIM if the system is idle and waiting for user in;:ut 
for RECLAIMWAIT seconds (currently set for 4 seconds). 

[Function] 
GCGAG setS the me".:&ge that appears on the display screen while a garbage collection 
is taking place. If MESSAGE is non-NIL. the cursor is complemented durimz a 
RECLAH•: if MESSAGE=NIL, nothing happens. This limited choice exists because 
it was found that pri.nting a message took a significant fraction of the time of sm.ill 
RECLAIMS. The value of GCGAG is its previous setting. 

[Function) 
The function GCTRP returns the number of cells (of any type, not just LIST?) 
until the next garbage collection. according to the RECLA IMM IN number. although 
this number is not very meaningful. 

18.2 · 



0 

0-

INfERLISP·D SPECIFICS 

18.3 VARIABLE B~1)INGS 

Inr.eriisp·D uses deep binding of variables, whereas Interlisp-10 currently uses shallow binding (prior to 
1975. lnterlisp:10 used deep binding). Although thjs makes little difference for most programs. it car. 
make .a difference in efficiency of execution. For example, it is better to pass parameters as a..~Jmen:s 
than to let subfunctions reference them freely. In addition. declaring variables that a.re never bound (i.e .. 
whose top level ,·alue only is used) to be GLOBALVA~S is import.ant. Sloppy Interlisp-10 code that rebinds 
variables that have been declared as GL03ALVARS will not run correctly in lnterlisp-D. Be carefui to use 
RESETVARS to ··rebind" variables t.'1at arc dcdarcd GLOBALVARS. RESETVARS works in bot.-: systems; 
in a sh.allow system. RESETVARS just binds its arguments as PROG variables (and makes sure they are 
de::::lared SPECVARS). while in a deep system such as Interlisp·D. enuies are mad~ on RESETVARSLST. If 
the compiler secs an attempt to bind a global variable, it will print out an error message. 

For performance reasons, it is imponant to declare global variables as such in lnter!isp·D. This can be 
done with the GLOBALVARS file package command (page 11.25), which causes variables to be declared 
as global to the compiler. For more information on variable bindings and performance, see page 18.19. 

18.4 STACK FOR..l\1AT 

Both t..'le interpreter and compiler generate dilferent intermediate frames than are found in Interlisp-10. 
so if the user has code that assumes a panicular number of frames will exist at some point (e.g .• 
using STKNTH}, it will probably be wrong. STKPOS and STKSCAN are still available. however, and 
REALSTKNTH and REALFRAMEP are useful for ignoring those intermediate frames. . 

18.5 SAVING VIRTUAL MEMORY STATE 

Tne Interlisp-D virtual memory is kept in the file Llsp.virtualmem. As virtual memory pages are accessed. 
they are loaded from this file into real memory. To exit from Interlisp-D to ti.~e Alto Executh-e so that it 
is possible to return to the current lnterlisp-D environment. it is necessary to save the state of the vim.ial 
rneI:.'!.ory. Toe simplest way is to use the function LOGOUT (page 14.2}. 1b.is will write out all altered 
pages from real memory to Lisp. virrualmem. · 

If you are the sole user of l!lterlisp·D on a disk panition. then you will probably want to use LOGOUT. 
However, if other Interlisp-D users may be using that partition. and you wish to save your s-~te. th~n it 
may be more appropriate to use SYSOUT (page 14.3}. Note that SYSOUT in Interlisp·D saves the entire 
state of the vim.la! memory, i.ostead of just the saved pages, so Interlisp-D sysout file are very large. 

(VMEMSIZE) [Function] 
Rerurns the number of pages in use in the virtual memory. This is the rougl'Jy the 
same as the number of pages required to ·make a sysout file on the local disk. 

lnterlisp-D contains a routine ~'lat writes out dirty pages of the virrual memory during I/0 wait. assuming. 
that swapping has caused at least one diny page to be written back into Lisp.virrualrncrn (making it 
non-continuable). Tnc frequency with which this routine runs is determined (inversely) by: 

18.3 



r 

___ ,/ 

Error Types 

BACKGROUNOP.O.GEFREQ [Va."iabie] 
This global variable determines how often the routine that writes out dirty pages is 
run. Initially it is set to 4. so the diny page routine is run once every 4 times arou:id 
the idle loop. (The lower BACKGROUNOPAGEFREQ is set. the less responsiveness 
you get at typein. so it may not be desirable to set it all the way down to 1.) 

Toe following function is used to write all of the diny pages out, to make sure t..'lat the c-JITent s.a.e is 
n-:,t lost· if there is a system crash. 

{SAVEVM -) [Fun::tion] 
This function is similar to logging out and continuing. but faster. It takes about 

· as long as a logout. which can be as brief as 10 seconds or so if you have already 
written out most of your dirty pages by virrue of being idle a while. After t:.'le 
SAVEVM. and until t..'le pagefault handler is next forced to write out a dirty page. 
your virtual memory image wil, be continuable (as of the SAVEVM} should there 
be a system crash or other disaster. 

If the system has been idle long enough. diny pages have been written. and there are few enough dirty 
pages left to write that a SAVEVM would be quick. SAVEVM will be automatically called. While SAVEVM 
is being executed. the cur.;or is changed to a special "SAV /ING .. cursor. You can control how ofte:i 
SAVEVM is automatically called by setting the following two global variables: 

SAVEVMWAIT 
SAVEVMMAX 

[Vari.able] 
(Variable] 

The system will call SAVEVM after being idle for SAVEVMWAIT seconds (initially 
60) if there are fewer than SAVEVMMAX pages dirty (initially 600). Tnese values are 
fmrly conservative~ If you want to be extremely wary, you can set SAVEVMWArT=O 
and SAVEVMMAX = 10000. in which case SAVEVM will be called the first chance 
available after the first dirty page has been written. 

18.6 ERROR TYPES 

Toe following additional error types occur in Interlisp·D: 

5 

48 

49 

50 

51 

52 

FILE SYSTEM ERROR 

FLOATING UNDERFLOW 

FLOATING OVERFLOW 

OVERFLOW 

ARG ~lOT HARRAY 

TOO MANY ARGUMENTS 

Incerlisp·D allows the user to trap arithmetic exceptions. The action taken when overflow occurs may be 
set with the function OVERFLOW (page 2.38). 

18.4 

(j. 

0 



o.· 

0-

~-rERLISP·D SPEOFiCS 

READ-MACRO cmnEXT errors are not generated in Interlisp·D. In the situation where Interllsp-10 would 
generate the error. the call to READ within the macro will sirnp ly return NIL. 

18.7 COMPILER 

lntcrlisp·D runs a different instruction set than Interlisp· 10. so source files from Interlisp-10 must be 
recompiled. The default extension (value of COMPILE. EXT) for lnterlisp·D compiled files is ··ocnM" 
rather than "COM" as in Interlisp· 10. 

The Interlisp-10 compiler translates Lisp source programs into 36-bit PDP· 10 instructions. The lmerlisp·D 
compiler compiies Lisp source programs into an 8-bit Lisp instruction set executed by the Xerox 1100 
family machines. 

In Interlisp·D. block compiling is handled somewhat differently than in Interlisp· 10: block compiling 
provides a mechanism for hiding function names internal to a block. but it does not provide a performance 
advantage. Block compiling in Interlisp·D works by automatically renaming the block functions with 
special names, and calling these functions -with the normal function-calling mechanisms. Specifically, a 
function FN is renamed to \BLOCK-NAMBIFN. For example, function FOO in block BAR is renamed to 
.. \BAR/FOO". Note that it is possible with this scheme to break functions internal to a block.· 

Interlisp-D has an opti:nizing compiler. Among other optimizations. it performs constant fo!ding. Variables 
can be declared by the user to be compilerconstancs using the file package command CO:.i!STANTS (page 
11.27}, which is syntactically the same as VARS, but additionally informs the compiler that the "\"ariables" 
are constants. 

18.8 LII'\~ FUNCI10N CALLS 

Linked function calls are not implemented in Interlisp·D. One noticeable result of this is that if you 
break a function that is used by the system, for example in the READ-EVAL-?RINT loop. you 'wiil get 

. une:xpe:::ted breaks within system code. These extta brew· can be safely ~ted -...ith OK. To avoid t.~is 
inconvenience, BREAK the function inside another function., e.g., (BREAK (PRINl IN FOO)). (Note: 
Functions that begin with a backslash (\) are system internal functions and should no:· be broken or 
ac.vised.) 

18.9 HELPSY-5 

There is currently no HELPSYS facility in Intcrlisp-D. There are plans to reimplement a HELPSYS facility 
eventually. 

18.5 

I 
l 
I 

I 



,,.-. 

r· 

Operating System Dependent Functions 

_ 13.10 OPERA TING SYSTEM DEPENDE:!'i'T FUNCTIONS 

_ Many Interlisp-10 functions are missing from Interlisp-D. An attempt has been cude to pro,~ce an 
appropriate implementation for the more useful of these. functions. but some simply do not make sense on 
the Xer9x UGO family machines. For example. there is no such thmg as a JSYS. Any function cont"ini-ig 

· a call on JSYS or ASSEMSLE will fail to compile. ~ . 
The following Interlisp-IO functions are net implemented L."l l:lterlisp·D: LISPXSTATS. SUSSYS. GETBLK. 
RELBLK. ERSTR, G1JFN.OPNJFN. RLJFN.OPENF. JFNS. 

()· 

The fol1owing lnterlisp-10 functions are implemented as dummies in Interlisp-D: LISPX'ii/ATCH. ADDSTATS. HOSn 
USERNUf.iBER. HOSnrnMBER. LOAOAV. There are cornmunication network analogs of HOSTNAME and 
HOSnrnMBER called ETHERHOSTNAME and ETHERHOSTNUMBER (page 2LS). 

Additional Functions: 

{ HOSTiiAMEP NAME) [Function] 
Returns T if NAJt.!E is recognized as a valid device or remote file server name at 
the moment HOSTNAMEP is called. 

(OIRECTORYNAMEP DIR.NA..\!E HOSTNAME) [Function] 

(MACHINETYPE) 

{ RINGaELLS) 

Returns T if D!RNAME is recognized as a •,alid directory. DIR.NA.VE may include 
an explicit hostname. If HOSTNAME is supplied. it is used instead. The connectec! 
directory and hostname are used as defaults. 

[Function] 
Returns the type of machine that "lnterlisp-D is running on: either DORADO (for 
the Xerox 1132), DOLPHIN (for t.~e Xerox 1100}, or DANDELION (for t.1le Xerox 
1108). .. 

[Function] 
On the Xerox 1100. this flashes (reverse-videos) the screen several times. On t..i.e 
Xerox 1108, this also beeps through the keyboard speaker. 

18.11 IDATE FOR..'I\IIAT 

Interlisp-D uses a different time standard than Tenex does. IOATE still has the essential property that 
( IDA TE x) is less than ( IDA TE Y) if X is before Y. and ( ID ATE { GCATE N)) equals .v. If the 
particular imemal format of the integer date is being used to do arith.meti.c on dates. the user·s pro~..s 
must be fixed. But in that case the user is already in trouble with Interlisp· 10, where the date stanc.ud 
is subtly diff~:-ent betwe~n Tenex and Tops20. The most useful property that the three formats have in 
common is that an internal date can be incremented by an imcgr:tl number of days by computing JS ::he "l 
day·· const:.u:.t ( which can be evaluated at compile time) the difference between two convenient IDA TE' s. 
e~. (IDIFFERENCE (IDATE" 2-JAN-80 12:00") (IOATE" 1-JAN-80 12:00~)). 

Currently, the format argument of DATE and GDATE is not supported (an error will occur if t..1e user tries 
to give o.:e). IDA TE now parses most of the ~te forms allowed in Interlisp· 10: e.g., the monL.'1 can be 
given numerically, slashes can be used as separators. extra spaces are ignored. 

18.6 

() 



0--

INTERLISP·D SPEOFICS 

(SETTIME DATE&'.ITME) [Function] 

\TimeZoneCornp 

Sets the internal time-of-day clock. If DATE&TIME = NIL. SETTIME attemptS to 
get the time from t.1le communications net: if it fails. the user is pro:::ptec for :he 
ti."!le. If DATE&TIME is a strin_g in a form that IDA TE recognizes. it is used to set 
the time. 

[Varia~le] 
Tr.is variable should be initialized (in {CSK} !NIT. LISP) to the time-zone 
compensation. i.e .. the number of hours west of GMT. For the t:.S. west coJ.St i, 
is 8. For the east coast it is S. · 

18.12 CHARACTER SET 

lnterlisp·D uses an 8-bit character set whereas Interlisp-IO uses standard 7-bit ASCII. The. values retur.ied 
by CHCO:a range from 0 to 255. and codes in this range are acceptable arguments to CHARACTER and 
FCHARACT:R. Characters O·ll7 have their su.-id.ard ASCII interpretations: cl-...aracters 128-255 are called 
.. met.a" characters. Some of tbe me:a characters have printed representations in some fonts (for accents. 
ligarures, et::.), but most of them will be invisible if printed directly to the screen. Accordingly, the 
echoi:lg conventions normally defined for control characters have been extended to apply also to meta 
characters. Toe echcmoc.e of any character may be set by the new function ECHOCHAR (page 6.43). In 
the original terminal table. the mo I CATE charac:er mode is specified for all meta characters. so all meta 
ch:u-acters are echoed as a cross-hatch (#) followed by the printed representation corres:ponding to the 
7 rightmost bits of the character. For example. character 129 is echoed as #-t A. There is currently no 
type-in synta:t for mera cha.-acters. 

The CHARCODE function (page 2.12), defined in both Interlisp-D and Interlisp· 10. can be useful when 
dea.ii...-ig wit.'l the Interlisp·D character set. 

13.13 READ TABLES 

In Interlisp·D. all control char2Cters are defined as separator characters in FILEROTBL. so that the font 
information in files is ignored when files are loaded. Users who run in both lnterli.~-10 and In:erlisp-D 
with the same files will want to make the same setting in lnterlisp-lO's FILERDT3L. in order tllat files 
created in o:ie system can be read in the other. The appropriate expression to evaluate, which may be in 
your lnterlisp-10 INIT. LISP file, is: 

(SETSEPR '(1 2 3 4 5 6 7 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26) 

1 FILERDTBL) 

18.7 



Keyboard Interpret:ltion 

18.14 KEYBOARD INTERP!t-ETA TION 

In Interlisp-D, keyboard and mouse interpretation is now done entirely by Lisp code. and certain 
lower level keyboard facilities are r..i.erefore available. For each key on the keyboard/mouse t..l-tere is a 
corresponding bit in memory t.'1.at the hardware/microcoae turn on ~d off as the key_ moves up 2..'ld down. 
Systet::1-level routines decode tb.e meaning of key transitions according to a table of "key actiou.S". which 
may be to put par".ic~lar Ascii codes in the sysbuffer. cause interrupts.. cha.z:ge the internal shif'Jcon.rol 
surus. or create events to be placed in the mouse buff er. 

( KEYOOWNP KEYN.AME) [Function] 

C) .. 

. , 

Used to read the instancaneous state of any key, independent of any buffering or 
pre-assigned key action. Returns T if the key named KZYNA.-...cE is down at the 
moment the function is executed. Most keys are named by any of the char...cte:-s on 
the key-top. The shift keys are riamed separately as RSHIFT 3..t."ld LSH I FT, space 

{
. is SPP,CE, the unmarked keys are BLANK-TOP, BLM:K-MIDOLE. and BLANK- n 

BOTTOM. and the mouse buuons are LEFT. MIDDLE. and RIGHT. Paddles on t..'1e ·. -· 
keyset (not generally available) are named PADl through PADS. Thus ( KEYDOWNP 

( 

'a) rerums T if the ··a" key·is down. ( KEYDOWNP 'TAB) returns the state of 
the TAB key, etc. 

( KEY ACT I ON KEYNAMZ ACTIONS) [Function] 
Changes the internal tables that define the action to be taken when a key transition is 
detected by the system keyboard handler. KEYNAME is specified as for KEYDOWNP. 
ACTIONS is a dotted pair of the form ( DOWN-ACTION • VP-ACTION). where the 
acceptable transition actions and their interpretations are: 

NIL Take no ·action on this transition (the default for up-cransitions on all 
ordinary characters}. 

a list ( CHAR SHIFTEDCH.\R LOCKFLAG} 
C'1iAR and SHIFTEDCHAR. are either ascii codes or non-digit characters 
standing for their ascii codes. When the transition occurs. C'P'...AR 
or SHIFTEDCTdAR is transmitted to the system buffer. depending en 
whether either of the 2 shift keys are down. LOCK7I..AG is opcic::a!. and 
may be LOCKSHIFT or NOLOCKSHIFT. If LOCKF!..AG is LOCKSHIFT. 
then SHIFTEDCHAR will also be transmitted when the LOCK shift is 
down (the alphabetic keys initially specify LOCKSHIFT. but the digit 
keys specify NOLOCKSHIFT). 

Examples: (a A LOCKSHIFT) and (61Q t NOLOCKSHIFT) are 
the initial settings for the down. r..-ansitions . of the "a .. and .. 1 .. keys 
respectively. 

lSHIFTUP, 2SHIFTUP, LOCKUP. CTRLUP, MfTAUP 
lSHIFTOOWN, 2SHIFTOOWN. LOCKDOWN. CTRLDOWN,METAOOWN 

Change the status of the internal "shift" flags for the left shift. right 
shift. shift lock. ctrl, and meu keys. respectively. These shifts affect -.'le 
interpretation of ordinary !cey actions. If either of the shif..s is down. 
then SHTFTEDCH.-\RS are trJnsmitted. If the lock flag is down. r.."len 
SHIFTEDCHARS are transmitted if the key action specified LOCKS HI FT. 
If the control flag is on. then the low-order th:e bitS arc mJ.Sked out 

18.8 
0 



0 

Q· 

EVENT 

Il'ITERLISP-D SPEOFICS 

of the code that would otherwise be transmitted to the system buff er. 
If the meta flag is down, the high order (St.11. bit} is turned on as 
characters are transmitted. 

Example: the initial ACTIONS for the left shift key is ( iSHI FTUP • 
lSHIFTDOWN). 

An encodia.,g of the current state of the mouse 2nd selected keys is 
placed in the mouse-eve:u buffer when this transition is detected. 

KEY ACT ION returns the previous setting for KEYNAME. If .ACTIONS is NIL. returns 
the previous setting without changing the tables. 

(MODIFY. KEYACTIONS KE'YACTIONS SAVECURR.ENT'.') [Function] 
KEY.ACTIONS is a list of key actions to be set. each of the form ( KEr.-.'AME • 

ACTIONS). Toe effect of MODIFY. KEYACTIONS is as if { KEYACTION KEYNAME 

ACTIONS) were performed for each item on KEYACTIONS. 

If SNlECURREN.T~ is non-NIL, then MODIFY .KEYACTIONS ren.irr.s a list of all 
the results from KEYACTION. otherwise it returns NIL. This can be used with a 
MODIFY .KEYACTIONS that appea.-s in a RESETFORM. so that the list is built at 
.. entry''. but not upon .. exit". 

(METASHIFT FLG) [NoSpread Function] 
If FLG is non-NIL. changes the keyboard handler (via KEY ACT ION) so as to 
interpret the bottom blank key ( .. swat .. ) as a meta.shift: if a key is struck while 
meta is down. it is read with the 200Q bit set. For CHAT users this is a way of 
getting an "Edit" key on your simulated Datamedia. Rerurns previous set'".ing. 

13.13 LISPUSERS PACKAGES 

,.,...-\ Most of the LIS?USERS packages (see page 23.1) are available wit.li the Interlisp-D system as s~:?Iate u_ loadable packages. Tne major exception is the HASH package, which is highly machine de;,encie:::it. and 
the WHERE IS package which depends on it. EDITA, CJSYS, and many pans of the EXEC package are 
systern-d.e:;,endent by their vecy narure, and also are not included. The various network packages are not 
provided because many of these facili'des are integrated into Interlisp-D at a more fundzni!!ntal level. 

0-

Sev-::ral packages not documentad in the Interlisp Reference M2nual are available. The list currently 
includes the following: 

GRAPHER 

BROWSER 

EVALSERVER 

A collection of functions for laying out, displaying. and editing graphs on the 
Interlisp-D screen. 

Modifies the SHOW PATHS command of Mastcrscope so that the comma::id's output 
is displayed as an undirected graph. Uses the GRAPHER package. 

Provides a set of routines to facilitate communication. over an Ethernet. between 
two or more Xerox 1100s running lnterlisp·D. 

18.9 



(_ 

HISTMEMU 

SAMEDIR 

File System 

Provides -a simple way to access the Interlisp history list using a menu. 

Tnis package advises MAKEFILE to notify the user if it appears that a file is bei.-ig 
written onto a directory other than the one it came from. allowing the user to halt 
the precess. • 

18.16 FILE SYSTEM 

Typically. the most mach!ne-dependent part of any computer language implementation is the I/0 system. 
Regard.Jess of efforts to create consistant interfaces, the fact remains that different physical machines offer 
diff crent disks. printers. etc., and languages have to be extended to take advant.:1.gc of tht.-se. In the C.'.lSC 

(J· 

of implementing Interlisp on the Xerox 1100 family machines. the biggest change was the .:1ddition of - . 
facilities for using the high-resolution display. described elsewhere. Ot:.'ler changes have had to be made ( ) .,. 
to accomodate using files on a local disk or on a file server, and sendbg files to remote printers. fa·ery · · 
effort has been made to keep these interfaces compatible with lnterlisp-10 conventions. to reduce t.li.e 
amount of worx necessary when transfening progra."lls. However, in some situations the user may wish 
to take advantage of the special extensions offered by lnterlisp-D. 

Tii.is section contains information ab.o~t a variety of extensions to Interlisp·D that accomodate the different 
1/0 environment. 

18.16.1 File Na.mes 

.. Full" file nanes inside of Interlisp·D look just like Tenex file names. except t.'lat all full file names 
begin with a device/host name (in br~es) to identify the machine (or pseudo-machine} on which the file 
res1des. Files on the local disk belong to device/host OSK, e.g. {DSK}FOO.BAR:3. PACKFILENAME and 
UNPACKFILENAME are still the appropriate way fer programs to manipulate filenames. Toe device/host 
of a file may be accessed using the new field name HOST. 

On Xerox 1100s and Xerox 1132s, Interlisp-D can access partitions other than the one which was booted. .. 
If r.he other partition is password-protected, Interlisp insisrs on the correct password before accessi::g any () 
files. Parjtions are denoted by {DSKl} for Partition 1. {DSK2} for Partition 2, etc. DIR. OIR'.;CTORY, '-_I 
etc •. all work for other partitions. Currently, SYSOUT does not work for partitions other than the c!efault. 

18.16.2 Renaming Files 

lnterlisp·D implements ( RENAME FILE OLD NEW) merely by copying OLD to NEW and then delec!ng 
OLD. Whifo tr.is is quite general (and even allows one to rename files from the local disk or one file server 
to another). it is slower th~ the Interlisp-IO RENAMEFILE operation. [t also, in the case of ren.m1ing a 
local disk file. requires that the local disk have enough room to hold the copy of the file. 

18.16.3 End Of Line Convention 

Interlisp·D uses a different representation for end of line both internally and on files. Internally, end of iine 

18.10 



o--._ 

Q .. 

Il'.'TERLISP·D SPECIFICS 

is renresented by the carriage return character (15Q). whereas the internal represent.ation in Interli.sp-10 
is th~ ECL character {37Q). The CHARCODE macro (page 2.12) is the appropriate way to code progra.::ns 
to be i:::i.dependent of t.'le EOL convention: in all systems ( CHARCODE EOL) is always the appropriate 
er.d·of-li:ie character. ( CHARCODE CR) and ( CHA~COOE TE~JEXEOL) provide the system-de-pendent 
character codes. Interlisp·D aiso interprets a carriage return/line feed sequence in a file as an end-of-line 
,md reads it as a carriage return. · TERPRI generates two characters in lnterlisp-10. but only one in 
Interiisp·D. • • · 

18.16.4 Usi:ig Fiies lfith Processes 

Currently, Intcrlisp·D does not provide interlocks to keep multiple processes from trying to access the 
same file. Therefore. the user has to be careful not to have two processes manipulating the same file at 
the S2.me time. For ex.implc. it will not work to have one process TCOMPL a file while anot.'1er process is 
running LISTFILES on it. 

18.16.5 Miscell:meous File Manipulation 

( COPY FILE FR.OMFILE TOFILE) [Function] 
Copies a file to a new file. Toe source and destination may be any servers/de..-ices. 
COPYFILE ar-..empts to preserve the TYPE and CREATIONDATE where possible. 

(O!SKFREEPAGfS - -) [Function] 
Returns an estimate of the number of pages free on the local disk (current partition). 
Tnis number is only a .. hint". but is usually quite accurate. 

{ OISKPARTITION) [Function] 
Returns the number of the current partition (1 or 2 on Xerox 1100, 1-5 on Xerox 
1132). 

13.16.6 Connecting to Directories 

As in Interlisp-10, Interlisp·D has a notion of a ··connected" directory. which is used as the default when 
you give a filenm:ie lacmig an explicit device/host (and direc:ory). The default is changeq. by using the 
programmer's assistant comn1and corrn. 

COHN {DEV!CE/HOST}{D.!RECTORY) [Prog. Asst. Command] 

( CNDIR HOST/DIP.) 

Eith~r pan of the a.--gument is optional; if the directory is omitted.. the default for 
devices that have directories is the value of (USERNAME ); if the host is omitted. 
connection will be made to another directory on u.'le same host as before. If CONN 
is given with no arguments, connects to the value of LOGINHOST /DIR. 

Note that CONN docs not require or provide any directory access privileges. as 
does the command of the same name in Interlisp· 10. Access privileges are checked 
when a file is opened. · 

[Function] 
Programmatic form of CONN. Connects to the directory HOST/DIR. Returns the 

18.11 



( 

---

Binary I/0 

fullname of the now-connected directory. 

{ /CNOIR EOST/Dm) [Function] 

LOGIN HOST /DIR 

Undoable form of CNDIR. CONN is implemented via /CNOIR. 

[Va..-iable] 
CONN with no argument connects to the value of the variable LOGINHOST /DI?~ 
initially {OSK}, but usual1y reset in the user's greeting file. 

(OIRECTORYNAME F!.G STRPTR) [Function] 

DIRECTORIES 

18.16.7 Binary I/O 

Similar to Interiisp-10 USE RNAME. If FLG is T. returns t..'1c currc:::l? co::r.~:ed. 
host and directory name. If FLG is NIL. returns the value of LOGHJHOST /DIR. If 
STRPTR is T, the value is returned as an atom. otherwise it is returned as a s~ri..=g. 

[\"arfable] 
Global variable containing the list of directories searched (in order) by SPE LLF I LE 
and F INDF I LE (page 15.20) when not given an explicit D!RLST argument. fa this 
list. the atom NIL stands for the login directory (LOGINHOST /DIR). and the atom 
T stands for the currently connected directory. 

Interlisp-D supports a datatype called a STREAM, whose basic operations are &&inputn and "output ... They 
provide an efficient handle to an open file. All l/0 functions that currently refer to files ( e.g., PRINT. 
PR IN 1. CCPYSYTES. FULLNAME) will also accept Stfeams. and will operate slightly more efficiently on 
the::-_ In addition. the following two functions provide binary input and output on streams: 

( 8 I :'.I STF.EA.\.!) [Function] 
Returns the next byte from STREAM; thus. this operation is similar to ( CH CON 1 
( READC STREAM)). BIN is a very efficient (microcoded) operation. . 

_ ( BOUT STREAM BYTE) [Functic:11 
Outputs a single 8-bit byte to STREAM. i.e .• similar to (PRIN3 (CHARACTER 
BITE)). 

In addition. the following function coerces files to streams: 

( GETSTRE.A.M FILE ACCESS) - [Function] 
Takes a designator which can be used as a "file" argument (e.g ... a full/paz:ial file 

. n2.J."11e~ a display stre~ window, etc.) and returns the corresponding strea.~. If 
given a stream will merely return it. ACCESS is interpreted the same as in O? ENP 
(page 6.2). 

BIN and BOUT will also accept a file designator, in which case they c·oerce it to a stream via GETSTREAM. 
However. BIN executes in microcode only when given a stream directly. 

18.16.8 Temporary Files and the CORE Device 

The local OSK device and most file servers do not support the temporary or scratch files that are available 

18.12 

o--

( ) 



0--

INTERLISP·D SPECIFICS 

in Interlisp-IO. FHes that are- created do not disappear when some later event such as logout oc.."'Urs and 
instead must be deleted by specific action on the part of the user. For tiiis reason. the : S and ; T suffixes 
L'l file na.r:nes are simply ignored when output is directed to a particular host or device. 

Ho,ve,·er, Interiisp-O does support a notion of core-r~sident files, and in many cases these provide 
a reasonable substitute for lnterlisp:10 scratch fi1es .. Core-resident files are on the device CORE (e.g. 
{C0RE}<F00>FIE. DC0M: 5 ). The directory for this device and all files on it are represen~ed cor:1pieteiy 
within the user's virrual memory. These files are treated as ordinary files by all fiie operations: their only 
disting~ishing feature is that all trace of them disappears when the virtual memory is aba.,doned. 

In Interlisp-D, the function PACKFILENAME is defined to default the device name to CORE if the file has 
the TEMPORARY attribute and no explicit host is provided. 

Interlisp·D is initialized with the single core-resident device CORE, but the function C0RE0EVICE may 
be used to create any number of logically distinct core devices. 

(C0REDEVICE NAME) [Function] 
Creates a new device for core-resident files and 2SSigns NAME as its device 
name. Tous,afterperforming (C0REDEVICE 'FO0),onecanexecute (OUTFILE 
'{F00}BAR) to open a file on that device. 

If the directory information associated with CORE devices is not needed, the device NOD I RC0RE can be 
used to open core-resident files which "disappear" when they are close~ Note that { NOD I RC0RE} files 
do not have names. so the only way to manipulate them is to pass around the value that OPEN F ILE 
returned whe:::i the file was opened. 

18.16.9 Floppy Disks on the Xerox ll08 

Interlisp-Don the Xerox 1108 can access the built-in floppy disk drive as device {FLOPPY}. Toe floppy 
forma: is compatible with the Pilot floppy disk format. 

18.16.10 Page Mapping 

Interlisp-D implemen!S the page-mapping primitives of Interlisp-IO with some notable differences that 
might require major reworking of programs that rely on t.i'lese facilities (see page 14.I 7). Toe major 
differe::::ice is that an Interlisp-O page contai.'"'lS 256 16-bit words, rather than the 512 36-bit words of 
Interiis9-lO. A given page nu.'Ilber or file address for MAPPAGE or MAPW0RD will correspond to a very 
different number of bits from the beginning of t."1.e file. and W0RDC0NTENTS and SETW0RDC0NTEfHS 
move smaller amounts of information. A .second difference is that buffers are completely integrated i.."lto 
the lnterlisp~D storage management system so that a page is guaranteed to be locked down as long as the 
user hclds a poin'i.er to it. The functions L0CKMAP and UNL0CKMAP are therefore unnecessa.·y, but for 
compatibility are defined with dummy definitions. 

18.17 FILE SERVERS 

A file server is a shared resource on a local communications network which provides large amounts of 

18.13 



File Server File Names 

file storas:e. Different file servers honor a variety of access protocols. In order to suppon full Lisp I/O. 
a file se~e!' must provide a random access protocol. One such protocol is Leaf. It has been integrated 
into the ImerHsp-D file system to allow files on a file server to be treated in much the sa.-ne way files are 
accessed on t.'1e local disk. Except where noted in this section. the standard file operations ( 0 PEN F ILE. 
HlFILEP. CLOSEF, etc.) all work for re.111ote files. This section explains how to make use of remote files 
and what differences exist between them and other fileS:. 

18.li.1 File Server File Names 

Tne full ll.:mle of a file on a file server host includes the name of the host in braces. and a directory 
specification in angle brackets. e.g .. {PHYLUM}<LISP>FOO.DCOM:3. These names are not neces~ily 
the syntax by which the actual device/server knows the files ( e.g. some file servers use .. ! ·· ins:ead of 
••; "). but Lisp presents a uniform set of naming conventions. 

CJ 

' The user can .. connect .. co a directory on a ~e server using the corm command (page 18.11). after which (----\_, 
(, any filename supplied that does not include the host name and/or directory will use the .. connected" host. ' _/ 

and/or directory. Specifically. if t.~e host is omitted. then the connected host is used. and if the directory 

·..:..---· 

is also omitted. the connected directory is used as well. If an explicit host is supplied. no defaulting of 
the directory occun. 

Interlisp suppor.s a preliminary version of NS filing to Xerox 8030 file servers (see page 21.13). Any 
device with a colon in its name is presumed to be accessible with NS protocols ratl1er than PUP, e.g .. 
{STARFILE: }. The general format of NS fileserver device names is {SERVER :DOMAlN: ORGA!'<7Z.ATION}; 

the device specification for an 8000-series product must contain the OearingHouse domain and org:miza­
tion. but if not supplied directly, then they ar~ obtained from the defaults. which themselves are found by 
a search for t.~e nearest ClearingHouse. NS file servers are modeled after the Star world. and have "File ' 
Drawers" rather t.11.an directories; "File Folders" are lfte sub-directories. The functions DIRECTORY, 
FILEBROWSER. INFILE, COPYFILE, LOAD, and MAKEFILE are working now with NS file sen:ers. 

HETWORKOSTYPES [Variable] 
Files servers on different machines have different login protocols. file name formats. 
etc. For proper service from fiJe servers other than Xerox file sen·ers. the user 
should add entries to the association-list NETWORKOSTYPES associating the host 
name (all uppercase) with its operating system type. currently one of TE~:Ex. (\ 
TOPSZO. UIHX. or VMS. For e~amp!e (AOOTOVAR NETWORKOSiYPES (MAXC2 _ / 

TENEX)) will inform Interlisp that the file server MAXC2 is a TENEX file server. --

18.17.2 Logging In 

Most file servers require a user name and password for access. When a file server requests this information. 
Interli.sp-D fi...--st gives the narr:e and password from the Alto Executive. If the file server doesn't recognize 
that name/password. Interlisp-D prompts the user for a name and password to use. It suggests a default 
name (the one on the disk). which the user can accept by typing a space, or replace by typing a new 
name or backspocing over iL Intcrlisp-O saves names and passwords for each host. so the user can login 
to different file servers using different names. 

(LOGIN HOSTNAME - - -) [Function] 
Forces lnterlisp·D to ask for the login name and password to be used when 
accessing host HOSTNAME. Any previous login information for HOSTNAME is 

18.14 

n 



0 -. . 

0. 

O· 

INTERLISP·D SPECIFICS 

overriden. If HOSTNAME is N IL. it overrides login information for all hostS. 
Password information vanishes when LOGOUT, SYSOUT, or MAKESYS is executed. 
Returns the login user name. 

18.17.3 Abnormal Conditions 

If Interlisp·D tries to access a file and does not get a response from the file server in a reasor..able period 
of time. it ptint.c: a mes~agc that the file server is not responding. and keeps trying. If the file ser ... er h:!.S 
actually crashed. this may continue indefinitely. A CTRL-E or similar interrupt aborts out of th.is st.ate. 

If tJ1e file server crashes but is restarted before the user attemprs to do anything. file operations will 
usually proceed normally, except for a brief pause while lntcrlisp-D tries to reestablish any connections 
it had open before the crash. It will inform the user of any problems that arise in so doing. The most 
likely problem occ:.irs when a file has been opened for output but has not yet been written to (or not 
enough has been written so that lnterlisp-D has written to the file server). In this case the file server will 
think the file is not there when Interlisp·D tries to reestablish the connection. A similar situation arises if 
the system has been idle (or at least has not accessed the file server) for a sufficiently long period. In this 
case. t.i.e file server will time out the connection. Normal_ly, Interlisp·D will attempt to recover gracefully 
as described above. 

LOGOUT closes any Leaf connections that are currently open. On return. it attempts to reestablish 
connections for any files that were open before logging ouL If a file has disappeared or been modified. 
Interlisp-D reports this facL 

If it is desired to break the Leaf connection without logging out, call {BREAKCONNECTIOH HOST). Any 
subsequent reference to files on that host will re~..ablish the connection. Toe main reason for doing t.Li.is 
occu.""S iflnterlisp·D is interrupted while a file is being opened. leaving the file server rhjnidng the file is 
open and Lisp thin k;ng it is closed. and then get".mg a file busy when Interlisp-D next tries to open. it. 

On rare occasions.' the Ethernet may appear completely unresponsive, due to Interlisp having gotten into 
a bad state. Typing (RESTART. ETHER) will reinitialize Lisp's Ethernet driver(s), just as when the Lisp 
system is started up following a LOGOUT. SYSOUT, etc (see page 21.15) 

18.17 .4 Caveats 

Leaf does not currently support directory ·enumeration except for one minor case (in the version field). 
Hence. DIRECTORY or FILDIR cannot be used on a Leaf file server to get a list of files. 

INFILEP and GETFILEINFO currently have to open the file for input in order to obtain their infonr..ation. 
and hence the file's read date will change, even though the semantics of these functions do cot imply it. 
This differs from the operation of OSK. and from Interlisp· IO file. operations. 

Interlisp supporr.s simultaneous access to the same server from ditrerent processes and permits overlapping 
of Lisp computation wiu.'1 file server operations. allowing for improved performance. However. as a 
corollary of this. a file is not closed the insumt that CLOSEF returns: Interlisp closes the file "in the 
backgrcund ... It is therefore very impor-.ant that the user exirs Interlisp via (LOGOUT). or ( LOGOUT T ). 
rather than boot the machine or exit via Raid. 

18.15 



( 

New Functionality 

18.li.5 New Functionality 

Certain file servers treat text and binary files differently. Files on tile servers can have the attr:bute TYPE. 
with value TEXT or 8 !NARY, for use with GETFILEHJFO and SETF ILEIHFO. The file type defa~lts to t.'le 
value of DEFAULTFILETYPE. initially TEXT. OPENFii.E accepts (TYPE TEXT) or {TYPE BINARY) 
as an .element of its argument MACEINE.DEPENDENT .PARAMETERS. 

Another allowed element of MA.CHINE.DEPENDENT.PA.RA.METE.RS is DON'T. CHAN6E. DATE. which means 
::10: to change the fi!e's cre:!tion date when a file is opened (meaningfi.tl only for· files being opened for 
output). 

faterlisp·D includes an implemex:.tation of the PupFtp protocol. which supports transferri.:lg files 
sequentially only. In those cases where sequential access (as opposed to random access) to a file is 
appropr.ate, the use of PupFtp generally results in considerable speed improvement over Lear-: par..icu!ariy 

(}·-

for writing files on a Xerox IFS. lbe system tries to use PupFtp where possible for SYSOUT and for r'\ 
the destination file of a COPY FI LE. One can indicate that a file is going to be accessed only s~quenti:illy \ ) 
by including the keyword SEQUEtHIAL in the list of MACHINE.DEPENDENT.P.ARA.'dETE.RS pa:ss-ed to . . 
OPEN FILE; the PupFtp will be used. if possible. If for some reason your file server suppor.s PupFtp but 
you co not wish COPYFILE or SYSOUT to use it. you can set the internal variable \FTPAVAILABLE to 
NIL. 

18.18 HARDCOPY FACLITIES 

Note: The following implementation· of hardcopy facilities is subject to cr.ange. 

Interlisp·D inciudes facilities for generating hard.copy in both .. Press .. and "Interpress .. formars. "Press .. 
is a file format used for con-..municating documents to laser Xerographic printers called .. Dover·· (at MIT. 
Stanford, and CMU) or "Penguin" (everywhere else) ... Interpress" is a Xerox standard format used by 
the 8044 prii:ter and other Network System printers. The hardcopy functions below will generate Press 
or Interpress output depending on the setting of the function PRINTERMODE: 

{ PR!NTER:100E X) . [Function] (\ .. 
Sets the type of printing file format generated by LIST FILES. HARDCOPY\11, and ./-
printer devices (see PRINTERDEVICE. below}. If xis PRESS. the Press file format 
is used. If xis HITERPRESS. the Interpress file format is used. 

Currently, the hardcopy interface is not smart enough to infer the prin:er mode 
from a previously formatted file or the name of a printing host. If the user wants 
to print a previously formaned Press or Interpress file. the printing mode must be 
set correctly. 

(PRINTINGHOST -) [Function] 
The function PRINTINGHOST is used to find the name of the local printer. 

For (PRINTERMODE 'PRESS}, this merely returns the value of the variable 
DffAULTPRINTrnGHOST, which is usually set by an encry in the site greeti::lg file 
(see page 14.5). 

18.16 
() 



0 

··. 0 
'--

0 

0-· 

INTERLISP·D SPEOFICS 

For ("PRINTERMODE 'INTERPRESS), this returns the value of the va."iable 
NS. DEFAULT.PRINTER if non·N IL, otherwise it returns the first local prime: 
found in the closest clearinghouse (see page 21.11). 

Toe function LISTFILESl is used by LISTFILES· to send a smg:le file to a hardcopy ;,ri:nti.,g device. 
lnterlisp·D .is initialized with LISTFILESl defined to call EMPRESS in Press mode or NS?RINT (page 
21.li) in Imerpress mode. These functions conven a file to Press or lnterpress format.: and send it to a 
printing: server. The .. default'" site greeting file delivered with the Xerox 1100 redefines LISTFILESl as 
a no-op. 

{ EMPRESS FILE #COPIES HOST F.EADING #SIDES) [Function} 
The function EHPRESS causes #COPIES copies of the file FILE to be sent to the 
printer HOST. If HOST is NIL. the value of (PRINTINGHOST) is used. =:=SIDES 
specifies one- or two-sided printing; may be l or 2 (if HOST is cJpable of duplex 
pri:iting) or T (meaning to use the printer's default): defaults to the value of 
EMPRESS#SIDES, initially T. 

If FILE is a Press or lnterpress fonnat file. it is transmitted directly. Otherwise. it 
is convened by calling the function MAKEPRESS (called with FONTS = NIL and 
the same HEADING). 

EMPRESS. SCRATCH [Variable} 
EMPRESS constructs scratch press files on the {CORE} device for small files. If 
the number of disk pages of the source file is larger than the limit set by the first 
element of the list EMPRESS. SCRATCH, an alternate scratch file. specified by the 
second element of EMPRESS. SCRATCH. is used. EMPRESS. SCRATCH is initialized 
to (30 {OSK}EMPRESS.SCRATCH}. 

{MAKEPRESS FZI..E OUTFILE FONTS HEADING TABS} [Function] 
{ MAKE INTERPRESS FILE OUTFrI..E FONTS HEADING TABS) [Fu:1::tion] 

These functions produce a Press or Interpress file named OUTFILE from the ASCII 
file FILE. If OUTFILE is ill IL. it defaults to the same file name as FILE. with 
extension Press or Interpress. 

These functions in:erpret character sequences beginning with control-F (cha.-d::er 
code 6) as special fonnatting instructions. If the code of the next character is a 
valid font number. then t.'le formatting sequence indicates a chaD.ge to t.11at font. 
The correspondence between font numbers and fon:s is specilied ty .entries on the 
list FONTS or, if FONTS is NIL, the current font profile list (see page 6.55). Each 
entry is of the form ( FONT/CLASS FONT-NUMBER DISPLAY-FONT PF.ESS-FOST). 
For example, the entry ( DE FAUL TFONT 1 ( GACHA 10) ( GACHA 8)) indicates 
that GACHA 8 will be used in press files for font l which ..-.m be re;,resemec! on 
the display as GACHA 10. HEADING is a string that is printed as a heading on e.?Ch 
page. If HEADING is NIL, the file's name and creation date -will be used. • 

These functions also allow absolute tab stops to be specified. If the control-F 
is followed by a control-T, the code of the character after tllat is intel)'rcted 
as an absolute t.2b stop number. The corresponding entry on the list TABS. or 
PRESSTABSTOPS if TABS is NIL. is taken as the number of mills fro:n the left 
margin at which printing on the current line will continue. PRESST ABSTOPS is 
initially ( 8 0 0 0 ) • 

18.17 



. Perf orm:ince Considerations 
() 

· FONTWIDTHSFILES [Variable] 
Value is a file name or a list of file names to be searched for information about 
the widti.'1.s of characters in panicular fonts. This variable should be initialized in 
the site greeting file. 

( HARDCO?YW \VTNDOW/SITM.AP/R.EGION FILE HOST SCALEFACTOP. ROTATION) £FµnctionJ 

-

Creates bian.q, hardcopy and optionally sends it to a printer. WIN'DQW f'EX-:,.U..F /REGICN 
can eiti.,er be a WINDOW (open or closed). a BITMAP·. or a REGIOH (interpreted as a 
region of the s.:reen). If NIL. the user is prompted for a region using GETREGIOrl 
(page 19.37) in a r.ianner which "defaults" to the whole screen. 

The logic of defaulting is complex and follows: 

FILE, if supplied. will be used as the name of the file for output. If HOST is NIL. 
then if FlLE was given. no printing is performed. else if FULLPRESSPRIHTER is ;--) 
non-~l IL. then output is sent to that printer. else output is sent to the value ( -
of ( PRINTINGHOST ). To save an image on a file without printing it. perform , . · 
( HARDCOPYW IMAGE FILE). 

SCALEFACTOR is a reduction factor. Only SCALEFACTOP. = l can be printed 
on Dover and Penquin printers. · SCALEFACTOR defaultS according to L.~e 
size of the image. the size of a page. and the parameters HOST, FILE, and 
FULLPRESSPRIHTER in a complex but appropriate manner. 

ROTATION, which can be one of O. 90, 180. 270 ( default 0) speciiies how the bitmap 
image should be rotated on the printed page. This may not be supported by some 
printers. 

Note d1at "Hardcopy .. in the background menu merely performs ( HAROCOPYW }. 
which sends an image of region user selects to the default printer. Hardcopy in tb.e 
paint menu performs ( HARDCOPYW W!NDOW}. which sends an image of window 
to the default printer. 

( PRESSF!LEP FILE) [Function] 
Returns ( FULLNAME. FILE) if FILE is a Press file. NIL otherwise. 

Hard.copy output may also be ob~ned by writing a file on the printer device LPT. e.g. (COPYFILE t,) 
'FOO '{LPT} ). When a file on t.t,Js device is closed. it is converted to Press or Interpress for.r.at (if 
necessary) and sent to the default printer. Thus. {LPT} acts like the device LPT: in Interlisp-10. Prin:er 
devices can be defuled for other network printer hostS with the following function: 

( PRINTERDEVICE NAME) [Function] 
Defines the network printer host NAME to be a printer device treated like LPT. 
For example. if ( PRHHEROEVICE 'YODA) is executed. then ( COPYF ILE 'FOO 
'{YODA}) will transmit FOO to the printer named YODA. 

18.19 PERFOR.lV'.tAN'CE CONSIDER.~ TIONS 

Most Interlisp-D users will have experience using Interlisp· 10. Although Interlisp-D is completely upward 

18.18 



0-

0 

INTERLISP·D SPEOFICS 

compatible with Interlisp· IO. ·there are differences in the exact implementation which may influence the 
performance of applications prograr.is. This chapter contains a collection of notes which rnay hei;i the 
user improve the performance of_ lnterlisp·D programs. 

18.19.1 Variable Bindings 

A major difference between Interlisp· IO and [nterlisp-D is the method of accessing free ..,.ar.i.ables. 
lnterlisp-10 uses what is called "shallow·• binding. lnterlisp-D uses what is called "deep·· binding. 

The bir:.ding of variables occurs when a function or a PROG is entered. For example, if t.~e function FOO 
has the definition ( LAMBDA ( A B} BODY). the variabJcs A and B are bound so that any referen::e to 
A or B from BODY or any function called from BOr>Y will refer to the arguments to the function FOO 
and not to t..'1c value of A or B from a higher level function. · All variable n.lmes (atorns) ha•.-e a top level 
value cell which is used if the variable has not been bound in any function. In discussions of . ...-ariable 
access. it is useful to distinquis..11 between three types of variable access: local, special and globa:.. Locai 
variable access is the use of a variable that is bound within the function from which it is used. Special 
variable access is the use of a ...-ariable that is bound by another function. Global ..,.ariable access is the 
use of a variable that has not been bound in any function. We will often refer to a variable all of whose 
accesses are local as a "local variable." Similarly, a variable all of whose accesses are gioba! we call a 
"global variable." 

In a "deep" bound system. a variable is bound by saving on the stack the variable's name together .,,,it.'1 
a value cell wrJch contains tha: variable's new value. When a variable is accessed. its value is found by 
searching the stack for the most recent binding (occurrence) and retrieving the •.alue stored there. If the 
variable is not found on the stack. the varia111e's top level value cell is used. 

. 
In a "shallow" bound system., a variable is bound by saving on the stack the variable name and t.'1e 
variable's old value and putting the new value in the variable's top level value cell. \\t'hen a variable is 
accessed.. its value is always found in its top level value cell. 

The deep binding schei:r.e has one disadvantage: the amount of cpu time required to fetch the value of a 
va.--l.able depends on the stack distance between its use and its binding. The compiler can determine local 
variable accesses and compiles them as fetches directly from the stack. Thus this compu~tion ccst only 
ar..ses in t.lie use of variable not bound in t.'le local frame ("free" variables). The process of finding t.i-te 
,;al-:.ie of a free variable is called free variable lookup. · 

In a s:iailow bound sys.em. the amount of cpu time required to fetch the value of a variable is constant 
regardless of whether the variable is local. special or global. The disadvantages of t..'tls s:h?Ine are that 
the actual binding of a variable takes longer (thus slowing down .function call), the cells that contain c.~e 
cur.ent in use values are spread throughout t.11e spac~ of all atom value cells (thus increasing the worki..i.g 
set size of functior.s) and context switching between processes requires unwinding and rewinding the stack 
(thus effectively prohibiting the use of context switching for many applications). 

A deep binding scheme was chooscn for lntcrlisp-0 because of the working set considerations and the 
speed of context switching, which we cxpc~tcd to use heavily when processes were added. The free 
...-ariablc lookup routine was microcoded, thus greatly reducing the search time. In the ben-:hrnarks we 
perfo:-med, the largest percentage of free variable lookup time was 20 percent of the total ellapsed time: 
the normal time was between 5 and 10 pcrcenL 

One consequence_of Interlisp-D's deep binding scheme is that users may significantly improve performance 

18.19 



Garbage Collection 

by declaring global variables in cef"'..ain situations. If a variable is declared global. the compiler will coz:r;::ile 
an access to that variable as a retrieval of its top level value. completely bypassing a stack search. Ti.1.is 
should be done only for variables that are never bound in functions such as global data.bases and flags. 

Global variable declarations should be done using.the GLOBALVARS file package cozr..mand (P.age 11.25). 
Its form is ( GLOBAL VARS V.4R1 • • • VARN). 

Anath.er way of improving performance is to declare variables as local wit:.'un a function. Normally. all 
variables bound within a function have their names put on the stacl".., and these names are SC3lllled during 
free variable lookup. If a vrufable is decbrcd to be lccai wiL11in a function. its na..":le is not put on t.11e 
stJCk. so it is not scanned during free v-ariable lookup. which may increase the speed of iookups. Tne 
compiler can also tr..J.ke some other optimizations if a variable is known to be local to a function. 

A variable may be declared.as local within a function by including the form (DECLARE (LOCALVARS 

0 

vAR 1 .•. ¼\RN)) foliowing the argument list in the definition of the function. Note: local ,·;i.ri.:ible , 
(~ declarations only effect the compilation _of a function. Incerpreted functions put all of their variable names ( ) 
\... on the stack. regardless of any declaranons. · - ·~ ·--

lS.19.2 Garbage Collection 

As an Interlisp-D applications program runs. it creates data structures (allocated out of free storage space). 
IIll'Jlipulates them. and then dL~'U'ds the:n. If there were no way of reclaiming this space. over time the 
Inrerlis;:,-D memory (both the physical memory in the machme and the viri:ual memorJ stored on the 
disk) would gee filled up. and the computation would come to a halt. Accually, long before L'lis would 
happen the system would probably be::ome intolerably slow, due to "data fragmentation", whic.'1 occurs 
when the data currently in use are spread over many vinual memory pages, so tr.at most of the computer 
time must be spent swapping disk pages into physical memory. This problem ("fragmentation .. ) will 
occur i:i any situation where the virrual memory is significantly larger than the real. physical memory. To 
reduce swapping, it is desirable to keep the "working set" (the set of pages co::itaining actively referenced 
~~~as~~~ • 

It is possible to write programs that don't generate much "garbage" data. or which recycle data. but such
programs tend to be overly complicated and fraught with pitfalls. Spending effort writing such prcg::-ams _

r defeats the whol-e point of usir.g a system with automatic storage allccaticn. An impor-..ant pz..""t cf ar.y Lisp ()
implementation is the 0 garbage collector" which identifies discarded data and reclaims its Sp,ace. There ' · ··
are several well-known approaches to garbage collection. Interlisp-IO uses the traditioi:cl mark·E.!Jd·sweep
garbage collection algorithm. which identifies "garbage" dara by "walking" through and .. oarkL;g .. all
accessible data structures. and then sweeping through the data spaces to find all unmarked objec:s (i.e ..
net referenced by any other object). Although tJ1is method is guaranteed to reclaim all garbage. it t.lkes
time proporJonal to the number of allocated objects. which may be very large. (Some allocated objec.s
will have been marked during the "mark .. phase. and the remainder will be collected during the ··sweep,.
phase; so ail will have to be touched in some way.) Also, the time that a mark·and·sweep garbage
collection mes is independent of the amount of garbage collected; it is possible to sweep through the
whole virtual memory, and only recover a small amount of garbage.

For interactive applications. it is simply ·not acceptable to have long interruptions in a computation for
L'1e purpose of garbage collection. Interlisp-O solves this problem. by using a reference-counting g:irbage
collector. Witi'i t.'1is scheme. there is a r.able containing counts of how many times e:ich object is referenced.
Tnis table is incremencally updated as pointers are created and discarded. incurring a small overhead
distributed over the computation as a whole. (Note: References from me stack a:e not counted, but are

18.20 ().

0

0.-

0-·

INTERLISP·D SPEOFICS

ha.,dled separately at "sweep .. ti.-ne: thus the vast majority of data manipulations do not cause updates to
t..11is table.) At opporrune moments. the garbage collector scans this table. and reclain1s all objects th.at are
no longer accessible (ha,;e a reference count of zero). The time for scannfag the refe:-ence count tabies
is ve~ nea:ly cons:ant (about 0.2 seconds on the Xerox 1100); the sweep time t.-ien is t.~is s.-nall \'aiue.

· · plus time proportional to the amount of garbage that has to be collected (~ypically less than a secor.d).
"Opporrune" times occur when a ~ertain number of cells have been allocated or when the system has been
waiting for the user to type something for long enough. The frequency of garbage collec~o~ is controlled
by t.'1-te far.dons and variables described on pag~ 18.:?. For the best system performance. it is c!esira!Jie
to adjust Lricse par:1metcrs for frequent. short garbage collections. which will not ir.terrupt imcra::tive
applications for ve11· long, and which will have the added benefit of reducing data fra&ment.ation. keeping
the working set small.

One problem with the lnterlisp-D garbage collector is that not all garbage is guaranteed to be collected.
Circ"Jlar d1ta structures, which point to themselves directly or indirectly, are never r~clauned. since their
reference counts arc always at least one. With time. this unreclaimable garb:?gc may increase t..~c working·
set to unacceptable levels. Some users have worked with the same Interlisp-D virtual memory for a very
long ti.-r.e. but it is a good idea to occasionally save all of your functions in files. reinitialize lnterlisp-D.
and rebuild your system. Many users end their working day by issuing a command to rebuild their
system and then leaving the machine to perform this task in their absence. If the system seems to be
spending too much time swapping (an indication of fragmented working set}, this procedure is definitely
recommenced.

18.19.3 Datatypes

If an applications program uses data structures that are large (more than 8 fields) and that are used a
lot. there are several advantages to representing them as user DATATY?Es rather th.an as REC0RDs. The
primary advantage is increased speed: accessing and setting the fields of a DA i A TYPE can be sig:r.ificantly
faster t.l-J.an walling through a RECORD ·list with repeated CARs and CDRs. Also, compiled code for
referencing user DAT A TY P Es is usually smaller. Finally. by reducing the number of objects created (one
DlHATYPE object against many RECORD list cells), tr.is can reduce t.ile expense of gai.4:>age collection.

For code Ll-iat has been written using the record package's fetch, rgp lace, and create operatio:is,
changing from RECORDS to DATATYPEs only requires editing the record declaration {usi=lg EDITREC) :o
replace declaration type RECORD by 0ATATYPE. and recompiling.

18.19.4 Incomplete Filenames

There is a significant problem in Interlisp-D (and in Interlisp-IO) with respect to using incomplete
filenames. Whenever an I/O function is given an incomplete filename (one which doesn't have the
device/host. directory; name. extension. and version number all supplied). t.."le system has to co~.ven it to
a com;,lcte fi!ename, by supplying defaults and searching through directories (which may be on remote file·
sen·crs). Currcntiy, work is being done on speeding up the filename-completion process. but in any ca.se it
is much faster to convcn an incomplete filename once. and use the complete filename from th-::n on. For
exa.111ple. suppose a file is opened with (SETQ FULLNAME (0PENFILE 'MYNAME 'INPUT)). After
doing t..'lis. { READC 'MYNAME) and (READC FULLNAME) would both work. but (READC 'MY NAME)
wouid take longer (sometimes orders of magnitude longer). This could seriously effect the perform.ln:::e
if a program which is doing many I/O operations. ·

18.21

... --......

r.

Turning Off the Display

18.195 Turning Off the Displa!

Maintaining the video L-nage on the screen uses about 30% of the cpu cycles (on the Xerox 1100), so
turning off the display will impro".e the speed of compute-bound tasks. Vlhen the display is off. the
screen will be white but any printing or displaying that the program does will be visibie when t.."le display
is r-.:.rned cllCk en. Note: Breal<s and PAGEi=ULLFN waiting turn the disp!ay on. bu: us~rs sl:oulc."be a·,1.-are
that it is possible to have the system waiting for a response to a question printed or a menu displayed on
a non-visible part of the screen. Tne following functions are provided to turn th~ display off:

(SETD ISPLAYHE IGHT NSC,ANLINES} [Fu_:-:cticnj

(DISPLAYOOWN

Sets ti."le display to only show the top NSCANLINES of the screen. If NSCA.'\7..INZS

is T, resets the display to show the full screen. Returns the previous seeing.

FOR.\(NSCANLINES} [Function]
Evaluales FORM: (with the display set to only show the top NSCA....,7..r..z:s of the
screen), and returns the value of FORM. It restores the screen to its previous setting.
If NSCA..i'ILINES is not given. it defaults to 0.

18.19.6 Gathering Statistics

Interlisp·D has an extended set of statistics-gathering tools. An extended version of the TIME function is
provided:

(TIMEALL TIMEFORM #TIMES TIMEWRAT INTERPFLG -} [NLambda Function]
.. Largely subsumes the function TIME. Evaluates u'le form TIMEFOR.\! and prints

statistics on time spent in various categories (elapsed. keyboard wait. swapping
time, gc) and datatype allocation.

For more accurate measurement on small computations, #T"IMES may be specified
(its default is 1) to cause TIMEFORM to be executed #TrlJES number cf ti.mes.
To improve the accuracy of timing open-coded operations in t.~ case, TIMEALL
compiles a form to execute TIMEFORM #TIMES number of times (unless r:-:TE.."='.PF!.G

(),

is non·N IL), and then times the execution of the compiled form. The ccopiiation (~_2 .. _
is with optimizations off to avoid constant folding. __

TIMEVIHAT exists largely for compatibility with TIME: it restricts the statistics to
specific categories. It can be an atom or list of data.types to mo:litor.- and/or the
atom TIME to monitor time spent. Note that ordinarily, T H-IEALL monitors all
time and c.atatype usage, so this argument is rarely needed.

The value of TI MEAL L is the value of the last evaluation of TIMEFOR..V..

The Interlisp-D system has a facility for gathering very low-level statistics on function call and return.
It is conceptu:lly m~e performing a BREAXDOWH on every function in the world. Toe system designe:s
regularly use this facility to determine where time is being spent in suspect computations. suggisting
which parts of the system code deserve optimizing.

(OOSTATS FORM TITLE - - -) [Function]
Collects statistics of the evaluation of FORM and produces a listing of t.'1e results.
TITLE, if supplied. will appear in the heading of the listing.

18.22

o--

U~- .
. '

0-

:U,..'TERLISP·D SPECTFICS

Performing a statistics run consists of three phases:

Gat.i.ering
The microcode is instructed to emit a statistics event for every function call and return that is
exe:uted., and FORM is evaluated. These events· are collected on a file for the next phase (the name
of fae file is {0SK}xxx.STATS. where XXX = {CAR FORM)). Currently ~,e file mus~ reside on
{OSK}, .so be sure you have a lot of space. Even seemingly short computations can generate large
numb-~rs cf function call/rerurn events. If your disk fills up, Lisp mar not recover gracefully (it ·
usually falls into SWAT).

Analysis
The statistics file is read in. For each event. a counter associated with the indicated function is
incremented by the amount of time spent in the function. The analysis also records who called
which functions, how often. and with how many arguments. This is by far the longest phase.

Summa...-i.zing
Toe results of the analysis are used to produce a listing that shows each of the functions calle~
sorted by t.lieir contribution to the total time, and a cross-reference of who called whom. The listing
is put on a file xxx.PRINTOUT on the connected directory and also shipped to your local printer.

Excerpts from a sample statistics printout are shown below, with commentary. The form is { RECLAIM),
which was fairly brief in t.i..is case.

Notes-

The times shown in the printout are for time spent in a single function; there is no cumulative time
measurement. The percentages should thus add up to 100%. If F 00 calls F IE. the time spent inside FIE
is charged to FIE only, not to FOO as well.

The times recorded are of the right order of magniwde, and can be compared to each other. but should
not be taken literally, as they are inflated by the overhead of record.ins each call and return event. The
total elapsed time for the evaluation phase is much larger still. being dominated by the time to dump t.'le
statistics to dis!t, but this part· of the time is filtered out in t.i.e analysis.

Statistics from file: {DSK}RECLAIM.STATS;l

measuring: evaluation of
FORM= (RECLAIM)

Computation run on Dolphin serial #237 with 2304 pages of memory.
Versions: Ram=7401{17,1} Bcp1=17400{37,0} Lisp=106000(214,0)

(Internal version numbers of microcode, Lisp.run, Lisp.sysout)

Unrecognizad events: NIL (e.,•erything was okay)

Values from MiscStats {times
SWAPWAITTIME
PAGEFAULTS
GCTIME

Hot Windowing

in msecs):
6137

58
27392

18.23

Gathering Statistics

Filtering out \StackOverflow, \NWWinterrupt, \PageFault, \StatsOverflow
{time for these functions measured separately)

Ignoring time for GETKEYS, \GETKEY. WAITFORINPUT, DISMISS, GATHERSTATS,
\GATHERSTATS, RAID

(time for these functions ignored completely)

Function timings: #ofCalls Perea 11
total tfme spent in j:.mction (microseconds)

percentage of total analy::ed time spent in f.J.nction
f,.mction name. Number of arguments in brackets

1
I
I
I

I
I
I

I number of calls recorded to this fn
I I avg time per call (microseconds)

1746426
1104420

794862
461194
457537

77437
52907
47308
45365

9218
7618
7428
6856

21597

4840173

36.08%
22.81%

. 16. 42%
9.52%
9. 45~~
1.59%
1.09%
0.97%
0.93%
0.19%
0.15%
0.15%
0.14%
0.44%

\GCM.A.PTABLE [1] 524 3332
1 1104420 \GCMAPSCAN (OJ

\HTFINO [2]
\FREELISTCELL [1]
\GCRECLAIMCELL (1]
\GCMAPUNSCAN [OJ
RELEASINGVMEMPAGE [1]
\GCSCANSTACK (O]
FINOPTRSSUFFER [2]
\P,ODBASE (2]

1236 643
2044 225
1533 298

CREATECELL [1]
\rnSERTBLOCK [1]
\RECLAIMARRAYBLOCK [1]
for 18 entries not shown

1 77437
30 1763

1 47308
30 1512
31 297
18 423
31 239
31 221

(fanctions contributing less than .1 % are omitted)
Total for 31 entries 5511

Function timings: Filtered out fns #ofCa11s Perea 11

(times for functions whose contribution was omitted from the analysis above)

20225828
6900042
1635737

28761607

70.32%
23.99%

5.68%

Subr.\StatsOverflow (OJ 413
Subr.\PageFault (1] 58
Subr.\NWWinterrupt [OJ 762
Total for 3 entries 1291

-Function timings: Alphabetic #ofCalls

48972
118966

2146

Perea 11

(listing as above, but including all junctions. and sorted alphabetically)

Call Information:

(Alphabetic listing of functions. with calls and callers infonnation)

18.24

(stats overhead)
{pagefa-J.lt activity)
(pen·odic service)

(. ~-) .
\ -

. --

~0-

\)

()

u

o-,

0

0

11'.TIRLISP·D SPECTFICS

(number of calls in parentheses)

CLOCK
Calls: -MAKENUMBER (8) • \SLOWIPLUS2 (6), CLOCK (2).

CREATECELL (2). CLOCK0 (2), \SLOWIDIFFERENCE (2)
Callers: \DORE CLAIM (2), CLOCK (2}

CLCCK0
Callers: CLOCK (2} .

CREATECELL
Calls: \HTFIND (1)
Callers: MAKENUMBER (16), CLOCK (2)

1820 THE ~'TERLISP-D PROCESS MECHAN"lSM

The Interlisp-D Process mechanism provides an environment in which multiple Lisp processes can run in
parallel. Each executes in its own stack space, but all share a global adress space. T"ne· current process
implementation is cooperative; i.e .• process switches happen voluntarily, either when the process in control
has nothing to do or when it is in a convenient place to pause. There is no preemption or gua.-anteed
service. so you cannot run something demanding (e.g .. Chat) at the sa.rne time as something that runs for
long periods without yielding control. Keyboard input and network operations block \lrith great frequency,
so processes currently work best for highly interactive tasks (editing. making remote files}.

In lnterlisp·D, the process mechanism is already rumed on. and is expected to stay on during normal
ope::ations. as some system facilities (in particular, most network operations) require iL However. un:ier
exceptional conditions, the following function can be used to rum the world off and on;

iQ

(PROCESSWORLD FLG} [Function]

{HARORESET)

Starts up the process world. or if FLG = OFF, kills all processes a::.d cums it
off. Norn'.zlly does not return. The environment star"'.s out with two pro:esses: a
top-levei EVALQT (the initial "tty" precess} and the .. backgroWld" process. whi:h
1:ms the window mouse handler and other system background tasks._

Note: PROCESSWORLO is intended to be called at the top level of Interlisp.
not from within a program. It does not toggle some son of switch: ratber. it
cons:ructs sc..-ie new processes in a new part of the stack. leavi.1g any callers of
PROCESS'dO~LD in a now inaccessible part of the stack. Calling { PROCESSWORLO
'OFF) is the only way the call to PROCESSWORLD ever returns.

[Function]
Resets the whole world. and rebuilds the stack from scratch. This is .. harder .. than
doing RESET to every process, because it also resets system internal processes (such
as the keyboard handler).

HARDP.ESET automatically turns the process world on. (or resets it if it was on).
unless the variable AUTOPROCESSFLG is NIL. .

18.25

Creating and Destroying Processes

18.20.1 Cre:iting 2nd Destroying Processes

(ADD.PROCESS

{ PROC°ESSPROP

FOR.\! PROP1 VALUE1 • • • PROPN VALUEN) [NoSpread Fu:iction]
Creates a new process evaluating FOR.\!. and returns its process handle. The
process's stad: environ..-nent is the top level i.e .• the new process does not have
access to the enviror..ment in which ADD. PROCESS was called: all such infon:::atioc
must be passed as arguments in FORM. The process runs until FCF-V. re:-:.:..""!lS or
the process is explicitly deleted. An untrapped error within t.i.e process also celetes
the process (unless its REST ART ABLE property is T), in which case a message is
printed to that effect.

The remaining arguments are alternately property names and values. Any
property/value pairs acceptable to PROCESSPROP may be giYen. but the follo\1,ing ·
two are directly relevant to ADD. PROCESS:

NAME Value should be a Iitatom: if not gi,·en. the process name is taken from
{CAR FOR.\f). ADD.PROCESS may pack the name with a number to
make it unique. This name is solely for the conYenience of mani't)ulati.cg
processes at Lisp typein: e.g., the name can be given as the FR.OC a.~ent
to most process functions, and the name appears in menus of processes.
However. programs should normally only deal in process handles. both for
efficiency and to avoid the confusion that can result if two processes have
the same defining form.

SUSPEND
If the value is non-N IL. the new process is created but then immediately
suspended; i.e.. the process does not actually run until woken by a
WAKE. PROCESS (below}.

PROC PROP NEi-VVALUE) [NoSpread Func:icn]
Used to get or set the values of certain properties of process FP.oc, in a i'.J"la"'l;ser
analogous to WHIDOWPROP. If NEWVALUE is supplied (including if it is NIL).
property PROP is given that value. In all c2.Ses. returns the old value of t.':e
property. The follo.,,,ing properties have special meaning for precesses: all others
are uninterpreted:

NAME Value is a litatom used for identifying the process to the user.

RESTARTABLE
Value is a flag indicating the disposition of the process following errors or
hard resets:

NIL or NO
(the default) If an untrapped error (or control-E or control·D)
causes its form to be exited. the process is deleted. Tne process
is also deleted if a HARDRESET (or control-D from RAID) oc..-urs.
causing the entire Process world to be reinitialized.

Tor YES
The process is automatically resr.aned on errors or HARDRESET.
Tilis is the normal setting for persistent "background" processes.

18.26

..

0-

()

0

o·-

o.

0

INTERLISP·D SPEOFICS

such as the mouse process. that can safely restart the::nselves on
errors.

HARDRESET ~

Toe. process is deleted as usual if an error ca.uses its form 1:0 be
exited. but it is restarted on a HARDRESET. This se~g is preferred
for persistent precesses for which a.--i error is an unus1:.al cc::icii:ion..
one that might repeat itself if the process w~re si=i;:,ly blindly
rcstancd.

FORM Value is the Lisp fonn used to Stan the process (readonly).

AFTEREXIT
Value indicates the disposition of the process following a resumption of
Lisp after some exit (LOGOUT, SYSOUT, MAKESYS). Possible values are:

DELETE
Delete the process.

SUSPEND
Suspend the process; i.e.. do not let it run until it is explicitly
woken.

<an event>

INFOHOOK

Cause the process to be suspended waiting for the event (page
18.30).

Value is a function or form used to provide information about the process.
in conjunction with the process status window (page 18.36).

WINDOW
Value is a wdow associated with the process. the process's "main" "'indow.
Used in conjunction with switching the tty process (page 18.33).

TTYENTRYFN
Value is a function that is applied to the process when the process is made
the tty process (page 18.33).

TTYEXITFH
Value is a function that is applied to the process when the process ceases

. to be the tty process (page 18.33).

(THIS. PROCESS) [Function}
Returns the handle of the currently running process, or NIL if the Process worid
is turned off.

(DEL. PROCESS PROC -) [Fu::i::tion}
Deletes process PROC. PROC may be a process hand.le (returned by ADD. PROCESS).
or its name. Note that if PROC is L11e currently running process. DEL. PROCESS
does not return!

18.27

Process Control Constructs

(PROCESS. RETURN VALUE) _ [Function]
Terminates the currently running procer.lS. cauSh"lg it to "return" VALUZ. There is an
implicit PROCESS. RETURN around the FORM argument given to ADD. PROCESS,
so that normally a process can finish by sim;,!y returning; PROCESS. RETURN is

(PROCESS•. RESULT

supplied for earlier termination. • · . ·

PROCESS WAJ'I'FOP-t:iESULT} • {Function]
If PROCESS has terminated. returns the value. if any, t.11.at it returned. Tnis is either
the value of a PROCESS. RETURN or the value returned from t.i.e form given to
ADD. ?ROCESS. If the process was aboncd. the value is NIL. If W.AI'I'FOF...RES!.'7..T

is true. PROCESS. RESULT blocks until PROCESS finishes. if necessary: ot:.~er..vise.
it returns NIL immedfately if PROCESS is still running. Note that PROCE:SS must
be the actual process handle rerurned from ADO. PROCESS. not a process n:;:i.!:,
as the association between handle and name disappc:irs when the process finishes

() ..

(and the process handle itself is then garb.ige collected if no one else has a pointer /\.
w~ ~)-

(PROCESS.FINISHEOP PROCESS) [Function)
· True if PROCESS has terminated. The value returned is an indication of how it

finished: r~ORMAL or ERROR.

(PROCESSP PROC) [Function]
True if PROC is the handle of an active process. i.e .. one that has not yet finis.i.ed.

(RELPROCESSP PROCXANDLE) [Function]
True if PROCHANDLE is the handle of a deleted process. This is analogous to
RELSTlCP. It differs from PROCESS. FINISHEOP in that it never causes an error.
while PROCESS.FIN I SH EDP can cause an error if its PROC argument is not a
precess at all. ·

{ R.ESTART. PROCESS PROO) [F~ction]
Unwinds PROC to its top level and reevaluates its form. This is effectively a
DEL. PROCESS followed by the original AOC. PROCESS.

·

(MAP. PROCESSES MAPFN) [Function]
Maps over all processes. calling Y..APFN with three arguments: the process hanc.l!, ()
its name. and its form. ·

(FIND.PROCESS PROC ER.ROR..1:'LG) . [Function]
·· If PROC is a process handle or the name of a process. returns the process ha.-icle
for it, else N IL. If ERROR..,..!.G is T, generates an error if PROC is not. .and does
not name. a live process.

18.20.2 Process Control Constructs

(s LOCK MSECSWAIT TIME'R) [Function)
Yields control to the next waitL"lg process. assuming any is ready to run. If
MSECSWAIT is specified. it is a number of milliseconds to wait before rerumi.ng (i.n
which case BLOCK is very much like DISMISS), or T, meaning wait forever (until
explicitly woken). Alternatively, TIMER can be given as a millisecond timer (as

18.28

',,-..._)~.
\.
--------·

U--· -

0-·

(WAKE.PROCESS

Il'i1ERLISP·D SPEOFICS

returned by SETUPT IME R) of an absolute time at which to wake up. In a..,y of
those cases, the process enters the wailing state until the time limit is up. BLOCK
with no arguments leaves the process in the runnabie state, i.e .. it ret'..irns as soon
as every other runnable proce~s of the same priority has had a cha:ice.

PROC STATUS) [Function]
Explicitly wakes process PROC. i.e .• ma.lees it runnable, a.pd causes its call to SLOCK
(or other waiting function) to rerum STATUS. This is one sir.lple way to notify a
process of some happening: however. note that if WAKE. PROCESS is a;:-;:!iec :o a
process more L'i.an once before the process actually gets its turn to r .. m. it sees oniy
tr.e latest STATUS.

(SUSPEND. PROCESS PROC) [Funct:on]
Blocks process PROC indefinitely. i.e.. PROC will not run until · it is woken by a
WAKE. PROCESS.

The following three functions allow access to the stack context of some other process. They require a li::tle
bit of care. and are computationally non-trivial, but they do provide a more powerful way of manipulating
another process than WAKE. PROCESS allows.

(PROCESS.EVALV PROC VAR) [Func:ion]
PerfornlS { EVALV VAR) in the stack context of PROC.

{PROCESS. EVAL PROC FOR.\! WAITFORRESUI.T) [Function]
Evaluates FORM in the stack context of PROC. If WAITFOR..iu:5UI.T is true, blocks
until t.iie evaluation returns a result. else allows ti.'le cur.ent process to run in pa.-allel
with the evaluation. Any errors that occur will 6e in the context of PROC, so be
careful. In particular. note that

(PROCESS.EVAL PROC 'fNLSETQ (FOO)))

and

{NLSETQ {PROCESS.EVAL PROC '(FOO)))

behave quite differently if FOO causes an error. And it is quite permissible to
intentionally e2use an error in proc by performing

(PROCESS.EVAL PROC '(ERROR!))

If errors are possible and WAITFORRESUI.T is true, the caller should almost cerr.,;;,Jy
make sure that FORM traps the errors; otherwise t.'le caller could end up wai..:ng
forever if FORM unwinds back into the pre-existing stack context of PROC.

{PROCESS.APPL y PROC FN AR.GS WAITFORRESULT) [Function]

18.20.3 Events

Performs (APPLY FN ARGS) in the stack context of PROC. Note same wa..-nir.gs
as with PROCESS. EVAL.

An "event" is a synchronizing primitive u~ed to coordinate related processes. typically producers and

18.29

(

Monitors

cocsumers. Consumer processes can "wait" on events, and producers "notify .. events.

(CREATE. EVENT NAME) [Function]

(AWAIT. EVEiff

(NOT!FY.EVE~T

Returns an instance of the EVENT datatype, to be used as the event ar;-.unem
to functions listed below. NAME is arbitrary. and is used for debugging or s-i2.rus
information. '

EVENT TIMEOUT TL\{2RP) [Function]
Suspends the current process until EVENT is notified. or until a timeout oc::urs. If
TIMEOUT is NIL. there is no timeout. Otherwise. timeout is either a nUI:1:,er of
millis,:conds to wait. or. if TIMERP is T, a millisecond ti..rner set to- expire at :..~e
desired time using SETUPT IME R (see page 14.11).

EVENT ONCEO,'ILY) [Functicn]
If there are processes waiting for EVENT to occur, causes those processes to ce

n

placed in the running state, with EVENT returned as the value from AWAIT. EVENT. /\. _
If ONCEONLY is true. only runs the first process waiting for the event (this should \ ;
only be done if the programmer knows that there can only be one process C-'.1;:,able · -· ·
of responding to the event at once).

The meaning of an event is up to the programmer. In general, however, the notification of an event
is merely a hint that something of interest to the waiting process has happened; the process should still
verify that the conceptual event actually occurred. That is, the process should be written so that it operates
co"ectiy e-;en if woken up before the timeout and in the absence of the notified evenL In partiC".ilar, the
com;letion of PROCESS. EVAL and related operations in effect wakes up the process in which they were
performed. since there is no secure way of knowing whether the event of interest occurred while the
process wac; busy performing the PROCESS. EVAL.

There is currently one class of system-defined events, used with the network code. Each Pup and NS
socket has associated with it an event that is notified when a packet arrives on the socket: the event can b~
obtained by calling (PUPSOCKETEVENT PUPSOCKET) or (NSOCKETEVENT NSOC-ICET). respectively.

18.20.4 Monitors

It is often the case that cooperating processes perfonn operations on shared str..icrures. and some mechanism ()
is needed to prevent more than orie process from altering the structure at the sa.-ne time. Some laz:g-1.1ages ·- - ··
have a construct called a monitor, a collection of functions that access a common stn:cture witr.:.i mutual
exciusion provided and enforced by the compiler via the use of monitor locks. Interlisp-D has t.!.ken t.1.is
implementa.t!.on notion as the basis for a mutual exclusion capabilicy suitable for a dynamically-scoped
environment.

A monitorlock is an object created by the user and associated with (e.g., stored in) some shared structure
that is to be protected from simultaneous access. To access the structure. a program waits for the lock
to be free, then takes ownership of the lock. accesses the structure, then releasl!s the lock. The functions
and macros below are used:

(CREATE.MONITORLOCK NAM:E -) [Function}
Returns an instance oft.."le MONITORLOCK datatype, to be used as the lock arg,.1me:1t
to functions listed below. NAME is arbitrary, and is used for dcbu£ging or su~us
information.

18.30

n

0

--:-,; ..
(i I
'--L··'

,,,..

0-·

O·

INTERLISP·D SPEOFICS

(WITH. MONITOR LOCK • FORM'S) [Mac:o]
Evaluates (PROGN • FORMS) while owning LOCK. Value is the last of FOR.MS.

· This construct is implemented so that the lock is- released· even if the fc::-:r. is
exited via error (currently im~lemented with RESETLST). Owner~ip of a leek is
dynamically scoped: if the current process already OVII'.S the lock (e.g .. if t.."le c.alier
was itself inside a WITH.MONITO'R for this lock). WITH.MONITOR i.s a noop ..

{WITH:FAST .MONITOR LOCK • FOR.MS) [Macro]
Like WITH. MON !TOR. but implemented without the RESE'FLST. User intem.:;:its
(e.g .. control-E) are inhibited during the evaluation of FOR.....rs.

Programming restriction:. the evaluation of FORMS must not error (the lock would
not be released). This construct is mainly useful when FORMS is a small. safe
computation that never errors and need never be interrupted.

<tlONITOR.AWAIT .EVENT RELEASELOCK EVENT TIMEOUT TIME'RP) [Function}
· For use in blocking inside a monitor. Performs (AWAIT. EVENT EVENT TIMEOUT

TIMERP), but releases RELEASELOCK first. and reobtains the lock (possibly waiting)
on wakeup.

Typical use for MON !TOR. AWAIT. EVENT: A function wants to perform some operation on Foo, but or.Iy
if it is in a certain state. It has to obtain the lock on the structure to make sure that the state of the
structure does not change between the time it testS the state and performs the operation. If the state runs
out to be bad. it then waits for some other process to make tt.i.e state good. meanwhile releasing the lock
so that t..i.e other process can alter Li.e structure.

(WITH.MONITOR FooLock
(Un t i 1 amdition-of-Foo

do (MONITOR.AWAIT. EVENT FaoLoc:Jc EventFooCliaaired timeout))
operate-o:i-Foo)

It is sometimes convenient for a process to have WITH. MONITOR at its top level and then do all its
inter·:Sti"lg waiting using MONITOR. AWAIT. EVENT. Not only is this often clear.er, but in t:.i.e present
impleme:itation in cases where the lock is frequently accessed. it saves the RESETLSi overhead of
\IIIi'H. MONITOR.

Progr-..mming restriction: there must not be an ERRORSET between the enclosing WITH. MONITOR and
the ccll to MON !TOR. AWAIT. EVENT such t.ltat the ERRORS ET would catch an ERROR!. and conti:lue
inside the monitor. for the lock would not have been reobtained. (The reason for this restriction is
that. although MONITOR. AWAIT. EVENT won't itself error, the user could have caused an error with an
interrupt, or a PROCESS. EVAL in the context of the waiting process that produced an error.)

On rare occasions it may be useful to manipulate monitor locks directly. Toe following two functions are
used in the imp!ementation of WITH. MONITOR:

{OBTAIN,MONITORLOCK LOCK DON'TWAIT UNWl'NDSAVE') [Function]
Takes possession of LOCK. waiting if necessary until it is free. unless DONTI;:.trr is
true. in which case it returns NIL immediately. If tTNW!?,,"DSAVE is true. perforr:!S a
RESETSAVE to be unwound when the enclosing RESETLST exits. Returns Loe:._
if LOCK was successfully obtained. T if the current process already owned r.ocr:.

18.31

Global Resources

{ RELEASE .MmHTORLOCK L00) [Function]
Releases LOCK if it is owned by the current process. and wakes up the next process.
if any, waiting to obtain the leek.

When a process is deleted.. any locks it owns are releas:d.

18.20.5 Global Resources

The biggest source of problerr.i..S in the multi-processing environment is the matter of giobal resoun:es.
T-.vo processes cannot both use the sarr..e global resource if ti.'1.ere can be a process switch in the m.idc!le
of their use (currently this mea..."ls calls to BLOCK. but ultimately with a preemptive sched:1ler means
anytime). Thus. user code should be wary of its own use of global variables. if it ever makes sense for
the code to be run in more than one pr.occss at a tir.ic. '"State" variables private to a process stould
generally be bound in that process: struc:urcs that are shared among processes (or resources used priYately ,- ,
but expensive to duplicate per process) should be protected with monitor locks or some other form of ()

'- synchrcnization. , ___ ,.

Aside from user code. however. there are many system global variables and resources. Most of these arise
historically from the single-process Interlisp-IO environment. and will eventually be changed in Interlisp-D
to behave appropriately in a multi-processing environment. Some have already been changed. and are
d~"'1ibed below. Two other resources not generally thought of as global variables-the keyboard and the
mou..~are panicularly idosyncratic, and are discussed in die next section.

The following resources. which are global in Interlisp-IO, are allocated per process in Interlisp-D: pr.mary
input and output (the streams affected by INPUT and OUTPUT). terminal input and output (the st...-ea!:15
designated by the name i). the primary read table and primary terminal table. and dribble files. Thus.
each process can print to its own primary output. print to the terminal, read from a diffe:-ent primary
input. all without interfering with another process's reading and printing.

Ea.ch process begins life with its primary and terminal input/output streams set to a durr~y stream. If
the process attempts input or output using any of those dummy st.reams, e.g .• by calling (READ T),
or (PR I rH & T), a tty window is automatically created for the process. and that window becomes the
pr.mar/ input/ output ~.,_d terminal input/ output for the process. The default tty window is created at or
near the region spe:ified in t.i.11e variable DEFt'\ULTTTYREGION. ()

A precess can.. of course. call TTYOISPLAYSTREAM explicitly to give itself a tty window of its cwn
chccsin& in which case the automatic mechanism never comes into play. Calling TTYOISPLAYSTRE.~H
when a process has no tty window not only sets the terminal streams. but also sets t.~e primary input and
output streams to be that window, assuming they were still set to tl1e dum.my streams.

{ HASTTYWINDOWP PROC) (Function]
Returns T if the process PROC has a tty window; NIL otherwise. If PROC is N I L.
it defaults to the current process.

Oti1cr system resources thnt are typically changed by RESET FORM, RESETLST. RESETVARS are all global
entities. In the multiprocessing enviror1.t."!lent. these constructs are suspect. as there is no provision for
··undoing" them when a process switch occurs. For example. in the current release of Interlisp-D, it is
not possibie to set the print rad.ix to 8 inside only one process. as "the print rad.ix is a global entity.

Note that RESETFORM and similar expressions are perfectly valid in the process world. and even quite
useful. when they manipulate things strictly within one process. The process world is arranged so that

18.32

. ..,,
lJ. i

O·-_
,,

o·

Il'.'TERLISP·D SPECIFICS

deleting a process also unwinds any RESETxxx expressions that were performed in the process and are
still waiting to be unwound. exactly as if a control·D had reset the process to the top. Additionally.
there is an i..rn;,licit RESETLST at the top of each process. so that RESET SAVE can be used as a way of
providing "cleanup .. functions for when a process is deleted. For these. the value of RESET STATE is NIL
if the process finished normally. ERROR if it was aborted by an error. RESET if the process was explicitly
deleted. and HARD RESET if the process is being restaned (after a HARORESET or a RESTART. PROCESS).

18.20.6 Typein and the rn Process

There is one global resource. the keyboard. that is particularly problematic to share among processes.
Consider. for example. having two processes both performing { READ T). Since the keybos.rd input
routines block while there is no input. both proce~ would spend most of their time blocking, and it
wou!d simply be a maaer of chance which process received each character of typein.

To resolve such dilcw.mas, the system designates a distinguished process. termed the try process. that is
assumed to be the process that is involved in terminal interaction. Any typein from the keyboard soes to
that process. If a process other than the tty process requests keyboard input, it blocks until it becomes the
t:Y process. When the tty process is switched (in any of the ways described further below). any typeahead
that occurred before the switch is saved and associated with the current tty process. Thus. it is always the
case the keystrokes are sent to the precess that is the tty process at t.'1.e time of the keystrokes. · regardless
of when that process actually gets around to reading them.

It is less immediately obvious how to handle keyboard interrupt characters. as their action is asynchronous
and not always tied to typein. Interrupt handling is described on page 18.35.

13.20.6.1 Sl\itching the TI"Y Process

Any process can make itself be the tty process by calling TTY. PROCESS.

(TTY. PROCESS FROC) [Function]
Returns the handle of the current tty process. In addition. if PROC is non·N IL.
makes it be the tty process. The special case of PROC = T is interpreted to mean
the executive process; this is sometimes useful when a process wants to explicitly
give up being the tty process.

{TTY. PROCESSP PROC) [Function]
True if PROC is the tty process: PROC defaults to the running process. Tnus.
(TTY. PROCESSP} is true if the caller is the tty process.

(WAIT. FOR. TTY) fFunccon]
Efficiently waits until {TTY. PRO CE SSP) is true. WAIT. FOR. TTY is called
internally by the system functions that read from the terminal: user code thus
need only call it in special cases.

In some czses, such as in functions invoked as a result of mouse action or a user's typed-in call it is
reasonable for the function to invoke TTY. PROCESS itself so· that it can take subsequent user type in.
In other cases. however, this is too undisciplined: it is desirable to let the user designate which process
typein should be directed to. This is most conveniently done by mouse action.

18.33

·-

Switching the TTY Process

The syste:n supports the model_that "to type to a process. you click in its window." To cooperate with
this moc.el. any process desiring keyboard input should put its process handle as the PROCESS property
cf its window(s). To handle the common case, the function TTYDISPLAYSTREAM does this auto.r..atically
when ti.,e ccydis:playstrearn is switched to a new window. A process can own any number of ·wmdows:
clicking in any of these windows gives the process the tty.

This mechanism suffices for most casual process writers. For example, ifa,:process wants all its input/output
interaction to occur in a par.icular window L,ac it has created, it should just make that .r..ndow be its
tty window by calling TT'fOISPLAYSTREAM. Thereafter, it can PRINT or READ to/from the T strea.":l: if
the proc·ess is not the tty process at the thne u'lat it calls READ, it will block until the user clicks in :he
window.

For these needing tig!1ter control over the tty, the default behavior can be overridden or supplemented.
The remainder of this section describes the mechanisms involved.

There is a wi..-idow property WINDOWENTRYFN that controls whether and how to switch t..i.e tty to the /
process owning a window. The mouse handler, before invoking any normal BUTTONEVENTFN. specifically ,_) ·
notices t..'le case of a button going down in a window that belongs to a process (i.e_ has a PROCESS
window property} tl':.at is not the tty process. In this case, it invokes the window's WINDOWENTRYFN of
one argument (WINDOW). WINDOWENTRYFN defaults to GIVE. TTY. PROCESS:

(GIVE. TTY. PROCESS 'WL".'DOW) [Function}
If WINDOW has a PROCESS property, performs (TTY. PROCESS (WINDOWPROP
WINDOW 'PROCESS)) and then invokes WINDOw's BUTTONEVENTFN function
(or RIGHT6UTTOfffN if the right button is down).

There are some cases where clicking in a window does not always imply that the user wants tq talk
to that window. For example, clickfag in a text editor window with a shift key held down means to
.. shift-select" some piece of text into the input buffer of the current tty process. The editor suppons this
by supplyL"lg a WINDO\:IENTRYFN that performs GIVE. TTY. PROCESS if no sf,jft key is down. but goes
into:its shif:-select mode, without changing the tty process. if a shift key is down. Tne shift-select mode
performs a BKSYSSUF of the selected text when the shift key is let up, the BKSYSBUF feeding input to
the current tty process.

Someti.rnes a process wants to be notified when it becomes the tty process, or stops being the tty process.
For exam.pl-?. Chat (page 20.18) ruras off all keyboard interrupt characters while it is Li.e tty process. ("""\
so that they can be passed transparently to the remote host. To support this. there are two process · _)
prcpe:-ties, TTYEXITFN and TTYENTRYFN. The actions taken by TTY. PROCESS when it switches the
tty to a new precess are as follows: the fonner tty process's TTYEXITFN is called wi!h two arg,.i:ne::its
(OLDTTYPROCESS NEWTTYPROCESS}; the new process is made the ny process: finally. the new tty
process's TTYENTRYFN is called with two arguments (NEWTTYPROCESS OLDTTYPROCESS). Normally
the TTYENTRYFN and TTYEXITFN need only their first argument. but the other process involved in
the switch is supplied for completeness. In the present system. most processes want to interpret the
keyboard b. the same way. so it is considered the responsibilicy of any process that changes the keyboard
inte=?r=ution t.J restore it to the nonn:tl state by its TTY EX IT rn. ·
A window is "01,1;ned .. by the last process that anyone gave as the window's PROCESS property. OrdinarJy
there is no confilct here, as processes tend to own disjoint sets of windows (though, of course. cooperating
processes can certainly try to confuse each other). The only likely problem arises with that most global
of windows. PROMPTWINDOW. Programs should not be tempted to read from PROMPTW!NDOW. Dis
is not usuaily necessary anyway, as the first ·attempt to read from T in a process that has net set i:s
TTYOISPLAYSTREAM to its own window causes a tty window to be created for the process (see page

18.34

,-----.....
! l
'-....../

0-

o-

INTERLISP·D SPEOFICS

18.32).

18.20.6.2 Ha:idling of Interrupts .

At the time that a keyboard interrupt character (page 9.17) is struck: any process could be runnfag. and
some decision must be made as to which process to actually interrupt. To the extent that keyboard
interrupts are related to typein. most interrupts are taken in the tty process: however. the following are
handled sp·;cialiy:

RESET, ERROR

HELP

BREAK

RUBOUT

(nonnally control-D and control-E) These ·interrupts are taken in the mouse process. if t.~e
mouse is not in its idle state: otherwise they are taken in the tty process. Thus. control-E
can be used to abort some mouse-invoked window action. such as ti.'1e Sh:rpe command.
As a consequence. note that if the mouse invokes some lengthy computation tlut the user
thinr.s of as "background", control·E still abortS it. even though that may not have been
what the user intended. Such lengthy computations. for various reasons. should ge:ierally
be performed bl spawning a separate process to perform them.

The RESET interrupt in a process other than the executive is interpreted exactly as if an
error unwound the process to its top level: if the process was designated RESTART ABLE
= T, it is restarted; otherwise it is killed.

(Initially control-H) A menu of processes is presented to the user. who' is asked to select
which one the interrupt should occur in. The current tty process appears wich a • next
to its name at the top of the menu. The menu also includes an entry "[Spawn Mousef',
for the common case of needing a mouse because the mouse process is currently tied up
running someone's BUTTONEVENTFN; selecting this entry spawns a new mouse process.
and no break occurs.

(Initially control·B) Performs the HELP interrupt always in the tty process.

(Initially <deD) This interrupt clears typeahead in all processes.

RAIO, STACK OVERFLOW, STORAGE FULL
These interrupts always occur in whatever process was running at the time the intem.i;:,t
stru:k. In the cases of STACK OVERrLOW and STORAGE FULL. t.11.is .ne:ms that the
interrupt is more likely to strike in t.i.e o:ffending process (especially if it is a "runaway"
process that is not blocking). Note. however, that this process is still not necessa,,-ily t."1e
guilty party; it could be an innocent bystander that just happened to use up the last of a
resource prodigiously consumed by some other process.

18.20.i Keeping the Mouse Alive

Sic.ce the window mouse handler runs in its own process. it is not available while a wincow·s
BUiTONEVENTFN function (or any of the other window functi9ns invoked by mouse action) is runni:Jg.
This leads to two sorts of problems: (1) a long computation underneath a BUTTONEVENTFN de;,ri·.-es the
user of the mouse for other purposes, and (2) code that rues as a BUTTONEVENTF1J cannot rely on other
BU TT 01l EVEN TF Us running. which means that there some pieces of code th.lt run diff ercntly from ncrmJ.l
when run under the mouse process. These problems are addressed by the following functions:

18.35

(SPAWN.MOUSE -)

. ·---

Debugging Processes

[Ft:..!lction]
Spawns another mouse process. allowing the mouse to run even if it is currently
~'tied up·· under the current mouse process. ThJs function is intended main.ly to be
typed in at the Lisp executive when the user notices the mouse is busy.

{ALLOW. BUTTON. EVENTS) [Fu:icticn]
Performs a {SPAWN. MOUSE) only when called underneath the mouse process, Tb.is
should be called (once. on entry) by any function that relies on BUTiONEVE?HF~ls
for completion. if there is any possibility th:it the function will itself be invoked by
a mouse function.

It never hurtS. at least logically, to call SPAWN. MOUSE or ALLOW. BUTTON. EVENTS needlessly. as the
mouse process arra...,ges to quietly kill itself ifit returns from the user's BUTTONEVENTFN and fi..,ds that
another mouse process has sprung up in the meantime. (There is. of course. some computational expense.)

18.20.8 Debugging Processes

{PROCESS.STATUS.WHJOOW WHERE) [Function]
Puts up a window that provides several debugging commands for mani;,ulating
running processes. If the window is already up. PROCESS. STATUS. WHiOOW
refreshes it. If WHERE is a position. the window is placed in that position;
otherwise. the user is prompted for a position.

The window consists of two menus. The first is a menu of all the processes at the
momenL Commands in the second menu operate on the· process selected in the
mt menu. The commands are: ·

BT,BTV,BTV•.BTV!
Performs a backtrace of th~ selected process. The first time. it prompts for
a window in which to display the backtrace.

WHO 7 Changes the selection to the tty process. i.e.. the one C'.lITently in control
of tt.'le keybo2rd..

I \
\ J

KBD~ Associates the .keyboard with the selected process; Le .. makes the selected ().
process be the tty process.

INFO If the selected process has an INFOHOO:<, calls iL Tne hook may be a
function. which is t.i.en applied to two arguments. the process and t.i.e
button (LEFi or MIDDLE) used to invoke INFO. or a form. which is
simply EVAL'ed. Toe APPLY or EVAL happens in the context of the
selected process, using PROCESS.APPLY or PROCESS.EVAL. Toe info
hook can be set using PROCESSPROP. .

KILL Deletes the selected process.

RESTART
Restarts the selected process.

WAK-E Wa.lces the selected process. Prompts for a value to wake it with (see
WAKE. PROCESS).

18.36

'. \
') _,

INTERLISP·D SPEOFICS

SUSPEND
Suspends the selected process: i.e .• causes it to block indefinitely (until
explicitly woken).

. .
BREAK Enter a break under t.."le selected process. Tnis has the side effect of waki.-ig

the process with t.11e value returned from the break.

Currently. the precess status window runs ufider the mouse process. like o:her menus. so if the mouse is
unav.:illa~le (e.g .. a mouse function is performing an extensive computation). you may be unable to use
the precess star.us window (you can try SPAWN. MOUSE, of course).

18.20.9 Non-Process Compatibility

This section describes some considerations for authors of programs that ran in the old single-process
Interlisp-D environment. a..-id now want to make sure they run properly in the Multi-processing world.
Toe biggest probiem to watch out for is code that runs underneath the mouse handler. Writers of mouse
handler functions should remember that in the process world the mouse handler runs in its own process.
and hence (a) you cannot depend on finding information on the staek (staSh it in the window ins:ead). and
(b} wliJle your function is running. the mouse is not available (if you have any non-trivial computation
to do. spawn a process to do it. notify one of your existing processes to do it. or use PROCESS. EVAL to
run it under some other process).

The following functions are meaaingful even if the process world is not on: BLOCK (invokes the system
background routine. which includes handling the mouse): TTY. PROCESS. THIS. PROCESS (bot.'1 rerum
NIL): and TTY.PROCESS P (returns T. i.e .• anyone is allowed to take tty input). In addition. the following
two functions exist in both worlds:

(EVAL.AS. PROCESS FOP •. .\!) [Function]
Same as (ADD: PROCESS FOR.>.,! I RESTART ABLE 'NO). when processes are
running, EVAL when not This is highly recommended fo;; mouse functions that
perform any non-trivial activity.

(EVAL. IN. TTY. PROCESS FORM WAITFORRESVI.T) [Function}
Same as (PR.OCESS.EVAL (TTY.PROCESS) FOR.\! WAITFOP--i:tESti"LT}, when
processes are running, EVAL when not.

Most of the process functions that do not take a process argument can be called even if processes aren't
running. ADO. PROCESS creates, but does not run. a new process (it runs when PROCESSWORLD is
called).

18.21 PRO!\-IPTFORWORD

PROMPTFORWORO is a function that reads in a sequence of characters. generally from the keyboard.
without involving READ-like syntax. The intent is to mimic the prompted-read used by the Alto fa;ec
when asking for login na...-nes, passwords etc. Thus a user can supply a prompting string. as well as
a ··candidate" string, which is printed and used if the user types only a word terminator chara:ter (or
doesn't type anything before a given time limit). As soon as any characters are typed the ··cand.id.lte··

18.37

·- -·

PROMPTFORWORD

string is erased and the new inp~t takes its· place.

PROMPTFORWORD accepts user type-in until one of the .. word terminator" characters is typed. Normally,
the word terminator characters are EOL. ESCAPE. LF, SPACE, or TAB. This list can be changed using the
TER...\!INC:--:.A.R..LST arg-L?ment to PROMPTFORWORD, for example if it is desirable to allow tt.e user to i.."lput
lines including spaces. •

PP.OMPTFORWORD also recognizes the following special characters:

Control-A. BS. or DEL
Any of these characters deletes the last character typed and appropriately erases it
from the echo stream if it is a displayscream.

Control-W or Control-Q

Control-R

?

Control-V

Erases all the type-in so far.

Reprints the accumulated string.

Calls up a "help'" facility. The action taken is defined by the GENER.ATE?LIST.FN
argument to PROMPT FORWORO (see below). Normally, this prints a list of possible
candidates.

"Quotes" the next character: after typing Concrol-V, the next character typed
is added to the accumulated string. regardless · of any special meaning it has.
Allows the user to include editing characters and word terminator characters in the
accumulated string.

(PROMPTFORWORO PROMPT.STR CA.NDIOATE.STR GENERATE?LIST.FN ECHO.CIIA.NNEL
DONTECHOTYPEr-1.FLG TIMELIA!IT.Hca TERMINCH.AR.S.LST KEYBD.CH.ANNEI. OI..DSTRING)

[Function]

PRCM?TrORWORD has a multiplicity of features. which are specified through a rather·large number of
input arguments. but the default settings for them (i.e.. when they aren't giyen. or are given as ·NIL) is
such to minimize the nt=.II1ber needed in the average case, and an attempt has been made to crcer t.~e
more frequently non-defauited arguments at the fi.."'St of the argument list. The default i.n;>ut and echo

(\
\ !

are both to the terminal; the teI'II"Jnal table in effect during input allows most control characters to be ~\ .
IN0ICAiE'd. . (/ ...

PROMPTFORWORO returns NIL if a null string is typed; this would occur when no candidate is given a.-id
only a terminator is typed, or when the candidate is erased and a terminator is cyped with no -other input
still un-erased. In all other cases, PROMPTFORWORO returns a string.

PRO~tPTFORWORO uses a HONITORLOCK (see page 18.30) so that a second call cannot be started before
the first one finished: primarily this is to limit confusion between multiple processes that n-jghc cry ~o
access the keyboard at t.lJ.e same time. or print in the prompt window .. at the ~e time"

PROMPTFORWORO is controlled through the folJowing arguments:

PROMPT.STR

If non·N IL. this is coerced to a string and used for prqmpting: an additional space is output
after this st.•ing.

CANDIDATE.STR

18.38
~)

. ·,
(___)

INTERLISP·D SPEOFICS

If non·N IL. this is coerced to a string and offered as initial contents of the input buffer.

GENERATE?LIST .FN
If ncn-N IL. this is either a string to be printed out for help, or a function to be z.p;,lied to
PR01t.£PT.STR and CANDIDATZ.STR (after both have ·been coerced to strings). and which s...,ould
reru.:n a list of potential candidates. The help string or list of potential candidates will then be
printed on a separate line. the prompt will be restarted. ~d any type-in will be re-e:ho~d.

~otc: If GENZ?.ATE?LIST.FN is a function. its value list will be .. e2ehed" so that it will be n.1:i
at most once per call to PROMPTFORWORD.

ECHO.C?.ANNEL
Coerced to an output stream: tHL defaults to T, the .. terminal output stream··. nonncliy
(TTYDISPLAYSTREAM). To achieve echoing to the ''current output file"', use (GETSTREAM
NIL •OUTPUT). If echo is to a display stream. it will have a flashing caret showing where t.11e
next input is to be echoed.

DONTECZOTYPEIN.FLG
If T. there is no echoing of the input characters. If the value of DONTECHOTYPEIN.FLG is
a single-character atom or stri.-ig. that character is echoed instead of the actual input. For
exampie. LOGIN prompts for a password with DONTECHOTYPEIN.FLG being

TL\lEIJ'.MIT.ecs
If non-NIL. this is tlle number of seconds (as an integer) that the caller is is willing to wait with
no input from KEYBD.CHANNEL (see below): if timeout is reached. then CA.1-,DIDATE.WORD is
returned, regardless of any other cype-in activity.

TER.\!INCHAF-LST
This is list of .. word terminators"; it defaults to (CHARCODE (EOL ESCAPE LF SP.~CE
TAB}).

ICEYBD.C?..A.'1NEL
If non-fl IL. this is coerced to a s~ and the input bytes are taken from that stream. N IL
defaults to the keyboard input stream. Note that this is not the same as T, which is a buJJered
keyboard input stream, not suitable for use with PROMPTFORWORD.

OI.DSTRING
If non-~I IL, this must be a string. which will be destructively used to return the _answer.

(PROMPTFORWORD
"What is your FOO word?" 'Mumble
(FUNCTION {LAMBDA() '(Grumble Bletch)))
PROMPTWINDOW NIL 30)

This first prompts the user for input by printing the first argument as a prompt into PROMPTWINDO'J:
then the proffered default answer, "Mumb 1 e ", is printed out and the caret starts flashing just aft~r it to
indicate that t.1-ie upcoming input will be echoed there. If the user fails to complete a word wi:hin 30
seconds. t.'1::n the result will be the string "Mumb 1 e ".

----,.. ... -'I:- -) ,:--.:...:-~--,:. t

18.39

... ~··

)

0

Q

CHAPTER 19

INTERLISP·D DlSPLA Y FACILITIES

ThJs chapter describes the functions that support the display and the interaction with progr.::.ms Li.at use
the d.:s;,lay. First. a brief introductory vi~w of us:ns the Intcrlisp·D dispfa:y and how scme of :he other
Inter.!.isD facilities have been extended to include display interfaces. The two scr~n images at left. show
some of the disp!ay fearercs as used by e:cpioratory progr:un...-ting tools of the Intcrlisp·D enviroc:..ent.
The screen is divided into several rectangular areas or windows. each of which provid~-s a view onto some
data or process and which can be reshaped and repositioned at will by the user. When thc:y o•,crl:ip.
the occiucied portion of the lower window is autom:itic:illy saved. so th.it it can -be restored when t.":e
overlapping window is removed. Since the display is bit:n.ipped. each window can cont.tin an ar~icr:iry
mixture of text. lines. cur'les., and half-tone and solid area images.

The (i•;iescript window is in the upper left corner of the screen. It corresponds to the 0Ut';lUt channel
T. In it. the us~r has defined a progr:un F (factorial) and has then immediately run it. ghing an input
of 4 and get"..ing a resuit of 24. Next. he queries the state of his files usmg the file package function
FILES?, finding that one file has been changed (previously} and one function (F} has b~n defined but
not a.ssocfated with any file yet. The user sets the value of DRAW8ETWEEN to 0 in cotr..mand 74. and t!le
systec notes that this is a change and adds DRAWBETWEEN to the set of "changed objects .. that might
need to be saved.

Then. the user runs his program EOITTREE, giving it a parse tree for the sentence .. My uncle's story
about the war will bore you to tears". 11tls opens up the big window on the right in which the sentence
diagram is drawn. Usbg the mouse, the user starts to move the NP node on the left (which is i:l.verte;:i
to show that it is being moved). While the move is takicg place. the user interrupts the tree editpr usbg
Control·H. which suspends the computation and causes three "break" windows to appear on top of the
lower edge of the typescript. Tnese are part of the window break package. The si:r.allest window s.1ows tte
dyna:nic state of u.'le computation, which has been broken inside a subprogram called FOLLOW/CURSCR.
Toe "FOLLOW/CURSOR Frame" window to the right shows the value cf the local variacies bcunc! oy

,,_. ·. FOLL0"'1/CUP.SOR. One of them has been selected (a:.1.d so appe:u--s inverted) a.1.d in respor:.se. its vclue
V. has been shown i:I. more detail in the window at the lower left of lhe screen. The user has marted one of

the component values as suspicious by drawing on it using t!le window comma..1.d PAINT. {n adc!.icton. he
has asked to e:xactlne the contents of the B !TMAP com!=onent. which used t.'1e function ED ITSM to open
a bitmap edit window to the right. This shows an enlarged copy of the acrual NP image L.1.at is being
moved by the tree editor.

0

l.c.side the largest break window, the user pas asked some questions about FOLLOW/CURSOR. and queried.
the value of ORAWBETWEEN (now 66). Using the BRO'JSER lispusers package. the Masterscope SHOW
PATHS command brought up the horizontal tree diagram on the left. which shows which subprogr:.?.rns
call ca:.:h other. suning at FOLLOW/CURSOR. F..ach node in the c;ill tree produced by the SHOW PATHS
comm.md 1s .:in active clement which will respond to the user's selecting it with the mouse. In the second
image. the user has selected the SHOWNOOE subprogram, which has caused its code to be re:.r:eved from
the file { < LISP>DEMO> LATTICE R} on the remote file server (PHYLUM) where ic was stored .md disp!:iyed
in tJ:e "Browser printout window" which has been opened at middle ri.ghL User progr:i..-ns :md extcnced
Lisp forms (like for and do) are highlighted by system generated font changes. By selecting nodes in the
SHOW PATHS window, the user could also have edited or obtained a sununary description of any of t.'ie

19.1

~ '
"-~· "-· --

.
~":'.'4 \'t:''t-~~;,it1+\.·..wil1d11t4:i'se4,~' ..

•IV~•'• .~v v: ~v~w;4.

•\

•Ft:..~S?]
~Tt:E~ .. to be du•c~d.

~1u= t~e runc~10ns: ~
,t to ~•Y vne~~ the aaove 90 1 No

:(SET~ OP.A1aEr•EfN 0)
~~W!Ei•E!H r~~et)

==== ----· C':~;;,c:,,;~':41,;::,""' ,~ • ,, .. --~•·
• .,1,o .-G ,._ .. ,..,;: ..

:(OEFINEQ IF lA) (!~ALT Z
)
•(F 4)

•., :• .. ~• I

·.··= ... ,e.

a··::: .
... :: ... ;_ I '. N ::,JI

, =--~"-:i! ;cF 1 ~,.,,~ .-r: .1.:~.
·,:-

·• • • ~ ,T: •.

i
I

stcry about

·:·······.·

D

s

war

I
-~ l

('I \ ,I.
VP I

~i
V NP pp I

I ''\
I ' t

PF.O P NP f

I 1 ! l
!

I
I

I . I
I I t:oro you to tea,·,; 1

w:www--,

\iP

/./f",
V N? pp
I ' .·,
I I _, '·. I I •
, PRO P
'

,,a

()
N

l
I
i

·:
i
I

I
.,
i

I

o·
POSmON

subprograms.

Instead. the user told Masterscope (in the break typescript window) to edit wherever anyone calls
the ORA's/8ETWE:EN program (a line drawing function). This request causes the syste:::i to con.scit
its (dynamiccl.ly maintained) database of information about user progr-dI'lS. wherei:l it finds that the
sub~rogram SI-IOWLINK calls DRAWBETWEEN. It therefore loads the code for SHOWUNK i!l.to an edit
wi:::idow which appears under the .. Browser print out window". The system t.'len automatically finds and
underlines the first (and only) call on DRAWBETWcEN. On the previous lir.e, DRAwBETwEEN is u5:ed as
a variable (the one the user set and imcrrog.:ucd earlier). The system. however. knows :."la.t this is not a
subprogrnm call. so it h:..s been skipped. lf the user makes any chanbc to SHOWL I r,K in the editor., r.ot
only will the change take effect b::::tmediately, but SHOWL INK will be marked as needing to be upd.lted
in its file and t.i.ie in.formation about it in the program database will be updated. 1rus. in turn. will cause
the SHOW PATHS window to be repainted. as its display may no longer be valid.

Toe Interlisp-D display facility has several layers. At the lowest le'lel are routines which ,·iew the display
as a col!ection of bits and provides primitives for movicg blocks of bits around (BITBLT). The concepts
impor..ant to this level are positions, regions and bitmaps. Toe next level is the display stream. an
abstraetion that implements clipping to rectangular areas of the screen. line and curve d.'":lwir.g, and
pr.inting to the screen in different fonts. The concepts impor..ant to this level are fonts a:id db-play
streams. On the input side. there is a low level interface for reading the display input devices. the cursor
location and the mouse buttons. The input and output come together at the next level. the window system
wr...ich allows areas of the screen used by different programs to overlap by ke-epir.g track of information
covered and providing control primitives for mouse interaction. This chapter is organized accordi.'lg to
these levels.

A position denotes a point in an X. Y coordinate system. A POSITION is an instance of a record '11,ith
fields XCOORO and YCOORO and is ma!lipul.ated with the standard record package facilities. For example.
{ create POSIT Io:, XCOORO .. 10 YCCORO .., 20) creates a position representing t.'le point (10.20).

{POS!TIONP x) [Function]
Returns x if xis a POSITION; NIL otherwise.

19.2 REGION

A Region denotes a rectangular area in a coordinate system. Regions are characterized by the coordinates
of their bottom left comer and their width and height. A REG IOH is a record with fields LEFT, BOTTOM.
WIDTH. and HEIGHT. It can be manipulated with the standard record package facilities. There arc access
functions for the REGION record that returns the TOP and RIGHT of the region.

The following functions are provided for manipulating regions:

(CREATEREGIOH LEFT BOTTOM WIDTH HEIGHT) [Function}
Returns an instance of the REG ION record which has LEFT. BOTTOM. \1/!DTH and

19.2

(

INTERLISP·D DISPLAY FACTLITIES

HEIGHT as-respectively its LEFT, BOTTOM. WIDTH, and HEIGHT.

Example: (CR EATER E G ION 10 -2 0 10 0 2 0 0) will create a region that d~otes
a rectangle whose width is 100, whose height is 200. and whose lower left cor-er
is (10, -20). ·

(INTERSECTREGIOt!S REGION1 REGION;i · • • REGION:i) [NoSprezd Func::onJ
Returns a region which is the intersection of a number of regions. Re~~~ NIL
if the intersection is err:pty. If there are no regions given. it rerur-~ a Yery !a:g~
re~~ .

{ UNIO~lREGIONS P.EGIONz RZGION:z .•. R.EGIONll) [NcSprezd Function]
Returns a region which is the union of a number of regions. i.e. tl:e su:.~est region
that contains all of them. Returns NIL if there are no regions given.

C)

c REG IONS INTERSECT? R.EGIONl REGION:2} [Function] o
Returns T if REGIONl intersects REGION:Z. Returns NIL if they do not inte~t. -- '••

{ SUB REG I ONP LAR.GEREGION SMALLREGION) [Func:icn]
Returns T if SMAUREGION is a subregion (is equal to or entirely CQntamed in}
L.ARGEREGIO;,r, otherwise returns NIL.

{ EXTENOREG ION REGION INCLUDEREGION) [FunctionJ
Changes (destructively modifies) the region REGION so that it includes the region
INCLUDEREGION. It returns REGION.

(INSIDE? REGION X Y) [Function]

19.3 BITMAP

If x and Y are numbers, it returns T if the point (x. Y) is inside of REGION. If x is
a POS ITIOPI, it returns T if Xis inside of REGION. Otherwise. it returns NIL.

Tne display primitives manipulate graphical images in the form of bitmaps. A bitmap is a rectmgt!la.r Q _­
array of "pixels." each of which is an integer representing the color of one point in the bitma;, i=lage.
A bitmap is cre:ited with a specific number of bits allocated for ~ch pixel. Most bi~~~s t;Sed fer :.he
display screen use one bit per pb:el. so that at most two colors can be represented.. If a pixe? is 0. the
corresponding location on the image is write. If a pixel is 1. its loc::ition is black. (Titis in:e:-pretation c~
be changed with the function VIOEOCOLOR: see page 19.7.) Bitmaps with more than one bit p~r pixel
are used co represent color or grey scale images .

. Bitmaps use a positi_ve integ~r coordinate system with the lower left corner pixel ac coordinate (0.0).
Birr.ups are represented as instances of the datatype BITMAP with fields B ITMAPWIOTH. 8 ITMAPHE IGHT.
BITMAPBITSPERPIXEL. BITMAPRASTERWIOTH. and BITM~P8ASE. Only the wid~. hl!ight. and bits
per pixd fields are of interest to the user. and can be Jcccsscd with the following functions:

(B ITMAPWIOTH BITMAP} · [Functionj
Returns the width of Bin!AP in pixels.

19.3 ()

0-

BITBLT

(BITMAPHEIGHT BlTMA.P) [Function]
Returns the height of BrrMAP in pixels.

(BITSPERP!XEL .BITV.AP) ~ [FU!!ction]
Returns the number of bits per pixel of BITMAP.

The functions used to manipulate bitmaps are:

(B ITMAPCREATE WIDTH HEIGHT BrI'SPERP!:CEL) [Function]
Creates a:id returns a new bitmap which is WIDTH pixels wide by EEIGHT pb:els
high, wit.Li. BITSPER.PIXEL pits per pixel. If BITSPER.PDCEL is NIL. the defauit is l.

{BITMAPBIT BITY..AP X Y NEWv':4..LUE) [Functicn]
If NEW\o':4..LIJE is between O and the maximum value for a pixel in _BITMAP, t.."le
pixel (x; Y) is changed to NEWVALUE and the old value is.: rerumed. If ."-c,,.n'.;lLr:::
is NIL, BrrY.AP is not changed but the value of the pixel is rec-... med. If ,-..&:'W'\';U.t.":E'

is anything else, an error is generated. If (x;Y) is outside the l..imi.ts of BITMJ\P. 0
is returned and no pixels aie changed. BrrMAP can also be a window.

(BITMAPCOPY BITMAP) [F1Ji:ction]
Returns a new bitmap which is a copy of BrI'MAP (same dimensions and conte!lts}.

(EXPANDS ITMAP BITMAP WIDTHFACTOR BEIGHTFACTOR) [Function]
Returns a new bitmap that is WIDTm'ACTOR times as wide as srrMAP and
m:rGHTFACTOR times as high. Each pb:el of BITMAP is copied into a WIDTEFACTC.R
times HEIGHTFACTOR block of pixels. If NIL. WIDTHFACTOR defaults to 4,
BEIGF.TFACTOR to 1.

~ere a.-e two distinguished bitmaps that are read by the hardware to become visible as the sc~n and
the cursor. Toe screen is a bit:nap SCREEmtlIDTH (=1024} wide by SCREENHEIGHT (=SOS) hig."1. Toe
cursor is a bitmap CURSORWIDTH (=16) wide by CURSORHEIGHT (=16) high. They are ac:essed ~y:

(SC?.EENB ITMAP) [Function]
Returns the s...--reen bitmap.

(CURSORS ITMAP) [Fui:ction}
Returns the cursor bitmap.

Note: Toe C1mer bitmap can be changed with ~e function CURSOR (page 19.16}.

19.4 BITBLT

BITBLT is the priJ:r:Jtive function for moving bits from one bitmap to another. It is similar to the function
RASTEROP that is used i!l other systems.

{ B HBLT SOURCZBITMAP SOURCELEFT SOURCEBOTTOM DESTINATIONBITMAP DESTI:'-IATIO::-."I.E..T:'T

DESTr.;ATIONBOTTOM WlDTir HEIGHT SOURCETYPE OPERATION TEXTURE cr.IP?I'NGP.EGIO:-:)

[Functicnl

WIDTH and HEIGHT define a pair of rectangles, one in each of the SOURCEBITMAP and DESTDl.ATjQ?-,'73ITI,{AP

19A

\..

(

L"'ITERLISP·D DISPLAY FACTLITIES

whose left. bottom comers are at. respectively. (SOURCELEFT. SOt"RCEBOTTOM} and (DESTr.VATION!.ZFT,
DESTINAT:ONEOTTOM). If these rectangles overlap the boundaries of either bim-..ap they a:e botil reduced
in size (witi1out translation) so that they fit within their respective bounda.ries. If C-...IP?I:-.tGF.EGION is
ncn·IJIL it should be a REGION and is interpr~ted as a clipping region 'hithin DES:-::,{ATIO!',"3~.!AP;
clipping to chis region may further reduce the defi..'"ling recungles. These (possibly red.1:ce-:!) re.::..:.r.t:?S
define the SOtu""t:e and destination rectangles for BITBLT. SOt,"P.CE.Bin!AP and DESTINATIONEir..!A.F C:ill.

also be display st.re3ll1S or windows. in which c::i.Se their associa:ed bitmaps are used.

The mode of transferring bits is defined by SOURCETY?E :ind OPERATION. SOf.."RCETYr':::Z and Or'ERAT:o:-:
specif:; toole;m functions th~t m-e used to G.e:crmine, rcspecfr;eiy, the method cf cur..:nr.ir.g sot-:c?c:::srr~.f.A.'::i
bi.s with the TEXTTJRE a:id the operation between these resultant bits and DEST!llATIONarnt:AP. TEX7t."RE

is a gray pattern. as described on page 19 .6. (Note: The alignment of the texture pattern with 61TB LT is
such that the origin of the destination bitmap is at an intersection of the .. tiles.")

0

SOURCET'YPE specifies how to combine the bits from SOURCEBITMAP with the bits from TEXTt.'RE (a n
background pattern) to produce a "Source ... This is designed to allow charac:ers and figures to be piJCed _,, _
on a background.

SOURCET'YPE

INPUT

INVERT

TEXTURE

Source

SOtl°RCEBI'TMAP

(NOT SOURCEBITMAP)

For the INPUT and INVERT case. the TEXTURE argument to BITBLT is ignored. For the TEXTURE
case. the SOtmCEBZTMAP, SOURCEI..EFT, and SOURCEBOTTOM arguments are ignored.

OPERATION specifi~ how thls source is combined with the bits in DESTINATIONBrn£AP and stored back
into DEST'INATIONBITMAP.

OPEP..A.TION

REPLACE

PAINT

INVERT

ERASE

DEST'INATIONBITMAP becomes

Source

(OR DESTINATIONBITMAP Source)

(XOR DESTINATIONSITMAF Source)

-

(AND DESTINATIO~ITMAP (NOT Source) }

SOURCELEFT, SOtJRCEBOTTOM. DESTINATIONLEFT, and DESTINATIONBOTTOM default to 0. WIDTH and
HEIGHT default to the width and height of the SOu"RCEBITMA.P. TZXTTJRE defaults to white. SOC."RCE7Y?E

defaults to INPUT. OPERATION defaults to REPLACE. [f CLIPPTNGR.EGION is not provided. no additional
clipping is done. BI T8 LT returns T if any bits were moved; NIL otherwise.

Note: BITBLT and B ITMAPB IT accept windows and display streams as their bitmap arguments. In
these cases. the remaining arguments are interpreted as values in the coordinate system of the window ur
display stream and the operation of the functions J.re translated and dipped ~ccordingly. lf a window 0r
display stream is used as the destination to BITBLT, ics clipping region limits the operation :nv0hed.

19.5

()

0

u

0

0

1.c.XTURE

19.5 TEXTURE

A Texture de::l.otes a pattern of gray which can be use':1 by BITBLT to (conceptually) tessellate the pla:ie
to form an infu:i.ite sheet of gray. It is currently a 4 by 4 pattern. Textures are crea:.ed i:J.teractively usi:lg
the function EDITSHAOE or from biu:naps using the following function.

(CREATETEXTUREFROMBITMAP BITMAP) [Function]
Returns a te~rure object that will produce the texcure of BZTMAf'. If !!!TY.AP is :oo
large, its lower left portion is used. If BITMAP is too small it is re;,eated .o fill out
the texture.

(TEXTUREP OBJECT) [Function]
Rerums OBJECT if it is a texture, Le. a legal texrure argument to B I TB LT.

Toe common textures white and black are available as system constants WHITESHADE ai::d BLACKSHADE. The
glob&! variable GRAYSHADE is used by many system facilities as a background gray shade and can be set by
the user. The original background shade of the window system is kept in WIHDOWBACKGROUNDSHADE. The
background shade can be changed by the following function:

(CHANGE BACKGROUND SHADE) [Function}
01anges the background shade of the window system. SHADE determines the
pattern of the background. If SHADE is a te~rore, then the background is si:I:ply
painted witb. it. If SiiADE is a BITMAP, the background is tessclated (tiled) with it
to cover the screen. If SHADE is T, it changes to the original shade. the ..,-alue of
WrnDOWBACKGROUNDSHADE. It rerurns the previous value of the background.

19.6 SA VJNG BIThIA.PS

Bitmzps can be saved on files with the VARS file package command (page 11.22). Toe following two
functions translate bio:taps into and out of a representaticn which may be used to transfer bitcaps
between Interlisp and other computer systems' representations.

(REAOBITMAP) [Function]
Creates a bitmap by reading an expression (written by PRINTS ITMAP) from the
pt.imary input channel

(PRINTBITMAP BITMAP) [Fui::ction]
Prints the bitmap BITMAP on the primary output channel in a format that c::.n be
read bacx in by REACBITMAP.

19.7 SCREEN OPERATION

The following functions control the display screen.

19.6

I!'.TIRLISP-D DISPLAY FACILITIES

(VIOEOCOLOR BLACKFI.G) [NoSpre:ad Functicn]
SetS the interpretation of the bits in the screen bitmap. If BLAC-..<FLG is NIL.
a O bit will be displayed as white, otherwise a O bit will be displayed as black.
VIDEOCOLOR returns u.":e previous secr.ing. IfELAC-0!.G is not given., 'IIDEOCOLOR
will rerurn the current setting wiL.10Ut changing anything.

Note: This function only works on the Xerox 1100 ~d Xerox 1108.

(VIDEORATE TYPE) [F·.mctionJ
Sets the rate at which the screen is refrcsh~d. TYPE is or:e of NO ~MAL or T ;.._? E. If
TYPC: is T l\P E. the screen will be refreshed at the S2.tne rate as TV (60 cj·clcs per
secocd). T.c.is makes the picture look bc-tter when video tapL,g the screen. ~oce:
Changing the rate may change the dimensions of the display on the picture tube.

Se·,eral functions are provided for turning off the display (partially or completely). See page 18.12.

19.8 CHARACTERS AJ.'ID FONTS

Fonts control the way characters look when printed on the screen or a graphics printer. Fonts are defined
by a distinctive style or FAMILY (such as Gacha or TirnesRoman). a SIZE (such as 10 points). and FACE
(such as bold or italic). Fonts also have a ROT A TI ON that indicates the orientation of chara.e:e:s on the
screen or page. A normal horizontal font (also called a portrait font) has a rotation of O: the rocacon of
a vertical (landscape) font is 90 degrees. While Ll-ie specification allows any combination. in practice t!le
user will find that only certain combinations of families, sizes. faces. and rotations are available.

In specifying a font to the functions described below, a FAMILY is represented by a literal atcm. a SIZE
by a·positive integer. and a FACE by a three-element list of the form (WEIGHT SLOPE EXPANSIOS) •

• WEIGHT. wtiJch indicates the thickness of the characters. can be BOLD. MEDIUM. or LIGHT: SLOPE cx:i
be ITALIC or REGULAR; and EXP.L\NSIOrJ can be REGULAR, COMPRESSED. or EXPANDED. indic~:i::g
how spread out the characters are. For convenie=ice. faces may also be specified by three-charac:er 2.tc!:'!s.

n _ /--·

where e3.Ch chara-:ter is the first letter of the corresponding field. Tnus, MRR is a synonym for (HEDIUM
REGULAR REGULAR). rn additio~ certain common face combL'larions may be indica:ed by spec:ti l.i~e:-31 (-)
atoms: '- _/

STANDARD= (MEDIUM REGULAR REGULAR)= MRR

ITALIC= (MEDIUM ITALIC REGULAR)= MIR

BOLD= (BOLD REGULAR REGULAR)= BRR

·BOLDITALIC = (BOLO ITALIC REGULAR)= BIR·

A font also has the propet"fJes ASGENT, DESCENT. and HEIGHT (= ASCENT + DESCENT). anci for
e3.ch character. a width and bit p~t:ern. The ASCENT is the maximum height of any character in t."le
font from ics base line (the printing position). The DESCENT is the maximum extent of any cha.r:::.c:er
be!ow the base line, such as the lower part of a "p." Therefore the cop line of a char::1cte_r will be J.t
Base+ASCENT-1. while the bottom line will be ac Base-DESCENT. The width of ~ach ch.:.r::.c~er s~e:::nes
how a sr.re~·s position will change when the character is printed. This may have both m X and ..1 Y
component (e.g .• for landscape foncs}, and it varies from character co cbarJcter in vmJ.ble pitch for::.s.

19.7

()

0

0

0

Characters and Fonts

The information about a particular font is represented in a font descriptor. The follo'i\ing functions
manipulate font c.~<:riptors:

(FONTCREATE FAMlLY SIZE FACE ROTATION DEVICE NOERRORFLG) [Function]

(FONTP x)

Returns a font descriptor for t.i.e specified fonL SIZE is an inteier in~ca~g
the size of the font in points. FACE specifies the face char~eristics in one of
the formats listed above: if FACE is NIL. STANDARD is used. .RO':"AT.:"O whic!l
specifies the orienration of the font. is O (or rJ IL) for a po~t fcr.t 2.!ld 90 for a
landsc2pc font DEVICZ indicates the outj)Ut d~vicc for u~c fo:it For Intc:-iis;:·D.
the possible values for DEVICE are DISPLAY for the display screen and PRESS for
Press printers. DEVICE defaults to O ISP LAY.

For display fonts. FONTCREATE looks for a STRIKE file with the appropriate na..-ne
(such as TIMESROMAN8BI.STRIKE for a TIMESROMAN 8 SOLD ITALIC for:t}.
searching through directories on the list FONTOIRECTORIES. lf the file is found.
it is read into a font descriptor. If the file is not found. FONTCREA iE looks fer
fonts with less face information (in t.'1is example. TIMESROMAN8 I. STRIKE) and

· fakes the remaining faces (such as by doubling the bit pattern of each charac~er
or slanting it). If no appropriately sized font is found. the action of the function
is determined by NOERRCRFLG. If NOERROP-T.'LG is NIL. it generates a FI LE
NOT FOUND error with the name of the most specific file cried (in the example
TIMESROMAN88 I. STRIKE): otherwise. FOtlTCREATE reruns NIL.

Fer Press fon:s. FONTCREA TE ac::e-ss...cos the ~idt!:.s ~.fo:::::z.ticn fo=- :.:.e fo:.: :..~ a
font-dictionary file whose name is in the list FONTWIDTHSF~LES (us-..:.aily ir.i~::!;ied
in the site-greeting file to contain at least {OSK} FONTS. 'WIDTHS). 11-.at dic:ionary
must contain bfonr..aticn for the face as specified: t..'lere is no acce?table faking
aigcri•;.,"il for hard-copy fonts. The width and height inf:::mr.ation for pr~ fonts is
exprec..sed in micas (= iO microns = 1/2540 inch}. not in screen-point units.

The FAMILY argument to FONTCREATE may also be a list. in whidl case it is
interpreted as a F.AMILY·SlZE·FACE·ROTATION quadruple. Thus. (FOliTCREATE
'{GACHA 10 BOLO)) is equiva!ent to (FONTCREATE 'GACHA 10 'BOLD).
FA.\JILY may also be a font descriptor. in which case that descri:;:,tor is si:n;::ly
returned.

. [Fu:ictionl
Returns x if x is a font descriptor; NIL othetwise.

Toe following functions take a font as one argt..'.Inent. This argument must either be a partiC'Jlar font
descriptor or coerceable to a font descriptor. A display stream is coerced to its current font. a window is
coerced to the ciurent font of its dis;,lay stream. and anything else is coerced by applying FmnCREATE
£0 it. • . .
(FONT PROP FONT PROP) [F•Jnction]

Returns the value of the PROP property of font FONT. PP.OP may be one
of FAMILY. SIZE. FACE. WEIGHT. SLOPE. EXPANSION. DEVICE. ASCENT.
DESCENT, HEIGHT. or ROTATIOrt

(FONTCOPY OLDFONT PROP1 VALz PROP:;: VAI.2 • · •) [NoSprcad FuncticnJ
Returns a font descriptor that is a copy of the font OLDFONT. but wr .. kh dif."crs frc::i
OLDFONT in that OLDFONT's properties are replaced by the specified proper-Jes

19.S

(

INTERLISP·D DISPLAY FACIL.ITITS

and values. Thus. (FONTCO?Y FONT 'WEIGHT 'BOLO 'DEVICE 'PRESS)
will return a bold press font with all other properties the same as those of
FONT. FONiCOPY accepcs a11 the properties that FONT?ROP mterroga:es exce;,t for
ASCEHT, DESCENT, and HEIGHT. If the fi.i."'St property is a list. it is :.ake::i to be
the PROP1 VALi PROP2 VAL;:••• seque::ice. Thus. (FONT COPY FONT '('#EIGHT
BOLD DEVICE PRESS)) is equivalent to th~ e.:campl-e above.

(CHARWIOTH C1lA.RCODE FONT) [Funct:.on]
C'JiARCODZ is an L-lteger th:it represents a valid character ("5 returned by CHCO!l 1).
Returns the a.rnoi.:nt by which a stream's X-pcsit!on will be ic.cre:nented. whe:1 :.."'le
character is printed.

(CHARWIDTHY CHARCODE FONT) [Function]

0

Like CHARWIDTH. but returns the Y component of the character's width. the
amount by which a stream's Y·position will be incremented whe:i the ch:u-..:.eter is
printed. This will be zero for most characters in nomtal portrait fonts. but may be () _.
non-zero for landscape fonts or for vector-d..-awing fonts.

{STRINGWIOTH STR FONT PRIN2FLG RDTBL) [Function]
Returns the amount by which a stream's X·position will be increme::,.ced if the
printname for the Interlisp-D object STR is printed in font FONT. If F0~7 is a

.display stte2m. its font is used. If PRINZ-LG is non-NIL. the PRIN2·pn.m:e of
STR with respect to the readtable RDTBL is used.

(STRINGREGION STR wmnow PRIN2FI.G RDTE!.) [Function]
Returns the region occupied by STR if it were printed at the current loc2.:ion in
wmnow. This is useful for determining where text is in a window to allow t.."le user
to select it. The arguments PRIN2FLG and RDTBL are passed to STRINGWIDTH.

It is-sometimes useful to simulate an unavailable font or to use a font with characteristics different from
the interpretations provided. by the system. The following function allows the user co cell the s;-ste:n what
font d~c:iptor to use for given characteristics.

(SETFONTOESCRIPTOR FAMILY SIZE FACE ROTATION DEVICE FONT) . [Function]
Indicates to the system t.'1at FONT is the font wit!l the FA..'41LY SIZE FACE R07..-t7:c:.­
DEVICE characteristics. If Fo;,.-r is NIL. the font associated with these char~:e:-:.s.:;:s ()
is cleared and will be recreated the next time it is needed. As with FONTPRCP a:id
FONTCOPY. FONT is coerced to a font descriptor if it is not ox:.e alreac!y:

(OEFAULTFONT DEVICE FONT -) (Function]
Returns the fbnt that would be used as the default (if NIL were snecmed as a
font argument) for device DEVlCE. If FONT is a font descriptor. it is Set to be t.'le
default font for DEVTCE.

The following functions allow the user to access and change the bianaps for individual characters in a
display font. • · ·

(GETCHARBITMAP CHARCODE FONT) [Function]
Returns a bianap containing a copy of the image of the char:icter CHAR.CODE in
the font FONT.

19.9 ()

0

,--)-._
~

()

0

(PUTCHARBITMAP

Display Streams

CHARCODE FONT NEWC.F.ARBITMAP} {Function]
Changes the bit.-nap image of the character CHAR.CODE in the font FOST to c.~e
bitmap NEWCHAR.BITMAP. Currently, NEWC5.ARBm4AP must be the same ',l,idth
and height as the current image for CF.AR.CODE in the font FONT.

Users can interactively edit characters using the EDITCHAR function (page 20.10).

19.9 DISPLAY STREAMS

Streams are used as the basis for all I/0 operations. Files arc implemented as s--..rca.ms that c.:m support
character printing and reading operations. and file pointer manipulation. Display su-e:ur.s arc a type of
stream that also provides an interface for transl.:ition. clipping. a."ld figure generation on bitmaps. All of
the operations that can applied to streams can be applied to display streams. For ex.:i::nple. a display
stream can be passed as the argument to PRINT, to print something on the bicnap of a dis?lay st."'e.l:It. In
addition., special functions are provided to draw lines and curves and perform ot..l-ier graphical operaticns
on d.L~lay streams. Calling these functions on a stream that is not a display stream will generate an error.

Windows are closely related to dis;,lay streams and can be thought of as a type of display stre:am. (ln
the near future, windows will be a type of display stream.) All of the functions ti."lat operate on dispiay
streams also accept windows.

Display Stte:lillS can be created with the following function:

(DSPCREATE DESTINATION) [Function}
Returns a display scream. with initial settings as indicated below. If DEST!:iATION
is specified. it is used as the destination bitmap, otheNise the screen bitmap is
used.

Each window has an associated display stream. To get the window of a particular display stream. use:

('slFROMDS DLSPLA'YST.REAM) [F~ctioc.]
Rerums the window associated wit.~ DISPLAYSTREAM, creating a wine.ow if oi:e
dces not exist. Returns rt IL if the destination of DISPLAYSTREA..J,t is not a scree::i
bitmap that supports a window system.

19.9.1 Manipulating Display Streams

Toe following functions manipulate the fields of a display stream (they may also be given a window. in
which case the associated display stream is used). These functions return the oid value (the one being
replaced). A value of "IL for the new value will return the current setting without ch,1nging it. These
functions do not change any of the bits in the display stream's destination bitmap; just the etf cct of future
operations done throu!;h L."le display stream. ·

·Warning: The window system maintains the Destination. XOffset. YOffset. and ClippingReg:on fielc.s
of each window·s display stream. adjusting them during window operations. Users shot:.!d be very
careful about changing these fields in a window·s display stream (with OSPOEST INA TION. OSP .XOF FSE i,
OSPYOFFSET,orOSPCLIPPINGREGIONi .

19.10

\..._ __ ...

INTERLISP·D DISPLAY FACILITIES

(DSPOESTrnATION DESTINATION D!SPLAYSTREAM) [Function]
Desti...-i~tion: The bitmap Lfiat the display stream mod.iiies. This can be eithe!" t..'1e
screen bio:nap~ or an auxill.iary bitmap in order to constr"..:ct figures. possibly saYe
them. and then display them in a single operation. Initially the scree:i bitmap.

(OSP XOF F SET XOFF~ZT DISPLAYSTR.EA.\!) [Fu.cctonJ
{ OSPYOF F SEi YOFFSET DISPLAYSTP...EA.i.\!) [Fu~c:io:.)

XOffset: The X origi..n of the display stream's coordinate system in the <!e~r..,-=:icn.
bitmap's coordinate system. Initially O (no X--coorc!.inate c:an.slar.ion).

YOffset: The Y origin of the display str~am·s coorc.:.na:e system in ~e des·; ... -::ion
bitmap's coordinate system. Initially O (no Y--coordma::e ~rs:a::on).

Display streams have t.heir own coordinate syste:n. Having the coordinate sys:e::n .

(\··
_j

local to the display stream allows objects -to be displayed at different pbces by
translating the display stream's coordinate system relative to its dcstin.1tion bian:ip. Q ·

(DS?CLIPPINGREGION REGION DISPLAYSTREAM) [Function]
OippingRegion: A region that limits the extent of characters printed ar.d lines
drawn (in the display stream·s coordinate system). Initially set so that no clippi.!lg
occurs.

(DSPXPOSITION XPOSITION DISPLAYSTREA..~)
(OSPYPOSITICN YPOSITION DISPLAYSTREAM)

XPosition: The current X position. Initially 0.

YPosition: Tue current Y position. Initially 0.

[Function}
[Function]

OSPXPOSITION and DSPYPOSITIOH specify the "'current position" of the display
stream. the position (in the display stream's coordinate system) where the next
printing operation will start from. The functions wl:1.:ch print c.haracte:-s or draw
on a display stream update these values appropriacely.

(DS?TEXTURE TE°AI'U?..E DISPLAYSTREAM) [EmcrionJ
Texture: A texture that is the background pattern used for u':e display stre3I!!.
Initially L'le value of WHITE SHADE.

(DSPFONT FONT DIS.?LAYSTP...E.Al.!) [Fuz,.c:ion]
Font: A Font Descriptor that specifies the font used when printing characte:s to
the display stream. fnitially Gacha 10.

Note: DS?FONT determines its new font descriptor from FONT by the same coercion
rules that FONT PROP and FmHCOPY use, with one additional possibility: If .=-c:-:T
is a list of the form (PR.OP 1 VAL 1 PROF2 VAL 2 ···) where PROPz is acce~::icle
as a font-property to FQrHCOPY. then the new font· is obtained by (FONTCOPY
(OSPFONT NIL DISPLAYSTREAM) PROP 1 VAL 1 PROP;i VAL 2 ···).

(OSPLEFTMARGIN XPOSITION DISPLAYSTH.EAM) [Functiun}
Lefu'viargin: An integer that is the X position after an end-of-line (in the d.ispiay
stream'? coordinate system) - initially 0.

(OSPRIGHTMARGrn XPOSITION DISPLAYSTRE~\{) [Functicn]
Right.\fargin: An integer that is the maximum X positio~ that charac:ers will

19.11 ()

0

0

_/'~ u

,···- ..
• I

0

..
Drawing on WindOlvs and Display Streams

-
be printed at (in the display stream's coordinate system) • initially the Yalue of
SCREENWIDiH. This determines when an end of line is automatically insened by
the pdnting functions.

..
The line length of a window or display stream (as returned by LINELEMGTH. page 6.8) is computed by
divicing t..~e distance between the left and right margins by the width of an uppercase "A .. in t..i.e C'Jrreo.t
font. Toe line length is chansed whenever the Font. Lefu\iargin. or RightMa.'"gin are cha:lged.

(DSPSOURCETYPE SOURCSTYPE! DTSPLAYSTREAM) [Function)
SourceType: The BITBLT sourcetype used when printing characters to t..11e cils;,iay
stream. Must be either INPUT or INVERT. Initially INPUT.

{0SPOPERATIOH OPERATION' DISPLAYSTREAM) [Function]
Operation: Toe default BITBLT operation (REPLACE, PAINT, INVERT. or ERASE)
used when printing or drawing on the display stream. Initially REPLACE.

(OSPLINEFEED DELTAY DISPLAYSTREAM) [Fu:iction]
LineFeed: An integer that specifies the Y increment for each linefeed, normally
negative. Initially minus the height of the initial font (Gacha 10).

(OSPSCROLL SWITCZSETTING DISPLAYSTR.::AM) [Function]
Scroll: A flag that determines the·scrolling behavior of the display stream: eifaer
CN or OFF. If Ori. the bits in the display streams's destination are moved after ci!lY
linefeed that moves the current position out of the destination bitmap. Any bits
moved our of the current clipping region are lost. Does not adjust the XOff"set.
YOffset, or ClippingR.egion fields. Initially OFF. (Note: if S'W!TCHSETT.l::'m is NIL,
the Scroll field is not changed. and the previous value is returned..)

19.9.2 Dramng on Windows and Display Streams

(DSP"FILL REGION TEXTtm.E OPERATION DlS.?LAl'ST.REAM) [Function]
Fills REGION of the destination bitmap (within the clipping region) with '1'EX':'"t':RE
(a pattern of bits). If REGION is NIL. ti.i.e whoie destinatio!l (withio. t...~e
clipping region) is used. If TEXTURE or OPERATION are NIL. t.l-ie values from
DISPLAYSTR.EAM are used.

(FILLCIRCLE X y P..A.Dr.JS TEXTURE D.ISPL.AYSTREAM) [Function]

.

Fills in a circular area of radius RADIUS about the point (X,Y) in the destination
bitmap of DISPLAYSTREAM with TEXTURE. DISPLAl'ST.RBAMS position is left at
(X.Y) .

(DSPRESET DISPLAYSTREAM) . [Function]
Sets Li.e X position of DisPLAYSTR.EAM to its left ll".argin. sets its Y position to the
top of the clipping region minus the font ascent, and fills its destination bitmap
wit.i'l its background Texture .

. (MOVETO X y DISFLAYSTREAM) [Function]
Chang~s the current position of DISPLAYSTREA.M' to the point (x. Y).

(RELMOVETO DX DY DISPLAYSTREAM) [Functicn]
Changes t.i"'te current position to the point (ox, DY) coordinates away from c~rrent

19.12

lL'ITERLISP-D DISPLAY FAOLmES

position of DISPT...AYSTRE.AM.

(MOVETOUPPERLEFT DISPLAYSTREA.M REGION) [Fur.c:ion]

(DS?BACKUP

Changes the X position to the left edge of REGION and the Y position to tl:e tcp
of RE:Gro:-r kss the font height of DISPLAYS7REA..'4'. 1-:"'.!S is the be2in.,iog pcsi::cn
of the top line of text in this region. If P...EGION is r~ IL, the clipp~g reg:on of
DISPLAYSTR.E.A.\f is used. Note: this do-es not set the X position to the left :::r .. argin
like the function DSPRESET does.

\VIDT!i' D!SP!...-\YSTRE...L\.t) [Func:.:.on}
B~c.ks up DISP!..A.YSTRE.AJJ over a character which is wmra screen points w,ce.
DSPBACKUP fills the backed over area with the display stream's backgrcu::d :e~r-"1re
and c!ecre.:ises the X position by WIDTH. If this would put t.~e X pcsi::cn kss :.~a:i
DIS.?U.YSTRE.AlrfS left margin. its opcr3.tion is stopped at c.,e left margin. It rc:-..:rns
T if any bits were written, NIL otherwise.

(CENTERPRINTINREG ror-. EXP REGION DIS.?LAYSTREAM')- [Function]
Prints EXP so u~at is it centered within REGION of the DlSPL.AYSTR.EA.\!. If REGION

is NIL. E..'U' will be centered in che clipping region of DlSP!.AYSTRE.A..~.

19.9.3 Drawing Lines and Curves

Interlisp-D provides several functions for drawing lines and curves onto the destination bitmap of a display
stream ·or window. The curve drawing functions take their BITBLT operation from the dis~lay stre:!!D..
while for straight lines the Operation may be specified as an argument to the d.rav-ing function.. with the
display stream's operation only being used by default.

The. following functions produce smtight lines of the specified width (in screen points; the default is
1) in the d.ispiay stream's destination bitmap. They do not allow "brush'' paaems: however. they do
support INVERT mode inwhich redrawing a line will erase it. These functions are intended for intenctive
applications where dkiency is important. DRAWCURVE can be used to draw lines with bm54'1es.

()

0

(DRAWTO X Y WIDTH OPERATION DISPLAYSTR.EA.i.\l COLOR) [Func:ic~,1
Draws a line from the current position to the point (x. Y) c-nto rte des::1.1:io:1 C~)
bitmap of DISPLAYSTREAM. Toe position of DlSPLAYSTP..EA.\! is set to (x. Y).

If the desili:J.ation bitmap has multiple bits per pb:el, COLOR. is a color S"9eci5c.::.rion
that determines the color used to draw the line {See page 19.44). If COLOR is r~ IL.
this will be the DSPCOLOR of DISPLAYSTR.EAM.

(RELORAWTO DX DY WIDTH OPE&-\TION DISPLAYSTREAM COLOR.) [FunctionJ
.Draws a lLrie from the current position to the point (DX, DY) coordinates away
onto the destination bitmap of DISPLAYSTREA..V.. The position of DISPLAYS":REA.\,{

is set to the end of the line.

(DRAWLINE X1 Yz X1 Y2 WIDTH OPERATION DISPLAYSTREAM COLOR) [Fu:1ction]
Draws a line from the point (x 1 • Y1 } to the_ point (x1 , Yz) onto the desti:13.tion
bit.:."113p of DISPLAYSTRE..-L'-f. TI1c position of DISPLAYSTREA..\! is set to (X::, Y,:).

(ORAWBETWEEN POSITrONz POSITION2 WIDTH OPERATION DISPLAYST~EA.\{ COLOR) [Fun~tic:11
. Draws a line from the point POSITION1 co the point POsrrro:v2 onto the dest.:n;iuon

19.13 r---­
\)

0

,-:
0-

O·

Typescript Facilities: The ... T .. Fiie

bitmap of DISPLAYSTREAM. Toe-position of DISPLAYSTREA..V. is set to Posmo,:,::1-

A curve is drawn by placing a brush pattern centered at each point along the c-J.rve·s trajectory. A brush
pat.em is defined by its shape, size. and color. The currently recog:tlzed shapes are ROtmo. SQUARE.
HORIZONTAL. VERTICAL. and DIAGONAL. A brush size is an integer speciff.ng the width of the brush
in sc:-een points. Tne color is a coior specification (see page 19.44), which is only used if the c'!.lr•,e is
drawn on a multiple bits per pixel bitmap. ·

A br..ish is specified to the various drawing functions as a shape-width-color list (such as (SQUARE 2)
or (VERTICAL· 4 RED)). A brush can also be specified a,; a positive integer. which is interpreted as
a ROUHD brus...'l of that width. Finally, if a brush is specified as NIL. a (ROUND l) bn.:sh is used as
default.

If a b:-ush is a litatom. i; is assumed to be a function which is called at each point of the curve's trajectory
with three arguments: the X-coordinate or the point, the Y-coordinate, and the display stream.

The appearance of a curve is also determined by its dashing characteristics. Dashing is specified by a
list of positive integers. If a curve is dashed. the brush is placed along the trajectory for the number of
points indicated by the first element of the dashing list. The brush is off, not placed in L'1e bitmap. for
a number of points indicated by the second element. The third element iI:.d.icates how long it will be on
again. and so forth. The dashing sequence is repeated from the beginning when the list is exhausted. A
curve or line is not dashed if the dashing argument to the drawing function is NIL.

Toe C'.Jrve functions use the display stream's clipping region and operation. Becau~ of the problem of
overlapping brush points. the REPLACE and INVERT operations are not implemented.

(ORAWCURVE KNOTS CLOSED BRUSH DASHING DISPLAYS'raEAM) [Function]
Draws a spline curve~ KNOTS is a list of positions to which the spline ""ill be fitted.
CLOSED is a flag wr.Jch indicates whether or not the spline is to be closed. The
other arguments are interpreted as described above.

(DRAWCIRCLE X y RADIUS BRUSH DASHING DIS.?LAYSTREAM) [Function]
Draws a circle of radius RADIUS about the point (x. Y) onto the destination bitmap
of .C.ZSPLAYSTRE.AM. DIS?LAYST?..EAM'S position is left at (x. Y). (Dashing :nay
not be implemented for this function yet.) The other arguments are inte!"preted as
described above. ·

(DRAWELLIPSE X Y SEMIMINOR.RADIUS SEMD.lAJORRADIUS ORIENTATION BRUSH DASBrlG
DISPLAYSTREAM) [Function]

Draws an ellipse with a minor radius of SEMIMINORRADrt:s and a major radius
of SEMIMAJORRADIUS about the point (x. Y) onto the destination bitmap of
DISPLAYSTREAM. ORIENTATION is the angle of the major axis in degrees. positiYe
in the counterclockwise direction. Dl'S?LAYSTREAMS position is left at (x. Y).
(Da!hing may not be implemented for this function yet.) The other arguments are
interpreted as described above.

19.10 TYPESCRIPT F AOLITIES: THE "T' FILE

Output to the file T and echoing of type-in is directed to a distinguished terminal display stream. This is

19.14

INTERLISP·D DISPLAY FACILITIES

initialized co be a display stream at the top of the screen. but that initial setting can be modified by tb.e
function TTYOISPLAYSTREAM.

(TTYO!SPLAYSTREAM DISPLAY.STREAM) [Functio:i]

('\
\ j

St!lects the display stream or window DIS.PLAY.STREAM to be the termin:tl cuc;uc
channel. and returns the previous terminal O'Jtput display stte.m1. TTYD ISP LAY STREAM
puts DISPLAY.STREA.M' into scrolling mode and calls PAGEHEIGHT ~it:l t.1.e m.:c:::er
of lines that will fit into orsPLAY.STRE.6_-.r given its current Font and Cli';,pir:~R.egfon.
The line!ength ofTTYOIS?LAYSTREAM is compu:etl (like any other cs;:::i.y s:.re:l!:1}
from its Left..1\fargin. Right.\.fa.roin. :1.11d Font. If one of th-::s~ fields :s ch.:u:gec. ir.s
line!cngth is recalculated. If one of the fields used to compute me nw::.bcr of U.-ies
(such as the Clippin,;Region or Font) chan£cs. ?AGE HEIGHT is not autcn::itic:tlly
recomputed. (TTYOISPLAYSTREAM (TTYOISPLAYSTREA/.1)) will c~u::;e it to
be recomputed.

If the window system is active. the line buffer is saved in the old TTY window. and
· the line buffer is set to the one saved in the window of the new display stream.

or to a newly created line buffer (if it does not have one). Caution: It is possible
to move the TTYDISPLAYSTREAM to a nonvisible display stream or to a .,,,indow
whose current position is not in its clipping region.

(CARET NEWCAR.ET) [Function]
Sets the shape that blin.~ at tb.e location of the next output to the TTYO ISP LAY ST R EAH.
NEWCAR.ET is either (1) NIL • no changes. retul11S a CURSOR represe:iting the
current caret;(2) OFF - turns the caret off. or (3) a CURSOR which gives tile new
caret shape. The hocspot of NEWCARET indicates which point in the new caret
bitmap should be located at the current output position. The previous caret is
returned.

(PAGEHEIGHT N) [Function)
If N is greater than O. it is the number of lines of output that will be printed to
TTYOISPLAYSTREAM before the page is held. A page is held before tte x~l
line is printed to TTYOISPLAYSTREAM without intervening input if there is no
terminal input waiting to be read. Tne output is held with the screen "vi.:ieo reversed.

(- until a character is typed. Output holding is disabled if.vis 0. PAGEHEiGET ()
returns the previous setting.

. .
19.11" CURSOR AND MOUSE

The screen relative position at which the cursor bitmap is being displayed can be read or set using the
functions:

{ CURSORPOS IT ION NEWPOSITION DISPl.AYSTREMC OLDPOSITION) [Function!
This returns the location of the cursor in the coordinate system of DISPLAYSTREA..',(

(the current display stream. if DISPLAYSTR.E:AM is NIL). If OLD?OSIT";ON is .l

POSIT I ON, it will be reused. and returned. If :-rEWPOSITION is non-NIL. ic should
be a position and the cursor will be positioned at NEW?OSITION.

19.15 . ()

0

0

0

Mouse Button Testing

{ADJUSTCURS0RP0SITICN DELTAX DELTAY) (Function]
Moves the cursor DEZ.TAX points in the X direction and DELTAY points in the Y
direction. DELTAX and DEZ.TAY default to a.

The cursor can be changed like any other bitmap by BITBLTing into it or pointiI:g a ci.is;,lay s.rea:n at
it and printing or drawing curves. For most applications, it is also necessary to locate the hotspot • a
pcint wi:..'tin tb.e CURS0RWIDTH by CURS0RHE IGHT area which is used to determine a point position for
the cursor. Also for some applications it is necessary to save and restore the curs-::>r. Tne Cursor record
and the follow:ng functions provide these c3pabilities. A Cursor record has 5clds CURSORS ITMAP and
CURS0RH0TSP0T, the latter a POSITION that gives the location of the hot spot inside the cu~r.

{ CURSORCREATE BITMAP X Y) [Function]
Returns a cursor object which has srrMAP as its image and the location (x. Y) as
the hot spot. If X is a POSITION, it is used as the hot spot. If BITM.AP h:is
dimensior.s different from CURS0R\tIOTH by CURS0RHE IGHT. the lesser of the
widths and the lesser of the heights are used to determine the bits that actually
get copied into t.'le lower left comer of the cursor. If x is N IL. 0 is used. · If Y is
NIL. CURS0RHE IGHT·l is used. Toe default cursor is an uparrow with its tip in
the upper left corner and its hot spot at (0.CURS0RHEIGHT-1).

(CURSOR NZWCURSOR -) [Function]
Rerurns a CURSOR record instance that contains (a copy of) the current cursor
specification. If NEWCVRSOR is a CURSOR record instance, the cursor will be set
to ~e values in NEWCTJRSOR. If NEWCURSOR is T, the cursor will be set to the
defaultc~r DEFAULTCURS0R. an upward left pointing arrow.

(SETCURSOR NEWCURSOR -) [Function]

(FLIPCURSOR)

If NEWctra.sOR is a CURSOR record instance. the cursor will be set to the values in
NBWCORSOR. This does not rerum the old cursor, and therefore. pro..,-ides a way
of changing the cursor without using stor2ge.

[Function]
Inverts the cursor.

There are severai cursors defined in Interlisp-D that may be of interest to us~rs. One of these is
WAIT ING CURSOR. an hour glass shape used by the system to indicate that a long computation is in
progress.

CURS0Rs can be saved on a file using the file pac!cage command CURSORS, or the UGL YVARS file package
command.

19.11.1 Mouse Button Testing

There are vatj.ous graphical input devices that c:in be read from Intcrlisp-D. Toe devices used in tr.is
manner are: a device called a mouse. which has three keys and steers the cursor. and seven uninterpreted
keys en the keyboard. (Some Xerox 1100 systems may also have a small. five-key kcvset.) The followin2
macros are provided to test the state of these input devices. (The three keys on th~ ·mouse (often c.!llcd
buttons) are referred to by their location: left. middle, or right.)

{ MOUSE ST ATE BUTTONFORM) [~facro]
Reads the mouse state and rerurns T if that state is described by BL'TTONFOR.\!.

19.16

'

fi\;TIRLISP·D DISPLAY FACTLITIES

BUTTONFORM can be one of the key indicators LEFT. MIDDLE. or RIGHT: tl:e
atom UP (indicating all keys are up): the form (ONLY KEY): or a forw of ANO. OR.
or NOT applied to any valid bur:on form. For example: (MOUSEST ,HE LE :=r)
will be true if the left mouse button is down. (HOUSESTATE (ONLY LEFT))
will be true if th.e left mouse but~on is Lli.e only one down. (HOUSESTATE (OR
(NOT LEFT) MIDDLE)) will be true if either the left mouse but:on is up or tile
middle mouse button is down.

(LASTMOUSESTATE BUTTONFOR .. M) r..facro]
Simibr to ~OUSESTATE. but tests the value of LAST:viOUSEBUTTm4S nt.1er tbm
getting the current state. This is useful for de~crrn..ining which keys· caused a
MOUSE ST ATE to be true.

(UNTILMOUSESTATE BUT"!'ONFOR..M INTERV'.AL) r.-tacro]
BUTTONFOP_\{ is as described in· MOUSE ST ATE. Waits until BUTTONFOP~.l is t..--ue
or until mTZRVAL milliseconds have elapsed. The value of UNTILMOUSESTATE is
T if BUTTONFORM was satisfied before it timed out, otherwise ~4 IL. If c-."T.;;RVAL

is NIL. it waits indefinitely. It compiles into an open loop chat ~s u:e TTY
wait background function. This form should ~ot be used inside :he TTY wait
background function. UNTILMOUSESTATE does not use any stor~ge dur .. ng ir.s
wait loop. ·

Tnemacros KEYSETSTATE and LASTKEYSETSTATE are identical to MOUSESTATE and LASTMCUSESTATE
except that they also check the state of the five-finger. keyset as well as the st.ace of the mouse buttons.
That is th~y che:k the state of both the mouse a..""ld the keyser. Thus. if the left mouse button was the
only mouse button held down. (MOUSESTATE {ONLY LEFT)) would be T even though a keyset key
was down: whereas (KEYSETSTATE (OULY LEFT)) would be NIL ifa keyset button were down.

The names of the keyset keys are: LEFTKEY. LEFTMIDDLEKEY, MIDDLEKEY, RIGHTMIDDLEKEY and
RIGHTKEY.

19.11.2 Low Level Access to Mouse

o-

()
' /

This section describes the low level access to the graphical input devices and can be skipped by most (-"\
users. Graphical input information is represented in the following global variabies: \.)

LASiMOUSEX fVariaoleJ
Toe X position of the cursor in absolute screen coordinates. Also see tl':.e function
LASTMOUSEX below.

LASiMOUSEY [V~iable}
Toe Y position of the cursor in absolute screen coordipates. Also see the function
LASTMOUSEY below.

LASTMOUSEBUTTONS [Variable)
An 3-bit number that has bits on corresponding to t.'1e mouse buttons ti'iat JIC

down: 4Q is t...11.e left mouse button. 2Q is rhe right button. 1 Q is the middle buuon.
(Bits 2 0 OQ, 1 O OQ, 40Q, 2 OQ. and 1 OQ give the state of the keyset keys. from left
to right. if you have a keyset.)

19.17 (~

\)

. U-··

0

LAST KEYBOARD

LAST:'110USETIME

Wicdows

[Variabie]
The state of certain keys on the keyboard (2 O OQ = lock. 1 O OQ = left shift. 4 C Q =
ctr!, 10Q = right shift. 4Q = blankBottcm. 2Q = bla:ru::Middle, lQ = bla:lk.Top).
If the key is down. the corresponding bit is on.

[Variable]
The time in milliseconds since the mouse was last read (since the 12.st call to
GETMOUSESTATE. LASTMOUSETIME is a 16-bit positive integer so it rolls over
every 65+ seconds.

The following functions provide low level cursor access in display stream coordinates.

(LASTMOUSEX DlSPLAYSTRBAM) [Function]
Returns th.e value of the cursor's X position in the coordinates of DISPLAYSTR.E:A.\C.

(LASTMOUSEY DISPLAYSTRBAM) [Function]

(OECOOEBUTTONS

(GETMOUSESTATE)

Returns the value of the cursor's.Y position in the coordinates of DISPLAYSTR.E:A-:\-C.

BUTTONSTATE) [Function]
Re::urns a list of the buttons or keys that are down in the state Bv7TONSTATE. If
BUTTONSTATE is not a SMALLP, LASTMOUSEBUTTONS is used (see GETMOUSESTATE
below). The button names that can be returned are: LEFT, MIDDLE. RIGHT (the
three mouse keys), LEFTKEY, LEFTMIDDLEKEY, MIDDLEKEY, RIGHTMICCLEKEY
a:id RIGHTKEY (the five keyset keys).

[Function}
Reads the current state of the mouse and sets the variables LASTMOUSEX.
LASTMOUSEY, LASTMOUSEBUTTONS, LASTMOUSETIME, and LASTKEYBOARO. ln
polling mode, the program must remember the previo-:is state and look for changes.
such as a key going up or down. or the cursor moving outside a region of interest.

r-:.. 0. 19.12 'WINDOWS .

0

Windows provide a means by which different programs can share the display harmoniously._ Interlisp-D
provides both interactive and prograni.matic constructs for creating, moving, reshaping. overlapping. ar..d
destroying windows in such a way that a program can be embeddeq in a window in a relatively ::ransparent
fashion. This is implemented by having each window save the bits that it obscures. Titis allows existing
Interlisp programs to be used without change. while providing a base for experimentation with more
complex window semantics in new applications.

I . . .
Because the window system assumes that all programs follow ceruin conventions concerning control of
the screen. ordinary user prugrnms should not perfonn display opcraucns directly on the screen. In
particular. functions that can operate directly on bitmaps (such as BITBLT or B ITMAPB IT) should not
be given (SCRE ENB ITMAP) as the destination argument. All interactions with the screen should take
piace through windows. ·

For specialized applications that require taking complete control of the display, the window sys~em can
be turned off (and back on again) with the following function:

19.18

:;"" \

INTERLISP·D DISPLAY FAOLITIES

(WINOOWWORLO FLAG) - . [NoSpre:id Functio::.J
The window world is cumed on if FLAG is T and off if FI.AG is HI L. w !l'lCOWWC RLD
returns the previous state of the window world (T or NIL). If WINCOWWORLO is
given no arguments. it simply returns the c>..urent state without affecting .. 'le win.cow
world. ,.

19.12.1 What are Windows?

A window specifies a region of the screen. a display stream. a location in an occlusion sr.::ck.. functions
that set called when the window .undergoes certain actions. and various ocher items of info::naticn. T::e
basic model is that a window is a passive collection of bits (on the screen). On top of C4i.is basic level. tr.e
system suppons many diff crent types of windows that are linked to the dat.1 structures displ.lyed in ther:i
and provide selection and redisplaying routines. In. addition. it is possible tbr the user to cre:ite new types
of windows by providing selection and displaying functions for them. ()-.. :

Windows are ordered in depth from user to background. Windows in front of othe~ obscure the latter.
Operating on a window generally brings it to the top.

Windows are located at a certain position on the screen. Each window has a clipping region that confines
all bits splashed at it to a region that allows a border around the window. and a title above it.

Each window has a display stream associated with it. and either a window or its display scream can
be passed interchangeably to all system functions. There are dependencies between L~e wi!ldow and its
display stre3In that the user should not disturb. Far instance. the destination bitmap of the display stream
of a window must always be (SCREENBITMA?). Toe XOffset. YOffset. and Clippi:ngRegion attributes
of the display stream should not be .changed. At some future date. the notions of window and display
stre::un will be merged.

Windows can be created by the user interactively, under program control or may be created automatically
by the system.

Windows are in one of tw.o states: ··open .. or ··c1osed ... In an .. open" state, a window is on the ocdusion
stack and therefore visible on the screen (unless it is covered by other open windows) and ac::::essib!e to
mouse operations. In a .. closed" stace. a window is net on the occlusion stack and therefore .:;.ct visible
and not accessible to mouse operations. Any attempt to print or draw on a dosed window will open it.

When Interlisp-D stariS up, there are three windows on the screen: a top level typescript window, -a wh-idow
contai!ling the Interlisp-D logo. and a prompt window. The top level typescript window corresponcs _to
the file T in the EXEC process where the read·eval-print loop is operating. The logo window is bound co
the va.Ijable LOGOW until it is closed. The prompt window is used for the printing of help or prompting
messages. it is available to user programs through the following functions:

PROMPTWINOOW [Variable]
Global variable containing the prompt window.

(PROMPTPRINT .E:."O') [NoSpread Function)
Prints EXP in the prompt window.

(CLRPROMPT) [Function]
Qears the prompt window.

19.19 ()·

o,

Interactive Window Operations

19.12.2 Interactive Window Operations

The Interlisp·D window system allows the user to interactively manipulate the windows on Cii.e scree:i.,
moving them around, changing their shape. etc. · by selecting various operations from a menu.
Programmatic versions of these operations are described on page 19.26.

Fer most windows. depressing the RIGHT mouse key when the cursor is inside a window during I/0 wait
will c~u~ the window to come to the top and a menu of window oper:itions to appe2.r. If a coir .. -nand
is selected from this menu (by releasing the right mouse key while the cursor is ove:- a comm.and), the
selected uperation will be applied to the window in which the menu was brougi."lt up. (It is possH,le for an
applications program to redefine the action of t.i.e RIGHT mouse key. In these cases. there is a co:i•.ention
that the default command menu rr.ay be brought up by depressing the RIGHT key when the cursor is in
the header or border of a window. See page 19.30) The operations are:

CLEAR

CLOSE

BURY

MOVE

SHAPE

REDISPLAY

PAINT

[Window Menu Command]
Oears the window and repositions it to the left margin of the first line of text
(below the upper left comer of the window by the amount of the font ascent).

[Window Menu CoII"..mand]
Coses the window, Le, removes it from the screen. (See CLOSEW, page 19.26.)

[Window Menu Command)
Puts the window on the bottom of the occlusion stack. thereby exposing any
windqws that it was hiding.

[Window Menu Command]
Moves the window to a location specified by depressing and then releasing the
LE FT key. During this time a ghost frame will indicate where the window will
reappear when the key is released. (See GETBOXPOSITIOH. page 19.36.)

[Window Menu Cc:n::iand]
Allows the user to specify a new region for the existing window CO!ltents. If the
LE FT key is used to specify the new region. the reshaped window can ='e placed
anywhere. If the MIDDLE key is used, the cursor will staa out rugging at the r.earest
comer of the existing window, which is useful for making small adjust.-ner.ts in a
window that is already positioned correctly.

[Window Menu Command]
Redisplays the window. (See REDISPLAYW, page 19.27.)

[Window Menu Command]
Switches to a mode in which the cursor can be used like a paint brush to draw
in a window. 1ltls is useful for ma.king notes Qn a window. While the LEFT key
is down. bits are added. While the MIDDLE key is down. they are er:1.Sed. The
RIGHT button pops up a ·command menu th:it allows changir.g of the brush shape.
size and shade, changing the mode of combining the brush with the existing bits.
or stopping paint mode.

Paint mode also contains a hardcopy command that makes a Press file of the bits
in a window and sends it to the printer. There are limitations on u"le complexity
and size of the bitmaps that some printers will prinL If the printer does not prim

19.20

SNAP

INTERLISP·D DISPLAY FACILITIES

the entire ·window correctly, try a smaller window or one with fewer black bits
in it. To get a hardcopy of an arbitrary part of tb.e screen that cross:;5 v,inc!ow
boundaries. use the HAROCOPY command in the background menu (below).

[Window Menu Co::!"..::l:l:l.C.]
Prompts for a region on the screen and makes a· new winc!ow whose bits ar~ a
snapshot of the bits currently in that region. Useful for sa'wi.ng soce pa.rticularly
choice image before the window image changes.

Occasion:illy, a user will have a number of large windows on the screen, making it diffic:iit to ac:::!S.S t.'lose
windows beicg used. To help wiji the problem of screen space manage:ne:1t, the !nterlisp·D window
system allows the creation of Icons. An icon is a small rectangle (cont.'lining text or a bit::1a;,) which is
a "shrun.ken·down." form of a particular window. Using the SHRINK and EXPAND co:n.-nands. the user
can shrtnk windows not currently being used into icons. and quickly restore the ori£inal windows at any
time.

SHRINK [Window Menu Command]
Removes the window from the screen and brings up its icon. (See SHRINKW.
page 19.27.) The window can be restored by selecting EXPAND from the v,indow
command menu of the icon.

If the RIGHT button is pressed while the cu~or is in an icon, the window command menu will contain
a slightly different set of commands. The REDISPLAY and CLEAR commands are removed. a:id the
SHRINK command is replaced with the EXPAND command:

EXPAND [Window Menu Command]
Restores the window associated with this icon and removes the icon. (See EX PAN ow.
page 19.28.)

If the RIGHT button is pressed while the cursor is not in any window. a "background menu" appears
with the following operations:

SAVEVM

()

[Window Menu Co::mianc!J
Calls the function SAVEVM (page 18.4). which writes out all of the d:rt;,' pages
of the virtual me:nory. After a SAVEVM. and until the pagefault handler is cext
forced to wri;:e out a di.-cy page. your virrual me:nory image will be conti..:luabie (~) .
(as of the SAVEVM) should you experience a system crash or other disas;:er.

SNAP

HAROCOPY

. [Window Menu CO!r..mand}
Toe same as the SNAP command described above.

[Window Menu Coir.r:1and]
Prompcs for a region on the screen. makes a press file and sends it co the pric.ter.

The printing is done with HARDCOPYW (page 18.18). so if FULLPRESSPRINTER
is non-NIL. the image will be sent there, rather than to (PRINTINGHOST).

Some built-in facilities and Lispusers packages .:idd commands to the background menu. to provide an
easy way of calling the different facilities. Toe user can determine what these new com.rnands do by
holding the RIGHT button down for a few seconds over the item in question: an explanatory mes~ge
will be printed in the prompt window.

19.21 C)

o·
Changing Entries on the Window Command Menus

The following functions provide a functional interface to the interactive window operations so that c.ser
programs can call th.eni directly.

{ OOWINOOWCOM WINDOVI) • {FU!lction]
If ~"IINDOW is NIL, it calls OOBACXGROUNDCOM. If 'W!?Y"DOW is a shrJnke:i \\oi.ndow.
it bri.."lgs up the "icon window" menu. If WINDOW is a unshrunken window, it
brings up the window menu. The initial itecs in these menus a.re des....--ribed above.
If the user selectS one of the items from the provided menu. that ite:n is APPL Yed
to V.Th'DOW. If WINDOW is not a "'I NOOW or NIL. it rerurns.

(DOBACX.GROUNOCOM) [Function}
Brings up the background menu. The initial items in this menu a.re described
above. If the user selects one of the items from the menu. that item is EVA Led.

Q · 19.12.3 Changing Entries on the Window Command Menus

,,-._

0-

o·

Toe window command menus for unshrunken windows. shrunken windows, and the background are
cached in the variables 'MindowMenu. IconWindowMenu. and BackgroundMenu. To ch.a.oge the·
entries in these menus. the user should change the change the menu "command lists .. in the variables
WindowMenuCommands. IconWindowMenuCommands,andBackgroundMenuCommands,andsetthe
appropriate menu variable to a non-ME HU. so the menu will be recreated. This provides a way of adding
cc:r.niands to th.e menu, of changing its font or of restoring the menu if it getS clobbered. Toe ··com...-iand
lists" are in the f~rmat of the ITEMS field of a menu (see page 19.39), except as ~ecified below.

Note: command menus are recreated using the current value of MENU FONT.

Wi ndowMenu [Variable}
Wi ndowMenuCommands [Variable]

The menu that is brought up in response to a right button in an unslL.-unken .,,,inc!.ow
is stored on the variable WindowMenu. IfWindowMenu is set to a non-MENU, the
menu will be recreated from the list of commands Wi ndcwMenuCor..rnands. Toe
CAOR of each command added to Wi ndowMenuCommands should be a fu::iction
name that will be APPL Yed to the window.

IconWindowMenu [Var:.able]
IconWindov.1MenuCommands _ [V?.riable]

The menu that is brought up in response to a right button in a shrunken window is
stored on the \'ariable IconWi ndowMenu. If it is NIL. it is recreated from the list
of cor.unands IconWindowMenuCommands. The CAOR oreach command added
a function name that will be APPL Yed to the window. ·

Bae kg roundMenu [Variable]
Bae kg roundMenuCommands [Variable}

The menu that is brought up in response to a right button in the background is
stored en the variable BackgroundMenu. If it is NIL. it is recreated from the list
of commands Backg roundMenuCommands. The CADR of each command added
to Backg roundMenuCommands should be a form that will be EVALed.

19.22

.--·-..,

~TIRLISP·D DISPLAY FACILITIES

19.12.4 Coordinate System.,

One way of th.inking of a window is as a .. view" onto .an object (e.g. a graph., a file. a picture. etc.)
Tne object has its own aarural coordinate system in terms of which its subpa...-ts are laid ouc. \Vhen the
window is crea:.ed, the XOffset and YOffset of the window.'s display stream are set to map c...i.e orif...n
of the object's coordinate system into the lower left point of tile window's interior region. At the same
time, the CtlppmgRegion of the display stream is set to correspond to the interior of the .,.indow. From
then on. the display stre.:un's coord.in:ue system is translated and itS clipping region adjusted. whenever
tt:e window is moved, scrolled or resh::.ped..

()

There are several distinct regions assr-..,ciated with a window viewing an object. F1rst. t."1ere is a region. in
the window·s coordinate system that contains the complete imzge of the object. This region (which o.n
only be determined by application programs with knowledge of the .. semantics·· of the object) is stored .JS
the EXTENT property of the window (page 19.32). Second. the clipping region of t..1.e window (cbt:li.n.ible
with the fanction OSPCLIPPINGREGION) specifies the portion of the object that is actually visible in the Q \._ ,_
window. This is set so that it corresponds to the interior of the window (not including the border or title).
Finally, there is t..i.e region on the screen that specifies the total area that the window occupies. inclucfu:g
the border and title. This region (in screen coordinates) is stored as the REGION propercy of the window
(page 19.33).

19.12.5 Scrolling

The window system supports the idea of scrolling the contents of a window. Scrolling regions are on
the le.ft and the bottom edge of each window. Toe scrolling regions will only be active if the \\indow
has a SCROLLFN window property (page 19.31). If a window has a SCROLLFN and the cursor moves
from inside that window into its scrolling region and remains there for SCROLLWAITTIME milliseconds
(initially 1000), a scroll bar appears. The value of the global variable SCROLLBARWIOTH (i.citiaily 24)
determines c...'te size of the scrolling region. Tne LEFT key is used to indicate upward or leftward scroili!!g
by the amount ne.cessary to move the selected position co the top or the 1eft edge. Toe RIGHT key is
used to indicate downward or rightward scrolling by the amount necessary to move the top or left edge
to the selected position. Toe MIDDLE key is used to indicate global placement of the object within the
window (similar to "thumbing .. a beak).

In the scroll region. the part of the object that is being viewed by the window is marked with a gray
shade. If the whole scroll bar is thought of as the entire object. the shaded portion is the portion currently
being viewed. Th.is will only occur when the window .. knows" how big the object is (see window property
EXTENT. page 19.32).

When the button is rel~ased in a scroll region. the function SCROLLW is called. SCROLLW calls the
scrolling function associated with the window to do the actual scrolling and provides a programmable
entry to the scrolling Operation. :

(SCROLLW WINDOW DEL.TAX DELTAY CONTrNUOUSFLG) [Function}
CJ.lls the SCROLLFN window property of the window W7NDOW with argu­
ments WlNDOW, DELTAX. DEL.TAY and CONTINTJOUSFLG. See SCROLLFN window
property. page 19 .31.

Toe function that tracks the mouse while it is in the scroll region is SCROLL.HANDLER.

19.23

(~--
·, - _/

()

0

(SCROLL.HANDLER

Scrolling

WINDOW} [Function]
This is called when the cursor leaves a window in either the left or downward
direction. If WINDOW does not have a scroll region for this direction (e.g. the
window has moved or reshaped.since it was last scrolled). a scroll region is created
that is SCROLLSARWIDTH wide. It then waits for SCROLLWAITTIME milliseconds
and if the cursor is still inside the scroll region. it opens a window the size of the
scroll region and changes the cursor to i!ldicate the scrolling is taking place.

'When a button is pressed. the cursor shape is changed to indicate the ty;:,e
of scroili..'1g (up. down. left".. right or thumb). After the button is held for
WAIT6EFORESCROLLTIME milliseconds. until t.Lie but"'..cn is released SCROLLW
is called each WAITBETWEENSCROLL TIME milliseconds. These calls are made
with the CONTmtTOUSFLG argument set to T. If the bunon is rele.:ised before
WAITBEFORESCROLLT IME milliseconds. SCROLLW is called with the CONTr:.-.·t:OL"SFLG
argument set to N IL. ·

The arguments passed to SCROLLW depend on the mouse button. If the LE FT
button is used in the vertical scroll region. DY is dist.a.nee from cur.;or position at
the time the button was released to the top of the window and DX is 0. If the
RIGHT button is used. the inverse of this quantity is used for DY and O for DX.

If the LEFT button is used in the horizontal scroll region. DX is distance fro::n
cursor position to left of the window and DY is 0. If the RIGHT button is used.
the inverse of this ~uanti.ty is used for DX and O for DY.

If the MIDDLE button is pressed. the distance argument to SCROLL!!/ will be a
FLOATP between 0.0 and 1.0 that indicates the proportion of the distance the
cursor was from the left or top edge to the right or bottom edge.

SCROLLBYREPAINTFN is the standard scrolling function which should be used as the SCROLLFN property
for most scrolling windows. ·

(SCROLLBYREPAINTFfl WINDOW DELTAX DELTAY CONTINUOUSFLG) [Function]
·This function. when used as a SCROLLFN. BITBLTS the bits t.'lat will remain
visible after the scroll to their new lcation. fills the newly exposed area with
texrure. adjusts the window's coordinates and then calls the window·s REPAINTFN
on t.i.e newly exposed region. Thus t."lis function will scroll any wincow chat
has a repaint function. If WINDOW has an EXTENT property (page 19.32).
SCROLLBYREPAINTFN will limit scrolling to keep the extent region visible or
near visible. That is. it will not scroll the window so that the top of t..11e exte!lt
is below the top of the window, the bottom of the extent is more than one point
above the cop of the window. the left of the exte:u is to ilie right of the window

,and the right of the extent is to the left of the window. Toe EXTENT is scrolled
~ to just above the window to provide a way of .. hi~g" t:.t;,.e contents of a window.

If DEL.TAX or DELTAY is a FLOATP, SCROLLBYREPAINTFN will position the
window so that ics top or left edge will be positioned at that propor.ion of its
EXTENT. If the window does not have an EXTENT, SCROLLSYREPAINTFU will
do nothing.

If CONTINTJO'CJSFLG is non·N IL. this indicates that the scrolling bunon is being
held down. In this case, SCROLLBYREPAINTFN will scroll the distance of one
linefeed height (as rerurncd by DSPLINEFEEO. page 19.12).

19.24

.,.--....

r-·.

.. __ _..·

INTERLISP-D DISPLAY F ACILITIF.S

19.12.6 Programmatic Window Operations

(CREA TE1' REGION TITLE BORDER . NOOFENFLG) [Function}
Crea:es a new window. REGION indicates where and how large the window sl:.ould
be by specifying the exterior region of the window (the usable height and \tticith
of the resulting window will be smaller than the height and width of t.b.e region by
twice the border size and ftm.her less the heigh.t of the title. if any). If REGICN' is
NIL. GETREGION is c:tllcd to prompt the user for a region.

If TITLE is non-NIL, it is printed in the bord~r at the top of the wu:dow. The Tr:u
is printed using the global display strea:n WindowTitleDispl ayStream. Thus
tJ:.e heiyit of the title will be (FOPHPROP WindowTitleOisplayStream
I HEIGHT).

O:

If BORDER is a number. it is used as the border size. If BORDER is not a number, (~)
the window will have a border WBordgr (initially 4) bits wide.

(\IIINDOWP X)

If NOOPENFLG is non-NIL, the window will not be opened, Le. displayed on the
screen.

{Function}
Returns x if xis a window, NIL otherwise.

(OPENWP WINDOW) . {Function]
Rerurns WTNEJow. if WlNDOW is an open window (has not been closed): NIL
otherwise.

(OPENWINOOWS) {Function}

(WHICHW X Y)

Returns a list of all active windows.

{Function]
Returns t.1-ie window which contains the position in screen coordinates of x if x
is a POSIT ION, the position (x,Y) if x and Y are numbers, or the position of t.i.e
cursor if xis NIL. Returns NIL if the coordinates are not in any window. If they
are in more than one window, it returns th~ uppermost. (-)

Example: (WH I CHW} returns the window that the cursor is in.

(DECOOE/WINOOW/OR/OISPLAYSTREAM DSORW MNDOWVAR TITLE BORDER} {Function]
If DSORW is a display stream, it is returned. If DSORW is a window, ics dis;,lay
stream is returned. If DSORW is NIL. it evaluates wr.v.oowv·AR (which should be
an ator:1). If its value is a window, it is reopened if it is closed, and returned. If i:s
value is not a window, WINDOWVAR is set to a ne~ly created window (prompting
user for. region) and returned. If DSORW is N·E0W, a new window is crea~ed .and
returned. If TITLE or DOHDER arc given and a window is involved. the TITLE or
BORDER property of the window is rcscL 'lb~ osonw= NIL case is most useful
for programs that want to display their output in a window, but want :.o reuse t.i.e
same window each time they are called. The non-NIL c;ises are good for decoding
a display scream argument passed co a function.

(WIDTHIFWINDOW INTER.IORWTDTH BORDER) (Funct:on]
Returns the width of the window necessary to have INTE.R!ORWIDTH points in its

19.25

0

c5

0

Programmatic Window Operations

interior if the width of the border is BORDER. If BOR.DEa is NIL. the default
border size WB order is used.

(HEIGHTIFW'INDOW INTERIOR.HEIGHT TITLEFLG BORDER) [Functio:1]
Returns the height of the window necessary to have INTERIOR.HEIGHT points in its
interior with a border of BORDER and. if TITLEFLG is non-H IL, a title. If BORDER
is NIL, the default border size WSorder is used.

WIDTHIFWrnoow and HEIGHTIF'WIHDOW are useful for calculating the width and h~ig.ht fer a call to
GETBOXPOS IT ION for the purpose of positioning a window.

Interlisp·D provides a set of operations which apply to any window. In addition to being available as
functions. most of these are also available via the standard mouse interface. See page 19 .10

(TOTO PW' wn-.'DOW NOCALLTOPWFN) . [Function]
Brings WINDOW to the top of the stack of overlapping windov.-s. gua.--ant~u:g that
it is entirely visible. If WINDOW is closed. it is opened. This is done automatically
whenever a printing or drawing operation occurs to the window.

If NOCALLTOPWFN is NIL. the TOTO?FN of WINDOW is cal!ed (page 19.30). If
NOCALLTOPWFN is T, it is not called, which allows a TOTOPFN to call TOTOPW
without causing an infinite loop. ·

(SHAPEW WlNDOW NEWREGION) [Function]
Reshapes WlNDOW to the region NEWREGION, or promptS for a region (v.ith
GET REG ION. page 19.37) if none is supplied. Calls the window·s RESHAPE FN. if
any (page 19.31).

(CLOSEW WINDOW) [Function]
CLOSEW calls the function or functions on the window property CLOSEFN of
wmoow, if any (page 19.30). If one of the CLOSE Fris is the atom DON• T or
returns t,,,"le atom DON'T as a value. CLOSEW rerun:s v.ithoct doing anything
funher. Otherwise. CLOSEW removes WINDOW from the '\ltindow suck and restores
tt.1e bits it is ob~uring. If WINDOW was closed. 'Ml\'DOW :s reru~ed as t1'1e ,;alue.
If it was not closed. (for example because its CLOSEFN returned the atom CON' T},
NIL is returned as the value.

wmnow can be reS!ored in the same place with the same contents (reopened) by
calling OPENW or by using it as the source of a display operation.

(OPE NW WINDOW) [Functio::i]
If WINDOW is a closed window, OPENW calls the function or functicns on u.'1e
window propeny OPENFN of WINDOW. if any (page 19.30). If one of the OPENFNs
is the atom DON' T. the window will not be opened. Otherwise t."le window is
placed on ttie occlusion st:1ck of windows and its contents displayed on the screen.
If WINDOW is an open window. it returns NIL.

·(MOVEW WINDOW POSorX Y) . [Function]
Moves WINDOW to the position specified by POSorX and Y according to the followir.g
rules:

If POSorX is NIL. GETBOXPOSITION (page 19.36) is called to read a position from

19.26

INTERLISP-D DISPLAY FAQLITIES

the user. -

If POSorX is a POSITIOr.. POSorX is used.

If POSorX and Y are both NUMBE.RP, a position is created using POSorX as the
XCOORO and y as tb.e YCOORO.

If POSorX is a REGIOfl. a position is created using its LEFT as the XCOORO and
BOTTOM as the YCOORD.

If 1,v,NDOW is not open and POScrX is µon-NIL. the window will be moved wit..'lout
being opened. Otherwise, it will be opened.

If WlNDOW has the atom DON'T as a MOVEFN property (page 19.32). the window
will not be moved. lf WINDO\Vhas any other non-NIL value as a MOVEFN prnperty.
it should be a function or list of functions th.it will be called before t..':e winc!ow (~ \ ·
is moved with the WINDOW as an argument. If it rerurns the atom DON'T. t.~e)._
window will not be moved. If it returns a position. the window will be moved to
that position instead of the one specified by POSorX and Y. If there are more t..'l.an
one MOVE F r~s. the last one to return a value is the one that determines where the
window is moved to.

If WINDOW is moved and l-VINDOW has a window property of AFTERMOVEFN (,Page
19.32), it should be a function or a list of functions that will be called after the
window is mov~d with WINDOW as an argument.

MOVEW rerums the new position.. or NIL if the window could not be mo,·ed.

(RELMOVEW WINDOW POSITION) [Function]
Like MOVEW for moving windows but POSITION is interpreted relative to the current
position of WINDOW. Example: The following code moves WINDOW to t.~e right
one screen poi!lt.

{RELMOVEW l-VINDOW (create POSITION XCOORD ~ 1 YCOORO ~ 0))

((CLEARW WINDOW) [Function}
Fills WINDOW with its background te:tture. changes its coordinate system so chat
the origin is the lower left corner of the window. sets its X position :o the left
margin and sets its Y position co the base line of the uppermost l.i.ce of text. ie.
the top of the window less the font ascent.

(BURYW WINDOW) [Function}
Puts Wl'NDOW on the bottom of the stack by moving all the windows that it cove;-s
in front of it. •

{ REDISPLAY.W WINDOW REGION ALWAYSFLG) . [Function]
Redisplay the region R.EGIOl'l of the window wmz,ow. If REGtON is NIL. the
entire window is redisplayed. If ALWAYSFLG is NIL. and.wr.vz:,ow doesn't have a
REPAINTFN (page 19.32}. WINDOW wiil not cham?e and the messa!Ze "Tnat window
doesn't have a REPA1NTFN" will be printed in -the prompt window.

(SHR I NKW WINDOW TOWHAT ICONPOSITICJN EXPA,'fDFN) [F:...r.ction]
SHR INKW makes a small ico~ which represents WINDOW and removes WT.':cow

19.27

0

.'-'··

(J
(EXPANOW ICON}

Window Properties

from tJ.'le screen. Icons have a di.ff erent window command menu that coctai::.s
.. EXPAHD" instead of 0 SHRINK". The EXPAND command calls EXPArmw which
returns the shrunken window to its original size and place . .
The SHR !NKFN property (page 19.30) of the window v..-moow affects the operation
ofSHRINKW. If the SHRrnKFN property of Wl'ND0Wis the atom DON'T, SHRINK'til
pri:.i.ts °Can't shrink that window·• in the PROMPT\1/IllDOW and returns. Ot.~er.-,ise.
the SHRINKFN property of the window is treated as a (list of) func:io::(s) to a:;ply
to WI:l\i"DOW, if .;..,y r~tums the atom DON. T. SHRINKW prints "C2.:1'c SJ.'1..'ink that
window .. in the PROMPTWirmow and returns.

TOWHAT, if given. incticates the image the icon window will ha,·e. If TO'"'"F..AT is
a stri."lg, atom or list. the icon's image will be that string (currc~tly implc~cntcd
as a titlc~only window with TOWIL-\T as the title.) If TOWHAT is a BITMAP. the
icon's image will be a copy of the bitmap. If TOWXAT is a WI NDO'tril. that window
will be used as the icon.

If TOWXAT is o.ot given (as is the case when invoked from the SHRINK v.i.ndow
command}, then the following apply in tum: (1} If the window has an ICONFN
property (page 19.31). it gets called with arguments (W!NI>OW OLD!CON), where
\Y.NDOW is the window being shrunk and OLDICON is t.i.e previously crez.ted icon.
if any. Toe ICONFM should return one of the TO'WHAT entities de~ribed above
or return the OLDICON if it does not want to change it. (2) If the wine.ow has an
ICON property (page 19.31), it is used as the value of TO\l.'1iA.T. (3) If the v..:..O.dow
has neither an ICONFN or ICON property, the icon will be ~'INDow's tit!e or. if
WINDOW doesn't have a title,_ the date and time of the icon creation.

ICONPosmoN gives the position that the new icon will be on the screen. If it is
NIL, the icon will be in the corner of the window furthest from the center of the
screen.

In all cases the icon is cached on the propl!rty ICON'WINOOW (page 19.31) of
wmnow so repeating SHRHIKW reuses the same icon (unless overridden b:,· the
ICOf~FN described above). Thus to change the icon it is neces..~· to re::iove the
ICONWINCOW property or call SHRIHKW explicitly gh·ing a TOW!IAT arg'Jment.

[Function]
Restores the window for which ICON is an icon. and removes the icon from the
screen. If t.~e EXPANOFN (page 19.31) window property of t.i.e main wi..,cow is
the atom DON'T. the window won't be expanded. Otherwise, the window will be
restored to its original size and location and the EXPANOFN (or list of functicr.s)

• will be applied to it. ·

19.12.7 Window Properties

. The behavior of a window is controlled by a set of window properties. Some of these are used by t.11.e
system. However. any arbitrary property name may be used by a user program to associate information
with a window. For many applications the user will associate the strucrure being disi'layed wic."1 ics
window using a propen:y. The following. functions provide for reading and setting window pro;:,eri..ies:

19.28

r·
I

INTERLISP·D DISPLAY F ACILITIE.5

('IIINDOWPROP WINDOW PROP - NEW"l'ALUE) [NoSpread Function]
Returns the previous value of wnvz,ow's PROP aspect. If ~WVALCZ is given.
(even if given as NIL), it is stored as the new PROP aspect. Some aspec:s C.2.:lllOt

be set by the user and will generate errors. Any PROP name that is not recognized
is stored on a property list associa:ed with the window.

(WINOOWAOOPROP WJNDOW PROP ITE'MTOADD) [Functionj
WHIOOWAOOPROP adds a new item to a window propercy. If ITE.\CTOA.DD is EQ
to an e!ernent of the PROP property of the window WTNDO'N, nothing is adc!ed.
If t.ie current property is not a list. it is made a list before ITC:MTOADD ac.:!ecL
WINOOWAOOPROP rcruras t.~e pre'lious property. The new item always goes on the
end of the list. (Note: If the order of items in the list is im;:,or..a:::.t. :he list c:m. be
modified usi."l.g WINDOWPROP.) WINOCWACOPROP is useful for adc.ing OPENFN or
CLOSE F N functions to a window without affecting its existing functions.

(WIHOOWOELPROP WlNDOW PROP lTEMTODEL.STE) [Function]
WINOOWOELPROP deletes lT'E:1.tTODELETE from the window· property PROP of
WINDOW and returns the previous list if ITEMTODELETE was an element. If
ITEMTODZLETE was not a member of window property PROP, NIL is rerurned.

19.12.7.1 Mouse Function Window Properties

Thec-...e properties allow the user to control the response to mouse activity in a window. The value of these
properties. if non·N IL. should be a function that will be called (with the window as argument) when the
specified event occurs.

Note: these functions should be "self-contained", communicating with the outside world solely via their
window argument. e.g .. by setting window properties. In particular. these functions should not expect to
access vat.ables bound on the stack. as· the stack context is formally undefined at the time these functions
are called. Since the functions are invoked asynchronously, they perform any TTY illput operations frcm
t.'leir own window.

C)

wrnoOWENTRYFN [Window ?rc1=erty]
Whenever a button goes down in the window and the process associated with t,
the window (stored under the PROCESS property) is not the tty process. tr.e °' _f ·

CURSORINFN

CURSO.ROUTFN

CURSORMOVEDFN

WINOOWEHTRYFN is called. The default is GIVE. TTY. PROCESS (page 18.34)
which gives the process associated with the window the tty and · calls the
BUTTONEVENTFN.

[Window Property}
Whenever ~e mouse moves into the window. the CURSORI.NFN is called.

[Window Property]
The CURSOROUTFN is called when the cursor lea-ves the window.

[Window Property]
The CURSORMOVEDFr~ is called whenever th~ cursor h3S moved and is inside c.i.'1e
window. This allows a window function to implement ··active" regions wichin itself
by having its CURSORMOVEDFN determine if the cursor is in a region of ince:-est.
and if so, perform some action.

19.29

o,

0

c5 .

BUiTOHEVENTFN

RIGlffBUTTONFff

Event Window Properties

[Vv·mdow Propertj']
Tne BUTTONEVENTFN is called whenever there is a change in tb.e state (up or
down} of the mQt:se buttons inside the window. Changes to the mouse state while
the BUTTOtJEVENTFr~ is running will not be interpreted as new button events. and
t.'le BUTTONEVENTFH will not be re-invoked.

[Vv.indow Property]
The RIGHTBUTTONFN is called in lieu of the standard window menu operation
{OO~INOO\JCOM) when the RIGHT; key is depressed in a window. More
specifically, the RIGHTBUTTONFH is called instead of the BUTTmlEVENTFN when
(MOUSESTATE (ONLY RIGHT}). If t:."le RIGHT key is to be treated file any
other key in a window, supply RIGHTBUTTONFH and BUTTOl~EVENTFN v.itb. t.'le
same function.

Note: When an application program defines its own RIGHTBUTTONFN. there is a
convention that the default RIGHTBUTTONFN, OOWINOOWCOM (page 19.12). may
be executed by depressing the RIGHT key when the cursor is in the header or
border of a window. User programs are encouraged to follow this conYention.

19.12.7.2 EYent Window Properties

CLOSEFN

OPENFN

TOTOPFN

SHRINKFN

[Window Property]
Toe CLOSE FN window propeny can be a single function or a list of functions that
are ~ed just before a window is closed by CLOSEW (page 19.26). (Ncte: If the
CAR of the list is a LAMBDA word. it is treated as a single function.) The function(s)
will be called with the window as a single argument. If any of the CLOSE FNs are
the atom CON' T, or if the value returned by any of the CLOSEFNs is the atom
DON ' T, the window will not be closed.

Note: A CLOSEFr, should not call CLOSEW on its argument.

[Window Property]
The OPEHFN window propeny can be a single function or a list of functions. If one
of the OPENFNs is the atom DON'T, the window will not be opened.. Oti.:..ierwise.
the OPENFNs are called after a window has been opened by O?ENW (page 19.26).
with the window as a single argument.

[\Vindow Propeny]
If non-NIL. whenever the window is brought to the top, the TOTOPFN is called
(with the window as a single argument). This function may be used to bring a
collection of windows to the top together.

If the NOCALLTOPM .. N argument of TOTOPW (page 19.26) is non-NIL. t..11e
TOTOPFN of the window is not called. which provides a way of avoiding infi.cite
loops when using TOTOPW from within a TOTOPFN.

[Window Prorerty]
The SHRitJKFN window property can be a single function or a list of functions
that are called just before a window is shrunken by SHRINKW (page 19.17). with
the window as a single argument. If any of the SHRINKFNs are the atom DON• T.

19.30 ·

ICONFN

ICON

ICONWINOOW

EXPANOFN

SCROLLFN

NEWREGIONFN

RESHAPEFN

INTERLISP-D DISPLAY FACILITIES

or if the value returned by any of the CLOSEFNs is the atom OOH' T, the window
will not be shrunk.

[V/indow Property]
If SHRINK~ (page 19.27) is called without begin give:i a TO\VF'.AT ~~ent (as
is the case when invoked from t.1e SHRrnK window command) and the \1,inc!ow·s
ICmff~ property is non-NIL .. then it gets cal!~d with r;,o argume:its. the window
being shrunk and the previousiy cre~ted ice~ if any. The ICOUFN should re:ura
one of the TO\.V"'d'.AT entities described on page 19.27 or rerurn the previously
cre~ted icon if it docs not want to cha.."lge it.

[Window Property]
If SHRINK\1' (page 19.27) is called without being given a TOW-::-..AT a£1,~menr.. th~
window's ICONFN property is NIL, and the ICON property is non·NIL. then it is
used as the value of TOWHAT.

[Window Property]
Whenever an icon is created. it is cached on the property ICONWINDOW of the
window, so calling SHR INKW again will reuse the same icon (unless overridden by
the ICONFN.

Thus. to change the icon it is necessary to re:nove the ICONWINDOW propeny or
call SHR I NKW (page 19.27) explicitly giving a TOWE:AT argument.

[Window Property]
The EXPANOFN window propeny can be a single function or a list of fwictions..
If one of the EXPANDFNs is the atom DON'T, the window will not be expanded.
Otherwi~e, the EXP MJO FNs are called after the window has been expanded by
E:XPANOW (page 19.28), with the window as a single argument.

[Window Property]
If the SCROLLFN property is NIL. the window will not scroll. Otherwise. it shouid
be a function of four arguments: (1) the window being scrolle~ (2) c.he d.is~ce
to scroll in the horizontal direction (positive to right. negative to left). (3) the
distance to scroll in the vertical direction (positive up. ceg:iti\'e down). i,d (4) a I\
flag which is T if the scrolling button is being held down. For more informatio~ _)
see SCROLL. HMWLER (page 19.24). For most scrolling window~ the SCROLLFN
function should be SCROLLBYREPAINTFN (page 19.24).

[\Vindow Proper=:.;]
. The NEWREGI0NFN is passed as the NEWREGIONFN argumen~ to GETREGION

(page 19 .Ji) when the window is reshaped.

• . [Window P:-o~e=-ry]
The RESHAPE FN window property can be a single function or a list of functions th.1t
arc caitcd when J window is reshaped by SHAPEW (page 19.26). If the RESHAPEFN
is DON'T or a- list conwning DON'T, the window will' not be reshaped. Otl1':!rw1sc.
the function(s) are called after the window has been resh2ped. its ~oord.:::are s:.-s~e::1
readjusted to the new position. the title and botder d.ispl3ye~ md. the inte=-:or ::lle:i
with texture. The RESHAPE rn should display my .1dditional infon:1~:ron nt!-ec.ed.
to complete the window's image in the n~w position md sh3pe. Th\! RESHAPEFN
is called with three arguments: (1) the window in its reshaped form.· (2) a biun.:ip

19.31 ()

0

(j

0

REPAINTFN

MOVEFN

AFTERHOVEFN

Miscellaneous Properties

with the contents of the old window, and (3) the region within the bitmap that
contains the old image. This function is provided so that users can refor.:n.at
window contencs or whatever. RESHAPEBYREPAINTFN (page 19.33) is the default
and should be useful for many .windows.

[Wu:dow Propert';]
The REPAINTFN window property can be a single function or a list of functions
t.'1at are called to repcint pares of the window by REDISPLAY\// (;,age 19.27). The
REPAINTFNs are called with two arguments: the window and the region in ::.he
coordinates of the window's display stream of the area that should be r~ainted.
Before the RE PA rnT F N is called. the clipping region cf the window is sec to ci.i;>
all display operations to the area of interest so c.,at the ·REPAINTFH c:in dis-;:,lay
the entire window contents and the results will be appropri:ltcly clipped. (:-.;ote:
CLEARW (page 1927) should not be used in REPAINTFNs because it res~ts the
window's coordinate system. If a REPAINTFN wants to cie:ir its region first. it
should use DSPFILL (page 19.12).)

[Window Pro;:,ercy]
If the M0VEFN is DON'T, the window will not be moved by MOVEW (page 19.26).
Otherwise. if the MOVE F N is non-fl IL. it should be a function or a list of functions
that will be called before a window is moved with two arguments: the v.indow
being moved and the new position of the lower left corner in screen coorc.iI:aces.
If the MOVE FN returns om~• T, the window will not be mo,·ed. [f the MOVE F ~I
returns a P0SITI0r4. the window will be moved to that position. Otherwise. the
window will be moved to the specified new position.

[Vlindow Property]
If non·N IL. it should be a function or a list of functions that will be called after
the window is moved (by MOVEW. page 1926) with the y,indow as an argumenL

19.12. 7.3 Miscellaneous Properties

TITLE

BORDER

.EXTENT

[Window Prope::-:y}
Accesses the title of the window. If a title is added to a window whose title
is NIL or the title is removed (set to NIL) from a window wi.b. a title. the
window's exterior (its region on the screen) is enlarged or reduced to accomod.:ue
the change without changing the window·s interior. Far exa:np!e. {WHIDOWPRO?
WlNDOW 'TITLE "Rasul ts") changes the title of WT.'\'DOW to be "Resuits ...
(WIND0WPR0P WlNDOW 'TITLE NIL) removes the title of WZ:-.'DOW.

[Window Propercy]
Accesses the width of the border of the window. The border will ha, e at most 2
point of white (but never more than half) and the rest black. The default border
is the value of the global variable WBorder (initially 4).

[Window Proper.yJ
Used to limit scrolling operations (see page 19.23). Accesses the extent region of
the window. If non-NIL. the EXTENT is a region in the window·s display strea.111
that contains the complete image of the object being viewed by the window. Cse:­
programs are responsible for updating the EXTENT. The functions UN ION REG IONS.

19.32

-~ ...
--,;'

r

PROCESS

PAGEFULLFN

INTERLISP·D DISPLAY FACILITr.;:.S

EXTENOREGIOPJ, etc. (page 19.3) a.re use.fol for computing a new exte:it region.

In some situations. it is useful to define an EXTENT that only erists in one
dime:ision. Tnis may be done by specifying an EXTENT region with a wicth or
height of -1. SCROLLFN handling recognizes this situation as me.anb.g that the
negative E.XTEfJT dimension is unknown.

[Window Property]
If the PROCESS window property is non-MIL, it should be a PROCESS and will
be II13de the TIT process by GIVE. TTY. PROCESS (page 18.~}. t.~e defa?.l~t
\IIINDOWENTRYFN properzy. This implements the mec."1anis.:n by which t..~e
keyboard is associated with different processes.

[Window PropercyJ

()
---. -~

If the PAGEFULLFN is non-NIL. it will be called with the window as a single
argument when the window is full (i.e •• when enough has been pr.nted since the () ..
last TTY interaction so that the next character printed- will cause inform:ition co
be scrolled off the top of the window.) If the PAGEFULLFN is NIL. the sys~em
function PAGEFULLFN (page 19.33) is called.

Note: PAGEFULLFN is only called on windows which are the TTYOISPLAYSTREAM
of some process (see page 19.15). ·

The following properties are read-only (i.e. their property values camiot be changed using WINDOWPROP.

OSP

HEIGHT
WIDTH

REGION

[Window Property J
Value is the display stream of the window. All system functions will oper.ue on
either the window or its display stream.

[Window Property]
[Window Property]

Value is the height and width of the interior of the window (the usable space not
counting the border and title). •

r,Vi.ndow Property] -
Value is a region (in screen coordinates) indicating where the window (coum:mg () ...
the border and title} is located on the screen.

19.1!.8 Au.."tiliar., Functioa.s •
(RESHAPEBYREPAINTFN WINDOW OLDIMAGE OLDREGION) [Functioa}

It B ITBL Ts the old region contents into the lower left comer of the new regior. If
t.i.e new shape is larger in either or both dimensions. the new areas exposed are to
the top and right of the old image. When this happens. RESHAPE BYRE PA IN TF N
calls wmoow·s REPAHJTFN (page 19.32) to display the newly exposed region's
contents. Note that this may result in two calls to the REPAHHFrt

(PAGEFULLFN WINDOW) [Functionl
If the window property PAGEFULLFN (page 19.33) is NIL. when the window is fuil
the system function PAGEFULLFN is called. PAGEFULLFN simply returns if t..'1cre
are characters in the type~in buffer for WINDOW, otherwise it inveru the window

19.33 ()

.-0

--o·

Example: A Scrollable Window

and waiis for the user to type a character. PAGEFULLFN is user advisable.

19.12.9 E.umple: A Scrollable Window ,.

Toe following is a simple example showing how one might create a scrollable window.

CREATE. PPWHJDOW creates a window that displays the pretty printed expression EXPR. The window
properties PPEXPR, PPORIGX. and PPORIGY arc used for saving this expression. and the i.'litiai window
position. Using this information. REPAHH. PPWINDOW simply reinitializes the window position. and
prettyprints the expression again. Note that the whole expression is reformatted every ti:::e, e•,eo if only
a small pan actually lies within the window. If this window was going to be used to display •,ery large
structures. it would be desirable to impiement a more sophisticated REPAINTFN that only redis;:,lays t..'lat
part of the expression within the window. However, this scheme would be ~tisfactory if most of the
items to be displayed are small.

RESHAPE. PPWINDOW resets the window (and stores the initial window position}, calls REPAINT. PPW'I NDOW
to display the window's expression. and then sets the EXTENT property of the window so that
SCROLLBYREPAINTFH will be able to handle scrolling and "thumbing" correctly.

(OEFINEQ

{CREATE.PPWINDOW
(LAMBDA {EXPR) (* rrb •• 4-0CT-82 12:06 ..)

(* creares a window that displays
a prelly printed e.xpressioTL)

(PROG (WINDOW) (* ask the user for a piece of the
screen and make it into a window.)

(SETQ WINDOW (CREATEW NIL "PP window"))
(• put the expression on the
property list of the window so that
the repaint and reshape f.mctions
can access it.)

(WINDOWPROP WINDOW (QUOTE PPEXPR)
EXPR) (• set the repaint ar.d reshape

junctions.)
(WINDOWPROP WINDOW (QUOTE REPAINTFN)

(FUNCTION REPAINT.PPWINDOW))
(WINDOWPROP WINDOW (QUOTE RESHAPEFN)

. (FUNCTION RESHAPE.PPWINDOW))
(* make the scroll junction
SCROLLBYREPAINTFN, a system
junction that uses the repaint
junction to do scrolling.)

(WINOOWPROP WINDOW (QUOTE SCROLLFN)
(FUNCTION SCROLLBYREPAINTFN))

(RESHAPE.PPWINDOW WINDOW)

r-• call the -reshape function to
initially print the expression and
calculate its extent.)

19.34

:

INTERLISP·D DISPLAY FACILITIES

(RETURN WINDOW])

(RE?AINT.PPWINOOW
(LAMBCA (WINDOW REGION) (* rrb ··4·0CT·82 ll:S2")

(* the repainting junction for a window with a pretty printed expression.
This repainting junction ignores the region lo be repainted and repaints
the entire window.)

(* set the window position lo the
beginning of the pretly printing
of the expression.)

(MOVETO (WINOOWPROP WINDOW (QUOTE PPORIGX))
(WINDOWPROP WINDOW (QUOTE PPORIGY))
WINDOW)

(PRINTDEF (WINDOWPROP WINDOW (QUOTE PPEXPR))
0 NIL NIL NIL WINDOW])

(RESHAPE.PP~INOOW
(LAMBDA (WINDOW)

(PROG (BTM)

("' rrb "4-0CT-82 12:01")
(* the reshape junction for a
window with a preuy primed
expression.)

t• set the position of the window so that the first character appears in
the upper left comer and save the X and Y for the repaint junction..)

(DSPRESET WINDOW)
(WINOOWPROP WINDOW (QUOTE PPORIGX)

(DSPXPOSITION NIL WINDOW)}
(WINOOWPROP WINDOW (QUOTE PPORIGY)

(DSPYPOSITION NIL WINDOW))

(REPAINT.PPWINDOW WINDOW)

("' call lhe repaint junction to
pretty pn·nt the expression in
the newly cleared window.) ·

("' save the region actually covered by the preuy printed expression so
that the· scrolling routines will know where to stop. The pretty printing
of the expression does a carriage return after the last piece of the
expression printed so that the current position is the base line of
the next line uf text. Hence the last visible piece of the expression
(BT.\!) is the ending position plus the height of the /0111 above the
base line e.g its ASCENT.)

(WINOOWPROP WINDOW (QUOTE EXTENT)
(ere ate REGION

LEFT .. 0

19.35

0

()

()

o·

0

0

)

Interactive Display Functions

BOTTOM ~[SETQ BTM (IPLUS {OSPYPOSITIOH NIL WINDOW)
{FONTPROP WINDOW (QUOTE ASCENT]

WIDTH ~(WIHDOWPRO~WIHOOW (QUOTE WIDTH))
HEIGHT ~(!DIFFERENCE (WINOOWPROP WINDOW (QUOTE HEIGHT))

BTM])

19.13 INTERACTIVE DISPLAY FUNCTIONS

The following functions allow the user to interactively specify positions or ~giocs on the display screen.

{GETPOSITION WINDOW CURSOR) [Function]
Returns a POSITION that is specified by the user. GETPOSITION waits for ~e
user to press and rele2...c:.e the left button of the mouse and rerurns die cursor
position at the time of release. If WINDOW is a WINDOW, the position will be in the
coorc.inate system of wmnow's display stream. If WINDOW is NIL. the position
will be in scre:n coordinates. If CURSOR is a CURSOR. the cursor will be cha.::iged
to it while GETPOSITION is running. If CURSOR is NIL, the value of the system
variable CROSSHAIRS will be used as the cursor. ·

(GETBOXPOSITION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTM'SG) [Function]
Allows the user to position a "ghost" region of size WIDTR by HEIGHT on the
screen, and returns the POSIT I or~ of the lower left corner of t.'1e region. If
PROMPTMSG is non-NIL, GETBOXPOSITION first prints it in the PROr-1PT\i/INCOW.
GETBOXPOSITION then changes the cursor to a box (using the global variable
BOXCURSOR). If ORGX and ORGY are numbers. they are taken to be the orig:..c.al
position of the region. and the cursor is moved to the nearest corner of that reg:on.
The user is t.'1en free to move tt.'le cursor around the screen. \Vhen a mcuse bu::on
is depressed, a ghost region is locked to the cursor so. that if the c-:.irsor is moved.
the ghost region moves with it. If ORGX and ORGY are numbers. the co:ne:- of
the original region that is nearest the cursor position at the time the button is
pressed is locked, otherwise t.1-ie lower left corner is locked. The user can change
to another corner by conti.'luing to hold down the left button and holdi.:ig down
the right bunon also. With both bunons down, the cursor can be moved across
the screen without effect on the ghost region frame. When the rig."lt button is
released. the mouse will snap to the nearest corner. which will then become ioc.i::ed
to tne cursor. When all buttons are rele;i.sed, 'the lower left corner of t.'1c region
is returned. [f WINDOW is a WINDOW, the returned position will be in \lt7NDow·s
coordinate system: otherwise it will be in screen coordinates.

Example:

(GETBOXPOSITION 100 200 NIL NIL NIL
"Specify the position of the command area.")

19.36

,-···-,

,·

INTERLISP.D DISPLAY FACTLITIES

prompts the user for a 100 wide by 200 high region and returns its lower left corner
in scr~n coordinates.

(GETREGION MIN'WIDTH MINHEIGHT IN1TREGION NEWREGIONFN NEWREGIO.NFN'A.I?G) [Function]
LetS the user specify a new region and rerurns that region in screen coordinates.
G~TREGION prompts for a region by displaying a four-pronged box ne::t to t!:J.e
cursor aITow. If the user presses the left button. one corner of a "g.1ost .. :egion
outline is locked to that point and the opposite corr.er is locked to the CU!"'..-Or. As
the cursor moves, the outline expands. To specify a region, the user moves t."1.e
cur.mr tu one corner of the intended region. presses the left button. moves the
cursor to the opposite corner while holdi:lg down the left button. and the::i rele:ises
the button.

If rNITREGION is a REGION and the user presses the middle button. the comer of
INiTREGION farthest from the cursor position is fixed and the comer nearest the
cursor is locked to the ctL.""Sor.

One can switch from one corner to another while positioning the region. To change
to another comer, continue to hold down the left button and hold down the rig!lt
button also. Wiu.~ both buttons down, the cursor can be moved across the sc:een
without effect on the ghost region frame. When the right button is rele35ed., the
cursor will snap to the nearest comer, which will become the moving corner. In
this way, the region may be moved all over the screen. before its size and pcsition
is finalized.

MINWIDTH and MINHZIGHT, if given. are the smallest WIDTH and HEIGHT that
the returned region will have. If the usef specified region is smaller. it will be
increased in width or height to these dimensions.

If NEV,f?.EGIONFN is non·N IL, it will be called to determi~e values fur the positions
of the corners. This provides a way of .. filtering" prospective regions: for instance.
by res -icting the regioI). to lie on an arbitraty grid. When the user is specif_;i:1g a
region. the region is deter:::iined by two of its comers. one that is fixed and one that
is cr.::.e~g tt.e cursor. Each time the cursor moves or a mouse button is pressed.,
NEVlREGIONFN is called with three arguments: Fr:CEDPOINT. the position of the
fixed corner of the prospective :-egion: MOVTNGPOINT. the position of the opposite
corner of the prospective region: and EWREGIONF:-rAP.a. ~'E'vV?.EGro:-.-FNAP.G
allows the ::aller of GETREGION to pass information to the NEV,?.ZG:C!,7:-,. Tne
first :ime a button is pressed. MOYD:GPO:C:-."T is NIL and Fv.ZDPOX:-.T is jie pcsition
the user selected for the fixed corner of the new region. In chis c:ase. t.'-:.e position
returned by NEVIREGIONFN will be used for the fixed corner instead of t..i.e one
proposed by the user. For all other calls, F'IXEDPOINT is the position of t."1.e fixed
comer (as terurned by the previous call) and MOVTNGFOINT is the new positio::i the
user selected for the opposite comer. In these cases, the value of :.EW'REGI0,'-7-N'

is used for the opposite corner instead of tl'!e one proposed by the· user. In all
cases. the g,.'1ost region is urawn with the values returned by NEWREGIONFN.

(GETElOXREGION WIDTH HEIGHT ORGX ORGY W1NDO\V ?RO~TMSG) [Func:ion)
Performs the same prompting as GETi30XPOSITION and rerurns the REGim4
specified by the user instead of the POSIT ION of its lower left corner.

19.37

,~
\).

n ..

,- \
()

0 Menus

19.14 MENUS

A menu is basically a means of selecting from a list · of items. Toe system provides common layout
and interactive user selection mechanisms. then calls a· user-supplied function when a selection has been
confirmed. Toe two major constituents of a menu are a list of items and a "when selec:ed fu~ction.''
Toe label that appears for each ite:n is the item itself for non-lists. or its CAR if t.i.1'1e ite:n is a Us-. T.,e
menu includes a position on the screen where it will be displayed and a means of specifyi..'"lg ti.i.e piace
in the menu th::i.t is to be put at that position. In addition. there are a multin:de of diff erem form:ming
parameters for specifying font. size, and layouL When a menu is created, its unspecified fields ar.:: f.:.kd
with defaults and irs screen image is computed and saved.

Menus can be either pop up or fixed. If fixed menus are used, the menu must be included in a v.indow.

(MENU MENU posmoN} (Function]
This function provides menus that pop up when they are used. It displays UE~L·

at POSITION (in screen coordinates) and waits for.the user to select an item wit..11
a mouse key. While any key is down. the selected menu item is video reYersed.
When all keys are released, MEWS WHENSELECTEDFtl field is called v.ich three
arguments: (1) the item selected, (2) the menu. and (3) the last mouse key reieased
(LEFT, MIDDLE. or RIGHT), and MENU returns its value. If no item is selected.
MENU returns NIL. If POSITION is NIL. the menu is brought up at the •1alue fro:n
MENU'S MEHUPOSIT!Ofi field, if it is a POSITION. or at the current cursor position.
The orientation of MENU with respect to the speciRed position is determined by its
MEHUOFFSET field.

(ADO MENU MENU WINDOW POSITION -) (Function]
11tis function provides menus that remain active in windows. AOOMENU displays
MENU at POSITION in WlNDOW (POSITION is defaulted as in MENU e:-cce;,t
that it is in window coordinates). MENU is added to the MENU property of
WINDOW. Toe CURS0RINFN and BUTTONEVENTFN of WINDOW are replaced with
MENUB:.JTTOi\!F1i, so that MENU will be active during TTY wait. RESHAfEFN of
WINDOW is set to restore MENU'S image when the window is reshaped. \\':1en an
item is selected, the value of the WHENSELECTEDFN field of MENi.i is called with -,· -----.._ three arguments: (1) L'1e ite::n selected. (2) the menu. and (3) ±.e tr.ouse key that U the item was selected with (LEFT, MIDDLE. or RIGHT). More than one menu can
be put in a window. but a menu can only be added to one window at a time. If
WZNDOW is not given, a window is created at PosmoN (in screen coordina:es) that
is the size of MENU.

0

AODMENU returns the window into which MENU is placed.

(OELETEMENU MENU CLOSEFLG FROMWINDOW} [Function]
. This function removes MENU .from the window rnoMWINDow. If MENU is the only

menu in the window and CLOSEFLG is non-NIL, its window will be closed (by
CLOSEW).

If FROMWINDOW is HIL. the list of currently active (open) windows is searched
for one that contains MENU. If non is found. DELETEMENU does nothing.

19.38 ·

INTERLISP·D DISPLAY FACILITIES
()

19.14.1 Menu Fields

A menu is a daracype with the following fields:

ITEMS

WHENSELECTEOFN

WHENHELDFN

WHENUNHELDFN

MENUPOSITIOH·

MENUOFFSET

MENUFONT

..
['.Me:o.u Fie!dJ

The list of items to appear in the menu. If an item is a list. its CAR will a;:pe3!
in the menu. If f.li.e item (or its CAR) is a bitma;>. the bit::12:p will be dis;,!a;-ed
in the menu. The default selection functions interpret exh item as a list of :!1ree
clc:ni.:ncs: a label. a form whose valu~ is returned upon sc!cction. and a. t:c!p sr.::.ng
that is printed in the prompt window when the user pr~ a mouse key w1..h t!le
cursor pointing to this item. ·

[Menu Fie!dJ
A function to be called when an item is selected. The function is called with
three arguments: (1) the item selected. (2) the menu. and (3) the mouse key that
the item was selected with (LEFT. MIDOLE.-or RIGHT). The default function
OEFAULTWHENSELECTEDFN evaluates and returns the value of the CAOR of the
item if there is one, or simply rerums che item if it is not a list or if its CAOR is
NIL.

[Menu Fie!d]
The function which is called when the user has held a mouse key on an item for
MEHUHELDWAIT milliseconds (initially 1200). The function is called with three
arguments: (1) the item selected. (2) the m~nu. and (3) the mouse key that the
item was selected with (LEFT, MIDDLE. or RIGHT). WHENHELDFN is intended
for prompting users. The default is DE FAUL TMENUHELDFN which prints (in .he
prompt window) the third element of the item or. if there is not a third element.

· the string ''This item will be selected when the button is released."

[Menu Field]
If WHENHELDFN was called. WHENUNHELDFN will be called: (1) when the cursor
leaves the item. (2) when a mouse key is released. or (3) when another key is
pressed. The function is called with . the same three argument values used to call
WHENHELDFN. The default WHENUNHELDFN is the function CLRPROMPT (page ,,-----..._
19.19). which just clears the prompt window. !' _J-

[Me:1u Field}
The position of the menu to be used if the call to MENU or AOOMENU does noc
specify a position. For popup menus, this is in screen coordinates. For fixed
menus, it is in the coordinates of the window the menu is in. The ;,oint wi°tt.in
the menu image that is placed at this position is determined by MENUOFFSET. If
MENUPOSITION is NIL. the menu will be brought up at the cursor position.

[Menu Field}
The position in the menu image that is to be located at MENUPOSITION. The
default offset is (0,0). For example, to bring up a menu with the cursor over a
particular menu item. set its MENUOFFSET to a position within that item and set
ics ME~UPOSITION to NIL.

[Menu Field]
The font in which the items will be appear in the menu. Default is the value of

19.39 n

0

6

0

TITLE

CENTERFLG

MEPiUR0\1/S
MENUCOLUMNS

Menu Fields

MENUFONT, initially Helvetica 10.

[Menu Field]
If specified. a title will appear in a line above the menu. The title will be in the
same font as window titles.

[Me.iu Field}
If non-NIL, the menu items are centered; otherwise they are left-justified..

[~1e::m Fie!d]
[Menu Field]

These fields control the shape of the menu in terms of rows arid columns. If
MENUROWS is give~ the menu will have that number of rows. If HENUCOLUMNS
is given, the menu will have that number of columns. If only one is given. t.11e
ot.1ier one will be calculated to generate the minimal recungular menu. (1'om-.ally
only one of MENUROWS or MENUCOLUMNS is given.) lf neither is gh·en. the items
will be in one column.

ITEMHEIGHT 1)-,fenu Field]
The height of each item box in the menu. If not specified. it will be the maximum
of the height of the MENUFONT and the heights of any bianaps appear.ng as labels.

ITEMWIOTH (}.,fenu Field]
The width of each item box in the menu. If not specified. it will be the width of
the largest item in the menu.

MEHUBORDERS IZE [Menu Field]
The size of the border around each item box. If not specified. 0 (no border) is
used.

MEHUOUTL!NESIZE [Menu Field}
The size of the outline around the entire menu. If not specified. a maximum of l
and the MENUBORDERSIZE is used.

CHANGEOFFSETFLG [Menu Field]
.(popup menus qnly) If CHANGEOFFSETFLG is non-HIL, the position of the menu
offset is set each time a selection is coo.fumed so that the menu will come up
next time in the sa.-ne position relative to the cursor. This will cause .the menu to
reappear in the same place on the screen if the cursor has not moved since the
last selection. This is implemented by changing the MENUOFFSET field on each
.use. If CHANGEOFFSETFLG is the atom X or the atom Y, only the X or t."le Y
coordinate of the MEI-WO FF SET field will be changed. For exai:iple. by setting t.'1e
MENUOFFSET position to (-1.0) and setting CHANGEOFFSETFLG to Y. t.lie menu
will pop up so that the cursor is just to the left of the last item selected. Tnis is
the setting of the window command menus.

The following fields are. read only.

IMAGEHEIGHT [Menu Field]
Returns the height of the entire menu.

19.40

INTERLISP·D DISPLAY FACILITIES

IMAGEWIDTH [1-1enu Field]
Rerurns the width of the entire menu.

19.14.2 Miscellao~us Menu Functions

(WFROMMENU MENU} [Fur.ction]
Returns the window MENU is located in. if it is in one: NIL othenvise.

(DOSELECTEDITEM MENU ITEM arJTTON) [Function]
Calls MENTIS WHENSELECTEDFN on ITEM and BUTTON. It provides a progr.::.m.matic
way of malting a selection. It docs not change the display.

(MENUITEMREGION ITEM MENU)
Returns the region occupied by ITEM in MENU.

[Function]

(SHADE ITEM ITEM MENU SHADE DSORW) [Function]
Shad~ the region occupied by ITEM in MENU. If DSORW is a display stre3!Il or a
window, it is assumed to be where 1',,!ENU is displayed. Otherwise9 WFROMMENU is
called to locate the window MENU is in.

19.14.3 Examples of Menu Use

(create MENU I~EMS ~'((YEST) (NO)))

Creates a menu with items YES and rJO in a single vertical column. If YES is selected. T will be returned.
Othervrise, NIL will be returned.

(create MENU ITEMS 4- '{l 2 3 4 5 6 7 8 9 • 0 #)
CENTERFLG .- T
MENUCOLUMNS .- 3
MENUFONT ~ (FONTCREATE 'HELVETICA 10 'BOLD)
ITEMHEIGHT +- 15
ITEMWIOTH +- 15
CHANGEOFFSETFLG ~ T)

Creates, a touch-tone-phone number pad with the items in 15 by 15 boxes printed in He!Yetica 10 bold
font. If used in pop up mode, its first use will have the cursor in the middle. Subsequent use will have
the cursor in the same relative location as the previous selection.

(SELECTQ [MENU
(COND ((type? MENU FOOMENU)

r- use previously computed menu_)
FOOMENU)

(T (- create and save the menu)
(SETQ FOOMENU

(create MENU
ITEMS~ '((A 'A-SELECTED "prompt string for A")

(8 'B-SELECTED "prompt string for B"]
(A-SELECTED (• if A is selected) (0OATHING))

19.41

0

o·

6

0

Grid Functions

(B-SELECTEO (• if Bis selected) {OOBTHING))
{ PROG:-1 (• user selected outside the menu) NIL)))

This expression displays a pop up menu with two items. A and B. and waitS for the user to select one. If
A is selected. DOATHING is called. If B is selected. DOBTHING is called. If neither of these is selected.,
tl:e form returns NIL.

The purpose of this example is to show some good practices to follow when using menus. First. the menu
is only created once. and saved in the variable FOOHENU. This is more efficient if the menu is used more
than once. Second. all of the information about the menu is kept in one place. whi::h maxes it easy to ·
understand and edit. Tirird. the forms evaluated as a result of selecting something from the menu a:e
part of the code and hence will be known to masterscope (as opposed to the situation if ti'le fb:-rr:.s were
stored as part of the items). Fourth. the items in the menu have help strings for the user. Finally, the
code is commented (always worth the trouble).

19.15 GRID FUNCfIONS

A Grid is a partitioning of an arbitrary coordinate system (hereafter referred to as the .. source system ..)
into rectangles. Titis subsection describes functions that operate on Grids. It includes functions to
draw the outline of a Grid. to transiate between positions in a source system and Grid coordinates (the
coordinates of the rectangle which contains a given position}. and to shade Grid recta:igles. A Grid is
defined by its "unit grid''. a region (called a GridSpec) which is the origin rectangle of the Grid in terms
of the source system. Its LEFT is the X-coordinate of the left edge of the origin rec~gle. its BOTTOM is.
the Y-coordinate of the bottom edge of the origin rectangle, itS WIDTH is the width of the grid rec:angles,
and itS HEIGHT is the height of the grid rectangles.

(GRID GRIDSPEC UN1TSW1DE UNITSHIGH GRJDBORDER DlSPLAYSTREAM GlUDSRA.OE) [Function}
Outlines the grid defined by GRIDSP:SC which is UNZTSWIDE rectar.gles wide and
UNITsma::r recr.angles high on DIS?LAYSTREAM. Each box in the grid has a border
within it that is GRlDBORDER points on each side; so the resulting lines in :he grid
are 2'*GF.IDBORDER thick. !f GruDEORDER. is the atom POINT. ins!e.ad of a t-orcer
the lower left point of each grid rectangle will be c-.1med on. If GRIDSH.WE is
non-NIL. it should be a texture and the border lines· will be drawn m that shade.

(SHADEGRIDBOX X y SHADE OPERATION GRIDSPEC GR.IDBORDER. DlSPLAYSTru:A..V.) . [Functio:i}
Shades the grid rectangle (X. Y) of GRIDSPEC with texture SF.ADE usi:lg OPER.ATION
on DISPLAYSTREAM. GF..IDBORDER is interpreted the same as for GRID.

The following two functions map from the X. Y coordinates of the source system into the Grid X.Y
coordinates:

{ GRIOXCOORD XCOORD GR1DSPEC) [Function]
Returns the Grid X-coordinate (in the Grid specified by GR.lDSPEC) that cont2ins
the source system X-coordinate xcooRD .

. (GRIDYCOORD YCOORD GRIDSPEC) [Function]
Returns the Grid Y-coord.inate (in the Grid specified by GRIDSPEC) that contains
the source system Y·coordinate YCOORD.

19.42

.
INTERLISP-D DISPLAY FACILITIES

The following two functions map -from the Grid X. Y coordinates into the X. Y coordinates of the source
system:

(LEFTOFGRIDCOORO G.R!DX' GP..IDSPEC) [Function]
Returns the source system X-coordfuate of the left edge of a Grid rec:.ang!e at Grid
X-coordinate GRIDX (in the Grid specified by GRIDSPEC).

(BOTTOMOFGRIOCOORD GRZDY GRIDSPEC) [Function}
Re:ums rhe source system Y-ccordinate of the bottom edge of a Grid rect:mg!e at
Grid Y-coord.inate GRJI)Y (in the Grid specified by GR.IDSPEC).

19.16 COLOR GRAPHICS

Note: This section describes the lnterlisp-D facilities for using-a color display. To use these facilities you
need to have a Xerox I JOO or Xerox I I 32 with a color display attached. and you must load in the lisp User.;
files COLOR. OCOM and LLCOLOR. OCOM (automatically loaded by COLOR. DCOMJ.

The color boards on the Xerox 1100 and the Xerox 1132 differ in design. The Xerox 1100 board s-..2ppcrts
4 bits per pixel color. The Xerox 1132 supportS 4 or 8 bits per pixeL All of the user's code should be
written in higher level mac...'l.ine independent functions.

Beth coior bcarcs produce an image that is 640 pixels wide by 480 pixels high. The image can be thought
of as a paint·by·number painting where the number of a pixel is its value~ The number of bitS per pixel
(4 on the Xerox 1100. 4 or 8 on the Xerox 1132) determines the number of difference colcrs that can
be displayed at oc.e time. When there are 4 bpp. 16 colors can be displayed at once. When there are
8 bpp. 256 colors can be displayed at once. A mapping table called a "color map .. determines what
color·acrually appears for each pixel value. A color map gives the color in terms of how much of :he
three primary colors (red. green and blue) displayed on the screen for each possible pixel vaiue. In the
following sections. the notions of "color map", and "color" are described.

r . 19.16.l Color Bitmaps

A "color bitmap" is actually just a bitmap that allows more than one bit per pixel To test whether a
bitmap xis a "color bitmap", use the following form:

(~EQ {fetch (BITMAP BITMAPBITSPERPIXEL) of x) 1)

c.:-;.:r :-:-:::;s ~--: -:.-~-.... .:. by e3:i: .. g B IT~APCREATE (page 19.4) with a BITSPER:'!XZI. a.rg,.m1e:1[of
.a.:1)1."''~g . .:--=.er :.i....m l or NIL. Cu.-:e~tly. any vake of SITSPERPIX=:I.. except l. 4. 8 or NIL (c!efauits to
l) will cause an error.

A 4 bit per pixel color screen bitmap uses approximately 76k of storage. There is only one such bi~"':1ap.
The following function provides access co ic:

{ COLORSCRErnB ITMAP) [Function]
Returns the color bitmap that is being or will be displayed on the color dis-;i:ly. This
will be NIL if the color display has never been turned on (see COLORDISPLAY.
page 19.47).

19.43 C)

0

(5

0

Color Specifications

WHOLECOLORDISPLAY [Variable]
A global variable set to a REGION that covers the entire color display S..""I'een.
Currently this is {CREATEREGION O O 640 480} •

..
COLORSCREENWIDTH [Variable]

The "'id:h of the color display. Currently 640.

COLORSCREENHEIGHT [Vari.able]
The heig.l-it of the color display. Currently 480.

19.16.2 Color Specifications

A color map maps a color number (from O to 2sITSPEP.PZXEL-l) into the intensities of the three color
guns (red. green and blue). Each entry in the color map ·has 8 bits for each of the primary colors
allowing 256 levels per primary or 224 possible colors (not all of which are distinct to the human
eye). Within Interlisp-O programs, colors can be manipulated as numbers, red-green-blue triples. names.
or hue-lightness-saturation triples. Any function that takes a color will accept any of the different
specifications.

If a number is given. it will be the color number used in the operation. It must be valid for the color
bit::iap used in the operation. (Since all of the routines that use a color need to determine its number.
it is fastest to use numbers for colors. COLORHUMBERP described below provides a way to translate into
numbers from the other representations.)

A red-green-blue (RGB) triple is a list of three numbers between 0 and 255. The first element gives
the intensity for RED, the second for GREEN and the third for BLUE. When an RGB triple is used.
the current color map is searched to find the color with the correct intensities. If none is found. an
error is generated. (lnat is, no attempt is made by the system to assign color numbers to intensities
automatically.) Example of an RGB triple is (255 255 255) which gives the color white. The record RGS
with fields RED, GREEN, and BLUE is provided to manipulate RGB triples.

A color name is an atom that is on the association-list COLORNAMES. The COR of the color name's entn'
wm be used as the color corresponding to the color name. This can be any of the other represe:ii:ajons.
{Note: It can even be another color name. Loops in the name space such as would be caused by putting
' (RED • CRIMSON) and ' (CR IMSOH • RED) on COLOR?JAMES are not checked for b~· the system.)
Several color names are available in the initial system and are intended to allow color progr.:.ms v.Tinen
bY. different users to coexist. These are:

19.44

r

INTERLISP·D DISPLAY FACll.ITIES

name RGB number in default color map

BLACK (0 0 0) 0

BLUE (0 0 255)
..

l

GREEN (0 255 0) 2

CYAN (0 255 255) .J

RED (255 0 0) 4

MAGENTA (255 0 255) s
YELLOW (255 255 0) 6

WHITE (255 255 255) 7

A hue-lighmess-saturation triple is a list of three numbers. The first number (hue) is between O and 355
and indicates a position in degrees on a color wheel (blue at O. red at 120 and-green at 24-0). The seco:::i.d
(lightness} is a FLOATP between O and l which indicates how much total intensity is in the color. Tne
third (saruration) is a FLOATP between O and l which indicates how ~parate the three priI::la.ry levei.s
are. The record HLS with fields HUE. LIGHTNESS. and SATURATION is provided to manipulate HLS
triples. Example: the color blue is represented in HLS noution by (0 -5 LO).

{ COLORPIUMBERP COLOR BITSPERP'!XEL NOERRFLG} [Function}

•
{ RGBP X)

(HLSP x)

19.16.3 Color Maps

Returns the color number (otfset into the screen color map) of COLOR. cor.oa
should be either (1) a positive a.umber less than the maximum number of colors.
(2) a color name. (3) an RGB triple. or (4) an HLS triple. If coLca is one of the
above and is found in the screen colormap. ics color number in t.'le screen color
map is returned. If not an error is generated unless NOERR..::'I..G is non·N IL. in
which case NIL is returned.

[Function}
Returns x if x is an RG B triple; NIL otherwise.

[Function]
Rerurns x if x is an HLS triple: NIL other.vise.

The screen color map holds the info~ation about what color is displayed on the color screen for e.:?Ch
pixel value in the color screen bianap. The values in the current screen color map may be· changed and
this change will be reflected in the colors being displayed at the next vertical retrace (approximately l/30
of a second). Changing the color map can be used to get dramatic effects.

{ COLORMAPCREATE lNTENSITrES BITSPERPCXEL) [Function]
Cre:iccs a color map for a screen that has· BITSPERPIXEL bitS per pixel. If
BITSPERPIXEL is NIL. the number of birs per pixel is CJ.ken from the cur:c:it
color display setting. INTENSITrES specifies the initial colors that shouid be in
the map. If INTENSITrES is not NIL. it should be a list of color specincac.:ons

19.45

t\.
'_) -·

0

().

()

0

0

Color Maps

(other than color numbers). e.g. the list of RGB triples returned by the
function INTENSITIESFP.OMCOLORMAP (below). If 11-,"TE~SITrES is NIL. the
default is the value of \OEFAULTCOLORINTENSITIES (if BITSPERPIXZL is 4) or
\DEFAULTSBITCOLORWTENSITIES (if BITSPERP!XEL is 8).

(COLORMAPP COLOR.i\!A.Pr BITSPERPIXEI..) [Function]
Returns coLoRMAPr if it is a color map that has BITSPERPIXEL bits per pixel:
NIL ott:.erwise. If BITSP.ERPr:::EL is NIL. it returns COLOR..\!.AP~ if it is ei :he:- a 4
bits per pixel or an 8 bits per pixel colormap.

{ INTENSITIESFROMCOLORMAP COLO.RM.AP} [Function]
Returns a list of the intensity levels of COLORMAP (default is (SCRE ENCOLORMAP))
in a form accepted by COLORMAPCREATE. This list can be written on file and thus
provides a way of saving color map specifications.

(COLORMAPCOPY COLORMAP BITSPERPDCEL} {Function}
If COLORMA..P is a color map, it returns a color map that contains the same color
intensities as coLoRMAP: otherwise it returns a color map with dE;fault color Yalues.

(SCREENCOLORMAP NEWCOLORMAP) [Function]
Reads and sets the color map that is used by the color display. If NEWCOLOR.M.AP
is non·N IL. it should be a color map and SCREENCOLORMAP sets the system color
map to be that color map. Returns the previous value of the s..-reen color map. If
NEWCOLORMAP is NIL, the current screen color map is returned without change.

(MAPOFACOLOR PRJMARLES) [Fu.1.ctio:::i]
Returns a color map which is different shades of one or more of the primary
colors. For example. (MAPOFACOLOR '(RED GREEN BLUE)) gives a color cap
of different shades of gray; (MAPOFACOLOR 'RED) gives different shades of red.

The following functions are provided to access and change the intensity levels in a color map.

(SETCOLORINTEHSITY COLO&'\!AP COLORNUMBER COLOP.SPEC} [Fu:iction]
Sets the primary intensities of color number COLORNTJMBER in t.'1e coior ma;,
COLORMAP to the ones specified by COLORSPEC. COLOP.SPEC can be either an
RG B triple, an HLS triple or a color name. Rerurns NIL.

(COLORLEVEL COLORMAP COLORNUMBER PRIMARYCOLOR N'EWI.EVm.) . [Function]

{AOJUSTCOLORMAP

.(ROTATECOLORMAP

Sets and reads the intensity level of the primary color P.RlMARYCOLOP. (either
RED, GREEN or BLUE) for t..'1e color number COLORNT.l"MBER in the color n:ap
COLORMAP. If NEWLEVEL is a number between O and 255. it is seL The previous
value of the intensity of PRlMARYCOLOR is returned. .

PR.!MARYCOLOR DELTA COLORMAP) • [Function]
Adds DELTA to tlle intensity of the pnmary color PRIMARYCOLOR (eithe:- RED •.

. GREEN or BLUE) for every color number in COLORMAP.

COLO.~MAP STARTCOLOR THRUCOLOR) . [Function]
Rotates a sequence of colors in COLOR.\!AP. The rotation moves tt:.e inte:isicy val'..les
of color number STARTCOLOR into color number STARTCOLOR + l. the intensity
values of color number STARTCOLOR + l into color number STARTCOLCR + Z. e:c.
and THRUCOLOR 0S values into STARTCOLOR.

19.46

f

INTERLISP·D DISPLAY FAOLITIES

(EOITCOLORMAP VAR NOQFLG) [Funcricn.]
Allows interactive editing of a color map. If v.AR is an atom whose value is a coior
map. its value is edited. Otherwise a new color map is created and ec!.i,ed. The
color map being edited is made the screen color map while the ed.:tir.g is r:obng
place so that its effects can be obs·erved. The edited color map is ret1..l.11led as the
value.

If NOQFLG is NIL and the color display is on. the user is asked if they wa.'1t a cest
pattern of colors. A yes response will cau$e the function SH0WC0L0RTE STPA TTE RN
to be called which will dispiay a test pattern with blocks of e.:ch of the possible
colors.

The user is prompted for the location of a color control window to be placed on
the black :ind white display. This window allows the value of any of the coiors
to be changed. The color numccr of the color being edited is in the upper left (--·)
pan of the window. Six bars are displayed. The right three bars gi,,·e the color \. ., /
intensities for the three primary colors of the current color number. Toe left three
bars give the value of the color's Hue. Llghtness and Saruntion panceters. Tr.ese
leYels c:ia be changed by positioning the cursor in one of ~e ba.':i and ;,res.sing ±e
LEFT buaon. While the LEFT buaon is down. the value of L~at par-~e~er will
tr.,.ck the Y position of the cursor. When the LE FT buc--0n is released.. the color
tracking stops. The color being edited is changed by pressing the MIO D LE butwn
while the cursor is in the interior of the edit window. This ""ill bring up a menu
of color numbers. Selecting one sets the current color to the selected color.

The color being edited can also be changed by selecting the menu item "PickPt ...
11tis will switch the cursor onto the color screen and allow the user to select a
point from the color screen. It will then edit che color of the selected point.

To step the editing. move the cursor into the title of the editing window and press
the MIDDLE button. This will bring up a menu. Select STOP to quiL ..

19.16.4 Turning the Color Display On and Off

Toe :clor .:.:splay can be tur:1ed on and off. \\-bile the color dispiay is on. the mez::ory used for the color
dis;:lay screen bitmap is locked do....,-n and a significant amount of processing time (35% on the Xerox
1100) is used to drive the color display. ·

(C0L0RDISPLAYP) [Function]

{C0L0RDISPLAY

Returns the current color map if the color display is on: otherwise NIL.

COLOR.\!AP BITSFER.PrxEL CLEARSCREENFLG) [Function]
If COLOR.\i.AP is NIL. it turns off the color display. If COLOR.\!AP is non-NIL. it
turns on the color display allocating BITSPERPIXEL bits per pixel. If COLORM • .\P is
a color map, it is used as the screen color map. If CLEARSCREE.'rFLG is non-NIL.
all of the bits in the color screen are set co 0.

Turning on the color display requires alloc.:iting and locking down c..'":e memory
necessary to hold the color display screen bitmap and the system color map.
Turning the color display otf frees this memory.

19.47

() ·'

(~)

0-

Printing and Drawing in Color

19.16.5 Printing and Dra'lving in Color

The C'..trrent color implementation allows display strearps to operate on color bitmapS. The following t\vo
functions set the color in which a display stream prints or draws:

(DSPCOLOR COLOR DlSPL.AYSTP.EAM) [Function]
Sets the foreground color of a display stream. Returns the previous foregrouc.d
color. If COLOR is HI L. it returns the current foreground color without cl":a.'lging
anything. The default foreground color is 7. which is white in the c.efacit color
map.

(DSPBACKCOLOR COLOR DISP!.AYSTREAM) [Fucctioc]
Sets the background color of a display stre:m1. Rerurns the pre"ious background
color. If COLOR is NIL. it rerums the current background color without c!l.l:l.t"'g
anything. The default background color is O which is black in the default color
map.

BITBLT. the line and curve drawing routines and the printing routines know how to operate on a display
stream that has a color bitmap as its destination. Following are some notes about them.

BITBLT (page 19.4) When BITBLTing from a color bitmap onto another color bianap with the same
bits per pixel the operations PA!NT. INVERT and ERASE are done on a bit level;
not on a pixel level Thus painting color 3 onto color 10 will result in color 11.

When B ITB L Ting from a black and white bitmap onto a color bitmap. the l
bits will appear in the DSPCOLOR and the O bits in OSPBACKCOLOR. Currently.
REPLACE is the only· operation that is supported B ITBL Ting from black anci white
to color. This operation is fairly expensive: if the same bit.-nap is going to be put
up several times in the same color it is faster to create a color copy then blt the
color copy.

If the SOURCETYPE is TEXTURE and the DESTINATIONBITMAP is a color bi:map.
the TEXTURE argument is taken to be a color. Thus. to fill an area wit.'1 the color
BLUE. do:

(BITBLT NIL NIL NIL COLOR.BITMAP 50 75 100 200 'TEXTURE 'REPLACE
'BLUE)

Curve drawing (page 19.14)
For the functions DRAWCIRCLE. DRAWELLIPSE and ORAWCURVE. the notion of
a brush has been extended to include a color. A brush can be a list of the form
(SHAP? SIZE COLOR). A brush can also be a bitmap, which can be color bitmap.

Line drawing (page 19.13)

Prinµng

The line drawing functions have been extended to take another argument which is
the color the line is to appear in if the destination of the display stream is a co\oi
bitmap. If the COLOR argument is NIL. the DSPCOLOR of the display stream is
used. ·

Printing only works (currencly) in REPLACE mode. The characters will have a
foreground color of OSPCOLOR and a background of DSPBACKCOLOR. The fi.'"St
time a character is printed in a new color. the color images corresponding to t.'1e

19.48

r

INTERLISP·D DISPLAY FACILITIES

current font are calculated and cached. Thus the first character :nay take a while
to appear but succeeding characters print quickly •

. 19.16.6 Using the Cursbr on the Color Screen •

Toe ~""SOr can be moved to the color screen. While on the color screen. the cursor is placed usil:g XOR
mode. thus with some color maps ir. may be hard to see. It is automatically taken down whe:o.eve:- an
o;eration is perfor:ned that changes any bics en th.e color screen. Wliile the cursor is on '±e cc!or sc:ee:1.
the black and white cursor is cleared.

(CHANGECURSORSCREEN SC-r..EENBrT1-4AP} [Function]
SCREENBrTMAP .must be.eith.er .. the value of (COLORSCREEHBITMAP) or the
value of (SCREENBITMAP}. CHAHGECURSORSCREEPI mo,·es the cursor onto t!le
specified screen. The value returned is the screen bianap that the cursor was on
before CHANGECURSORSCREEN was called.

19.16.7 Miscellaneous Color Functions

The following functions provide some common operations on color bianaps and display stre3mS.

(COLORFILL REGION COLORNUUBER COLOR.BITMAP OPERATION) [Function]
Fills the region REGION in COLOR.BITMAP with the color COLORNt'MBE?.. using
the operation OPERATION.

(COLORFILLAREA LEFT BOTTOM WIDTH HEIGHT COLOR.NUMBER COLOR.BITMAP OPE.RATION)
[Function]

Fills an area in the color bitmap with a color.

(COLORIZEBITMAP BITMAP 0COLOR. lCOLOR SITSPERPIXEL) [Function]

()

Creates and returns a color bitmap copying the black and white bitmap .SlT.'.!AF. Ofl

The returned color bitmap will have color number lCOLOR in those pixels of
BITMAP that were 1 and ocoLOR in these pixels of EIT.\!AP t.i.at were 0. This
provides a way of producing a color bitmap from a black and white bitmap. ~o .. e: n.
this is a fairly expensive operation in terms of both time and space.

19.16.8 Demonstr:ition programs

The following junctions provide some demonstrations of 1he color display. These are available in 1he lispusers
file COLORDEMO. DCOM.

(COLORDEMO)

(COLOROEMOl)

[Function]
Brings up a menu of color demonstration programs. The system will cycle through
the entries on the menu automatically, allowing each co run for a small :ixcd
amount of time (typically 40 seconds). Selecting one of the entries in the menu
will cause it to start that program. ·

[Function]
Runs the Interlisp-O logo demonstration until a button is pressed then aJ..is

19.49 0,
_j

0

o~

0

0·'

Demonstration programs

COLORKIHETIC. The MIDDLE button will bring up a menu that allows cha:igi.:lg
the speed of rotation or editting the color map. The LEFT button will rotate the
color map in the kinetic area.

(COLORDEM02 SIZE) ~ [Function]
Puts up a test pattern of size SIZE. then rotates the color map. The speed of rotation
of the color map is determined by the Y position of the cursor. Toe MI COLE
button will bring up a menu that allows editing of the color map or changing the
color map to a map of different shades of one color.

(COLORKINETIC REGION F'IRSTCOLOR LASTCOLOR} [Function]

(TUNNEL SPEED)

Runs color kinetic in a region REGION of the color display using colors FIRSTCOLCR
through LASTCOLOR.

[Functioa]
Draws a series of concentric rectangles of increasing size in increasing color numbers.
SPEED determines the size of the rectangles. This can then be .. run" by calling
ROTATEIT described below.

(MINESHAFT N OtTTFLG) [Function]

(WELL N}

Draws a series of concentric rectangles of size N in increasing color numbe:s.
OUTFLG determines whether the color numbers increase or decrease. This can then
be "run" by calling ROTATEIT described below.

[Function]
Draws a series of concentric circles on the color screen in increasing color numbers.
The circles will be of size N. This can then be ' .. run·· by calling ROTATEIT described
below.

(SHOWCOLORTESTPATTERH BA.RSIZE) [Function]
Displays a pattern of colors on the color display. This is useful when editing a
color map. The pattern has squares of the 16 possible colors layed out in two rows
at the top of the screen. Colors O through 7 in the top row. Colors 8 through 15 in
the next row. Toe bottom pan of the screen is then layered with bars of BAF.sr::z
width with the consecutive color numbers. Toe pattern is designed so ,hat every
color has a border with every other color (unless BA.RSIZE is too large to allow
room for every color - about 20).

(ROT A TE IT BEGINCOLOR ENDCOLOR WAIT) [Function)
Goes into an infinite loop rotating the screen color map. The colors bet\\·een
BEGINCOLOR (default 0) and ENDCOLOR (default maximum color) are rotated. If
WAIT is given, {DISMISS WAIT) is called each time the color map is changed.
This provides an easy way of "animating .. screen images.

Note: The following fimcrion is available in lhe lispusers file COLORPOL YGONS. OCOM.

(COLORPOLYOEMO COLOR.OS) [Function)
Runs a version of the Polygons program on the color screen.

19.50

o-
CHAPTER 20

INTERLISP-D DISPLAY·OJlffi'ITED TOOLS.

One of the greatest strengths of Interlisp·D is rhe window display system. Using this system. a nu::iber
of the existing Interlisp tools have been extended. and some new ones developed. This ch.ap~er describes
some of these tools.

o- 20.1 DEDIT

0

•

DEdit is a strucrure oriented. modeless. display based editor for objects represented as list strucrures.
such as functions. property lists. data values. etc. DEdit is an integral part of the standard Interlisp·D
environmenL

20.1.1 General Comments

DEdit is designed to be the user's primary editor for programs and data. To that end. it has incorporated
the interfaces of the (older) teletype oriented Interlisp editor so the two can be used interchangeably.
In addition. rhe full power of rhe teletype editor, and indeed the full Interlisp system itself. is wily
accessible from within DEdiL

DEdit is structure. rather rhan character. oriented to facilitate selecting and operating on pieces of strucrure
as objects _in their own right. rather than as collections of characters. However. for the occasional situation
when character oriented editing is appropriate, DEdit provides access to the Interlisp-O text edidng
facilities. DEdit is modeless. in that all commands operate on previously selected arguments, rather t.:.i.an
causing the behavior of the interface to change during argument specification.

20.1.2 Operatioa

Q\\C

DEdit is normally called through. of rhe following functions:

(OF FN)

(DV VAR)

(OP N~\.!E PROP)

" .
[NLambda NoSpread Function}

Calls DEdit ou the definition of the function FN •

[NLambda NoSpread Function]
Cal.ls DEdit on rhe value of rhe variable VAR.

[NLambda NoSpread Function]
Calls DEdit on the property PROP of the atom NAME. If PROP is not giYen. the
whole property list of N~WE is edited.

20.l

~··-·

(DC FILE)

Interactive Operation

[NLambda NoSpread Function]
Calls DEdit on the file commands for the file FILE.

DEdit is normally installed as the default editor for ~11 editing operations. including those invc:i::ed by
other subsyste:ns. such as c...i.e Prograrnmer's Assistant and Masterscope. DEdit provides fi.rnctions EF. EV
and E p (analogous to the corresponding Ox functions) for conveniently accessing the teletype editor fro:n
within a DEciit context. e.g. from under a call to DEdit or if DEdit is installed as the defa~lt editor.

The default editor may be set with ED I TMODE:

(ED ITMODE NEWMODE) [Function]
• If NEWMODE is non-NIL. sets the default editor to be DEdit (if z,,-zWMODE is

DISPLAY), or die teletype editor (if NEWMODE is TELETYPE). Returns the
previous setting .

()

..-- . DEdit operates by providing an alternative. plug compatible definition of EDITL (DEDITL). The normal n
user ent.-ies operate by redefining EDITL and then calling the corresponding Edit function (i.e .. OF calls
EOITF etc}. Thus. the normal Edit file package, spelling.correction. etc. behavior is obtained.

If Edit commands are specified in a call to DE DI TL (e.g.; in calls to the editor from Masterscope). DE DI TL
will pass those comrnands to EDITL. after having placed a TTY: entry on EDITMACR0S which will cause
DEdit to be invoked if any interaction with the user is called for. In this way. automatic edits ca:i be ::nade
completely under program control yet DEdit's interactive interface is available for direct user interaction.

(RESETDEDIT) [Function}
Completely reinitializes DEdit. Oases all DEdit windows, so that the user must
specify the window the next time DEdit is envoked. RESETDED!T is also used to
make DEdit recognize the new values of variables such as 0EDITTYPEINC0MS,
when the . user changes them;·

20.1.3 Interactive Operation

_.-., \Vhen DEdit is called for the first time. it prompts for an edit window, which is pres~rved and reused n
far later DEdits. and pretty prints the expression to be edited thereLTJ.. (Note: The pretty prbte:- igr:.ores ,)
user PRETTYPRINTMACROS because they do not provide er.ough structural infarmatic:i during printbg
to enable selection.) A standard lnterlisp-D scroll bar is set up on the left edge of the window and an
edit command menu. which remains active throughout the edit on the right edge. DEdit then goes iuto a
select. commami execute loop. during which it yields control so that background activities. such as mouse
con-unands in other windows. continue to be performed.

20.1.3.1 Selection

Selection in a OEdit window is as follows: the LE FT button selects the object being directly pointed at:
the MIDDLE button selects the containing list: and the RIGHT button extends the current selection to the
lowest common ancestor of that selection and the current position, The only things that may be pointed
at are atomic objects (literal atoms. numbers. eu:} and parentheses. which a.re considered co represent the
list they delimit. White space is not selectable or editable.

When a selection is made, it is pushed on a selection stack which will be the source of operands for

20.2 ()

0

0

-O·

INTERLISP·D DISPLAY-ORIEL"'ITED TOOLS

DEc!it commands. As each new selection pushes down the selections made before it. this s-..ack can
grow arbitrarily de-:p. so only the top two selections on the stack are highlighted on the screen. This
hig.i.lig:.i.ti.ng is do:ie by underscoring the topmost (most recent) selection with a solid black ~e 2.1:d :!le
second topmcst selection with a dashed line. Toe patterns used were chosen so that t...11eir over!a;:pi:.gs
would be b::~ visible and distinct. since selecting a sub-part of another selection is quite co?r..I:J.on.

Because one can invoke DEdit recursively. there may be several DEdit winciows active on me .scree: at
once. T!".is is often useful when transferring material from one object to another (as whc:i redlCCl±g
functionality within a set of programs}. Selections may be made in any ::.ctive DEdit wi."1cow. in a;:y
order. When there is more than one"DEdit window, the edit command. menu (and r..i.e type-ill tJuifer. see
below) v.ill att."3.Ch itself to the most recently opened (or current) DEdit window.

20.1.3.2 Typein

Characters may be typed at the keyboard at any time. This will create a type-in buff er window which
will position itself under the current DEdit window and do a LISPXREAD (which must be te:.:ni.n.!ted
by a right parenthesis or a rerum) from the keyboard. During the read. any chara:ter editing subsystem
(such as TTYrn) that is loaded can be used to do character level editing on the typein. \Vilen the :e:?.d
is complete. the typein will become the current selection (top of stac!c} and be available as an opera=d
for the next command. Once the read is comple~e. objects displayed in the type-in buffer can be selected
from. scrolled, or even edited, just like those in the main window.

One can also give some ed;.ting commands directly into the typein buffer. Typing control·Z will interpret
the rest of t.rie line as a teletype editor command which will be interpreted when the line is closed.
Likewise ... control-S OLD NEW" will substitute NEW for OLD and .. control-F x' will find the next
occurrence of x.

20.1.3.3 Shift-Selection

Often. significant pieces of what one wishes to type can be found in an active DEdit '.\indow. To
aid in transferring the keystrokes that these objects represent into the typein buffer. DEc!it suppcm
shift-selection. Whenever a selection is made in the DEdit window with the left shift. key down. the
selection made is not pushed on the selection stack. but is inste:id unread into the keyboard input (a.c.d •
hence shows up in the typein buffer). A characteristically different highlighting is used to i..nc!icate whe:-i
shift (as opposed to normal) selection is taking place. ·

Note that shift-selection remains active even when DEdit is not. Thus one can unread particularly choice
pieces of text from DEdit windows into the typescript window .

.
20.1.3.4 Commands

. .

A OEdit corr..mand is invoked by selecting an item from the edit command menu. This can be done eitl:er
directly, using the LEFT mouse button in the usual way. or by selecting a subcorruna.-id. Subcommands
are less frequently used commands than those on the main edit command menu and ;,.re grouped tcgct.-:.cr
in submenus ··under .. the command on the main menu to which they are most closely rel.Jted. FL'r
exampic. the teletype editor defines six commands for adding and removing parent.f-tcses (defined in ~e"1':s
of transformations on the underlying list structure). Of these six commands. only two Ur.scrtir.g J..'1d

20.3

Commands

removing parentheses as a pair) are commonly used. so DEdit provides the other four as subco::irnanc!s
of the common two. The subcommands of a comma.,d are accessed by selecting the commar:.d from t..~e
comrn.a."lds menu with..the MIDDLE bunon. This will bring up a menu of the subcor...manc; optic~ from
which a c!lcice can be made. Subcommands are flagged in the list below \\1th the na:ne of t..~e top leYel
command of which they are options.

If one has a large DEdit window, or several DEdit windows active at once. the edit cot:"..:nand v.indow
may be far away from the. area of the screen in which one is operating. To solve this prc'ble::t. the DEc.ic
command window is a "snuggle up" menu. Whenever the TAB key is depressed. t.'1.e cor:-J:1and window
will move over to the curr~nt cursor position and stay there as long as. either the TAB key re:na.i:is down
or the cursor is in the command window. Thus. one c~ "pull" the conunand v.indow · over. s!.ic.e :!:e
cursor into it and then release the TAB key (or not) while one makes a command selection in tb.e normal
way. This eliminates a great deal of mouse movemenL

(l

Whenever a change is made. the prcttyprinter reprintS until the printing stablizes; -As the sta.Ddard pretty (')
print :tlgo:ith.m is used and as it lea-..es no information behind on how it cakes its 6oi::-es.. L11:.s is a ··
somewhat heuristic process. The Reprint command can be used to tidy the ~-ul: u;, if i: is :::iot. b :'2:.::.
··pretty".

All com.manes take their operands from the selection stack. and may push a result back on. In general.
the rule is to select target .selections first and source selections second. Thus. a Replace corr.mand is
c.one by selectbg the thing to be replaced. selecting (or typing) the new material and then butto:u.i.-ig the
Rep 1 ace comm.a.:id in the command menu. Using TOP to denote the topmost (most recent) element of
the stack and NXT the second elemenL the DEdit commands are: ·

After

Before

Delete

[DEdit Command}
Inserts a copy of TOP after NXT.

[DEdit Command]
Inserts a copy of TOP before NXT.

[DEdit Coir.mand]
Deletes TOP from the strucrure being edited. (A copy of) TOP rem::iins on t.'1e

Replace

stack and will appear. selected. in the edit buffer. . . n
[DEdit Co.::ur.a:i.c.] ·

Switch

{)•

(in

) in

Replaces NXT with a copy of TOP obtained by substituting a cc;,y of l't"'XT where\·er
the value of the atom E0ITEMBEDTOlCEN (initially. the & character) appem in
TOP. Titls provides an MBO facility. see Idioms below.

[DEdit Cmr.m.:md]
Exchanges TOP and NXT in the structure being edited.

[DEd.it Con-... ":lar.dj
Puts parenl'.heses around TOP and NXT (which can. of course, be the same element).

[DEdit Co:r ... "Tiand]
Subcommand of () . Inseru (before TOP (like the LI Edit comrn.:md)

[DEd.it Ccrnm.am:!]
Subcommand of (). lnseru) after TOP (like the RI Edit command)

20.4 ()

0

0

---0

0

() out

(out

) out

Undo

!Undo

?Undo
&Undo

Find

Swap

INTERLISP·D DISPLA Y·ORIE!"ITED TOOLS

[DEdit Ccm..-:.andl
Removes parentheses from TOP.

[DEdit Co!l"'~d]
Subcommand of () out. Removes (from before TOP (like the LO Edit cnrrl""!a.t:.C)

[DE:::.it Cc::::-.=..and]
Subcommand of () out. Removes) from after TOP (like the RO Edit cot:ru::.:mc)

Undoes last command.

[DEdit Corn.-:-::mdJ
Subcommand of Undo. Undoes all changes since the start of th.is call on DEc.it.

[DEdit Comxr.J.nd]
[DEdit Commac.c.]

Subcommands of Undo. Allows selective undoing of other than t.be last cocn::nand.
Boch of these commands bring up a menu of all the commands issued during this
call on DEdit. When the user selects an item from this menu. the correspocd.ing
command (and if &Undo, all commands since that point) will be undone.

[DEdit Comm.and]
Selects, in place of TOP, the first place after TOP which matches NXT. t:ses the
Ed.it subsystem's search routine, so suppor-i.s the full wildcarding conventions of
Edit.

[DEdit Coi:r.m.and].
Exchanges TOP and NXT on the stack, i.e. the stack is changed. the strucrure being
edited isn't.

The following set of commands are grouped together as subcmr.mands of Swap because they all ~ect
the stack and the selections. rather than the structure being edited. ·

Center

Clear

Copy

Pop

Reprint

[DEdit Coi:r...::::and]
Subcommand of Swap. Scrolls until TOP is visible in its window.

[DEd.it Co.r..z:::and)
Subcommand of Swap. Discards all selections (i.e., "clears" the stack). ·

[DEdic Coi:r.m.lr:d}
Subcommand of Swap. Puts a copy of TOP into the edit buffer and makes it the
new TOP.

[DEdit Command)
Subcommand of Swap. Pops TOP off the selection stack.

[DEdit Command)
Reprints TOP.

[DEd.it Corr-... -:1.~dj
Runs DEdit on the definition of the atom TOP (or CAR of list TOP). Uses TYPESOF
to detennine what definitions exist for TOP and. if there is more tl:an o:::.e . .isks

20.5

EditCom

Multiple Commands

the user. via menu. which one to use. (Note: DEdit caches e2eh subordinate edit
window in the window from which it was entered. for as long as the h.ig..11.er window
is active. Thus. multiple DEdit coll"..mands do not incur the cost of repeatedly
allocating a new window.) If TOP is defined and is a non-list. c.:tl!s INS?ECT on
ti.'lat value. Edit also has a vanety of subcoi:mnands which allow choice cf editor
(DEdit. Edit. TEdic. etc.) and whether to invoke that editor on tb.e defu::ition of
TOP or the form itself.

[DEdit Cor. ... -nar.dJ
Allows one to run arbitrar/ Edit commands on the strucr.ire being DE•.!:ted it.":.cr~
are far too many of these for them all to appear on t..1.e rr.ain menu). TOP should

n

be an Edit command. which will be applied to NXT as the current Ed.it expression. ·
On return ~o DEdic. the (possibly changed) current Edit expression will be sele-:ted
as the new TOP. Thus, selecting some expression. typing (R FOO BAZ). and
buttoning Edi tCom will cause FOO to be replaced with BAZ in the expression r-\
selected. \)

Break

Eval

Exit

OK
Stop

In addition. a variety of common Edit commands are available as subcommands
of EditCom. Currently. these include ?=. GETD. CL, OW, REPACK. CAP, RAISE.
and LOWER.

[DEdit CoI:"..zandJ
Does a BREAKIN AROUND the current expression TOP. (See page 10.5.)

[DEdit Con1mand]
Evaluates TOP, whose value is pushed onto the staek in place of TOP. and wh.ich
will tb.erefore appear. selected. in the edit buffer.

[DEd.it Command]
Exits from DEdit {equivalent to Edit OK).

. [DEd.it Command]
[DE::iit Cc-I!'..m3!1d]

Subcommands of Exit. OK exits without an error. STOP exits with an error.
Equivale:it to the Edit commands with tlle same names. n

\

20.1.3.5 Multiple Commands

It is cccasionally useful· to be able to give several commands at once - either because one thinks of them
as a unit or because the intervening reprettyprinting is distracting. The stack architect'ure of DEciit makes
such multiple commands easy to construct - one just pushes whatever 'arguments are required for the

• complete suite of commar1ds one has in mind. Multiple co:nmands are specified by holding c.own the
CONTROL key during com..-nand selection. As long as the CONTROL key is down. commands se!ec:ed will
not be executed.. but merely saved on a list. Finally, when a command is selected wit,.1-tout the CONTROL
key down. the command sequence is terminated with that command being the last one in the sequence.

One rarely consaucts long sequences of commands in this fashion. because the feedback of being able
to inspect the i:1termediace results is usually wor..hwhile. Typic:illy. just two or three step idioms are
composed in this fashion. Some common examples are given in the next section.

20.6 (\
\)

0

0

0

0

INTERLISP·D DISPLAY-ORIENTED TOOL.5

20.1.3.6 Idioms

As with uy interactive system. there are certain common idioms on which experienced users de;,eod
he:;...,'ily. Net only is discovering the idioms of a new syste:n tiresom:. but iJ:. places the designer I!"..ay have
assumed fa ... T.iliaa.-icy with one or more of them. so not knowing them can m.u:e life quite unbea.:s.ble. In
the case of DEd.:t. many of tb.ese idioII'.s concern easy ways to achieve the effects of specific com.::n:i:.cs
from t.1le Ed.it syste:n. wiili which many users are already familiar. The DEdit idioms described l:::elo·.,,· re
tii.c result of the e::cpericnce of the e:l.fly users of the system and are by no mc:ir.s exhaustive. In .:.dci:icn
to those th:it each user will deveiop to fit his or her own particular style. there are many more to :,e
d.i.cr.o,·ered and you are encouraged to share your d.i...:.coveries.

Because of the novel atg1Jmcnt specification technique (postfix: target first) many of the DEdit idioms
arc vc-ry simple. but opaque until one has absorbed the "target-source-command" way of loolc.ing Jt t."le
world. Thus. one selects where typein is to go before touching the keyboard. After typing, the urget will
be selected second and the typein selected on top. so that an After. Before or Replace will ha,·e tlle
desired effecL If the order is switched. the command will try to change the typein (which may or cay
not succeed). or will require tiresome Swapping or reselection. Although this discipline seems strange at
first. it comes easily with practice.

Segment selection and II'.aai?ulation are handled in DEdit by first making them into a sublist, so they
can te h:md!ed in the usual way. Thus. if one wants to remove the three elements between A a::d E
in the list (A B C D E), one selects B. then O (either order), then makes them into a sublist with c.'le
"(),. command (pronounced "both in ..). This will leave the sublist (B C D) selected. so a subsequent
Delete will remove it. This can be issued as a single"(): Delete·· command using mulcple comm:md
selection. as described above, in which case the inter:nediace state of { A (B C O) E) will not show on
the screen.

Inserting a segment proceeds in a similar fashion. Once the location of the insertion is selected. the
segment to be inserted is typed as a list (if it is a list of atoms. they c3.Il be typed v,ithout parenc.'1.eses
and the READ will make them into a list, as one would expect). Then. the corr..mand sequence "Aftar
(or Before or Rep 1 ace); () out,. (given either as a multiple command or as two separate commai.ds)
will insert the typein and splic~ it in by removing its parentheses.

Moving an expression to another place in the structure being edited is easily ~con:plisl:ed by a -:e~ete
foilowed by an ir..sert. Select the location where the moved expression is to go to: seiect the expression
to be moved: then give the command sequence .. Delete: After (or Before or Replace}". T:~e
expression will first be deleted into the edit buffer where it will remain selected. The subseque::u inser-Lion
will insert it back L.-ito the structure at the selected location . .
Embedding and extracting are done with the Rep 1 ace command. Extraction is simply a special c3.Se of
replacing something with a subpiece of itself: select the thing to be replaced: select the subpart t.,at is co
replace it: Rep 1 ace. Embedding also uses Repi ace, in conjunction·with c...~e ··embed token·· (the value
of EOITEMBEOTOKE~. initially the single character atom&). Thus. to embed some expression in a PROG.
select the expression; type " (P ROG VARSI.ST &) .. : Rep 1 ace.

Switch can also be used to generate a whole variety of complex moves and embeds. For exa..rnp!e.
switching an expression with typein not only replaces that expression. with the cypein. but provides J copy
of the expression in the buffer. from where it c.in be edited or moved to somewhere else.

Finally, one c:in exploit the st.1ck structure on selections to queue multiple argurr.:encs for a. sccucr.cl!
of commands. Thus. to replace several expressions by one common replacement. select each ~f ~11.e

20.7

D Edit Par:l.Dleters

expressions to be replaced (any number). then the replacing expression. Now hit the Rep 1 ace corr.-.mand
as many times as there are replacements to be done. Each Rep 1 ace will pop one selection off the suck.
leaving the r:1ost ~ently replaced expression selected. As the latter is now a copy of the origiI:21 so ... :ce.
the next Replace will have the desired effect, and so on.

20.1.4 D Edit P:i.rameters

There are several global variables that can be used to affect various aspects of DEdit's operation. Alt."lo:.igh
most have been alluded to above, they are summarized here for reference.

EDITEMBEDTOKEN . [Va.-iable]
Initially &. Used in both DEclit and the teletype editor to indic:ite the special .:itom

n

used as the "embed token".

DEditlingor [\ •. b' l (') ·ana 1e ·

OEOITTYPEI1'COMS

Initially T. The default beha,ior of the topmost DEd.it window is to remain ~tive
on the screen when exited. This is dccasionally inconvenient for programs tl-..at call
DEdit directly, so it can be made to close automatically when exited by setting this
variable to N I L.

[Variable]
Defines the control characters recognized as commands during DEdit typein.
Only accessed when DEdit is initializ.ed, so DEdit should be reinitialized with
(RESETOEDIT} if this is changed.

20.2 INTERACTIVE BIThtAP EDITING

One important concept of the Interlisp-D display system is the idea of a bitmap, a rec:angular array of
bits. While working with the display system. it is extre::iely useful to be able to manipuiate bi~aps.
textures, and cha:acter bitmaps. The followh,g functions provide an easy-to-use interactiv-: edic.rig facility r'\
for various types of bitmaps. · \.)

(EOITBM BITMAP) . [Function]
If BITMAP is a bitmap. it is edited. If BITMAP is an atom whose value is a b:t=.ap.
its value is editec;i. If BITMAP is NIL, EDITBM asks for dimensions and creates
a bitmap. If BITMAP is a region. that portion of (SCREENBITMAP) is usec.. If
BITMAP is a window, it is brought to the top and its contents edited.

ED ITBM sets up the bitmap being edited in an editing window. The editing window has two major areas:
a gridded edit a.re:i in the lower part of the window and a displ.1y area in the upper left part. In the edit
arc:L · the left butto:i will add points, lhc middle button will erase points. The right button p rov1dcs access
to the nonnal window commands to reposition and reshape the window. The actual size bitmaiJ is shown
in the display area.

.
If the bitmap is too large to fit in the edit area. only a portion will be editable. This por..ion c:ir:. be
changed by 5':rolling both up and down in the left margin and left and righ: in the bcmom rr.ar;:n.
Pressing the middle button while in the display area will bring up a menu that allows global placc:1;c:1t of

20.8 ()

0
INTERLISP·D DISPLA Y-ORIEi.'ITED TOOLS

the por-ion of the bitmap being eaited. To allow more of the bitmap to be editing at once. t..i.e wi.nciow
can be reshzped to make it larger or the GridSize+- command described below can be used to red:rce
the size of a bit in the edit area.

Pressing the ciidd!e button while not in either the edit area or the display area (Le. while i:1 the grey area
in tbe upper right or in the title} will bring up a command menu. There are commancs to s:op ed.iQ6'
to restore the tim.ap to its initial sta!e and to c!e:ll' t.i'le bitm~p. Hoiding the middle button dow-::i o,·er a
co~~and will result in an e~la.natory message being printed in the prompt window. Toe co.:-.:na:::.ds are
descri:::ied below:

Ql(Copies the changed image into th.e original bitmap. stops tb.e bitmap editor .'.!.!lei
clos::s the edit windows. The changes the bitmap editor makes dur..ng the L'lte:-...ction
occur on a copy of the original bianap. UrJcss the bitmap editor is exited via OK.
no changes are made in the original.

o·· Stop

Clear

Stops the bitmap editor without making any changes to the original bia:n::i;,.

Sets all or part of the bitmap to 0. Another m_enu will app~ giving a choice between
clearing the entire bit.-nap or just the portion t.i.at is in tl:.e edit area. The second
menu also acts as a confirmation. since not selecting one of the choices on this tr.enu
results in no action being taken.

O'

0

Reset

GridSize+-

ShowAsTile

Paint

CURSOR+-

Sets all or part of the bitmap to the contents it had when EDITBM was called. As
with the Cl ear command. a..other menu gives a choice between. resetting the entire
bitmap or just the portion that is in the edit area. ·

Allows specification of the size of the editi..'lg grid. Another menu will appear gh'ing
a choice of several sizes. If one is selected. the editing portion of the bit:n.ap editor
will be redrawn using the selected grid size. allowing rnore or less of the bitmap to
be edited without scrolling. The original size is chosen hueristica.lly and is typic:illy
about 8. It is particularly useful when editing large bitmaps co set the edit grid size
smaller than L'1e original.

Tesselates the current bitmap in the upper part of the wincow. T.nis is useful for
detennin:ng how a biunap will look if it were made the bac~g=-otui.d (i.:s~g ±e
function CHANGEBACKGROUNO). Note: The tiled display will not autc~ati:::tl:y

. change as the bitmap changes: to update it. use the ShowAsT il e command again.

Puts the current bitmap into a window and call the window PArnT comma..d oc
it. Toe PA INT command implements drawing with various brush sizes and s.::aces
but only on an -actual sized bit.-nap. Tne PA INT mode is left by pressing me RIG.HT
button and selecting the QUIT command from the menu. At c..'1is point. you wia
be given a choice of whether or not the changes you made while in PA HH mode
should be made to the current bitmap.

Makes the lower left part of the bianap become the cu™>r and will prompt you for
the '"hot spot'".

The bitmap editing window can be reshaped to provide more or less room for editing. When this happens.
the space allocated to the editing area will be changed to fit in the new region.

Whenever the left or middle button is down and the cursor is not in the edit area.. the section of t.i.'1e

20.9

Display Break Package

display of the bitmzp that is currently in the edit area is complemented. Pressing the left buc.on w!ille
not in t..1le edit region will put the lower left 16 x 16 section of the bitmap into the c-.irsor for as long as
the left button is held down.

(EDITSHADE

(EOITCHAR

S!£4..DE) [Functionj
OpellS a window that allows the user to edit small texrures (4 by 4) patte~. In t..';.e
edit area. the left bl;tton adds bits to the shade and the middle bu:tc:i e:-.:.S~ b::s
from the shade. The top pan of the window is painted with the C".!rre:i: t~xr~re
wh~nevcr ail mouse keys are released. Tnus it is possible to directly cc=r:.;,ar-e t'.i.o
textures that differ by more than one pixel by holding a mouse key down until ail
changes are made.

If SliADE is a texture object. ED IT SHAO E starts '\\oith ic. otherwise. it starts with
white.

CBARCODE FONT) (Function}n
Calls the bitmap editor (ED ITBM) on the bitmap image of the character CEAJ't.COD'/::

in the font FOI-,"T. CF'...ARCODE can be a character code (as re:u:ned by CH CON 1) or
an atom or string, in which case the first character of CHAR.CODE is used.

20.3 DISPLAY BREAK PACKAGE

The display break package allows easier access to ti.'le information available during a break. by modifying
the function BREAK! to use the window system. It is turned on in the standard system but can be turned
off with the following function:

(WBREAK ONFLG} [Functio;1]
If ONFLG is non-N IL. installs the display break package. If ONFLG is N IL. it
uninstalls the display break package. which makes BREAKl behave as in In:erlisp-
10. WBREAK returns T if the display break package was previously rastalled; NIL
otherwise. ()

The display break package maintains a trace window and as many brea.lc windows as necessary. Wten
a break occ-.1;-s. a break wi...-idow is brought up near th.e tty window of the process t.11at troke and the
terminal stream switched to it. Tne title of the break window is changed to give the name of t.1.e brok~:i
function. t.'1e reason for the break. and the depth of the break recursions. If a break oc::urs under a
previous break. a new bre:uc. window is created.

While in a break window, the middle button brings up a menu of break commands (EVAL. EVAL!. EDIT,
revert. 1', OK, BT. BT!, ac.d ?=). Toe corr..m::mds BT and BT! bring up a backcrace menu beside the
break window showing the frames on the stack. BT shows frames for which REALFRAMEP ls T; BT!
shows all frames. When one of the frames is selected from this menu. it is greyed and the function na."':':e
and the varfables bound in that frame (including local variables :ind PROG variables) are pri:uec in ti.e
.. backtrace frame" window. If the left button is used for the selection. only na.-ned variables are prbte::..
If the middle button is used. all variables are printed (variables i.vithout names will ~9pear as •var• x).
The "backtrace fra.;:ie .. window is an inspect window (see page 10.1:z'). In this window. the ie~~ t-u;::,:,n
can be used co select the name of the function. tl1e names of the variables or the \'alues of t.1e ,·J.ri.Jt-i~s.

After selecting an item, the middle button brings up a command menu of commands t.1at apply to the

20.10

0
INTERLISP·D DISPLAY·ORIEi'ITED TOOLS

selected item. If the function c.ame is selected.. a choice of editing the function or seeing the cotrr;,iled
cede with niSPECTCOOE will be given. If a variable name is selected, the corru:::and SET will be offered.
Selecting SET will READ a value and set the selected to the value read. (Note: The inspector will or-Jy
allow the se:ting of named variables. Even with this restriction it is still possible to crash t:ie syste:n by
setting variables inside system frames. It is recommended that you exercise caution in setting va..-i::.cles in
other than your own code.) If the item selected is a value, the inspector will be called en the se!e::ted
value.

The L."l.tern:tl bre:tlc variable LASTPOS is set to the selected frame of the back!I""...ce menu so that L'1e
normal break comm.?.ncis EDIT, revert, and?= work on the currently sele-=:ed fr-..ce. Tne comrr-~ds
EVAL, revert, 1', OK. and?= in the break menu ~use the corresponding com.manes to be ".:,·ped ln."
Thls mea.'ls that these break commands will not have the intended effect if characters have alre:1dy been
typed in.

(" · The operation of the display break package is controlled by the following variables: v
MaxBkMenuWidth
MaxBkMenuHeight

(Va.•iable]
[Va..-iable]

The variables MaxBkMenuWidth (default 125} and MaxBkMenuHeight (d~fauit
300) control the maximum size of the backtrace menu. If this menu is too small
to contain all of the frames in the b"cktrace. it is made scrollable in both vertical
and horizonr.al directions.

AUTOBACXTRACEFLG [Variab!eJ

BACl<TRACEFONT

If the variable AUTOBACKTRACEFLG is non-NIL (default is NIL). then on error
breaks the command BT is executed automatically.

[Variable]
Toe backtrace menu is printed qi the font BACKTRACEFONT, which is initially
Gacha 8. ·

CLOSEBREAY..WIHOOWF LG [Variable]
The system nonnally closes break windows after the break is exited. If
CLOSEBREAKWiimOWFLG is NIL. break windows will not be closed on exit. ~ate: Q · In this case. the user must close all bres.k wi.J.dows.

0

BREAKREGIONSPEC [Variable}
Break windows are positioned near the tty window of. the broken process. as
determined by the variable BREAKREGIONSPEC. Toe value of this variable is a
region whose LEFT and BOTTOM are an offset from the LEFT and BOTTOM of t.i.e
tty window. The WIDTH and HEIGHT of BREAKREGIONSilEC determine the size
of the break window.

TRACEWINOOW [V<Liable}
Toe tt:ice window, TRACEWINOOW. is used for tracing functions. It is brought up
when the first tracing occurs and stays up until the user closes it TRACEWHWCW
can be set to a panicular window to cause the tracing formation to print out tllr!re.

TRACE REGION [Varfacle]
The trace window is first crcaced in the region TRACEREGION.

20.11

-­.---...

--~·

n
The Inspector

20.4 THE INSPECTOR -

·Toe Inspector provides a display-oriented facility. for looking at and changing arbitrary Interli:.-p-D data
structures. The inspector can be used to inspect all user datatypes and many system datatypes (although
some objects such as numbers have no inspect.able structure). The inspector displays the fi.;:!d names a..:.d
values of an arbitrar.--y object in a window that allows setting of the propenies and fur.he:.- ins;,ec:icn of '"1.e
values. This latter feature makes it possible to "walk" around all of the data structures in the system at
the touch of a buaon. In addition. the inspt.-ctor is integrated with the break package to allow ins~ection
of any object on the S[jCk and with the display and teletype su-ucrural editors to allow the editors to be
used co .. inspect" list strucrurcs and the inspector to "eilit .. datatypcs.

The underlying mechanisms of the data inspector have been factored to allow their use as specialized
editors in user applications. This functionality is described at the end of this section.

Note: Currently, the inspector does not have UNDOing. Also, variabi~ whose values are· changed will nor)
be marked as such.

20.4.1 Inspect Windows

An inspect window displays two columns of values. The lefthand column lists the property names of the
structure being inspected. The righthand column conta1.-is the values of the properties named on the left
For variable length data s-.ich as lists and arrays. the "property names" are numbers from 1 to the length
of the inspected item and the values are the corresponding elements. For arrays. the property names are
the array element numbers and the values are the corresponding elements of the array.

For large lists er arrays, or datacypes with many fields. the initial window may be too small to contain all
of the::n. In these cases. the unseen elements can be scrolled into view (from the bottom) or the wmdow

· can be reshaped to increase its size.

In an inspect window, the LEFT button is used to se!ect things. the MIDDLE button to invoke commands
that apply to the selected item. Any property or value can be selected by pointing the cursor directly at
d:e text representL..g it, and clicking the LEFT bu~on. There is one selected item per window and it is
mar!ced by having its surrounding box inverted. ()

The commands offered by the MIDDLE button depend on whether the selection is a property or a vali..e.
If the selected item is a value, d1e commands provide different ways of inspecting the selected structure.
The exact cor!h"Tiands that are given depend on the type of the value. If the value is a litatcm. the
commands are the types for which the atom has definitions as determined by HASiJEF. Some typical
commands are: ·

FNS

VARS

PROPS

Edit the definition of the selected liratom ..

Inspect the value.

Inspect the property list.

If the value is a list. there will be choice of how to inspect the list:

20.12 n

0

0.

--o·

o-

Inspect

TtyEdit

OisplayEdit

AsPList

AsAList

AsRecord

"a record type"

INTERLISP·D DISPLAY-ORIEi.vrED TOOLS

Opens an inspect window in which the properties are n1.1r::1bers and the values
are t..i.e elements of the list.

Calls the teletype sti.-uctural editor on the list.

Calls the display editor on the list.

(If the list is in P·list form} Inspects the list as a property list.

(If the list is in ASSOC list form) Inspects the list as an association-list.

Brings up a submenu with all of the RECORDS in the system and inspect the list
with the one chosen.

(If the CAR is the name of a TYPERECORO) !nspectS the list as the record of the
type named in its CAR.

If the value is neither a lit.atom or a list. the only command is Inspect. which opens an ins;,ector
window onto the selected value.

. .
If the selected item is a propeny, the user will be asked for a new value and the selec:ed property will be
set to the result of evaluating the read form. Tne evaluation of the read ·form and the replacement of the
se!ected item property will appear as their own history events and are individually undoable. Properties
of system datatypes cannot be set. (There are often consistency requirementS which cJn be inadvertently
violated in ways that crash the system. This may be true of some user datatypes as well.)

20.4.2 Calling the Inspector

The inspector can be called directly. by using the function INSPECT:

(INSPECT OBJECT AST'YPE 'WHERE) a [Function] '
Creates an inspect window onto OBJECT. If ASTYPE is given. it will be ta.lce:i as
the record type of OBJZCT. This allows records to be inspected with t:.'1eir pro;:-ercy
names. [f ASTYPE is NIL. the ciaca type of OBJECT will be used to cieter..'.i:le i:s
propeny nar.1es in the inspect window.

W1i'ERE specifies the location of the inspect window. If WHERE is NIL the user
will be prompted for a location. [f WnERE is a window, it will be used as the
inspect window. · lf wm:F.E is a region. the inspect window will be created in that
region of the screen. If WHERE is a position. the inspect window will have its

·lower left corner at that position on the screen • .
INSP·e:cr returns the inspect window onto OBJECT, or NIL if no inspection t~k
place.

There are several ways to open an inspect window onto an objecL In addition to calling INSPECT
directly. the inspector can also be called by buttoning an Inspect command inside an existi:ig inspector
window. Finally, if a non-list is edited with ED ITV. the· inspector is· called. This also causes the inspec:cr
to be called by the Ded it command from the display editor or the EV command from the st.:inord
editor if the selected piece of structure is a non-list.

20.13

'

.. - ..

Choices Before Inspection
n

(INSPECTCOOE FN) [Function]
Opens a window and displays the compiled code of the function rx using
PRINTCOOE. The windcw is scrollable.

20.4.3 Choices Before Inspection

For some datatypes there is more t..1lan one aspect that.is of interest or more than one method of ins;,ecdng
the object. In these cases. the inspector will bring up a menu of the possibilities and wait for the user to
select one.

For Ii.atoms, the choice includes inspecting its value. its defir.ition. its property list. its MACRO or any other
aspect returned. from TYPESOF'. For BITMAPs. th~ choice is between inspecting the bitmap's contents
with the bitmap editor (ED ITBM) or inspecting the bitmap's fields. For LISTPs, the choice is how to
inspect it and is between a one level inspector, the teletype editor (EDITE} or the display edi:or (OED IT)('\

' /

20.4.4 Red:splaying an Inspect Window

An inspect window is not automatically updated when the structure it is inspecting is changed. The
illspect window can be updated by selecting the "red i s p 1 ay" command from the menu brought up
by pressing the MIDDLE button in the title of the window. The "redi sp1 ay" command will cause the
values of the propenies to be re-fetched from the structure and redisplayed.

20.4.5 Interaction With the Display Break Package

The. display break package knows about the inspector in the sense that the backtrace frame v,"indow is an
· inspect window onto the frame selected from the back trace menu during a break. Thus you can call t."1.e
inspector on an object that is bound on the stack by selecting its frame in the back tra:e menu. selectir:.g
its value with the LEFT button in the back trace frame window, and selecting the inspect command
with the MIDDLE button in the back trace frame window. The values of variables in fra.--:ies ca.-i be set
by selecting the variable name wit.~ the LEFT button and then the ··set" command wit..ri the MIDDL::.--.)
button. ~

Note: The inspector will only allow the setting of named variables. Even with this restriction it is still
possible to crash the system by setting variables inside system frames. Exercise caution in setting variabies
in other than your own code.

20.4.6 . Controlling the Amount Displayed During Inspection
. . . .

The amount of information displayed during inspection can be controlled using the following variables:

MAXINSPECTCDRLEVEL [VariabieJ
The inspector prints only the first MAXINSPECTCDRLEVEL elements of a ~ong list:.
and will make the tail containing the unprinted elements the last item. The l:ist
item can be inspected to see further elements. Initially 50.

20.14 0 .j

0

0

.-.....

0

O·

INTERLISP·D DISPLAY-ORI&'ITED TOOLS

MA.XIMSPECTARRAYLEVEL [Va."iab!e]
T.ae inspector prints only the first MAX INSPECTARRAYLEVEL elemen~ of an
::L'T.lY. Toe remaining elements can be inspec::ed by calling the f..lnction
(rnSPECT / ARRAY A.R..'UY BEGIN0FFSBT) which inspects the BEGr:-:CFFSZT

th..-ough the :SEGIN0FFSET + MAXINSPECTARRAYLEVEL elements of A..R.::U.Y.
Initinlly 300.

INSPECTALLFIELOSFLG [Varfal::leJ
If U!SPECTALLFIELDSFLG is T. the inspector will show compt;ted fie!ds
(ACCESSFHS) as well as regular fields for structures that have a record dd:ticicn.
Initially T.

20.4. i Inspcd: Macros

The Inspector can ce extended to- inspect new structures and datatypes by adding entries to the list
INSPECTMACROS. An entry should be of the form (OBJECTTYPE • !NSPECTINFO). OSJECTTY'P'E: is
used to determine t.i.e types of objects that are inspected with this m:?Cro. If OBJECTT'Yi''E is a litacom..
the INSPECTINF0 will be used to inspect ite:ns whose cype name is O!3JECTTY?S. If OBJECTTY?E is a
LIST of th~ form (FUNCTIOH DATt.."M-.PREDICATE). DATUM-PREDICATE will be APPL Yed to the ice:n
and if it rerums non·N IL. the INSPECTINF0 will be used to inspect the item.

msPEC-:-INF0 can be one of two forms. If INSPECTINF0 is a litatom. it should be a function that
will be applied to three arguments (the item being inspected. OBJECTTYPE, and the value of ',\,'HE'RE
passed to rnSPECT) that should do the inspection. [f INSPECTINFO is not a litacom. it should be a
list of { PR0PEP..Tl:ES FETCHFN ST0REFN PROPCOMZ..!ANDFN VALUEC0MMANDFN TTT!..EC0Y.!>O ... VZ::FN

TITLE SELECTI0NFN WHERE .PRO.PPRINTFN) where the elements of this list are the arguments for
Ii\lSPECTW. CREATE. described below. From this list. the WHERE argument will be evaluated: ti.1.e ochers
will noL If W"'.dERS is NIL, the value of wm:RE that was passed to INSPECT will be used.

Examples:

Toe entry ((FUNCTION MYATOMP} PROP HAMES GETPROP PUTPROP} on INSPECTMACROS would
cause all objects satisfying the predicate MYATOMP to have their properties inspec:ed with GETPROP and
PUTPROP. in.this example. MYATOMP should make sure the object is a litatom.

The entry (MYOATATYPE • MYINSPECTFN) on INSPECTMACROS would ca.use all datacypes of type
MYOATATYPE co be passed co the function f1'YINSPECTFN. . ·

20.4.8 L'lSPECTWs

The inspector is built on the abstraction of an INSPECTW. An I.N·SPECTW is a window with ecru.in
window properties that display an object and respond to selections of the object's parts. lt is characterized
by an objl!ct ,.md its list of properties. An INSPECTW displays the object in two columns with the ;,roperty
names on the left and the values of chose properties on the right. An INSPECiW suppons the ;,rocccol
that the LEFT mouse button can be used to select any property name or property value and :he M 100 LE
burton calls a user proviced function on the selected value or property. For the Inspector application. th:s
function puts up a menu of the alternative ways of inspecting values or of the ways of setting p:-oper.:ies.
INS?ECTWs are created with the following function:

20.15

INSPECfVrs n
(INSPECTW.CREATE DATt"M PROPERTIES FETC:-rFN STOREFN PROPCOMMANDFN VALt"ECOY-'t!AS'DFN
TITLZCO!-.!MANDFN TITLE SELECTlONFN WF.ERE PROPPR..Il'i"TFN} [Functicn]

Creates an INSPECT\'l that views t.Li.e object DATUM. If PROPER.TI:!:S is a LISTP. it
is taken as t..i.e list of propenies of DATUM to display. If PROFEP.TJZS is a:i A. TOM.
it is APPL Yed to DATUM and the result is used as L'lie list of properties to d.;.s;,lay.

FETCZFN is a function of two arguments (OBJECT PROPERTY) that should rerurn ti.i.e value of the
P~OPE:?TYpropercy of oaJECT. The result of this function will be printed (with PRIN2) in t.'le IiiS?ECTW
as the value.

STO?.£;::'N is a function cf three arguments { OBJECT PROPE'RT"f' NEWVAU,"E) that changes L'1e ?ROPERT"'f'

prcperty of OBJECT to N:E:WVALtra. It is used by the default PROPCOl.!MANDFN 2...Tld V.ALt"'ECOM~,!A. ... TIFN
to cha..ge the value of a property and also by the function IHSPECTW. REPLACE (described below).
Tnis can be NIL if t.'le user provides command functions which do not call rnSPECT\\I. REPLACE. &..:h
replace action will be a separate event on the history list. Users are encouraged to pro\'ide UNDO.able
STOP..EFNS. . n
PROPCOMMANDFN is a function of three arguments (PROPERTY OBJECT INSPECTW) which gets called
when the user presses the MIDDLE button and t.'1e selected item in the INSPECTW is a property name.
PROPERTY will be the name of the selected property. OBJECT will be t..'1e datum bei:cg viewed. and
INS?ECTW will be the window. If PROPCOMMANDFN is a string. it will get printed in the PROMPTWINOOW
whe!l t.,e MIDDLE button is pressed. This orovides a convenient way to notify the user about disabied
commands on the properties. DEFAULT .INSPECT\:I.PROPCOMMANDFN. the default PRCPCOMM.A .. .,,,7)FY,
will present a menu with the single command Set on it. If selected. the Set command will read a value
fro:n t.,e user and set the selected propert'J to the result of EVALuating this read value.

VALUECOMMANDFN is a function of four arguments { VALUE PROPERTY OBJECT INSPECTW) that gets
called when the user presses the MIDDLE button and the selected item in the rnSPECTW is a property
value. VALUE will be the selected value (as returned by FETCHFN). PROPE..~TY will be the name of the
property VALUE is the value of, OBJECT will be the datum being viewed. and INSFECTW will be the
INSPECTW window. DEFAULT. rnSPECTW. VALUECOMMArlOfll, the default v~t"ECO.\!M.A."-1=FN, will
present a menu of possible way~of inspecting the value and create a new Inspect window if one of the
menu items is seiected.

TIT!.ECOMUANDFN is a function of two arguments (INSPECTW OBJECT) which gets called. whe:i t.,f!­
user press.es th~ MIDDLE button and the cursor is in the title or border of t.~e inspect window INSPECT'/,)
This co~and function is provided so that users can implement commands that apply to the e::itire object. -
The default TITLECOMMANDFN (DEFAULT. INSPECTW. TITLECOMMANOFN) presents a men'J witll the
single command Red i sp 1 ay and. if it is selected. redisplays INSPECTW (using INSPECTW. RED IS?LAY.
described below).

TITLE specifies,ti.'le title of the window. If TITLE is flIL. the &itle of the window will be the printed fonn
of DATUM followed by the st.1-ing" Inspector". If TITLE is the litatom DON'T, the inspect window wiil
not have a title. If TITLE is any other lit.atom. it will be applyed co· the DATUM and the potential inspect
window (if it is known). [f this result is the litatom DON'T. the inspect window will not h:i.ve a title:
otl1erwise the result will be used as a title. [f TITLE is not a litatom. it will be used as the title. ·

SELECTIONFN is a function of three arguments (PROPERTY VALu'E'FLG INSFECTW) which gets called
· when the user releases the left button and the cursor is on one of the items. The SELECTIONFN aliows a
program to take action or:. the uscr"s sclectio.i of an item in the inspect window. At the tim~ t..'1is fur.-::.:1..m
is called. the selected item has been .. selected ... The function rnSPECTW. SELECT ITEM (described bdow)
can be used to cum off this selection. PROPERTY will be the name of the propeny of the se!ected ite:n.

20.16 ()

0

U---.. .

INTERLISP·D DISPLAY·ORIEJ.'ITED TOOLS

VALVEFLG will be NIL if the seiected item is the property name; T if the selected item is the property
value.

WEZaE ind!:ates where the inspect window should go. Its interpre:ation is described in INSPECT (page
20.13). •

If non-NIL. r'ROPPRil•rTFN is a function of two arguments (PROPERTY DAT'Ci7.!) which gets c:illed to
detenrJne what to print in the property place for the property P.l'lO.?ERTY. If PROPPP.INT7N returns N ! L.
no property name will be printed and the value will be printed to the left of the other val~es.

An inspect window uses the following window property names to hold infonnation: DATUM. FETCHFN.
STOREFN. PRO?COMMANOFN. VALUECOHMANOFN. SfLECTIOHFN. PROPPRINTFN. IlJSPECTWTITLE.
PROPERTIES. CURRENTITEM and SELECTASLEITEMS.

(IHS?ECTW. REDISPLAY INSPECTW PROPERTY -) [Function]
Updates the display of the objects being inspected in INSPSCTW. If PROPERTY is
a propercy name or a list of property names. only those properties are updlted. If
PROPERTY is NIL. all properties are redisplayed. This function is provided because
inspect windows do not automatically update their display when the object t.'1ey
are showing changes.

1bis function is called by the Redisplay comm.and in the title command menu
of an INSPECT\~.

(INSPECi\ll. REPLACE INSPECTW PROPmTY N'EWVALVE) [Fu:cction]
Uses the STOREFN of the inspect window INSPECTW to ch~"lge the property named
PROPERTY to the value NEWVALUB and updates tl!e display of PROPERTYS value .
in the display. This provides a functional interface for use::- PROPCO.',f;l,{A."IDFNS ..

(.INSPECTW. SELECT ITEM INSPECTW PROPERTY VALVEFLG) {Function]

20.5 CHAT•

Sers the se!ected item in an inspect window. The ite:n is inverted on the cispiay
and put on the window propercy CURRENT ITEM of INSP'ECTW. If ~-s?EC~W has
a CURRENT ITEM. it is deselected. PROPERTY is the name of the proper:y of the
selected item. VALUEFLG is NIL if the selected item is the property came: T if ti-:e
selected item is the property value. If PROPERTY is NIL. no item will be selected.
(Tnis provides a way of deselecting items.}

CHAT is a .. remote terminai" facility. that allows one to communicate with ·other machines while ir.sic!e
{nterl-isp-D. The function CHAT sets up a "Chat connection.·· to a remote machine. so that everyti".L-ig you
type is sent to the a remote machine. and everything the remote.machine prints is displayed in a ·'Chat
window ... The remote m:ichine must support the Pup Telnet protocol.

Multiple simultaneous Chat connections are possible. To switch between typing to different Chat
connections. simply button within the Chat window you want to use. CHAT prompcs for a new wmdow
for each new connection. except that it saves the first window co reuse once the connection in that window
is closed (otb.er windows just go away when their connections arc closed}.

20.17

,.--~-~.

CHAT

CHAT behaves as if its Chat window is a Datamedia:2500 terminal of the dimensions detenr.lned by the
size of the window. Hence. you can talk to hosts that supply Datamedia service and e"'Pect something
re2.scnable to happen. If the host does -not pay attention to the CHAT termi.I.al specifcation protocol or
you go L.i:troug.'l that h'Jst to another hos:. you may need to inform tb.e host of t..'le d.imer..sio:.s of your
"screen"; these are given in the title bar of the chat window. The font should be Gachal0 or ot..~er
fixed-widu'l font for proper Datamedia emulation.

(CHAT HOST LOGOPTION INITSTP.EAM WINDOW -) [Fu:::.ctionJ
Opens a Chat connection to f!OST. or to the value of OEFAULTCHATHOST. If
F.OST requires login. as determined by whether it responds to the "'where is u::.er"
protocol. CHAT supplies a login sequence. or if it deterniines that you have a single
detached job. an attz.ch sequence. If you haYe more than on-e de:.:iched job. it
sL-nply performs a WHERE IS ccmmand for you and allows you to selt..-ct the job.
You may alternatively specify one of the following values for LOGOPTio~-:

LOGIN

ATTACH

GUEST

NONE

Always perform a login. n
Always perform an attach. This will fail if you do not have
exactly one detached job.

Login as user GUEST. password GUEST.

Do not attempt to login or attach.

If INITSTREAM is supplied. it is either a string or the name of a file whose contents
"'ill be read as typein. When the string/file is exhausted. input is taken from T.

If WINDOW is supplied.. it is a window to use for the connection; otherwise. the
user is prompted for a window.

While CHAT is in control all Lisp interrupts are rumed off. so that control characters C2.I1 be tran.Smined
to the remo:e host.

Cmr.mands can be given to a.'l. active Chat connection by bugging the MIDDLE button in the Chat window
to ger. a. command menu. Current commands are:

Cl o s e Oose this connection. Once the connection is closed. control is handed over to thLJ
main tty window. Closes the window unless this is the primary Cna.t window.

Suspend

New

Freeze

Dribble

Input

Same as Close. but always leaves the window open.

Oases the current connection and prompts for a new host to which to open a
connection in the same window.

.
Hold typeout from this Chat window. Bugging the ~ndow in any wa-,Mreleases :he
hold. This is most useful if you want to switch to another. overlapping window
and there is cypeout in this window that would compete for screen space.

Open a typescript file for this Chat connection (closing any previous dribble file
for the window). The user is prompted for a file name: a name of NIL just doses
the old dribble file.

Prompts for a file to take input from. When the end of the file is reached. input

20.18 ()

0

O'

6

0

Clear

. .

INTERLISP·D DISPLAY·ORffi'VTED TOOLS

reverts to T.

Qecrs the window and resets the simulated terminal to its default state. Th.is is
useful if undesired temililcl. commands have been received from the remote host
that place the simulated termi::l.al into a funny state.

In an in.active Chat wic.dow, the MIDDLE button brings i:p a menu of one ite:n. ReCo:rnect. whose
selection reopens a connection to the same host as was last in the window. This is t..,.e pril:l:!.-y :::ioti-.,-acion
for the Sus~end menu conm1and. A new Chat connection can also be opened from the Backgro1,;x:d
menu~

The mouse button LEFT. when inside CEAT. holds output as long as the button is down. Holc.ing down
MIDDLE coincidentally does this. too, but not on purpose: since the menu handler does not yield contrcl
to other processes. it is possible to kill the connection by keeping the menu up too long.

Chat windows are a little bit knowledgable about window operations. If you reshape a Chat window.
Chat informs your par-..ner of the new dimensions. And if you close the window. the connection is also
closed.

The following variables control aspects of Chat's behavior:

CHAT. OISPLAYTYPE [Variable]

CHAT.ALLHOSTS

Toe type of display (a number) that Chat should tell the remote host the user is
on. If Datamedia emulation is desired, this variable should be set to the nurni:er
corresponding to the terminal type Datamedia for the remote host. If the remote
host does not respond to the terminal type protocol 1.n Pup Telnet. this variable is
irrelevant.

[Variable]
A list of host names. as uppercase litatoms.. that the user desires to Chat to.
Chatting to a host not on the list adds it to the list. These names are placed in r.i.1.e
menu that the bac.kground Chat command prompts with.

CLOSECHATWINOOWFLG [Variable]
If true. every Chat window is closed on exit. If NIL. the initial set""J.ng. then t.11e
primary Chat w~dow is not closed.

OEFAULTCHATHOST [Va..riab:ej
Toe host to which CHAT connects when it is called with no HOST arg,.mient.

CHAT. FONT [Variab!ej
If non-NIL. the font that Chat windows are created with. If CHAT. FONT is ~~IL.
Chat windows are created with {DEFAULTFONT 'DISPLAY).

20.6 THE TEDIT TEXT EDITOR

TEdit is a window-based. modcless text editor. capable of handling fonts and some rudimentary form:ming.
Text is selected with the mcuse. and all editor operations act on the current selection.

20.19

r·
!

n
The TEdit Text Editor

The top-level entty to TEdit is:

(TEO IT TEXT WiNDOW DONTSPAWN PROPS) [Functioc]

..

TEXT may be a (litatom) file ttame, an open STREAM. a string. or an arbi=-ar-1
[MKSTRING-able] Lisp object. Toe text is displayed in an editing window. and r..ay
be edited t..i.ere. If TEXT is other than a fiie name. a ST REA~. or a st.i..:.:ug. iED IT
will call MKSTRHlG on it. and let you edit the result.

If ·w1NDOW is NIL. you will be prompted to create a v.indow. If wrNoow is
non·N IL. TED IT will use it as the window to edit in. If ,,vrr-.-z,ow has a utle.
TEO IT will preserve it: otherwise. TEO IT will provide a descriptive title for t.i.e
window.

TEO IT will normally spawn a new process to run the edit. so you C.lil edit in
parallel with other work: indeed. it is possible to have several editing window~~
active on the screen. To prevent a new process from being created. ccll TEO IT\)
with DONTSPAWN set to T. .

PROPS is a prop-list-like collection of properties which control the editing session.
The following options are possible:

FONT

QUITFN

LOOPFN

CHARFff

SELFN

TERMSA

READONLY

SEL

AFTERQUITFN

The default font to be used in the edit window.

A function to call when the user Qui ts.

A function to be called each time thru the character-read
loop .

A function to be called for each cha..""ac:er typed in.

A function to be called each time a mouse selection is made
in this edit window.

If you want characters displayed other than TEdit's default
way, set this to a character table. n
If this atom is present anywhere in the list of PROPS, then t:.'le · ·
edit window will be read-only, Le .. you can ociy shi.ft-sel~t
~~ .

..
Tells what text should be selected initially. This ca.., be a
SELECTION (see below) describing the selected text. or a
character number, or a two-element list of first character
number and number of characters to select.

D~scrihes the menu to be displayed when the. M !ODLE
mouse button is pressed in the edit window's title rcg:on. if
it is a MENU. that menu will appear. [f it is a list of menu
items. a new menu. will be constructed.

A function to be called after TEdit has quit. Tnis can be
used for cleanup of side-effects by TEdit client-progra.-ns.

20.20

o-
INTERLISP·D DISPLAY·ORIE.VfED TOOLS

REGION -

TITLEMENUFH

20.6.1 Se!ecti::g T e."tt

A window-relative region: TEdit will use only that portion
of :he window to dispiay tex: &c. This is for people who
want TEdit for filling in forms. etc.

A function· to get called instead of brin.ging up tte uS"..ial
TEdit command menu when the u..cer LEFT· or MIDDLE·
buttons in the edit wi.!l.dow·s title region.

TEdit works by operating on .. selected.. pieces of te:ct. Selected text is highlighted in some way. and
may have a caret flashing at one end. Insertions go where the caret is; deletion and other operations are
applied to the currently selected tcxl

Q Text is selected using the mouse. There are two regions within an edit window: The area contai.nbg text.
and a .. line bar" just inside the left edge of the window. While the mouse is inside the text region.. the
cursor is t.h.e nom-!31 up-and-left pointing arrow. When the cursor moves into the line bar. it changes to
an up-and-right pointing arrow. \Vhich region th.e mouse is in detennines what kind of selection r~ppens:

0

The LEFT mouse button always selects the smallest things. In the text region. it selects the cha..'":lC:er
you're pointing at: in the line bar. it selects the single line you're pointing at.

The MIDDLE mouse button selects·larger things. In the text region. it selects the word the cursor is over.
and in the line bar it selects the paragraph the cursor is next to.

The R !GHT button always extends a selection. The current selection is extended to include the
charac:er/word/line/paragraph you are now pointing at. For example. if the existing selection was
a whole-word selection. the extended selection will also consist of whole words.

There are special ways of selecting text which carry an implicit command with them:

If you hold :he CTRL key down while selecting text. the text will be shown white-on-black. When you
release the CTRL key, the selected text will be deleted. You can abort a CTRL-selection: Hold down a
mouse button. and release the CTRL key. Then release the mouse bunon.

Holding the SH I FT key down while making a selection causes it to be a .. copy-source .. selection. A copy
source is r.iarked wiu'l a dashed underline. Whatever is selected as a copy source when the SH I fT key
is released will be copied to where the caret is. Tnis even works to copy text from one edit window to
anotb.er. You can abort a copy: Hold down a mouse button. and release the SHIFT key. T.1en release
the mouse button.

Holding the C~RL' and SHIFT keys down while making a selection causes it to be a ··move .. selection.
which is marked by making it veverse video. Whatever is selected as a•"move .. so..urce when the CTRL
;ind SHIFT keys are released will bl! moved to where the caret is. This even works to move t•!xt from
one edit window to another. You can abort a move: Hold down a mouse button. and release the CTRL
and SHIFT keys. Then release me mouse button. lfthc va.m.ble TEDIT.BLUE.PENDING.DELETE ts
non-NIL. extending a selection will display the selection as white-on-black. The next time someL.~ing ts
typed. the selected text will be deleted first. ·

20.21

I _.--..,

()
Editing Operations

20.6.2 Editing Operations -

Inserting text: Except for command cha.racters, whatever is typed on the keyboard gets inserted where the
caret is. The BS key and control-A both act as a backspace, deleting the character just before the caret.
Control· W is the backspace-word command.

Deleting Text: Hitting the DEL key causes t,.i.e currently-selected text to be deleted. Altern.a.tively, you
can use the CTRL·selection method described above.

Copying Text: Use SHIFT-selection. as described above.

Moving Text: Use CTRL·SHIFT·selection.

Undoing an edit op(lration: The top blank key is the Undo key. It will undo the most recent edit
command. Undo is itself undo-able. so you can never back up more than a single conunand. n
Redoing an edit operation: The ESC key is the Redo key. It will redo the most recent edit command
on the current selection. For example, if you insen some text. then select elsewhere. hit"Jng ESC will
insert a copy of the text in the new place also. If the last command was a delete. Redo will delete t.11.e.
currently-selected text: if it was a font change, the same change will be applied to the current seiection.

The command menu: You can get command menus by moving into the edit window's title region
and hitting the RIGHT or MIDDLE mouse buttons. RIGHT gets the usual menu of window COIIllr.ands.

MIDDLE gets a menu of editor commands:

Put

Get

Include

Quit

Find

Substitute

Looks

Hardcopy

Causes an updated version of the file to be written. Tedit will ask you. for a file
name, offering the existing name (if any) as the default.

Lets you read in a new file to edit, without saving the one you "'-ere working on.
You'll be asked for a file name in the prompt window.

Lets you copy the contents of a file into the edit window, inserting it where the
caret is.

Causes the editor to stop witi.,out updati..-ig the file you're editing. If you haYen·rr'\
saved your changes. you ·n be asked to confirm this. \ _)

Asks for a search string, then hunts from the caret toward the end of document
for a match. Selects the first match found: if there is none. not.lting happens.

Asks for a search string and a replacement string. Within the current selection. all
instances of the search string ware replaced by the replacement string. If you wish.
TEdit will ask you to confirm each replacement before acwally doing it.

Changes the character looks of the selected characters: Tne font. character size.
and face (bold. italic. etc.). Three menus will pop up in sequence: One to select
the font nan1e. one to select the face. and one to select the size. You may select an
option in each menu. If. for example. you want to leave the char:lcter size alone.
just click the mouse outside the size menu. ln general. any aspect of the character
looks that you don'.t change will remain the same.

Prints the document to your default press or lnterPrcss primer. with 1 inch m.1rgins

20.22 0

0

0

0

Press File

INTERLISP·D DISPLAY-ORIENTED TOOL.5

all around: The function PRINTERMOOE controls which kind of printer TEdit will
send to.

Cre~tes a Press or lnterPress file of the document. with l inch ~_ns all around.
Tne fila format is also controlled by PRINTERMODE.

20.6.3 TEd!t Ft!:lc:tional Interface

Toe Text Stream

TEdit keeps a STREAM which describes the current state of the text you're editing. You C3ll use most of
the usual strea..-n operations on that stre:un: BIN, SETFILEPiR. GETFILEPTR. GETEOFPTR. BACKSrn.
and PEE KB IN do the usual things. BOUT inserts a ch.iracter in the stream just in front of the next cha::icter
you'd read if you B UJned. You can get the stream by (WINOOWPROP Edi~WINDOW 'TEXTSTREAM).

If you need to save the state of an edit. you can save this stream. Calling TED IT with the st.ream as the
T!:XT argument will let you continue from where you left off.

The "Text Object"

TEdit keeps a variety of ot.i.er information about each edit window. in a data strucmre called a TEXTOSJ.
Field F3 of a text STREAM points to the associated TEXTOBJ. which contaiDs these fields of interest:

\WrnCOil

SEL

SCRATCHSEL

TEXTLEN

The edit window which contains the text. If this is ru L there is no edit window
for this text.

The most recent selection made in this text.

A scratch SELECTION. used by the mouse handler for the edit window. but
otherwise available for scratch use.

The current length of the edited text.

STREAMHINT Points to the text STREAM which describes the text.

E"DITFINISHEDFLG

Selections

If this is non-N IL. TEdit will halt after the next time through the keyboard polling
loop. No check will be made for unsaved changes. Unless it is- T. the· value of
EDITFINISHEDFLG will be rerurned as the result ofTEdit.

The selected text is described by an object of type SELECTION. whose fields are as follows:

CH#

CHLIM

OCH

The character number of the first char:icter in the selection. The first character in
the text bci~g edited is numbered L

The character number of the last character in the selection. Must be 2: CH#.

The number of characters in the selection. If OCH is zero. then no charac:ers are
selected. and the Selection can be used only to describe a place to insert tc:tt

20.23

r---.

ONFLG

\TEXT08J

XO

YO

XLIM

YLIM

ox

SELOBJ

POINT

SET

SELKIND

HOW

HOWHEIGHT

HASCARET

()
TEdit Interface Functions

Tells whether the Selection is indicated in the edit window. If T, it is; if NIL. ifs
not.

The TEXT0BJ that describes the selected text. You can use this to £et to the . -
Stream itself.

T.ne X position (edit-window-relative) of the left edge of the first selected character.

The Y position of the bottom of the first selected character (not the ch:?.r:i.c:er' s
base line. the bottom of its descent).

The X position of the right edge of the last character selected. If OCH is zero (a
.. point" selection), XLIM=XO.

The bottom of the last ch;iracter in the selection. n
The width of the selection. If OCH is zero, this will be also.

This is for a future object-oriented editing interface.

Tells which side of the selection the caret should appear on. It will be one of the
atoms LEFT and RIGHT.

T if t..'us selection is currently valid, NIL if it is obso!ete or has neYer been set.

What kind of selection this is. One of the atoms CHAR, WORD, LINE, or PARA.

A TEXTURE. which will be used to 1:-Jghlight the selecton.

How high the highlighting is to extend. A selection's highlight startS at the bottom
of the lowest descender. and extends upward for HOWHE IGHT pixels. To always
get highlighting a full line tall. set this to 16384.

T if this selection should have a caret flashing next to it. NIL otherwise.

20.6.3.1 TEdit Interface Functions

TEdit exporu the following functions for use h"l custom interfaces:

(0PENTE.XTSTREAM TEXT WINDOW START END PROPS} [Function]
Creates a text STREAM describing TEXT. and returns it. If WINDOW is s:,eci..=ed.
the text will be displayed there. and any changes to the text will be reflected :.1:.ere

• as they happen. You will also be able to scrpll the window and select thir:.gs t."le::-e
as usual. TEXT may be an existing TEXT0BJ or text STREAM. If START and E.';"D

are given, then only the section of TEXT delimited is edited. PROPS is the sa.-ne .:lS

for TEDIT.

Given the STREAM. you can use a number of functions to change the text in an
edit window. under program control. The edit window getS updated as the text is
changed.

20.24 ()

0

0

.-
0

0

(TEOIT.SETSEL

INTERLISP-0 D£SPLAY·OR.IL.~D TOOLS

STREAM CH#orSEL LEN POINT) [Functio:i]
Sets .h~ selec:ion in STREA.\!. If Cii#orSEL is a SELECTION, it is use:i :?S·is.
Otherwise. CH#orSEL is the first c!laracter in the sel~::ion., and I.EN is the :iu=ber
of characters to sekct (zero is allowed. and gives just an insertion poir.t). PCrNT
tells which side of the selection the caret should ccme on. It must be one cf tte
atoms LEFT or RIGHT.

(TEDIT .GETSEL s-ras.,w) [Function]
Rec-Jrns cr.e SELECTICU which describes the current selection in the edit window
d~cribed by STREAM".

(TEDIT.SHOWSEL STREAM ONFLG SE'L) (Func:.:.onJ
Lets you tum the highlighting of the selection SEL on and off. If or.TLG is T.
the selection SEL. in STRE.A..V will be highlit in the edit wind.ow: if N I L. .l.'lY
highlighting will be rurned otf. If SEL is ri IL. it defaults to c.'1.e current"select.ion
in STREAM.

(TED IT. INSERT STREAM TEXT CH#orSEL) [Function]
Insert.s the string TEXT into STREAM. as though it had been typed in. CH#orSEL
tells where to insert the text: If it's NIL. the text goes in where the caret is. If
it's a FIXP, the text is inserted in front of the corresponding character (The first
cha..--acter in the stream is numbered 1). If it's a SELE CT ION. the text is i:!..serted
accordingly.

(TED IT. DELETE STREA...\! CH#orSEL LEN) [Function]
Deletes text from STREAM. ff CH#orSEL is a SELECTION, the text it describes will
be deleted: if CH#orS'EL is a FIXP, it is the character number of c..'1e first ch~ter
to delete. In that case, LEN must also be present: it is the number of characte~ to
be deleted.

(TED IT. Frno STREAM TEXT CH#) [Function]
Seait:hes for the next accurence of TEXT inside STREAM. If CE# is present. the
search starts there: otherwise. the search starts from the c2.ret. rr it finds a rr:.atc!l.
TED IT. F !ND rerurns the character number of the first c.'1.arac:er in ::he ::ia::::i:ng
text. If no match is found. it returns r.l IL.

(TEOIT. HARDCOPY STREAM ·"'ILE DONTSEND BREAKPAGETlTI..E) [Func:ionl
Sends the text contained in STREAM to the printer. If a fiie name is gi\·en in FILE.

the press file will be left there for you to use. If DONTSEND is non-~lIL. the fJe
will not be sent to the printer. use this if you only want to create a press fiie for
later use.

If BREAKPAGETITLE is non-NIL, it is used as the title on the .. break page .. printec!
before the text. •

(TED IT. LOOKS STREAM NEW!.OOKS SELORCH;/p LEN) [Function]
Changes the character looks of selected characters. e.g.. the font. character size.
etc. SELOF.CI'I# c:in be a s ELECT I ON. an integer. or NIL. [f SELORCE'= is
a SELECTION. the te:ct it describes will be changed: if it is a FIXP. it is the
character number of the first character to changed. ln that case. T..EN must also be
present: it is the number of characters to be changed.

20.25

,..,..------ ..

TEdit Interface Functions
Cl

NEWI..OOKS is a properr-1-list-like description of the changes to be mace. T.1.e
property names tell what to change. and the property values describe the cha.--;.£e.
Any property which isn't changed explicitly retains its old value. Thus. it is ;,ossi:ie
to make a piece of text all bold without changing tb.e fonts the text is in. T:'le
possible list entries are as follows:

FAMILY

FACE

SIZE

UNOERLUlE

OVERLINE

STRIKEOUT

SUPERSCRIPT

SUBSCRIPT

PROTECTED

SELECTPOINT

Tne name of the font family. All the selected te~t is cr-ac.ged
to be in that font.

The face for the new font. This may be in either of ,he
two fon:::1s acceptable to FOrHCREATE: a list su::h .?S (BOLD
ITALIC REGULAR). or an atom such as MRR.

The new point size.

The value for this property. must be one of th~ atotr-S ON oC-)
OFF. The text will be unders:ored or net. accorcfu:gly. · ·

The value for this property must be one of the a~rr--S ON or
0 FF. Toe text will be overscored or not. accorcii.ngly.

The value for this property must be one of the atoms ON or
0 FF. The text will be stnlck through with a single li::e or
not. accordingly.

A distance, in points. The text will be raised above the
normal baseline by that amount. This is murually exclusive
with SUBSCRIPT.

A distance. in points. The text will be raised above t!le
normal baseline by that amount. This is mutually e~ch!sive
with SUPERSCRIPT . ..
The value for this property must be one of the atoos m1
or OFF. If it is ON. the text will be protected from ::muse
selection and from deletion. n
Toe value for this prcperty must be one of the ai:ocs ON
or OFF. If a character has this property, the user can make

· a point selection just after it. even if L."le charac~er is a!.so
PROTECTED.

{TEDIT.QUIT STP..EA..\f VALL"E) [Function)
STR.EA..\f must be the t$:Xt stream associated with. a running TEd.it. TED r T • Q u IT
causes the editing session to end. If VALUE is given. it is returned as TEd.ifs res:1!t:
otherwise. TEdit will return the usual result. TI1e user is not asked to confirr:1 h:s
desire to stop editing.

(TEOH .AOD.MENUITEM MENU ITEM)
· Ades a menu ITEM to MENU. This will· update the menus unage

newly-added item will appear the next time the menu pops up.
guaranteed to work right with pop-up menus which aren·t visible.

20.26

[Fun::tionj
so t.1at ti:e

This is only

()

,··'-. u

0

L.'ITERLISP·D DISPLA Y·ORIEl'ITED TOOLS

(TED IT-. REMOVE. MENU ITEM MENU ITE.\l) [Function]
Removes a menu ITEM from MENU. Tnis will update the menu's image so .!lat
the newly·added item will appear the ne:.t time the menu pops up. This is only
guaranteed to work right wit.'1. pop-up menus which aren't visible. !'I'ZY. may be
either the whole me::iu ite:n. or just the indicator which appears in the menu's
image.

20.6.3.2 User-function .. Hooks" in TEdit

TEdit provides a number cf hooks where a user--supplied function can be called. To s-.ipply a func:ion.
attach it to the edit window under the appropriate indicator. using WINOOWPROP. Every user·su;,piled
fu~C9..ion is APPL Yed to the text STREAM whlch describes the text. Some of ti.'lese functions c::i.."l also be

. SUi'.)plied usin5 the PROPS argument to TEO IT or OPENTEXTSTREAM; the descriptions be!aw cont:ilil. the
details.

TEDIT .QUliFll [Window Property]
A function to be called whenever the user ends an editing session. This may do
anything; if it returns the atom DON ' T, TEdit will not terminate. Any other resuit
permitS TEdit to do itS normal cleanup and termination. This can aiso be supplied
using the PROPS argument to TEDIT or OPENTEXTSTREAM.

•
TEDIT .AFTERQUITFN [Window Property]

A function to be called after the user ends an editing session. This may perform
any cleanup of sic!e effectS that you desire. This can also be supplied ustig t..11.e
PROPS argument to TEDIT or OPENTEXTSTREAM.

TED IT. CMD. LOOPFN [Window P:'c?ert:,-J
A function that getS called. for effect only, each time through. TEdit"s u:.a.in
command loop. This can also be supplied using the PROPS argument to TED IT
orOPENTEXTSTREA~

TED IT. cr.m. CHARFN [\Yindow Property]
A function that gets called, for effect only, once for e:?Ch character typed inm
TEdit. The character code is passed to the function as itS second argument. Tbs
can also be supplied using the PROPS argument to TEOIT or OPE~HEXTSTREAM.

TED IT. CMD. SELFN [Window· Proper.;]
A function that gets called. for effect only, each time the user seieccs some~ir:g
with the mouse. The new SELECTION is passed as the function·s second ir;um-:?nt.
and an atom describing the kind of selection (one of NORMAL. COPY. MOVE. or
DELETE) as the third. This can also be supplied using the PROP? argume:1t to
TED IT or OPENTEXTSTREAM.

TEDIT.PRESCROLLFN (\Vindow Propi:rcy I
CJ.I.led just before TEdit scrolls the edit window.

TEOIT.POSTSCROLLFN [Window Property]

TEDIT.OVERFLOWFN

Called just after TEdit scrolls the edit window.

[Window Property j
Called when TEd.it is about co move some text off-screen. This function m:iy

20.27

Ch:inging the TEdit Command Mecu

handle the text overflow itself (say by reshaping the window). or it may let TEdit
take its normal course. If the function handles the proble:n. it must ret".lr:l a
[.l.on·N IL result. If TEdit is to handle the overflow, the value rer:--.lmed m:ist be
HIL •.

TEDIT. TITLEME1lUFN [Window Proper:yJ
Called whenever the user presses the LEFT or MIDDLE mouse bu~mn in c.~e edit
window's title region. Can also be supplied using the PROPS argu."Ilent to TEO IT
or OPENTEXTSTREAM. Normally, this is the function TEDii .DEFAULT .HENUFN.
which brings up t.'1c usual TEdit ccrrunand menu.

TEdit also saves pointers to its data strucrures on each edit window. They are available for any user
function's use.

TEXT09J
The TEXTOBJ which describes the current editing session.

[Window Property}-

\)
TEXT STREAM [Window Property]

The text STREAM which describes the text of the document.

20.6.3.3 Cnanging the TEdit Command Menu

You may replace the MIDDLE-button command menu with one of your own. \\'hen you press the MIDDLE
button inside an edit window's title region. TEDIT calls the value of the TED IT. TITLMENUFN window
propeny with the window as its argument. Normally, what gets called is TED IT. DEFAULT. MEPWFN. but
you may change· it to anything you like.

TEDii .DEFAULT .MENUFN brings up a menu of commands. If the edit window has a proper:y
TED IT .MENU. that menu is used. If not. TEdit looks for the window property TED IT .MENU. COMMANDS (a
list of menu items) and consu-i.1cts a menu from that. Failing that. it uses TED IT .DEFAULT .MENU.

This means that you can control the command menu by setting the appmpriate window properties.
Alternatively, you may add your own menu buttons to the default menu. TED IT. DEFAULT. ME~lU.

(TiDIT.AOO.MENUITEM TEDIT.DEFAULT.MENU ITEM)

will add ITEM to the TEdit menu. Menu items should be in the form { NAME FUNCTION). :,a,-here NA.,.ra
is what appears in the menu. and FUNCTION will be applied to the text stream. and can perforr:i any
operation you desire.

Finally, you may remove menu items from the default menu. by doing
.

(TEDIT.REMOVE.MENUITEM TEOIT.OEFAµLT.MEN~ IT~~)

ITEM can be either a complete menu item.' or just the text that appears in the menu; either will do the
job.

20.6.3.4 Vari:ibles Which Control TEdit

There are a number of global variables which control TEdit. or which conmin state infcrmation for edic.:-ig

20.28 n

0 INTERLISP·D DISPLAY-ORIE.L'ITED TOOLS

sessions in progrec-...s:

TEO IT. BLUE. PENOIHG. DELETE [Va..tjable]
If t.i.'1.is is non·N IL. extending a selection makes it into a pending-delete s.election.
See the selection section. ~

TEO IT. DEFAULT. FONT r'{anablej
A FOrHDESCRIPTOR. This is the font for displaying TEdit doc:-.m1ents which don·t
s;edfy u'leir own font information.

TED IT .DEFAULT. FMTSPEC [Variable]
A paragraph-looks description. This contains the default !coks for a paragraph..

TED IT. SELECTIOH [Variable]
A SELECTimt This is the most recent regular selection made in an,,·TEdit wincow.

0 TEOIT .SHIFTEOSELECTION [Varfa.ble]

0

o-

A SELECTIO~t This is the most recent SHIFT-selection made in anyTEdit window.

TEOIT .MOVESELECTION [Variable}
A SELECTIO~J. This is the most recent CTRL·SHIFT-selection made in any TEcilt
window.

TED IT. REAOTABLE [V.L-iab!e]
A read table. this is used to translate typed-in characters into TEdit ccm:i:a::.ds.
See the section on TEdit readtables.

TEOIT .WORDBOmm. RE:ADTABLE [Variable]
The read table which controls TEdit's concept of word boundaries. The syntax
classes in this table aslo determine which characters TEdit thinks are white s~ace
(which gets deleted by control-W along with the preceding word).

20.6.4 TEdic's Terminal Table and Readtables

TEc!it now pays attention to the system terminal table. Characters with terminal sy..ax-classes CHARDELEic.
~JORDDELETE. or LINEDELETE act as follows:

CHAROELETE

WORDDELETE

LINEDELETE

actS as a character-backspace.

acts like control·W (in fact. this is how control·W is implemented.)

acts like DEL

Since the system terminal table is used co implement these functions~ you can assign them to other keys
at will.

TEdit also has a Readtable. which it uses to dispatch to commands. The cable is named TEO IT. REACT ABLE. a."'ld
it is global. You can use the fur.ctions TEO IT .SETSYNTAX and TED IT .GETSYNTAX co read it and
make changes:

(TEDIT .SETSYNTAX CHARCODE CLASS TABLE) [Function!
Secs the readtable syntax of the character whose charcode is CHAR.CODE ~o be

20.29

TEdit's Terminal Table and Readtables

CLASS in the read-table TABLE. The possible syntax classes are listed below.

{ TED IT. GET SY1H AX CHAP.CODE TABLE) [Functon]
Returns the TEd.it syntax class of the character whose charcode is CE.A..~co.o.::-.
according to the read-table TAELE. The possible syntax classes are listed be!ow. An
illegal syntax will be returned as NIL

The allowable syn~~ classes are:

CH.t\ROELETE

WORDDELETE

O:LETE

urmo

REDO

FN

NONE

Typing this character acts lik.e backspace

Typing :his character acts like controIW

Typing this character acts like DEL

Typing this character causes Undo

Typing this character acts like ESC

Typing this character calls a specified function (see below)

Typing th.is char2cter simply inserts it m the document. NIL also has ti.i.is effect.

You can also cause a keystroke to invoke a function for you. To do so, use the function

(TEOIT.SETFUNCTION CHARCODE FN TABLE) [Function]
Sets up the TEd.it readtable TABLE so that typing the cha,.~ter with charcode
C:-iARCODE will APPL y FN to the text STREAM and the TEXTOBJ for the document
being edited. The function may have arbicrary side-effects.

The abbreviation feature described below is implemented using this function-call facility.

Finally, TEdit uses the read table TED IT. WORD80UND. RE.O.DTABLE to decide where word boundaries
are. Whenever two adjacem characters have different syntax c!2.Sses, there is a word boundary bet.ween
them. The state of t.ltis table can be controlled by the functions

(TED IT. WOROGET CHA..~ T.A.BLE) (Fun:::.io/)
Returns the synta."< class (a small integer) for a given charac:er. CP'...AR may l:>e eit.'-ier
a character or a charcode; TABLE defaults to TED IT. WORDBOUND. RE.A.DTASLE.

(TED IT. WO RO SET CHAR CLASS TABLE) [Function]
Sets the synrax class for a character. Again. C"'dA.R is either a chz.rJ.:~e:- or a
charcode; TABLE defaults to TEO IT. WORDBOUND. READTABLE; C!..ASS may be
either a small integer as returned ·by TED IT. WORDG ET. or one of c.11e atoms
WHITESPACE. TEXT. or PUNCTUATIOrl. Those represent the syn·cax ::iasses in tbe
default TED IT. WOROSOUND. REAOTABLE.·

The initial TED IT. WORD BOUND. READT ABLE assigns every character to one of the above classes. aloiig
pretty obvious lines. For purposes of control-W. whitespace between the caret and the word being dciered
is also removed.

20.30 ()

0

0-

0

INTERLISP·D DISPLAY-ORIENTED TOOLS

20.6.S TI1e TEdit Abbre,'iation-Facility

The list TEO!T .ABBREVS is a list of '"abbreviations known to TEdit." &ch element of the list is a
doc:ed pair of two strings. Toe first is the abbreviation {c.?Se does matter). and ti'1.e second is ·i1r·h2.t :he
abbreviation expands to. To expand an abbreviation. select it and type cont:rol·X. It will be re;,lac~d by
its exp:m.sioa.

You c:m also expand single-character abbreviations while typing. Hitting control·X when no char...c:ers
arc u~dcrlined (i.e .• after you have typed something) will cxp:md the .single-character abbreviation ~o t.'1e
left of the c3l'et.

Here is a list of t.'1.e default abbreviations and their expansions:

b

m

n

"

The bullet (•)

The M·dash (-)

The fig,.1re dash (-)

Open double-quotes (") which can be matched by two normal quotes (")

20.7 THE TriIN DISPLAY TYPEIN EDITOR

TTYIN is an Interlisp function for reading input from the terminal. It fearures altmod.e completion.
spelling correction. help facility. and fa.-icy editing. and can also serve as a glorified free text input
function. This document is divided into two major sections: how to use TTYIN from the user's pci.:lt of
view. and from the programmer's.

TIYIN e::<ists in !mplen:entations for Interlisp· IO and Interlisp·D. The two 3l'e substantially cornpatib!e.
but t..1'1e capabilities of the two systems differ (Interlisp-D has a more powerful display and allows g:e:lter
acc~ss to "'1.e system primitives needed to control it effectively: it also has a mouse. greatly red..:c:::g :...~e
need fer iceyboard-criented editing co:mnancs). Descriptions of both are i.ncluc.ed in this dcc:.ir::;;:.: for
completeness. but Interlisp·O users may find large sections irrelevant

20.i.1 Entering Input With TrYIN

There are two major ways of using TTYIN: (1) set LISPXREADFN tQ TTY IN. so the LISPX executive
uses it to obtai.tt input. and (2) call TTY I H from within a program to gather text input. Mostl_y t..~e same
rules apply to both; places where it makes a difference are mentioned below.

The following characters may be used to edit your input. independent of what kind of terminal you arc
on. The more TIYIN knows about your terminal. of course. the nicer some of these will behave. Sc~e
functions are performed by one of several characters: any character that you happen to have assigned.
as an intemr;:,t character will. of cause. not be rc:id by TrYIN. There is a (some..,,hat inelepnc) way cf
changing which characters perform which functions. described under TTY INREADMACROS l.1~er on.

control-A. BS. DEL

20.31

.,;

CO!ltrol-W

()
Entering Input With TTYL.'I'

Deletes a character.- At the s:.am of the second or subsequent lines of your input. deletes the
las: character of the previous line.

Deletes a .. word... Generally trJs means back to the last space or parenthesis.

control-Q (control-U for Tops20 use~)

control-R

ESC

Deletes the current line. or if th.e current line is blank. deletes the previous line.

Refreshes the current line. Two in a row refreshes the whole buffer (when doing multi-1.:.ne
input).

Tries to ccmplete the current word from the spelling list proi.ided to TTY IN. if any. In ±e c~
of ambiguity, completes as far as is uniquely determined. or rings the belt For LIS?X i.n;;ut.,,
the spelling list may be USERWORDS (see discussion of TTYINCOMPLETEFLG. page 20.44). \)

Interlisp-10 only: If no spelling list was provided. but the word begins with a"< ... tries directory
name completion (or filename completion if there is already a matc..i.i.ng '")" in t.'le eua.--rent
word).

? If typed in the middle of a word will supply alternative completions from the SPLST arg,Jment
to TiYIN (if any). ?ACTIVATEFLG (page 20.43) must be true to enable this feature.

control·F Sumex. Tops20 only: Invokes GT JFN for filename completion on the current .. word ...

· control· Y ..
Escapes to a Lisp userexec. from which you may rerurn by the command OK. However. when
in READ mcde and the buffer is non-empty, concrol-Y is created as Lisp's unquote macro
instead. so you have to use ed.it-control·Y (below) to invoke the use::-exec.

<middle-b~k> in Interlisp-D. LF in Interlisp· 10

control-X

Retrieves characters from L~e previous non-empty buffer when it is able 'to: e.g .• when typed at
the beginning of the line this command restores the previous line you typed at 1TYI~: whe:i
typed in the middle of a line fills in the remaining text from the old line: when typed fullowingr\
tQ or "tW restor~ what those. commands erased. \.)

If typed as the first character of the line means the line is a comment; it is ignored. and TTYIN
loops back for more input.

Goes to the end of your input (or end of expression if there is an· excess right parent.:.1.esis) and
retun:5 if parentheses are balanced, beeps if not. Currently implemented in Interlisp-O o:tly.

-During rr:ost kinds of input. TITIN is in "autcfill .. mode: if a space is typed near the. right mrg:n. a
carri::i~e return is simul:ued lo st;1rt a new line. [n fact, on cursor-addressable displays, lines arc ah~ays
broken. if possible. so that mi wore straddles the end of the line. 111c "'pseudo-carnage r,~turn·· ending

· the line is still read as a space. howe\·er: i.e .. the program keeps track of whether a line: ends in a car:i.:fe
retur.1 or is merely broken at some convenient point. You won"t get carriage returns in your stri~gs unless
you explicitly type tttem. ·

20.32 /\,
\ j

0

o·

--0

0

INTERLISP·D DISPLAY·ORIE .• 'ffED TOOLS

20.7.2 Mouse Commands [I.:teilis{1·D Only]

The mouse buttons are interpreted as follows during lTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold down LEFT, the ca.--et coves
around with the cun:or; after you let up, any cypeiil will be inserted at the new pc<.i:ioD.

MIDDLE Like LEFT, but moves only to WOid bouncµries.

RIGHT Deletes text from the caret to the cursor, either forward or backward. While ~·au ho!j down
RIGHT, the text co be deleted is complemented; when you let up, the text actually ~oes away.
[f you let up o;..ttside the scope of the text. nothing is killed (this is hbw to ··c3!:.cer· the
com.tr.and). This is roughly the same as CTRL·RIGHT with no initial selection (below}.

If you hold down CTRL and/or SHIFT while pressing the mouse buttons. you- inste:id get secot1dary
selection. move selection or deiete selection. You m:lke a selection by bugging LEFT (to selcc:: a char..aC:er)
or MIDOLE (to select a word), and optionally extend the selection either left or right using RIGHT. While
you are c.oing this, the caret does not move. but your selected text is highlighted in a manner ind!catir.g
what is about to happen. When you have made your selei:tion (all mouse buttons up now). 1.i.ft up on
CTRL and/or SHI FT and the actio!l you have selected will occur, which is:

SH I FT The selected text as typein at the caret. The text is highlighted with a broken underline duf..ng
se!ectioD.

CTRL Delete the selected text. The text is complemented during selection.

CTRL·SHIFT
Combines the above: delete the selected text and insert it at the caret. Tois is how you move
text about.

You can cancel a selectlon in progress by pressing LEFT or MIDDLE as if to select. and movi..ng outside
the r..nge of the text.

The most recent text deleted by mouse comm2nd can b~ inserted at the caret by typing <middle-bl:llill
(the same key that retrieves the previous buffer when issued at the end of a line).

20.7.3 DiSiJlay Editing Commands

On edit-key terminals (Datamedia): [n Interlisp· 10. 1TY1N reads from the terr.1inal in binary moc!e.
allowing many more editing corrunands via the edit key. in the style of TVEDIT com.,nands. ~ate ~hat
due to Tenex's unfortunat,e way of handling typeahead. it is not possible to type ahe:id edit co!T'.manc!.s
before TTYIN has staned (i.e .• before its prompt appears). because·the edit bit wiil be r..'1rown a.way ... ~Iso.
since ESCAPE has num·erous other meanings in Lisp and even in 1TYIN (for completion). ESCAPE is
not used JS a substirute for the edit key.

[n [ncerlisp-0: Users will probably have little use for most of these commands. as cursor pcsiuonir.g c:in
often be done inore conveniently, and certainly more obviously, with the mouse_ ~ever ... "le!:'!SS. so.ne
commands. such as the case changing commands. can be useful. The <boctom-bb.nk) key c:1.11. ~e u~e-.i
as an edit (meta} key in Chorus and subsequent rcle3Scs if you perform (TTY INH ET A T). This .:.:1l!s
(MET,\SHIFT T) to enable the meta key, redefines the middle .1.nd top bb.nk keys. and informs 1Td~

20.33

... --'\.

,---

()
Display Editing Comm:mds

that you want to use them.- Alternatively, you can use the EDITPREFIXCHAR (by default on <top-bl.an.k))
as described b the next paragraph. ·

On edit-keyless display terminals (Heath): If you want_ to type any of u"lese commands. you need to prefix·
th.em with the "edit pre:ix'' character. Set the variable EOITPREFUC:-IAR to the character code of the
desired prefix char. Type the edit prefix twice to give an "edit-ESCAPE .. corr.mand. Some use:-s of ~he
TE:--i'EX TVEDIT program like to make ESCAPE (33Q) be the edit prefix. but this makes it soz:new:iat
awkward to ever use esc=ipe co:n;,letion.

On ec.lt·keylcss harq.copy term.inals: You probably want to ignore this section. sine~ you won·t be able
to see what's going on when you issure edit commands; there is no attempt made to echo anyt.'11."':.g
reasonable.

In u'ie 1.k:;criptilmS bcll,w, "current word'" mc~m, the w(lrd tJtc curs1..,r is under. er if u:1.:::-:r J s;-.?...-e. -=-~e
previous word. Currently parcnthc."SCS are tre.1tcd as spaces. which is usu;illy wh.it you ...,;m:_ t-ut ·.:.1~
occa:.;ionally cause contusion in the word deletion commands. The not.:1tion [cH.~R] means cclit·CHAR~- _)

if you have an edit key, or <editprefixchar> CRA.R if you don't: S = escape. Most commands can be
preceded by numbers or escape (means infinity), only the first of which requires the edit key (or the edit
prefix). Some commands also ru:cept negative argu::nents. but some only look at the mag;:-Jc-.1de ·of the
arg. Most of these corr.mands are taken from the display editors TVEDIT and/or E. and are confned to
work within one line of text unless otherwise noted.

Cursor Movement Cozr.mands:

[delete]. [bsJ. [<]
}3q.ck_ up one (or n) characters.

[space]. [>]

[-r-]

[If]

[G

Move forward one (or n) characters.

Moves up one (or n) lines.

Moves down one (or n) lines.

. Move back one (or n) words.

D] Move ahead one (or n) words.

[tab] Moves to end of line: with an argument moves to nth end of line: [Stab] goes to end of burrer.

[control-L)
Moves to start of line (or nth previous. or start of buff er).

[{] and rn
~o to start and e_nd of buffer, respectively (like [~ontrol-L] and [StabD.

[[I (cdit·lcft·bracket) .
Moves to beginning of the current list. where cursor is currently under an element of that list
or its closing paren. (See also the auto-parenthesis-matching feature below under "'Flags·'.)

[I I (edit-right-bracket)
Moves to end of current list.

20.34 ()

0

0

6

o-

[S:t]

[Bx]

INTERLISP·D DISPLAY·ORIE'iTID TOOLS

Skips mead to next (of ntb.) occurrence of character x, or rings the bell.

Backward sea.-ch. Le .. shon for [·S] or [·cS].

Buffer Modification Commands: ..

[Z.'t] Zaps cha.r"..cters from cursor to next (or nt;h,) occurre:ice of x. There is no unzap command yet.

[A] or [R]
Repe:it t~e last S. B or Z command, regardless of any intervening input (r.ote this di.:fers from
Tvedit' s A comma:id).

[K] Kills the character under the cursor. or n chars starting at the curror.

[I] Begin inscrticg. Exit inscn with any edit command. Charac:ers you type will be inserted. rather
than overwriting the existing text. If EMACSF LG (page 20.43) is true (default in [nterlisp·D).
you are always in insert mode. and this command is a noop.

Inserting <er> behaves slightly different from in tvedit. The sequence (I<c::->l behaves as in
TvEDIT; it inserts a blank line ahead of the cursor. <er> typed any other time while in insert
mode acrually inserts a <er>, behaving somewhat like TVEDITs [B). [SI] is the same as [I<cr)).

[er] \Vhen the buffer is empty is the sa..-ne as <ID. i.e. restores buffer's pr~vious contents. Ot.i.erv.ise
is just like a <er> (except that it also terminates an insert). Thus. [<crXcr>] will repeac t.~e
previous input (as will <lfXer> without the edit key).

[OJ

[T]

[G]

[Ll

[U] ·

[CJ

Does "Open line", inserting a crlf after the cursor. i.e .• it breaks the line but leaves the cursor
where it is.

Transposes the characters before and after the cursor. When typed at the end of a line,
transposes the previous two characters. Refuses to handlt; funny cases. such as tabs.

Grabs the contents of the previous line from the cursor position onward. [nG] grabs .he nth
previous line.

Lowercases current word. or n words on line. [SL) lowercases the rest of the !.i.:le. or if give::i
at the end cf line lowercases the entire line.

Uppercases analogously.

Capitalize. If you give it an argument. only the first word is capitalized: the rest are jus~
lowercased.

[control·QJ
Deletes the Ct!rrent line. [Scontrol-Q] deletes from the current cursor position to the end of the
buffer. No other :irguments are handled.

[control· Wl .
Deletes the current word. or the previous word if sitting on a space.

(D) and (D<cr>]
Arc the same as [control-W] and [control·O]. for approximate compatibility with TVEDIT.

{J] .. Justif/' this line. This will break it if it is coo long, or move words up from the next line

20.35

--~-·

,-

.. __.-'

• n
Display Editing Commands

if too short. Will not join to an empty line. or one -starting with a tab (boti.'1 of which are
il:?.ter;ireted as paragraph breaks}. Any new line breaks it introcuces are considered spaces. not
carriage returns. [nJ] justifies n lines.

T.--ie linelength is defined as TTY JUST LE NG r·H. ignoring any prom pc characters at the I!"..argin. If
TTY JUSTLEi{GTH is negative. it is interpreted as relative to the right margin. TTY JUSTLENGTH
is initially -8 in Interiisp·D. 72 in Interlisp-10.

[SF] .. Finishes .. the inpuL rcgJ.rdlcss of where the curr..or is. Specifically, it goes to ~e e:id of t.l-:e
input and enters a <er>. control·Z or")", depending on whether nor:::1al. REPEAi or READ
input is happening. Note that a 'T won"t necessarily end a READ. but it see:ns likely to in
most cases where you 'kould be inclined to use this comrna.,d. and makes for more pred.ic:.able
behavior.

Miscellaneous Commands: n
[P] Interlisp-D: Prettyprint buffer. Qears the buffer and reprints it using prettyprint. If there a.re

not enough right parentheses. it will supply more: if there are too many, any excess remains
unprettyprinted at the end of the buffer. May refuse to do anything if there is an unclosed
st."ing or other error crying to read the buff er.

[NJ Refr'!sh line. Sam.e as control-R. [$NJ refreshes the whole buffer: [nN] refreshes n lines. Cursor
movement in TIYIN depends on 1TYIN being the only source of output to the screen: if you
do a control·T. or a system message appears. or line noise occurs, you may need to refresh
the line for best results. In Interlisp· 10, if for some rea..~n your terminal falls out of bina.-y
mode (e.g. can happen when rev.1rning to a Lisp running in a lower fork), Ed.it-<anything) is
unreadable. so you'd have to type control·R instead.

[control-Y)
Gets userexec. Thus, this is like regularcontrol·Y. except when doing a READ (when control·Y
is a read macro and hence does not invoke this function).

[$control-Y]
Gets a userexec. but first unreads the contents of the buffer from the cursor onward. Thus if you
typed at TIYIN somet.11.ing destined for the Lisp exeel..tive, you Q.'l. do [comrol-LS:ont:ol· \1~
and give it to Lisp. \ _ /

[49] Adds the current word to the spelling list USERWOROS. With zero arg, removes_ word. See
TTYINCOMPLETEFLG (page 20.44).

Note to Datamedia. Heath users: In addition to simple cursor movement commands and inser"Jdelete.
TTYIN uses the display·s cursor-addressing capability to optµnize cursor movements longer than a few
characters, e.g.· [tab} to go to the end of the line. In order to be able to add.!'ess i:he cursor. 1TYI::--r
has to know where it is to begin with. Lisp keeps track of the current pri:it position within ::.t1e line.
but does not keep track of the line on the screen (in fact. it knows precious little about -:iisp!ays. mu-:h
like Tenex). Thus. TfY[N establishes where it is by forcing the cursor to appear on the last lir:e of the
screen. Ordinarily this is the case anyway (except possibly on startup). but if the cursor happens to be
only halfway down the screen at the time, there is a possibly unsettling leap of the cursor when TfYI~
Stans.

· 20.36

0

0

()

INTERLISP·D DISPLAY·ORIEr-."TED TOOLS

20.7.4 Using 1TYIN for Lisp Input

When. TTYIN is loaded. or a sysout containing TfYIN is started up. the function SETREADFti is ~ed.
If the te:n-..i:lal is a c.is?lay, it sets LISPXREADFN to be TTYINREAO: if the te:cr.incl is con·cis:p!ay,
SETREAOFi~ will sec tlle vari:lble back to REAiJ. { SETREADFN 'READ) v.ill also set it ba,;k to REAO.

There are two principal differences between TTYIHREAD and READ: (1) paren:hesis bala.ncing. The i.:lput
does not actiYate on an exactly balancing ri;ht paren/br:icket uniess the input s:.:med with a p:l!e:i./br:icke~
e.g. ... USE (FOO) FOR (Fr E) .. will all be on one line, terminated by <er); and (::!) ri!ad rr:.acros.

In [nterlisp· 10, lTYIN does not use a read table (TIYIN behaves as though 1.:sing the defauit :nitial
Lisp terminal input readtablc). so read macros and redefinition of synta.'< ch::i.r.icte:'.S are not supper-cc.;
however ... ' •• (QUOTE) and ··control·Y .. (EVAL)_are built in. and a simple imph::mentation of? ar.d ?=
is supplied. Alsc, L11e TTY INREAOMACROS facility described below can supply some of the function.u.ity
of immediate read macros in the editor.

In Interlisp·D, read macros are (mostly} supported. Immediate read macros take effect only if typed at
the end of t.'le input (it's not clear what their semantics should be elsewhere).

20.7.S Useful Macros

There are two useful edi.t macros that allow you to use TTYIN as a character editor: (1) ED loads the
current expressicn into the ttyin buffer to be edited (this is good for editing comments and s.:rings). I::lput
is terminated in the usual way (by typing a balancing right parenthesis at the end of the input. cypi.I:.g
<er> at the end of an already balanced expression. or control·X anywhere inside the balanced expression).
Typing concrol·E or clea...ir.g the buffer aborts ED. (2) EE is lixe ED but prettyprints the expression into
the buffer. and uses its own window. The variable TTYIUEDITPROMPT controls what prc:npt. if any.
EE uses: see prompt argument description in next section {t.i.'le initial setting is no prompt). EE is noc yet
imp!emented in Interlisp· 10.

The macro BUF loads t.'1.e current expression into the buffer, preceded by E. to be used as input howeYer
d~si~d: as a trivial example. to eYaluate the current expression. BUF followed :,y a <er> to activate t.':e
buffer will perform roughly what the edit macro EVAL does. Of course, you can edit the E to scme:hing
else to ma.lee it an edit command.

BUF is also defined at the exe::utive level as a programmer's assistant command that loads t.'1e buffer wic..'1.
the VALUEOF the indicated event, to be edited as desired.

TV is a progra.-nmer's assistant command like EV [EDITV] that performs an ED on the value of tlie
. 'I vanao.e •

. ~nd finally, if the event is considered "shore" enough. the programmer·s assistant command FIX will to:id
the butfor with the event's input. rather th.m c:illing the editor. lf you really wanted the Interlisp ~dicor
for your fix. you could either say FIX EVENT - TTY:. or type control·U (or whatever on cops20) once
you got TTYIN"s version to force you into the editor.

20.37

,.--··,

Progr.unming With TrYIN
()

20.7.6 P.ogramming With TTYL~

(TTY!N PROMPT SPLST I-!!:LP OPTIONS ECHOTOFII.E TASS 01'r'REA.C.ot'T RDT13L) [Function}
TIYIN pruits PROMPT, then waits for input. Tne Yalue reC'..!rned in ~e :::.or:nal
case is a list of all atoms on the line, with comma a.-id parens returned as ind:vidual
atorr...s; OFTIONS may be used to get a di.ff erent kind of value back.

PROMPT is an atom or string (anything else is converted to a string). If NIL. the va!ue of
OEF.~ULTPROM?T, initi:illy ".,,. ". will be used. If PROMPT is T, no ;;rompt will be given. PROMPT

may also be a dotted pair (PROMPT 1 • PROMPT 2). giving the prompt for the first and s-..ibseque:::.t
(or overflow) lines. each prompt being a string/atom or NIL to denote absence of prompt. ~ate that
rebinding OE FAUL TPRO:-tPT gives a convenient way to affect all the "ordinary" pror.1pts in some program·
module.

SPLST is a spelling list. i.e., a list of atoms or dotted pairs (SYNONYM .• ROOT}. If sup;,lied. it is usedn
to check and correct user responses. and to provide completion if the user types ESCAPE. If SF!.ST is one
of the Lisp system spelling lists (e.g., USERWORDS or SPELLINGS3). words c..'1at are escape-completed get
moved to the front. just as if a F IXSPELL had found them. Autocompletion is also performed when user
types a break character (er, space. paren. etc}. unless one of the .. nofixspell .. options below is selected:
i.e .• if the word just typed would uniquely complete by ESCAPE. 1TYIN behaves as though ESCAPE
had been typed.

HELP, if non-~HL. deten::iines what happens when the user types? or HELP. If HELP = T, program
prints back SPLST in suitable form. If HELP is any other atom. or a string containing no spaces. it
performs (OISPLAYHELP .REI.P). Anything else is printed as is. If HELP is NIL.? and HELP are
treated as any other atoms t.1-ie user types. -[DISPLAYHELP is a user-supplied function. initially a noo;,:
syste:ns with a suitable HASH package. for example, have defined it to display a piece of text from a
hashfile associated with the key HELP.]

OPTIONS is an atom or list cf atoms chosen from among the following:

NOFIXSPELL

MUST APPROVE

CRCOMPLETE

DIRECTORY

USER

FILE

FIX

Uses SPLST for HELP and Escape completion. but does not attempt any
FIXS?ELLing. Mainly useful if SPLST is incomplete and the caller wants to
handle corrections L.-1 a more flexible way than a straight FIXSPELL.

Does sr,elling correction. but requires confirmation.
()

Requires confirmation on spelling correction. but also does autocc1:1pletion on <er>
(i.e. if what user has typed so far uniquely identifies a member of SPI.ST, completes
it). This allows you to have the benefits of autocompletion and still allow new
words to be typed.

(only if SPLST= NIL) Interprets Escape to mean directory dame . compieticn
[Interlisp· 10 only]. ·

Like DIRECTORY. but docs usernamc completion. This is identical to DI RECTORY
under Tenex [Incerlisp-10 only].

(only if SPLST=NIL} Interprets Escape to mean filename completion. i.e. dces a
GT J FN [Sumex and Tops20 only].

If response is not on. or does not correct to. SPLST. interacts wi:.h user unul an

20.38 ()

0

CJ

0

0-·

STRING

NO::?A!SE

NOVALUE

REPEAT

TEXT

COMMAHD

READ

LISPXREAD

NOPROMPT

· INfERLISP-O DISPLA Y·ORIL'ITED TOOLS

-
acceptable response is entered. A blank line (returning HIL) is always accepted.
Note that if you are willbg to accept responses that are not on S?LST. yo:.i prcbably
s...'lould specify one of the options r~OXFISPELL. MUST APPROVE er CRC0MPLETE.
lest the user's new response get F ~XSPELLed away without their approval.

Line is read as a string, rather th2.n list of atoms. Good for free text.

Does not convert lower case letters to upper C3Se.

For use principally with t..'le £CHOTOF!LE arg (below). Does not compute a va!ue.
but returns T if user typed anything, NIL if just a blank llile.

For multi-line input. Repeatedly prompts until user types control·Z (as in Ter.e:c
sndmsg). Returns one long list; with STRING option returns a single string of
everything typed. with carriage returns (EOL) incluc!ed in the sti-ing.

Implies REPEAT, NORAISE, and NOVALUE. Additionally, input may be ter:ninated
with control·V, in which case the global flag CTRLVFLG will be set true (it is set
to NIL on any other· termination). This flag may be utilized in any way the caller
desires.

Only the first word on the line is treated as belonging to S?l.ST, the rel!'..ainder of
the line being arbitrary text: i.e •• "command format,.. If other options are supplied.
COMMAND still applies to the first word typed. B2.Sically, it always remras (CMD
• R.EST-OF-CN?TJT), where ?.EST-OF-INPUT is whatever the 0th.er options dicute
for the remainder. ,E.g. COMMAND N0VALUE returns (CMD) or (O!D. T),
depending on whether there was fur.her input: COMMAND STRING rer-.:.rns (c.m
• "REST-OF-IN.PUT"). When used with REPEAT. COMMAND is only in e!fect for
the first line typed; far..her.:nore, if the first line consists solely of a corr-.mand. the
REPEAT is ignored. i.e .• the entire input is taken to be just the command.

Parens. brackets. and quotes are treated a la READ. rat.'ler than being returned as
individual atoms. Control char:u:t-~rs may be input via t.:.'"1e concrol-V x notation.
Input is terminated roughly along the lines of READ conve~ticr.s: a balancing
or over-balancing right paren/bracket will activate the in;,uc. or <er> wr.en
no parentl:esis remains unbalanced. READ overrides all other options (exce;,c
NORA I SE).

Like READ. but implies that TrYIN should behave even more like READ. i.e .• do
NO RAISE. not be errorset·protected. etc.

Interlisp-D only: The prompt argument is treated as usual e:ccept that TrYIN
assumes that the prompt for the first line h::\S alre:idy been prir.ted by c...'1e caller:
the prompt for the first line is thus used only when redisplaying the line.

ECHOTOFTLE if 5pecified. user's input is copied to this file. i.e .• TTYIN cJn be used as a ~imp le tcxc·to·file
routine if NOVALUE is used. [f ECHOTOFILE is a list copies to all files 'in the lisL PROMPT is nol induced
on the file.

TABS is a special addition for t.lbular input. Ct is a list of t.:1bstops (numbers). When user types a cab.
lTYIN automatically spaces over co the next tabstop (thus the first t.:1bstop is acrually the seco=1d ··column ..
of input). Also treats specially the characters • and ··: they echo normally, and t:hen automaa:::illy t.lb

20.39

(

()
EE Interface

over.

UNREADBUF allows the caller to "preload .. the TITIN buffer with a line of input. v-:-.'R.ZADatrF is a
list. t..'le elements of which are unread into the buffer (i.e the outer parentheses are s.ri;,~ed off ..) to
be edited furiher as desired: a simple <er> (or control-Z for REPEAT input) will thus cause ~e buEe:-·s
conte::its to be returned unchanged. If doing READ in;:mt. the .. PRIN2 names" of the input list a:e usec..
i.e .• quotes and %'swill appear as needed: otherwise the buffer will look as t.,ough t."l-t"?~Bi'..7 hac bee:i
PR IN 1 'ed. UNREADEUF is treated somewhat like READBUF, so that if it contai..'ls a pseud.o-...arr:.age re::-i.irn
(the value ofHISTSTR0). the input line terminates there.

Input can also be unr<:ad from a file, using the HISTSTRl format: UNREADBC:"F' = (<value ot
HISTSTRl> (FILE START • END)}. where START and END are file byte pointers. This ma.~es TI"Y!::-.i
a miniature text file editor.

R:JTBL [lnterlisp-D only} is the read table to use for REAOing the input when one of the READ options b-·-\
given. A lot of character intcrpreutions are hardwired into Tf'YIN, so currently the only effe:t this hd.)
is in the actual READ. a.,d in deciding whemer a character typed at the end of the i:J.put is an immediate
read macro. for purposes of termination.

If the global variable TYPEAHEAOFLG is T, or option LISPXREAD is given. 1TYIN permits type-ahead:
otherwise it clears t..'le buff er before prompting the user.

20.7.7 EE Interface

The following may be useful as a way of outsiders to call 1TYIN as an editor. These functions are
currently only in loterlisp-D:

(.TTY!NEDIT EXPR.S wmDOW PRINTFN) [Function]
This is the body of EE. Switches the- tty to MNDOW. clears it. prett:,prin:s EXFRS.
a list of expressions. into it. and leaves you in TITIN to edit it as Lisp input.
Returns a new list of expressions.

If F'P.INTFN is non-NIL. it is a function of two arguments, EXPP.S and FII..E. wh:ch....-"
is called L-istead of PRETTYPRINT to print ti.'1e expressions to the wtndow (ac:u.?.!.1{)
a scratch file). Note that EXPRS is a list. so norniaily the outer pa:entheses shc..:ld ··
not be printed. PRINTFN=T is shorthand for "unpretcy"; use PR!N2 instead of
PRETTY?RINT. -

TTYINAUTOCL·OSEFLG [Variabie]
If TTYINAUTOCLOSEFLG is true. TTYINEDIT closes the window on exit.

TTYINEDITWINDOW [Variable]
If the WlNDOW arg to TTY I NED IT is NIL. it uses the value of TTY IN ED ITwrnoow.
creating it if it docs not yet exist.

TTYirlPRINTnl [Variable]
The default value for PRINTFN in EE's call to TTYINEDIT.

(SET. TTYrnEDIT. WINDOW Wli\TDOVI) [Func~:o:1J
Called under a RESETLST. Switches the tty to wrNDOW (defaulted JS m
TTY INED IT) and clears it. The window's position is left so that TrYI:",: will be

20.40 n

0

o-

,,-::-

0

0

INTERLISP·D DISPLAY·ORIEi'fTED TOOLS

hap9y with-it if you now call TI"YIN yourself. Specifically, this means pcsit:onir.g
an integral number of lines from th~ bottom of the window, the way the top·levei
tty window normally is.

{TTYHJ.SCRATCHFILE) ' [Fc:cctionJ

20.i.8 ?= Handler

Rec-Jn:s. possibly creating, ti.i.e scratch.file that TIYIN uses for pre:t:,-pri.:.±.g :t:S
input. The file pointer is set to zero. Since TTYIN does use this file. beware of
multiple simuita..."lecus use of the file.

In Interlisp, the ? = read m:icro ctispiays the arguments to the function currently .. in proE:rcss" in the
typein. Since TrYIN wants you to be able to continue editing the; buffer after il ?=. it processes this
macro specially on its own. printing the arguments below your typein and then putting t.':e cursor bJck
where it was when ? = was typed. For users who want special treatment of?=. the followii:g ho~k exists:

TTYIH?=FN [Variable]
The value of this variable, if non·H IL, is a user function of one argu:::.ent t.i.1.at is
called when?= is typed. The argument is the function that?= thin.ks it is i.::side
of. The user function should return one of the following:

NIL Normal ? = processing is performed.

T Nothing is done. Presumably the user function has done somer..-ung
privately, perhaps diddled some other window, or called TTY IN.PR INT ARGS
(below}.

a list (ARGS • STUFF)
Treats STUFF as the argument list of the function in question. and perfon:r.s
the normal ? = precessing using it. ·

anything else
The value is printed in lieu of what ? = normally prims.

At the ti..'"Ile that?= is typed. naming has been .. read" yet. so you don't have the normal context you ::::iight
expect inside a conventional readmacro. [f the user function wants to exa.-nine t."le typed·:n arg,..:.:1encs
being passed to the fn. however. it can perform {TTYIN.READ?=ARGS), which bundles u;:, eYer;,·,hing
between the function and the typing of ? = into a list. which ic rerurns (thus it parallels an arglis~: N r L
if?= was typed immediately after the function name}.

{TTYHLPRINTARGS F'N ARGS ACTUALS ARGTYPE) [Function}

20.i .. 9 Read Macros

Does the function/argument printing for ? =. AR.GS is an argument list. AC::-::.·ALs
is a list of actual parameters (from the typein) to match up with args. ARG,YFE is
a ~aluc of the funcciun AnGTYPE: lt defaults to (ARGTYPE F'N).

When doing READ input in lnterlisp· 10. no Lisp-style read macros are available (but the · .1:id. control·
Y macros arc built in). Principally because of the usefulness of the editor read macros (sec by

20.41

r

Read Macros

SETTERMCHARS), and the desire for a way of changing the me:mings of the display editing coir.=-..ands.
the following exisrs as a hack:

TTY ri\l READMACROS • [Variabl~J

()

Value is a set of shorthand inpurs useable during READ input. It is an a.list cf
entries (CF.ARCO DE • SYNONYM). If the user types the indicated chara::~er (edit
bit is denoted by the 200Q bit in charcode), TrYIN behaves as thoug...11 tl:.e synon:,:::.
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure Ed.it bit; means to read
another char and t'..tm on irs edit bit; 400Q • macro quote: read another cr.ar and
use its original meaning. For example. if you have macros ((33Q • 200Q) (30Q
• · 33Q)). then Escape (33Q) will behave as an edit prefix. and cont:ol·X (30Q)
will behave like Escape. Note: currently, syncn;-rns for edit comm:i.:1ds .1re not
well-supponed, working only when the command is typed with no argUI:1ent. Q
Slightly more powerful macros also can be supplied: they are recognized when
a character is typed on an empty line, i.e.. as the first thing after the prompt.
In this case. the TTYU:READMACROS entry is of the form (CHARCODE T •
RESPONSE) or (CHAP.CODE CONDITION • RESPONSE), where co:-.-;:;moN is a
list that evaluates true. If RESPONSE is a list. it is EVALed: othe~ise it is left
unevaluated. Toe result of this evaluation (or RESPONSE itself) is treated as follows:

NIL Toe macro is ignored and the character reads norm.ally, Le.. as thoug..ii
TTYINREADMACROS had never existed.

An integer
A character code, treated as above. Special case: • l is treated like O. but
says that the display may have been altered in the evaluation. of tb.e macro,
so TIYIN should reset itself a;,propriately.

Anything else
This 1TYIN input is terminated (with a crlD and rerums the Yalue of
.. response .. (turned into a list if necessary). This is the pri::icii=al us.e of
this facility. The macro character thus stands for the (possibly cc~puted{-)
reponse. terminated if necessary with a crlf. The original character is not'- ·
echoed.

Interrupt charac:ers. of course. cannot be read macros, as lTYIN never sees them. but any o':her
characters, even non-control chm. are allowed. The ability to return NIL allows you to ha-.·e conc.i:ional
macros that only apply in specified situations (e.g .• the macro might check the prompt (LISP X ID) or
other contextual variables). To use this specifically to do immediate editor read macros. do the followi::g
for each edit. command and character you want to invoke it with: .• •

(AODTOVAR TTYHIREAOMACROS (C1!AHCODE 'CHARM.I\CRO? EDITCOM)))

For example. (ADO TOVAR TTY INREAOMACROS { 12Q CHARMACRO? ! NX}) will make linefczd do the
. ! NX command. Note that this will only activate linefeed at the beginning of a line. not anywhere in t.1e
line. Tnere will probably be a user function to do this in the next release.

Note chat putting (12Q T . ! NX) on TTYINREAOP.ACROS would also have the eff'ec: of rcrurni::g
"! NX" from the READ call so chat the editor would do an ! NX. However. lTYIN would a.lso rerum t N X

20.42 n
\ j

()

,-~ u

0

INTERLISP·D D£SPLAY-ORI'Ei.'iTID TOOLS •

outside the editor (probably resulting in a u.b.a. error. or convincing DWIM to enter the editor}. and
a.tsp the cle.:!rlng of the output buffer (performed by CHARMACRO?) would not happen.

20.7.10 Assorted Fb.gs

Th~e flags control aspects of TTYI1'1.,s behavior. Some have alre:idy been mentioned. Their initi.al values
:ire all N r L. In In:crlisp-D, the Bags arc all initi.llly T.

TYPEAHEAOFLG

?ACTIVATEFLG

EMACSFLG

SHOWPARENFLG

<Q

TTYINBSFLG

[Variablej
If true, 1TYIN always permits typeahead: otherwise it clears the bw:rer for any
but LISPXREAD input.

[V.lriab!e]
If true, enables the feature whereby ? lists -alternative completions from t.i.e current

· spelling list.

[Va.-iable]
Affects display editing. When true. TIYIN tries to behave•a little more like
E1'1ACS (in vecy simple ways} than TVEDIT. Speci.fic.llly. it lus t..i.e foilowL-lg
effects currently: (1) all non-edit characters self-insert (i.e. behave as if you·re
always in Insert mode}; (2) [D] is the EMACS delete to end of word co:nmand.

[Vari:ible]
If true, then whenever you are typing Lisp input and type a right paremhesis/br:1::ket.
TTYIN will briefly move the cursor to the m:itching parenthesis/br:1cket. JSSt.:.."Ili."lg
it is still on the screen. Tne cursor stays there for about l second. or until you
type another character (i.e .• if you type fast you·n never notice it}. 'This few.ire
was ir.spired by a sL'Ililar EMACS feature, and turned out to be pretzy e35y to
implement.

r.rarb.ble]
Causes 1TYIN to always physically backspace. even if you're ntni1hg on a ccn­
display (not a 0:\-(or Heath). rather cha., pri:c.t \d.ele!edtex:\ (this asst:...7.es your
hardcopy terminal or glass tty is capable of b~kspacing). !f TTYI~BSi='LG is LF.
then in addition to backspacing, 1TYIN x's out the deleted char:icte:-s as it backs
up, and when you stop deleting, it outputs a linefeed to drop to a :1ew. cle.:m line
before resuming. To save paper. this linefeed operation is not done whe:i ,:mly a
single character is deleted. on C:.1e grounds that you can probabiy ng-Jre cut what
you typed anyway.

TTYINRESPONSES , (Variable I
An alist of special responses that will be handled by routines deS'igna:ed by me·
progr:1.1'11Incr. See "Special Responses". below.

TTYINERRORSETFLG [Vanab~j

TTYINMA ILFLG

[Interlisp-D only] [f true. non·LISPXREAD inputs are errorset·protected (cor.c.rol·E
traps back to the prompt). otherwise errors propagate upwards. Initi:illy ~~IL.

[\".1Ii.1b!el
[Tenex onlyj When t..,1e, performs mail checking, etc. before most in>;l!tS (cxc;:;:-:
EVALQT inputs, where it is assumed this has already been done. or i:ipuLS ir.i.!cn:cd

20.43

r

Special Responses

by more-than a few spaces). The MAILWATCH package must be loaded for this.

TTYIHCOMPLETEFLG [Variab!eJ
If true. enables Escape completion from USERWORDS during READ inputs. I)pr:>Ps
below. "

USERWORDS (page 15.15) contains words you mentioned recen.tly: functions you have defined or edi~ci.
,,-ariables you have set or evaluated at the executive level. etc. This happens to be a very :::mr.·en.ient list
for co~:ext·free escape completion: if you have re:::ently edited a functio:i. chances are goo-::1 you may
wam tt' edit it ag:iin (typing "EF x.xS") or type a c.111 to it. If there is no ccm;:,lctio=i fo:- t::'.! c:.:r.e:::
word from USERWORDS. t."le escape echoes as .. S''. i.e. not.I-ting special happens: if there is more ~.ha.i.
one possible completion. you get beeped. If typed when not inside a word. Esca-;Je ccm;::leces to t.~e
value of LASTWORO. i.e .• the last thing you typed that the p.a. "noticed" (setting TTYINCOMPLETEFLG
to O disables t.'tis latter feature), except that Escape at the beginning of the line is left J.lone (it is a p.a.

n

command). n
If you really wanted to enter an escape. you can. of course. just quote it with a control· V, like you can
other control chars.

You may explicitly add words to USERWOROS yourself that wouldn't get there otherwise. To make this
convenient online the edit command[..] means "add the current atom to USERWORDS .. (you I:"..ight chi..lk
of the command as "pointing out this atom ..). For example, you mig.'lt be entering a fum:tion definition
and want to ··point to .. one or more of its arguments or prog variables. Giving an argument of zero to
this comrna.i.d will instead remove the indicated atom from USERWORDS.

Note that this feature loses some of its value if the spellir..g list is too long, for then the completion takes
too long computationally and. more important. there are too many alternative completions for you to get
by wit..'1. typing a few characters followed by escape. Lisp's maintena."lce of the spelling list USERWORDS
keeps the "temporary" section (which is where everything goes initially unless you say otherwise) !i!nited
to '#USERWOROS atoms. initially 100. \Vord.s fall off the end if they haven·t been used (t.~ey are "used''
if FIXSPELL corrects to one. or you use <~ape> to complete one).

20.7.11 Special Responses

There is a facility for handling "special responses" during any non-READ TTYIN input. This' action is
independent of the p:articular call to TIYIN, and exists to allow you to effectively "ad,ise .. Tn'IN to
intercept cer..a.in commands. After the command is processed. control reo.:rns to the original 1TYIN C2.ll.
The facility is imple:nented via the list TTYINRESPONSES.

TTYINRESPONSES [Variable}
TTY INRESPONSES is a list of elements, each of the form: .

· (COMMANDS RESPONSE-FORM OPTION}

COMMANDS is a single atom or list of commands to . be recognized: RESPOXSE­

FORM is EVA Led (if a list). or AP?L Yed (if an atom) to the command a.,d cb.e rest
of the line. WiL~in this form one can reference the free variables CO~MAND (t.~e
command the user typed} and LINE (the rest of the line). [f oP-rro.v is tl':e .1~cm
LINE. this means to pass the rest of line as a list: if it is STR rnG. this mc.1r:.s w
pass it as a string: otherwise. the command is only valid if there 1s not.'1mg :?!se
on the line. [f RESPONSE-F'ORM returns the atom IGNORE. it is not r.re.:llcd as a

20.44

()

()

0

0

0

0

INTERLISP·D D!SPLAY-OR.IEJ.'ITED TOOLS

special response (i.e. the input is returned normally as the result of 1TYIN).

In MYCIN. the COMMEHT command is handled :his way; a.'1.y time the user types COMMENT as the first
word of ~n;,ut, TfYIN passes t.1:.e rest of the lic.e to a. mycin·d.efuied function whic..:-1 prom~ts for t.-ie
text of the co:r.iment (rec,.irsh·ely using TIYIN with the iEXT option). When control ret'.l:::.S.. TfYD:
goes back and prompts for the original input agah. The TiYINRESPCNSES entry for this is (CCHMEUT
(GRI?E LDi~) LIST); GiUPE is a MYCIN function of one argument (the one-iL.,.e conm:.e::i.:. or ~UL
for extended co!I'.ments).

Su~ested lise: global com.."'?'lands or opticns can be added to ~e topicvel v:11'.1e ofTTYrnRESPONSES. P'cr
more spedalized com.manes. rebind iTY INRESPONSES to (AP PENO N'EWENTRIES TTY I:-JRESPONSES)
inside :my module where you want to do this sort of special processing.

Special responses are not checked for during READ-style input.

20.7.12 Display Types

finis is not relevant in lnterlisp·O]

1TYIN determines the type of display by calling DISPLAYTERMP, which is initially defined to test the
value of the GTTYP jsys. [t returns either rHL (for printing terminals) or a small number giving TfYIN's
internal coc!e for the terminal type. Tne types TfYIN currently knows about:

0 = glass tty (capable of deleting chars by backspacing. but little else);

l = Datamedia;

2 = .Heath.

Only the Datamedia has full editing power. 0ISPLAYTERMP has built into it the correct terminal types
for Sumex and Stanford ca.-npus 20's: Data.-ned.ia = 11 on tmex. S on tops20: Heath = 18 o:i Tene:-::.
25 on ccps20. You can override those values by setting the variable O ISPLAYTYPES co be an :tlis~
associating ti.'1.e GTTYP value with one of these internal cedes. For example. Sumex cisplays corres;c:i.d :o
0 ISPLAYTYPES = ((11 • 1) (18 • 2)) [although this is actually ccmpiied inm O!SPL.~YiERMP
fur speed]. A:iy display terminal oti.'ler than Datamedia and Heath can probably safely be assig:1ed ta ··a-·
for glass tty.

To add new terminal types. you have to choose a number for it. add new code to lTYI?',." for it ~-:d
recompile. The TfYIN code specifies what the capabilities of the terminal are. and how ta do the prt::iitive
operajor...s: up. down. left. right. address cursor. erase screen. erase co end of line. insert cha.rac:e:. ex.

For terminals lacking an Edit key {currently only Oatamedias have it). set the variable ED IT PREF I XCHAR
to the :.tSCii code of an Edie "prefix"' (i.e. anything typed prccedc.d by the prefix is. considered to have ~e
edit h1L on). lf vour ED!TPREFIXCHJ\R is JJQ (t:SC~tpt:!), you c;m typt:! a real Fscap!! hy typing 3 ut ~b:m
(2 W('!1C du, sine:: that means "Euit·Esc~1pc·· . .1 legitimate argument to .ir,ulhcr command). You ..:c•uld
Jlso define .in cs-:ape symmym with TTY INREADMACROS if you wanted (but currc=ttly it dm:sn't work t~

filename completion). Setting EQ IT PREF IXCHAR for a terminal that is not equipped to ha.nd!e c.":.e fuil
range of editing functions (only the HeaL'1 Jnd Daca.media Jre currc:ic.ly so equipped) is not :f.J~:!.i.,,eed
to work. 1.e. ::.b.e display will not always be up co date: but if you can keep tr:ick or" what you·re do:r.g.
together with an occasional control-R co help ouc. go right ahe:id.

20.-l-5

n
Display Types

n

n

·.

20.46 n

0

0

0

0

CHAPTER 21

ETIIERNET

Interlis-;, was f."'St developed on large timesharing machines which provided each user wi.t.'l ac:ess :o
large amou::1:s of disk storz.ge. printers. mail systems. etc. lnterlisp·O. however. was designe-:. to ru:::. 0:1

smaller. si:tg!c-user machines wit.'lout t...'lese facilities. In order to provide faterlis;,-D users wit.'i. access to
all of these s-.::rvices. Intcriisp-0 supportS the Ethernet communications network. which allcws rm.:lupie
Intcrlisp-D ma.chines to share common printers, file servers, etc.

Intcrlisp-D suppons the-Experimental Ethernet (3 Megabits per second) and the Et.,emct llO McpbitS
per second) local communications networks. These networks may be used for accessi..,g file servers. remote
printers. mail servers, or other machines. This chapter is divided into three sections: First. an ovenriew of
the various Ethernet and Experimental Ethernet protocols is presented. Then follow sections documenting
the functions used for implementing PUP and NS protocols at various levels.

21.1 ETHER'IBT PROTOCOLS

The members of the Xerox 1100 family (1100, 1108, 1132), Xerox file servers and laser xerographic
printers, along with machines made by other manufac:urers (most notably DEC) have the capability of
communicating over 3 Megabit per second Experimental Ethernets, 10 Megabit per second Etl1eme:s and
te!~phone lines. -

Xerox pioceered its work with Ethernet using a set of protocols known as PARC Universal Packet (PCP)
computer com...iiunication protocols. The architecture has evolved into the newer Network Syste~s c-;s)
protocols developed for use in Xerox office products. All of the members of the Xerox llCO f.:m1ily can
use both NS and PUP protocols.

21.1.1 Protocol Layerl::ig

Toe communication protocols used by the members of the Xerox 1100 family are implemented in a
"iayered" fashion. which means that different leveis of com..TI1unication are in:p!eme::ited as cil=erent
protocol layers. Protocol Layering allows implementations of specific· layers to be· ch,nged witi:out
requiring changes to any other layers. The layering a!so allows use of the sa.'lle higher level soft: .. ·are with

• different lower levels of protocols. Protocol designers can implement new. types of protocols at the correc:
protocol level for their specific application in a layered system.

At the bottom level. level Lero. there is a need to phy:;ically transmit data from one point to a.no~f)~r.
This level is highly dependent on the particular transmission medium involved. There are r.,::my different
level zero protocols, and some of r.hem may contain several internal levels. At level one. the:-e is a :1ecd
to decide where the ciat.l should go. Tnis level is concerned with how to address a source and dcs:i:..::ition.
and how to choose the correct transmission medium to use in order to route the packet towarc..s .1~

destination. A level one packet is transmitted by encapsulating it in the level zero packet :ippropr.ate for

21.1

Level Zero Protocols

t.tJ.e transmission medium selected.- For each independent communication protocol system. a single le..-el
one protocol is defined. The rule for delivery of a level one packet is that the communication sys:e:n
must o:lly tr'..ake a best effort to deliver the packet. There is no guarantee that the packet is c.ellvered.
ti."la~ t.lJ.e packet is not duplicated and de!ivered twice. or_ tllat the packets will be delivered in t.':e same
order as they were sent. ·

The addresses used in level zero and level one p~ckets are not necessarily the same. Level zero p2exe!.S a:e
specific co a particular transmission medium. For example, the destination adc!re-:..s of a le-.el zero packet
tr:ins~ic:ed on one of the two kinds of Ethernet is the Ethernet address (host numb~r) of a m:?Cti::e on
the p:u-ticuiar network. Ll!vel one p.;ckcts spcciry :icltlrcs:;cs mc~;1ingful to the particu!ar da:is cf ;,ro:cx:uis
being implemented. For the PliP and NS protocols. the destination address comprises a network nll!:l::er.
host number (not necessarily the same as the level zero host number). and a sccket number. TI-:.e socket
number is a higher-level protocol concept, used to multiplex packctS arriving at a single m;ichine de5ti::cd
for separate logical processes on the machine.

Protocols in level two add order and reliability to the level one facilities. They suppress duplic:ue packets.
and are responsible for retransmission of packets for which acknowledgement has not been received.. The
protocol layers above level two add conventions for data structuring, and implement application spedic
protocols.

21.1.2 Level Zero Protocols

.
Level zero protocols are used to physically cotu"lect computers. Toe addresses used in level zero protocols
are protocol specific. The Ethernet and Experimental Ethernet level zero protocols use host numbers.
but level z~ro phone line protocols contain less addressing information since there are only two hostS

. connected to the telephone line. one at each end. As noted above. a level zero protocol does not include
network numbers.

The 3MB Experimental Ethernet (l] was developed at PARC. Each E.'Cperimental Ethernet packet includes
a sourc~ and destination host address of eight bits. The Experimental Ethernet sta..'ldard is used by :my
machine a:tached to an Experimental Ethernet. ·

The 10MB Ethernet [2] was jointly developed a.."1.d standardized by Digital. [ntel. and Xerox. ~h E~~e:net
level zero packet includes a source and destination host address that is 48 bits long. The Ethe:net s~-:c.arc.
is used by any machine attached co an Ethernet.

Both of the level one protocols described later (PUP and NS) can be transported on any of the level zero
protocols described above.

The Ec..1.ernet and E:cperjmencal Ethernet prmocols are broadcast mediums. Data packetS can be sent
on c..1.ese networks to every host attached to the net. A packet directed at eYery host on a network is ~
broadcast packet. .-

Other I.cvd O protocols in use in induscry include X.25. broadband networks. .:ind Ch.:iosnct. [n
addiuon. by using the notion of .. mumal cncapsulauon". it is possible to treat .i highcr·lcvcl protocol (e.g.
ARPANET) as if it were a Level Zero Protocol.

21.2

O.·

()

()

()

0

0

0

ETHERNET

21.1.3 Level One Protocols -

Two Level One Protocols are used in the Xerox 1100 Family. the P'UP and the NS protocols. With
t.ie proper software, computers attached to Ethernets or Experi.I::nental Ethernets can send PU?s and
NS packets to ot..'1.er computers on the same network. and to computers attached to other E.hen:.e:s or
E::perimental Ethernets.

The PUP protQCOls [3] were designed by Xerox computer scientists at the Palo Alto Research Cemer. The
d~.;:ti.n.Jtion a.nd source add:-cssc::: in a PUP packet arc specified using an 8-bit network number. an 8-bit
host nuobcr. and a 32-bit socket number. The 8·bit network nue1bcr allows an absolute max:.. .. ~m of
256 PUP networks in an internet. The 8-bit host number is net,vork relative. That is. there ma~· be ma.r:y
host number 'T's. but only one per network. 8 bits for the hcst number limits the number of hosts ?er
network to 256. The socket number is used for furt."lcr levels of addressing within a spe-.:ific :nachine.

T.1e Network Systems (NS) protocols [4, S] were developed by the Xerox Office Products Division. Exh
NS packet address includes a 32·bit network number. a 48-bit host number. and a 16-bit socket number.
The NS host and network numbers are unique through all space and time. A specific NS host number is
generally assig:ied to a machine when it is m~ufactured. and is never changed. In the same fashion. all
networks (including those sold by Xerox and those used wichin Xerox} use the same network numbering
S?ace-ti.i.ere is only one network "74".

21.1.4 Higher Level Protocols

The higher level PUP protocols include the File Transfer Protocol (FfP) and the Leaf Protocol used
to send and retrieve files from Interim File Servers (IFSs) and DEC File Servers. the Telnet protccol
implemented by "Chat .. windows and servers. and the EFrP protocol used to communicate w~th the laser
xerographic printers developed by PARC ("Devers'' a."l.d "Penguins ..).

The hig.i.er level NS protocols include the Filing Protocol which allows workstations to access the product
File Services sold by Xerox. the Qearinghouse Protocol used to access product Oearinghouse Senices..
and the TeiePress Protocol used to communicate with the Xerox model 8044 Print Server.

21.1.5 Connecting Networks: Routers and Gateways

\Vhen a level one packet is sent from one machine to another. and the two machines are not-o::i the same
network. the packet must be passed between networks. Computers that are connected to two or more
le,;el z.cro mediums are used for this function. In the PUP world. these machines.have been historically
ca!led "Gateways." In the NS world these machines are called Internetwork Routers (Routers). and the
function is packagt;_d and sold by Xerox as the Internetwork Routing Service (IRS).

Every host that uses the PUP protocols requires a PUP address: NS Hosts require NS addresses. An
address consists of two pans: the host number and the network number. A computer learns its network
number by conununicating with a Router or Gateway that is attached to the same network. Host number
determination is dependent on the hardware and the type of host number, PUP or NS.

21.3

Addressing Conflicts ,rith Level Zero Mediums

21.1.6 Addressing ConiUcts wit.'t Level Zero Mediums

For convenience in the respective protocols. a level one PUP (S·bit) host number is the same as a !evei zero
E;q:,edm-~n!.tl Ethernet host number; i.e .. when a PUP le·iel one packet is tr"c:.nsported by an ~;:ef.=ien!.'al
Ethernet to anocher host en the same network. the level zero pac.k~t specifies fae sa.:ie host m.1=:cer as
£he level one packet. Sin:1ilarly, a level one NS (48-bit) host number is the same as a level zero Ec.i:ernet
host nut:1ber.

When a PUP ievel one packet is tra."lsportcd by an Ethernet. or an NS level one packet !s sent on
E:q,erimenul Ethernet. the level one host o.i.:mber cannot be used as the level zero address. but rather
some means must be provided to determine the correct level zero address. Xerox solved t.11is prcblem
by spc..>cifying anor.J1er level-one protocol called trar.slation to allow hosts on :m E:tperfrnenul E:ho::rnet :o
announce their NS host numbers. or hostS on an Ethernet to announce their PUP host numbers. Thus.
bot&'l the Ethernet and- Experimental Ethernet Level Zero Protocols totally support both families of higher
level protocols.

21.1.7 References

[11 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed Packet Switching for Local Computer
Networks. Communications of the ACM. vol. 19 no. 7. July 1976.

[2] Digital Equipment Corporation. Intel Corporation. Xerox Corporation. The Ethernet. A Local Area
Network: Data Link layer and Physical Layer Specifications. September 30. 1980, Version 1.0

[3J D. R. Boggs. J. F. Shoch. E. A. Taft. and R. M. Metcalfe, PUP: An Internetwork Architecture. IEEE
Transactions on Communications. com'."28:4, April 1980.

[4] Xerox Co[?oraticn. Courier: The Remote Procedure Call Protocol. Xerox System Integration Stanc.ard.
Stamford, Connecticut. Oeceir..ber. 1981. XSIS 0381U.

[5] Xerox Corporation. Internet Transport Protocols. Xerox System Integration Standard. S~ford.
Connecticut. December. 1981. XSIS 023112.

21.2 HIGHER-LEVEL PUP PROTOCOL FUNCTIONS

This section describes some of the functions provided in Interlisp·D co perform protocols abo.·e Le...-ei
One. Level One functions are described in a later section. for the benefit of those users who wish co
program new protocols. • . .
The following functions provide assorted networ1' services.

(ETHERHOSTNUMBER N'AMZ) [Fu:iction]
Returns the number of the named host. The number is 16-bit cuantitv. t.~e h:s::.
8 bits design:iting the net and the low 8 bits the host. [f NA.WE is· N IL ~et'..ims ~~e
number of the local host.

21.4

n

(). ...

()

o-
{ETHERPORT NAME

ETHERJ."iET

ERRO.P.FLG MV'LTFLG) [Function]
Returns a pen corresponding to NAME. A "port" is a network address that re-;,resents
(potenti2.liy) one end of a network connection. and includes a socket m.:.mber i..,
addition to the network and host numbers. Most network fu:ictioI".s c.,ac ta.1<e a
port as argument allow the socket to be zero. in which case a well-known so,;:ke: i.s
suppl:ed. A port is currently represented as a dotted pair (NETBOST • soc:-c==.:-).

NA.VE may be a liutom, in which case its address is looked up. or a port. which is
just returned directly. If ERRORFLG is true. gcnera:es a..,i error "ho-;t net found"' if
the address lookup fails. else it returns NIL. If Mtr! .. TFLG is t.-ue. returns a list of
alternative pon specifications for NA.i.\!E, rather than a single pore (mis is provided
because it is possible for a single name in t.'le name database to have rr:ultip!e
addresses). If MUL TFLG is NIL and NAME has more than one address. the currently
nearest one is returned. ETHERPORT caches its results.

Q The SOCKET of a port is usually zero. unless the name e::tplicitly contains a
socket designation, a number or symbolic name following a + in NAME, e.g .•
PHYLUM+LEAF. A pon can also be specified in the form .. net#host#socket".
where each of net. host and socket is a sequence of octal digits: the sock.et. but not
the terminating #. can be omitted. in which case the socket is zero.

0-

{ ETHERHOSiNAME PORT USE.OCTAL.DEFAC;'LT) [Function]
Looks up the name of the host at address PORT. PORT may be a numeric address. a
(NETF.OST • SOCKET) pair returned from ETHERPORT, or a numeric designation
in string form. .. net#host#socket", as described above. In the first case. t.1e net
defaults to the local net. If PORT is NIL, ret'.irns the name 'Of the local hcst If .. ~ere
is rio name for the given port. but USE.OCTAL.DEFAULT is true. the function recums
a string specifying the pon in octal digits. in the form "NET#HOST#soc-AET". wir...1.
SOCKET omitted if it is zero. Most functions that take a pon argument ,,.,ill also
accept pores in this octal format.

(PRINTERSTATUS PRINTE&'IAME) [Function]

(EFT P HOST FILE

Returns status of PP..INTBRNA.\!E. the name of a Press Printer, in the form (CODE

• "readable string"). Returns NIL if the printer does not respond in a
reasonable time, which can occur if the printer is very busy, or does not impieo-;nt
the printer status service. CODE is interpret:d as follows:

1 Printer is not spooling (down for servicing)

2 Printer is idle

3 Printer is busy (printing or accepting a file)

PRINTERFLG #SIDES) [Function]
Transmits Fir.E to HOST using the EFTP protocol The FILE need not be cpen on
entry, but in any case is closed on exit. The principal use of the E F.TP protocol
is for transmitting Press files to a printer. If PRINTERFLG is non·N 1 L. assumes
that HOST is a printer and FILE is a press file. and takes additional action: :t
performs a PRINTERSTATUS for HOST and prints .this information to the prompt
window; and it fills _in the "primed-by" field on the last page of the press file wic..'1
USERNAME. and the ··copies" field with {OR {FIXP PRISTERF!..G) 1). For
primers capable of duplex printing. #SIDES may be l or 2. me:mmg pnnt one· or

21.5

-I

I

Higher-level NS Protocol Functions

two-sidec:t respectively; NIL means use the printer's defaulL EFTP rerurns only
on success; if HOST does net respond. it keeps trying.

21.3 HIGHER-LEVEL NS PROTOCOL Fl.JNCTIONS

The following is a description of the Intcrlisp-D facilities for using Xerox SPP a.rid Courier protocols and
the services based on them.

21.3.1 SPP Stream Interface

This section describes the stream interface to ti.'le Sequenced Packet Protocol

(SPP. OPEN HOST SOCKET PROBEP NAME) [Function]
This function is used to open an SPP stream. If HOST is specified. an SPP connection
is initiated to a:osT with remote socket SOCKET. If both F.OST and PP..OEEF zxe
specified. then the connection is probed for a response before remming the stre:mi:
.NIL is rerurned if HOST doesn't respond. If HOST is NIL. a passive connection is
created which listens for an incoming connection to lccal sc<:ket SOC'iGT. SA.WE is
a mnemonic name for the connection process. mainly useful for debugging. Tne
function rerums an SPP sere~ for which the standard stream oper==.tior~ SIN.
BOUT, CLOSEF. and EOFP are defined. In particular. COPYBYTES may be used
on SPP streams.

The SPP stream that is returned is open for both input and ou~put. since SPP
connections are bidirectional. However. the underlying stream I/O functions use
oniy a single buffer~ Some care. must therefore be ~xercised co insure that my
buffered ourpuc data is forced out before any new data is rea~ and that all
data up to a message bound2ry has been read before any new d.1u is writ:en.
Functions described below are used for this purpose. \Vhile these restrictions m2.y

()

n-

seem severe. in practice most use of SPP streams is done by the Cou::er rer:ioce l'\/,J
procedure call facility. rather than directly by the prog:!'~"Tirrler. Courier conforms
to the model of alternating exchanges of messages quite well.

SPP. USER. TIMEOUT [Variabie]
Specifies the time, in milliseconds.. to wait before deciding that a hos~ isn't
responding.

(SPP.FLUSH STREAM) (Functionl
This function forces any buffereq output data to be transmitted.

(SPP. SE NOE OM STHE.,M} [Fur.ction}
·1nis function forces out any buffered data and causes an End of Yicssage indic.1uo~
to be sent.

(SPP. CLOSE STREAM ABORT') [Function]
11,is function closes an SPP stream using the reliable termination protccoi. If
ABORT' is not NIL. the strc.:lI!l is closed even if there is an outst.:tnd.ing bulk cat:i

21.6 l}····

0

0

0

0

ETHERNET

-
transfer in progress.

{ SPP. DSTYPE STREAM DSTY?E) [Function]
Tnis fanction gets or sets the current c!atastream type. If DSTYPC: is s;,ecif.ed.. ail
subsequent packets t.:.'lat are sent· wiil be of t..'lis datastrea..<n type. until tte next e2.l!
to SPP. DSTYPC:. Since this affects the current par-Jally-filled packet. t..1.e s::e:mi
should probably be :lushed (via SPP. FLUSH) before this function is called. If
DSTI"'?E: is not specified. this function returns the datastream type of che current
packet being read.

(SPP. READP ST.REAM) [Function]
Titis function returns T or NIL depending on whether or not t.'IJ.ere is data to be
read without waiting.

(SPP. EOFP -STREAM) [Function]
This function returns T or NIL depending on whether or not the connection ha.s
been closed.

{ SPP. EOMP STREAM) [Function]
T.'l.is fux.ction returns T or PlIL depending on whether or not an End of t-r·iessage
indication has been reached. This will only be true after the last byte of data in
the message has been read.

21.3.2 Courier Remote Procedure Call Protocol

(COURIER. OPEN HOSTNAME SE.RVERTYPE NOERRORFLG NAME) [Function]
This function opens a Courier connection to the specified sosT and retur"'...s an SPP
stream. If HOST is a LIT AT OM. string, or list representation of a Oeat..:::g...'1ouse
name, SE"RVERTYFE should specify what type of server HOST is, so t.."lat r..1'.!e name
may be looked up in the Clearinghouse database. Currently, sc=.=-:.rzRTY?E mus:
be one of PRINTSERVER or FILESERVER. Normally, this function will ret.ry the
connection \MAXETHERTRIES times before genera.ring an error. If s·oi::R..1WRFZ.G

is specified.. NIL will be returned if the connection fails. The Courier cor....cecno::i
will be given NAME, if specified.

(COUR_IERPROGRAM NAME ···) [NLambda NoSpre~d Function]
Tnis function is used to define Courier programs. The syncax is

{COURIERPROGRAM name {programNumber versionNumber)
TYPES
{{typeName typeOefinition)
...)

PROCEDURES
{(procedureName ARG~ (argType •..)

RESULTS (resultType .••)
ERRORS (errorNarne ...)
procedureNumt:>er)

...)
ERRORS
((errorName ARGS (argType .. ,) errorNumber)

21.7

··-~-,.

Courier Template Language

-...)}
)

Type definitions are written in the Courier template language. described beiow.
Courier types may either be type· names that are denned in the curre::it Cour:er
prograrr .. qualified names of the form (otherCourierProg ram . typeNa~e),
or explicit definitions in the template language.

21.3.2.1 Courier Tempfate Language

Tnis section describes how Courier types are described in Interlisp. and how corresponding values are
represented. (See also the Courier protocol definition.) ·

Predefined types:

BOOLEAN is represented by T and NIL: STRING is represented by strings; CARDINAL. INTEGER.
LONGCAROINAL, LONGINTEGER, and UNSPECIFIED are represented by integers.

Conscruc:ed types:

(ENUMERAi!-ON (NAME VALUE} (NAME VALUE})
{ARRAY LENGTH TYPE)
{SEQUEllCE TYPE)
(RECORD {NAME TYPE} .•. {NAME TYPE))
{CHOICE (NAME VALUE TYPE' •.• (NAME VALUE TYPE))

Representation of conscructed types in Lisp:

ObjectsofCouriertype {ENUMERATIOtl (UNKNOWN 0) (RED 1) (BLUE 2)) are represented by the
litatoms UNKNOWN. RED, and BLUE.

Objects of Courier type (ARRAY 3 INTEGER) are represented by lists of three integers. such as { 10 1
59).

Objects of Courier type (SEQUEr,cE BOOLEAN) are represented by arbitrary-le:igth lists of T anc NIL.
such as (NIL T T NIL T).

ObjectS of Courier type

(RECORD (NETWORK0 LQNGCAROINAL)
(HOST {ARRAY 3 CARDINAL))
{SOCKET CARDINAL))

are represented by list.c; like ((NETWORK 174) {HO·ST (100 24 363)) (SOCKET 20)).

Objects of Courier type

(CHOICE {STATUS O {ENUMERATION {BUSY O) (C0MPLET~ 1)))
(MESSAGE 1 STRING)) .

o.

arerepresemedbylistslike(STATUS C0MPLETE)or{MESSAGE "Your request has completed.").

21.3

0

0

()

ETHER.NET

(COURIER.CALL STREAM PROGRAM PROCEDURE ARG1 ••• ARGr,t NOERRORFLG)
[NoSpread Emction}

Tnis function calls the remote procedure PROCEDrJP.E of the Courier prog:am
PROGRAM. STP..EAM is the SPP stream rerumed by COURIER. OPEN. Toe arg,J.me!lts
shou!d be Lisp values appro;>riate for t:."le Courier types of the correspondL-lg formal
para..--:1eters of t.'1e procedure (de:5ned under the ARGS pro?erty for t."le proced:.:.re).
Rerurns results of the Courier types defined under the RESULTS proper.y. If there
is only a singie result. it is rerurned. ot.'1.en·,ise a list of results is re::urnec!.. T.'1e ·
NOERRORFLG argument conc-ols the treatment of remote errors. If NOZF..P.OFJLG
is N IL. a Lisp error will be genera~ed. lf NOERROP..FLG is T. l~ I L will be returned
as the result of the call. If NOERROR.FI.G is RETURNERRORS. the result of the call
will be a list consisting of the atom ERROR followed by the Courier name of the
error and any arguments.

Examples:·

(COURIERPROGRAM EXAMPLEPROGRAM (17 1)
TYPES

)

((PERSON.NAME (RECORD (FIRST.NAME STRINGl
(MIDDLE (CHOICE

(NAME O STRING)
(INITIAL 1 STRING)))

(LAST.NAME STRING)))
(BIRTHDAY (RECORD (YEAR CARDINAL)

(MONTH STRHIG)
(DAY CARDINAL))))

PROCEDURES
((GETBIRTHDAY ARGS (PERSON.NAME)

RESULTS {BIRTHDAY}
3))

Defines EXAM?LEPROGRAM to be Courier program number 17. version number 1. Toe ex.ample defines
two typ~s. PERSON.NAME and BIRTHDAY, and one procedure. GETBIRTHDAY. whose proce~ure nuxr..ber
is 3. Tne following code could be used to call the remote GETBIRTHOAY procedure on the host with
acdress HOST ADDRESS.

(SETQ STREAM {COURIER.OPEN HOSTADDRESS))
(COURIER.CALL STREAM

(QUOTE EXAMPLEPROGRAM)
{QUOTE GETBIRTHDAY)
(QUOTE ((FIRST.NAME "Eric~)

(MIDDLE (INITIAL "C"))
(LAST.NAME "Cooper"})))

COURIER.CALL in this example will rerum a value such as

((YEAR 1959} (MONTH "January"} (DAY 10))

21.9

M~ipufating Courier Representaticn.s

21.3.2.2 Mznipulating Courier Representations

Several Courier prograos use values of type (SEQUEUCE UNSPECIF IE0) to handle user-defbed or
othc~J1ise e::ctensiole object types. Often it is necessary ·to convert betvt·een a list of 16 bit worc:s (the
sequence of UNS?ECIF IEDs) and a Courier value. The following function should be used for :his
purpose.

(COURIER. READ. RE? LIST.OF. WORDS PR.OGRAM TYPE) [Fun:::ion]
This fur.ctio:i returns Lite Lisp representation of the Ccurier object of t:,pe r.rp::
defined in the Courier program PROGRAM whose underlying Courier represe:u.aticn
is LIST.OF. 7lORDS.

21.3.2.J U~ing Bulk Data Transfer with Courier

Two Courier types are treated specially when they appear in the argument list of a procedure. They are
BULK.DATA.SINK and BULK.DATA.SOURCE. A Courier procedure ma.y have at most one such sini or
source parameter. The result of a COURIER. Cft,LL on such a procedure is an SPP stre~ open fur ir.puc
or output according to whether the bulk data paramter is a sink or a source. The client uses t..'1is stre3.0
to re';eive or send the appropriate bulk data object If the object consists of bytes. this may be done
wit..~ the usual streWI I/O functions such as COPYBYTES. If the data is a strem1 of Courier obj~ts. the
following function should be used.

(COURIER. READ. BULKDATA STREAM PR.OGRAM TYPE) [Function]
-STREAM is "the bulk data stream returned from COURIER. CALL. TYPE is the type
of each Courier object in the stream. PROG~a...c is the Courier progr::im in which
TYPE' is defined. A list of objects of Courier type TYPE will be rem.med.

The observant reader may wonder what happens if the Courier procedure returns one or more results. in
addition to taking a bulk data parameter. If a bulk data stream is returned to the caller. what happens
to c..tie r-~sults? The answer is that the results are collected when the bulk data stream is closed.. after the
client has transfer:-~d the bulk data. The disposition of t.1.ese results depends on what acmal pa..-.:.meter

()

(J

is supplied for the formal bulk data paraoeter at the tiine of the c2.il. [f it is rd IL. the res:.!lts. if my. ('\
will be ignored. Otherwise. the value is assumed to be a function which to be applied to the :eSul:s. A)
FUNARG may be used for full generality.

For exam;,le. the Courier procedure to print an Interpress master uses a bulk data. source co transfer
the master. and also ret'Jrns ;J. request identifier. Tne Lisp function which performs the COURIER . CALL
passes a functional to. be called on this request identifier after the stream is closed and printtlg begins:
this functional in turn spawns a process which monitors the progress of t:he job.

{ COURIERT~ACE FLG REGION) [Function]

21.3.3 NS Printing

This function controls the tracing of Courier remote procedure calls. re is similar
to PUPTRACE and XIPTRACE. but operates at the call/return level rather tha:i u1e
packet level. · ·

This section dcscri~es the facilities that are available for printing InteqJress masters on NS prim.servers.

21.10 n

0

0

0

ETHERNET

NS.DEFAULT .PRINTER [V~iabie]
The value of this variable is used whenever no prmtserver is specified for t.'le
functions described below. If its value is a LIT A TOM. string. or Oe.aring.hot.:.se
name, tr.e Clearinghouse is queried to find the address of the printserver v,.-ith ±at
name. If its value is NIL. it will be set automatically to some pn.:it.se?:':~r in c.r.e
local Clearinghouse domain. In environments where there is no Oea.'"ing:..101.!se. c.11e
value of NS. DEF AULT. PRINTER must be an appr~priate NSACCRESS record.

(OPEN. NS. PRINTING. STREAM PRINTER DOCti'MENT.NAME DOCUMENT.CREATION.DATE SE:SDE?. . .'IAME
R'ECIPIE:O."T.NAJ.!E #COP!ES MEDWM PRIORITY STAPLE? TWO.SID.ED? NO\.\<'.ATCHDOC') [Function]

This function returns a strca.-n for printing an lnterpress master on PRINTER er
on NS. DEFAULT. PRINTER as mentioned above. The caller should write t.i.e
Interprcss d:lr.a to the stream and then close it using CL OS E F. Printing begins after
the stream is closec;i.

DOCUMENT.NAME is the document name to appear on the header page (a string).

DOCUMENT.CREATION.DATE is the creation d.lte to appear on the header page (a
Lisp integer date). Toe default value is the time of the call.

SENDER.NAME is the name of the sender to appear on the header page (a string).
The default value is the name of the user.

RECIPrENT.NA.\!E is the name of the recipient to appear on the header page (a
string). The default value is the name of the user.

#=COP'!ES is the number of copies to be printed. Tne default value is 1.

MEDIUM is the medium on which the master is to be printed. This must be a
Courier value of type MEDIUM. which is a list of the form (PAPER (KNOWtl. SIZE
NAME)). where NAME is one of the LITATOMs US. LETTER. US. LEGAL. AO
through AlO, ISO. BO through ISO. B 10, and J IS. BO through J IS. B 10. The
default value is determined by the printer.

PRIORITY is the priority of this print request (LOW. NORMAL. or HIGH). Tne default
value is NORMAL.

STAPLE? is T or NIL depending on whether the document should be stapled. The
default value is NIL.

TWO.SIDED? is T or NIL depending on whether the document should be prir.ted
on two sides. The default ..-alue is NIL.

NOW/,TCHDOG? is non-NIL if the client does not want a watchdog process to
monitor the status of the printing job.

(NSPRINT PRINTER FILE.NAME DOCUMENT.NAME DOCUMENT.CREATION.DATE SENDER.NAME
.::t.ECIPlENT.NAME #COP!ES MEDIUM PRIORITY STAPLE? TWO.SIDED?) [Function]

This function prints an Interpress master on PRINTER or on ~,s. DEFAULT. PR I ~lTE R
as mentioned above. FILE.NAME should be the name of an Into;:rpress file to
be primed. The remaining arguments are all optional. and arc as c!cscrit,cd
for OPEN. NS. PR INT rnG. STREAM above. DOCUMENT.NA..\{E defaults [O the :u!l
name of the file. and DOCUMENT.CREATION.DATE defaults to the creation dace of

21.11

--

Qe2ring.'1ouse n
the file.

(HSPRINTER.STATUS PR.INTER) [Funct:co]
' . This func.k,n retu.i.-ns the Courier value resulting from the GET • PR I ?HER . Si A TUS

call· ~

(HSPRINTER. PROPERTIES PP..I.N'n.R) [Fur:.:ti.on}
This function retur:is the Courier value resulting from the GET • PR I NT ER • ? RO? ER i IE S
call.

21.3.4 Ce:uinghouse

TI.is section describes functions that may be used to access Clea.."inghouse servers. Note that c!!ese
fuo.ctions are used by the NS printing functions if the printserver is specified by name rat.~er than address.

(START. CLEARINGHOUSE RESTARTFLG) [Function]

CH.NET .HINT

This function enables Clearinghouse access. It performs an expanding ri.11g
broadcast in order to find the first Clearinghouse server. If RESTARTFLG is non­
N IL. the e2.ehe of Clearinghouse information is invalidated and a new broac!c:ist is
done. Tnis may be necessary if the local Clearinghouse server goes dO\lr1l.

[V arfac le]
Hint as to which network the local Clearinghouse server is on. for use by
START. CLEARINGHOUSE above. If CH. NET. HINT is bound to a network
number. that network will be tried first. followed by the others in the routing
table. If the local Clearinghouse server is· not on the directly connected network.
setting CH. NET.HINT to the proper network number in the local IN IT file will
speed up ST ART. CLEAR I NG HOUSE considerably.

{SHOW. CLEARINGHOUSE) [Function)
This function displays the structure of the cached Clearinghouse informatior:. in a
,,.,indow. Once created. it will be redisplayed whenever the cac.'le is updated. T.-:e
structure is shown using GRAPHER ...

(SHOW. ENTIRE. CLEARINGHOUSE) [Fur..cticn}
This function attempts to cache infonnation about all the Clearinghouse dcr:::tins.
so that Lrie Clearinghouse Str'Jcture window will show the entire database.

CH. DEFAULT. COMA IN [Var.able}
This is a string specifying the default Clearinghouse domain. If it is N IL. it ·.i.·ill
be set automatically by ST ART. CLEAR U.GHOUSE. Otherwise. it should be set iri
an rnIT file.

CH.DEFAULT .ORGANIZATION [Va;fabiej
·n1is is a string specifying the default Clearinghouse org::miz:ition. If it is NIL. it
will be set automatic:llly by ST ART. CLEAR ING HOUSE. Otherwise. it should be set
in an IN IT file.

(CH.ORGAN IZATI0f~S ORGANTZATTON?ATTERN) [F:..nct1cnj
This function rerurns the list of organization names in the Cle:iringhouse d.J:.ib~se
matching ORCANrZATIONPATTERN. Tne default pattern is ff.". which mJ...::r.cs

21. l;?

().

(, -)

n

0

----~--u

ETIIER.i'IBT

anything.

{CH.DOMAINS DO.\l.AIN?ATTERN) [Function]
This function rerures the list of domain names in the Oeat.nz.'liouse c!a:a:-ase
matching DOMAINPATTERN. The default pattern is "• ", which tnat::hes anythb.g.

(CH. E?!UMERATE OBJECTPAT7'ERN PROPERTY) [F:.:.:!cticnJ
This function returns the list of object names matching OB.!ECTPATT'E?..-..· a."1d
having the property PROPERTY. Currently. PROP.!'RTY must be one of USER.
PRHHSERVER. F ILESERVER, and ALL. For exzrr.pie.

{CH.ENUMERATE "•:PARC:Xerox" (QUOTE USER))

will return a list of the names of users at Xerox PARC.

(CH. LOOKUP. USER NAME) [Function)
Titis function returns the user information for the first user whose name matches
NAME.

{LOOKUP. NS. SERVER NAME TYPE) [Function]

21.3.5 NS Filing

This function returns the NSADDRESS for the first server whose name matches
NAME and has the property TYPE, which must be PR I NT SERVER or F_ I _LESE RV ER.

Tnis section describes functions that may be used to access NS fileservers.

21.3.5.1 Pathnames and NS Fileservers

The NS Filing protocol does not support conventional file system pathnames directly. However. tb.e
· Interlisp-0 software that supporu access to NS fileservers uses IFS-styie pathnames and d~ t.'"le

appropriate m?pping in software. One irnportant difference, however. is that fileserver. directory. a."1d file
names may have spaces in them, each of which must be preceded by a percent sign. Tne na."!le o=· a.'1.

NS fileserver is required to have a colon in it. Thus, even if the fileserver is in the local Oea.."'inghouse
domain, a trailL."lg colon should be appended to tl1e name. Case is not significant. For exa..-nple.

{LISPFILE:}<LISPDRAWER>XYZ;3

is a valid name for a ~le on the NS fileserver "Li spF i le: Pa re Pl ace: Xerox".

(NSDIRECTORY PATTERN) • [Fu~ctionJ
This function returns a list of file names in PATTERN. which must be the :--;s
pathname for a directory. (Any wildcards in the name field of the pat.."mame .:.re
ignored.}

· (NSCREATEDIRECTORY HOST/DIR) [Functionj
TI1is fur:ction creates a new directory with pathname HOST/DIR. Top level d.ire::tones
("file drawers'·) cannot be created in this way.

21.13

-·

Le,el One Ether Packet Format

(CLOSE.NSFILING.CONNECT!ONS)
This function closes any open connections to NS fileservers.

[Function]

"

21.4 LEVEL ONE ETHER PACKET FORl."£AT

The datatype ETHERPACKET is the vehicle for all kinds of packets trar.smittcd on an Et.'1c:-r:.et or
Excertmeni'..'.11 Ec.r.'1emet. An ETHERPACKEi conL:ti:ls several fields fer use bv the Ethernet c.."ivc:-s ~i.d a
large. contiguous data area making up the data of the level zero packet. The first se".eral worcs of the
area are reserved for the level one to zero encapsulation. and the remainder (starting ac field EPSCOY)
make up the level one packet. Typically. e:i.ch level one protocol dcfbcs a BLOCKRECORO t.1..'.lt overl.:iys

n

the ETHERPACKET starting at the EPBOOY field. describing the format of a packet for that p:l!"'..icular
protocol. For example. the records PUP and XIP define the format of level one packetS in the PCP and n
NS protocols. ' . -·

The extra fields in the beginning of an ETHERPAClCET have mostly a fixed interpretation over all ;,rot~ols.
Among the interesting ones are:

EPLIHK A pointer used to link packets. used by the SYSQUEUE mechanism (page 21.25).
Since this field is used by the syste:n for maintaining the free packet que-:.:e and
ether transmission qu~ues. do not use this field unless you understand it.

EPFLAGS A byte field that can be used for any purpose by the user.

EPUSERF IELO A pointer field that can be used for any purpose by the user. It is set co NIL when
a packet is released.

EPTRANSMITTING A flag that is true while the packet is "being tranSiritted ... i.e .. from the time tr.at
· the user ins~cts the system to transmit the packet until the packet is gat.':ercd u;,
from the transmitter's finished queue. While this flag is true, the user must not
modify the packet.

EPREQUEUE A pointer field that specifies the desired disposition of the packet after trar.sr:1:ssicn. 0,_ _)

The possible yalues are: NIL means no special treatment: FREE ~eans th~ ~~ck.et .
is co be released after transmission: an instance of a SYSQUEUE me.1:lS tl:e c:acket
is to be enqueued on the specified queue (page 21.25). ·

The normal life of an outgoing Ether packet is that a program obtains a blank packet. fills it in ac::ordi:1g
to protocol then sends the packet over the Ethernet. [f the packet needs to be retained for possible
retransmission. the EPREQUEUE field is used to specify a queue to place the packet on after its transrmssicn.
or !:he caller qangs on to the packet explicitl~.

There :ire rcddinitions. or ··overlJvs .. of che ETHE~PACKET record specifically for use wi~'l the PC? ..md
NS prntocols. ·111c following sections de:;cribc those records and the handling of the PCP and :"iS level
one prntocois. how to add new level one protocols. and che queueing mechanism associated w1th t.'le
EPREQUEUE fie!d.

21.14 (j

--
0 ETHERNET

ll.S PUP LEVEL ONE FUNCTIONS

Tne func:dons in this section are used to implement level two and rjgher PUP protocols. That is. they
de::.! wit.i. sending and receiving PUP packets. It is assumed the reader is facrilliar witil oe format and
use cf pups. e.g .. from reading refere:ice [3J in section 21.1.7.

(RESTART.ETHER) [Fu:ction]
This function is intended to be invoked from the executive on those ra:e cc::a.s:cns
when the Ethernet appears compl~te!y unresponsive. due to Lisp h:l':in; iom:n
into a bad state. RESTART. ETHER reinitiaiizes Lisp's Ethernet d..iver:s>. just as
when the Lisp system is started up following a LOGOUT, SYSOUT. etc. T.-:.:s abo~
any Ether.iet activity a."ld clears several internal caches. including the routir.g uble.

0 ·i1.S.l Cre:iting and Managing Pups

0

O·

There is a record PUP that overlays the data portion of an ETHERPAClCET and describes the format of a pup.
Tnis record defines the following numeric fields: PUPLENGTH (16 bits), TCOtHROL (transi:nit controL 8 bits.
cleared when a PUP is transmitted), PUPTYPE (8 bits), PUPID (32 bits}, PUPIDHI and PUPICLO (16 bits
each overiaying PUPID). PUPOEST (16 bits overlayed by 8-bit fields PUPDESTNET and PUPOESTHOST).
PUPDESTSOCKET (32 bits. overlayed by 16-bit fields PUPDESTSOCKETHI and PUP-OESTSOCKETLO),
and PUPSOURCE, PUPSOURCENET. PUPSOURCEHOST, PUPSOURCESOCKET, PUPSOURCESOCKETHI.
and PUPSOURCESOCKETLO. analagously. The field PUPCONTENTS is a pointer to the start of the data.
per.ion of the pup.

(ALLOCATE. PUP) [Fu:iction]
Returns a (possibly used} pup. Keeps a free pool. creating new pups or.ly when
necessary. The pup header fields of the pup returned are gua.--anteed to be zero,
but there may be garbage in the cbta portion if the pup had been recycled. so t..11e
caller should clear the data if desired.

(CLEARPUP POP) [Function.]
Gears all information from PUP, including the pointer fields of the ETHERPACKET
2nd the ;:,up data portion.

(RELEASE.PUP POP) [Function]
Releases PUP to the free pool.

21.5.2 Sockets

Pups are sent and received o~ a socket. Generally, for each .. conversation" between one machL,e and
another, thc:e is a distinct sC:cket. When a pup arrives at a machine, the low-level pup software ex1.-nines
the pup·s destination socket number. If there is a socket on the machine with chat number. the in::o:nmg
pup is handed over to the socket: otherwise the incoming pup is discarded. When a user process m1cia:cs

. a conversation. it gene:-ally selects a large. random socket number different from any other in use en
the machine. A server process. on the other hand. provides a specific service at a ··well-known·· socket.
usually a fairly small number. ln the PUP world. advertised sockets arc in the range O to lOOQ.

21.15

·-

/

\.

Sending and ReceiYing Pups

(OPEHPUPSOCJ<ET SKT# LFC",..ASH) [Functicnj
Opens a new pup socket. If SKT# is HIL {the nonnal case). a socket numbe:: is
chosen. autcl!"..atically, guaranteed to be unique. and probably different from any
socket opened this way in the last .18 hours (the low half of tb.e time of c.ay clock
is sampled}.

If a specific local socket is desired. as is typically the c:?Se when imp ie:ne::.tiI:.g a
server. SKT# is given. and must be a {up to 32·bit) number. r:::CL..J...SH i..."ldica:es
what to co in t.1-ie case that the designc?.tcd socket is alre:idy in use: if :, ! L.
an error is generated: if ACCEPT. the sccket is quie:!y re:urned: if FAIL. ::.~-;::i
OPENPUPSOCKET rerurns HIL without ca:ising an error. Note tr.at "weil·known ..
socket numbers s.hould be avoided unless the c.:tller is actually i.::lpleme:uing one
of the services advertised as provided at the socket.

()

(CLOSEPUPSOCKET PUPSOC NOBRRORFLG) [Function] n
Closes and releases socket PUPsoc. If PUPsoc is T. closes all pup sockets l ti.~ , ..
must be used with caution. .since it will also close system sockets!). If Pt-Pscc is
already closed. an error is generated unless NOERROR.FLG is true.

(PUPSOC~ETNUMBER PU?SOC) [Function]
Returns the socket number (a 32·bit integer) of PUPSOC.

(PUPSOCKETEVE.NT PUPSOC) [Function]
Rerurns the EVENT of PUPSOC (page 18.30). This event is notified whenever a pup
arrives on PUPsoc. so pup clie:its C3J1 perrorm an AWAIT. EVENT on this eYe:lt if
they have nothing else to do at the moment.

21.5.3 Sending anti Receiving Pups

(SEND PUP PUPSOC PUP) . [Function]
Sends PUP on socket PUPSOC. If any of the PUPSOURCESHOST, PUPSOURCENET,
or·PUPSOURCESOCKET fields is zero. SENOPUP fills chem in using the pup address
of this machine and/or the soc!cet number of PUPsoc. as neec.ed.

(GET PUP PUPSOC WAIT} [Function}
Returns the next pup that has arrived addressed to socket PUPsoc. If u':ere are no
pups waiting on Pv-PSOC. then GETPUP rerurns NIL. or waits for a pup co arrive if
WAIT is T. If WAIT is an integer. GET PUP interprets it as a number of mi!liseconc.s

·co wait. finally rerurning NIL if a pup does not arrive within that time.

{DISCAROPUPS soc) . . [Function]
Discards without-examination any pups that have arrived on soc and not yet been
read by a GETPUP. · • . . ,

(EXCHANGE PUPS soc OUTPUP DUMMY TDFILTER T™EOUT} (Funct:onl
Sends OUTPrJP on soc. then waits for a responding pup. which it rer..i:ns. If
rDFrLTER is true. ignores pups whose PUP IO is different from th:ic of or . .:T?-:..?.

Tf.\.<EOUT is the length of time (msccs) to wait for J response before giving up ,ind
returning NIL. TP.vtEOUT defaults to \ETHERTIMEOUT. EXCHArJGEPUPS ,!:s.:.1rds
without <!xaminauon .my pups that arc currently waiting on soc before OC:T?(:? g~~

21.16

()

(~

0

0

6

0

ETHERNET

senL (Dt'MMY is ignored: it exists for compatibility with an earlier imi'leme:::u:a:ion).

21.5.4 Pup Routing Information ,.

Ordi.,.arily. a program calls SENDPUP and does not worry at all about the route taker:. to get the ~up to
its destination. There is an internet routing process in Lisp whose job it is to main:air. information about
the b~st routes to networks of ir.teresL However. there are some algorith...-ns for which routing ir:.fo:-ma:ion
and/or the to~olcgy of the net arc explic~tly desired. To t..'lis end. the followin; functions are su~;iied.:

{PUPNEi .DISTANCE NET#} [Functionj
Returns the "hop count .. to network NET#. i.e .. the number of gateways t.'irccgh
which a pup must pass to reach J:,,"ET#, according to the best routing informatil.m
known at this poinL The local {directly-connected) network is considered to b~
zero hops a.way. Current con..-cntion is that an in:i.cccssible network is 16 h~,ps
away. PUPNET .DISTANCE may need to wait to obtain routing information fro:n
an Internetwork Router if NET# is not currently in its routing cache.

(SORT.PUPHOSTS.BY.DISTANCE HOSTLIST) [Function]
Sor..s HOSTLIST by increasing distance, in the sense of PU p NET • D Is T At~ CE.
HOSTLIST is a list of lists. t1'1e CAR of each list being a 16-bit Net/Host adc!ress.
such as returned by ETHERHOSTNUMBER. In parJcular. a list of pons ((o.ethost.
socket) pairs) is in this formaL

(PRINTROUTINGTABLE TABLE SORT FlLE} [Functicn]
Prints to F'iLE the current routing cache. The table is sorted by network o.u:nber
if SORT is true. TABLE = PUP (the default} prints the PUP routing table: TABLE

= NS prints the NS routing table ••

21.5.5 Miscellaneous PUP Utilities

(SETUP PUP PUP DESTHOST DESTSOCI-..'ET TYPE ID soc REQt"'EUE) [Function]
Fills in various fields in .PUP'S header: its length (the header o,·erhead ie::gi:.'1:
assumes data lengtt'1 of zero). TYPE, ID (if ID is H IL. ge::ierates a new o~e itself
from an internal 16-bit counter), destination host. and socket (DESTF.CST may
be anyt..i.ing ti.~at ETHER?ORT accepts: an explicit nonzero socket iri DESTEOS'T'

overrides DESTSOCKET). lf soc is not supplied. a new socket is opened. REQt-:::t-:::
fills the packets EPREQUEUE field (see above). Value of SETUPPUP is r.:.e socket.

(SWAP PUP PORTS PUP) [Function}
Swaps the source and destination addresses in 'PW. This is useful in sL111?le ;,acket
.exchange protocols. where you. want to respond to an input packet by didciing the
data poruon and then sending the pup back whence it came.

(GETPUPWORD PUP WORD#) [Function]
Returns as a 16-bit integer the contents of the WORD#th word of Pt.r's data
portion. counting the first word as word zero.

(PUTPU?WORD PU.P WORD# VALUE} [Functicnl
Stores 16-bit integer VALVl:: in the WORD#th word of PU.P·s data portion.

21.17

. --·-

.___ ___ ..

PtJP Debugging Aids

(GETPUPBYTE PUP BYTE'#) [Function]
Returns as an integer the contents of the BYTE#th 8-bit byte of pw·s data portion.
counting the first byte as byte zero.

(PUTPUFBYTE PU? BYT'Z# VALUE)
Stores VALUE in the BYT:r::#th 8-bit byte of PtlP's data portion.

[Fu:iction]

{GETPU?STRI!iG PUP OFFSET) [Fcnction]
Returns a string consisting of the characters in PUP's data portion s-i.a.-::.e.g at byte
OFFSET (default zero) through the end of PUP.

(PUT PUP STRING PUP STR) [Function]
Appends STR to the data portion of PUP, incrementing PUP0 S !ength approprfately .

21.S.6 PUP Debugging Aids

·Tracing facilities are provided to allow the user to see the pup traffic that passes through SENOPUP and
GEiPUP. The ti-acing can be verbose, displaying much information about each packet. or terse. which
shows a concise .. picrure" of t.i.e t.'"affic.

PUPTRACEFLG

PUPIGUORETY?ES

PUPONLYTYPES

PUPTRACEFILE

(Variable]
Controls tracing information provided by SENDPUP and GETPUP. Legal values:

NIL No tracing.

T Every SENOPUP and every successful GETPUP call PRINTPUP of the pup
at hand (see below).

PEEK Allows a concise _"picture" of the traffic. For normal, ncn·broace:?St
packets. SENOPUP pdnts "1 ". GETPUP prints .. + ... For broadcast packets.
SEND PUP prints ••-r", GETPUP prints "•". In addition.; for packe:s tb.:a.t
arrive not addressed to any sccket en this machine (e.g., broadcast packets
for a service not implemented on this machine). a "& .. is prin:ed.

[Variablej
A list of pup types (small integers). If the type of a pup is on this list. the~
GETPUP and SENDPUP will not print the pup verbosely. but treat it as though
PUPTRACEFLG were PEEK. This allows the user to filter out "uninteresting'" p~ps.
e.g .• routine routing information pups (type 201Q}.

[Vari:!b!eJ
A list of pup types. If this variable is non-NIL. then GETPUP and SENOP'JP
print verbosely cnly pups whose types appear on the list. treating others as though
PUPTRACEFLG were PEEK. This lets the tracing be confined to only a ccr-... :un c!:1Ss
of pup traffic.

[Variable}
The file co which pup tracing output is sent by default. The file must be opl!n.
PUPTRACEF ILE is initially T.

21.18

n

n

()

(~)

0

0

0

ETHERNET •

PUPTRACETIME [Variab~e]
If this variable is true. then each printout of a pup is accompanied by a reiative
times.amp (in seconds. with 2 decimal places) of the current time (Le_ whe::. t.11e
SENDPUP or GETPUP was called; for incoming pups. this is not the same as when
the pup actually arrived}. ·

(PUPTRACE FLG REGION) [Function]
Creates a window forpuptracing. and sets PUPTRACEFILE to it. ·If PUPTRACEF! LE
is currently a window and FI.G is NIL. closes the window. Sets PUPr?.ACEFLG
to be FLG. If REGION is supplied. the wincow is created with that re;;ion. The
window·s BUTTONEVENTHJ is set to cycle PU?TRACEFLG t.i.'"1rough t..~e ..-aiues ~lIL.
T. and PEEK when the mouse is clicked in the window.

(PRINTPUP P,\C!C!:;T CALLER FILE PRE.NOTE DO.F'ILTER) [Function]
Prints the information in the header and possibly data portions of pup PAC'".l(~T

to .F'II..E. If CALLER is supplied. it identifies the direction of the pup (GE i or
PUT), and is printed in front of the header. FILE defaults to PUPTRACEF ILE. If
PRE.NOTE is non-NIL. it is PRINl'ed first. If DOFILTER is true. then if pc.,-p's type
fails the filtering criteria of PUP IGN0RETYPES or PUP0NL YTYPES. u."len PUP is
printed "tersely". i.e., as a ! , +, -t, or •, as described above. •

GETPUP and SENDPUP, when PUPTRACEFLG is non-NIL.- call (PRINT PUP Pt"P

{'GET or 'PUT} NIL NIL T).

The form ofpr.nting provided by PRINT PUP can be influenced by adding elements to PUP?RINTMACR0S.

PUPPRINTMACROS [Variable]
An association list of elements (PUPTYPE • MACRO) for printing pups. The MACRO
(CDR of each element) tells how to print the information in a pup of type Pt7'':"Y?S

(CAR of the element). If MACRO is a litatom. then it is a function of two arguments
(PUP FILE) t."lat is applied to the pup to do the printing. Otherwise. ~~.A::::F.O is a
list describing how to print the data portion of the pup (the hez.cier is pr.need in a
stmdard way).

Tne list form of MACRO ccnsistS of "commands" that specify a "d.Jt2c:,--;,e·· to
interpret the data. and an indication of how far ti."lat datatype extends in u.i.:.e packet.
Each element of Y.ACRO is one of the following: (a) a byte offset (positive int~ger).
indicating the byte at which the next element. if any. takes effect: (b) a neg::.~ve
integer, the absolute value of whi:h is t.!J.e nun:ber of bytes until the next e!eme::lt.

• if any, takes effect; or (c) an atom ghing the format in which to. print ti."le d.lta.
one of the following: ·

BYTES ,

CHARS

WORDS

Print the data as 8-bit bytes. enclosed in brackets. This is
the default forma~ to Stan with.

Print the data as (8-bit) characters. Non-printing characters
arc printed as if the format were BYTES. except that the
sequence 15Q, l2Q is printed specially as [crlf].

Prine the data as 16-bit integers. separated by commas tor
the current SEPR).

21.19

.-.....

INTEGERS-

SEPR

IFSSTRING

FINALLY

T

REPEAT

PUP Debugg:ng Aids

Print the data as 32-bit integers. separ.ited by ccm.xr:as
(or the current SEPR). Note: tb.e singular BYTE. CHAR.
WORD, rnTEGER are acc:pted as synonyms for th~ four
commands.

Set the separator fer WORDS and INTEGERS to be r...i.e ::iext
element of the macro. Tne separator is in.kiaily ti.~e c-;;o
characters. comma. space.

Interprets the data as a 16-bii: !cng:.~ foilowed by tr.at r:1:r:y
8-bit bytes or characters. If the current data.type is B 'f TES.
leaves it alone; otherwise. sets it to be CHARS.

If there is still data left in the packet by the time processing
reaches this command. prints •• · · · .. and stops.

Toe next element of the macro is printed when the end of
the packet is reached (or printing stops because cf a . · ·).
This command does not alter the c!atatype, and can appe:ll'
anywhere in the macro as long as it is encountered befure
the actual end of the packet.

Perform a TERPRI.

The remainder of the macro is itself treated as a macro
to be · applied over and- over. until the pac!(et is exhausted.
Note that the offsets specified in the m:1cro must be i!l the
relative form. i.e .. negative integers. For example. the m.1cro
(INTEGERS 4 REPEAT BYTES -2 WORDS -4) ~~ m
print the first 4 bytes of the data as one 32-bit integer. ti."len
print the rest of the data as sets of 2 8-bit bytes and 2 16-bit
words.

()

Only as much of the macro is processed as is needed to print the data i.."i the given
packet. The default macro for printing a pup is (BYTES 12 ...), rr:.e:i.ning cc
print the fi.rst up to 12 bytes as bytes. and th~n print·· ... " if rhere is anythi.r.g lef-L.. (~

The following functions are used by PRINTPUP and si.."Ililar functions. and may be of interest in special
cases.

(PORTSiRING NETHOST SOCKET) [Functi.on}
Converts the pup address ,VETHOST. SOCKET into the following octal string for.nat:
net#host#socket. • NETHOST may be a port (dotted pair of nethost and socket).
in which c:ise SOCKET is ignored. and the socket portion of NETHOST is cmit:ed
from the string if it is zero. ·

(PRINTPUPROUTE .PACKET CALLER FILE) [Function!
Prints the source and destination addresses of pup .PACKET to F'II..E in u'1e
PORTSTRING format. preceded by CALLER (interpreted as wit., PRINTPUP}.

(PRIIHPACKETDATA BASE OFrSC:T MACRO LE:-ICTH FILE) [Function!
· Prints data accorc!ing to MACRO. which is a list interpreted as describl!d und~:-

21.20 Cl

0

0

0

0

ETHERNET

PUPPRINTMACP.OS. to FrLE. The data StartS at BASE and extends for l..ENGT'S bytes.
The actual prfr1ting stariS at the OFFSE'Tth byte. which defaults to zero. For exa...T.:;::le.
PRINT PUP ordinarily calls (PRINTPACKETDATA (fetch PUPCONTENiS of
Pu.F) 0 MACRO (IDIFFERE1,CE (fetch PUPLENGTH of PUP} 20) FrI.E).

{PR!NTCONSTANT VAR. CON'ST.ANTLIST FILE FP..EF.1X) [Function]
CONSTANTLIST is a list of pai..-s (VARNAME VAUi"E). of the form gi..-en to ~,e
COilSTANTS File Package Command. PRINTCONSTANT prints \~~ to Fr:.s.
followed in parentheses by the VAF.NAME out of cor-:STA1"'7!..IS"!' whose \~IJ:.t.-"E is
EQ to VAR, or ? if it finds no such elemenL If PP..ZFrX i.s non·N IL a.'1d is a.. i:::tial
substring of the selected VARNA.\!E. then VARN.AME is pri:J.ted without t.'1e prefix.

For example. if FOOCONSTANTS is ((FOO.REQUEST 1) (FOO.Ar~S\.ER 2)
(FOO.ERROR 3)). then (PRINTCONSTANT 2 FOOCONSTANTS T "FOO.")
produces "2 (ANSWER) ...

(OCT ALSTRIHG N} [Function]
Returns a string of octal digits representing N in radix S.

21.6 NS LEVEL ONE FUNCTIONS

The functions in this section are used to imple:nent level two and higher NS protocols. The packets used
in the NS protocol are termed Xerox Internet Packets (XIPs). Toe functions for manipulating XIPs are
similar to those for managing PUPs. so will be described in less det2il here. Toe major dirrere::i.ce is
that NS host adcresses are 48-bit numbers. Since Interlisp-D cannot currently represent 48·bit nu.~bers
directly as integers, there is an interim form called NSHOSTNUMSER, which is defi..-ied as a TYPERECORD
of three fields. each of them being a 16·bit portion of the 48-bit number.

21.6.1 Creating and Managing XIPs

Tnere is a record XIP that overlays the data portion of an ETHERPAC:<ET acd describes the
format of a XIP. This record defines the following fields: XIPLENGTH (16 bits). XIP'iCO~TROL
(transl!'jt control. 8 bits. cleared when a XIP is transmitted). XIPTYPE (S bits), XIPDESTr~ET
(32 bits), XIPOESTHOST (an NSHOSTNUMBER), XIPDESTSOCKET (16 bits). and XI?SOURCENET.
XIPSOURCEHOST. and XIPSOURCESOCKET, ana!agously. Toe field XIPCOtlTENTS is a ;,ointer t0 the
sr.an cf the car.a portion of the XIP,

(ALLOCATE.XIP) (Function]

(RELEASE .XIP XIP)

Rerurns a (possibly used) XIP. As with ALLOCATE. PUP, the header fieids are
guaranteeo to be zero. but tncre may be garbage in the data portion if che pt:p
had been recycled.

[Function]
Releases xr.P to the free pool.

21.21

NS Sockets

21.5.2 NS Sockets

As with pups. XIPs are sent and received on a socket The same comments apply as with pup soc.ketS
{p2ge 21.16), except that NS socket numbers are only 16 bits.

(OPENNSOCKET SKT#: UCL.A.SB) [Fuz:c:!on]
OJens a new NS socket. If sr~T# is NIL {t.'le normal case}. a socke: :iur::ber is
chosen automatically. gua."an.teed to be ucique, and probably diff"ere~t from .2..::y
sccket opcnl!d this way in the last 13 hours. If a specific lcca! socket ts 1~i:-ec.
as is typkclly the c:!Se when irnpiercenting a server. SKT# is given. and CL:St :e a
(up to 16-bit) number. IFCL.ASB governs what to do if SKT# is alre:ic.y in use. as
with OPENPUPSOCi<ET.

. ().

(CLOSENSOCKET NSOC NOERROF.FLG) . [Fu:iction]
Ooses and releases socket NSOC. If NSOC is T, closes all NS sockets (this Ir.US[r)
be used with caution, since it will also close system sockets!). If .-v-soc is already
closed. an error is generated unless NOER.R.ORFLG is crue.

(NSOCKEiNUMBER NSOC) [Function]
Returns the socket number (a 16-bit integer) of NSOC.

(NSOCKETEVENT NSOC) [Func::.on]
Rerums the EVENT of NSOC. This event is notified whenever a XIP arrives on
NSOC.

21.6.3 Sending and Receiving XIPs

{SENOXIP NSOC XZP) [Fu:ido::,.]
Sends x:p on socket NSOC. If any of the XIPSOURCESHOST, XIPSOURCEnEi. or
XI?SOURCESOCKET fields is zero. SENDXIP fills them in using the NS adc.:ess of
this machine and/or the socket number of Nsoc. as needed.

__, (GETXIP NSOC WAIT} t.t-1.!nc:ionj (\
Returns the next XIP that has arrived addressed co socket Nsoc. If !here are no)
XIPs waiting on Nsoc. then GETXIP returns NIL. or waits for a XIP to a.-rive ~f

. WAIT is T. If WAIT is an integer. GETX IP interprets it as a number of rnfiliseccr.d.s
to wait. finally returning NIL if a XIP does not arrive within that time.

(DISCARDXIPS NSOC) [Fu::.cr.icn]
Discards without examination any XIPs that have arrived on NSOC and not ye~

• · been read by a GETXIP.

(EXCHArJGEX I PS soc OUTXIP CDF!LTER TTMEOUT) [Function)
Useful for simple NS packet exchange prococls. Sends OUTXIP on soc. th~n waits
for a responding XIP. which it rerurns. If IDF!LT"ER is true. ignores XIPs whose
packet exchange 10 (the first 32 bits of the data ponion) is diffe:-ent from r..'"::it of
OUTXIP. TrMeor;T is the length of time (msccs) to wait for a response before ~:vir.g:
up and returning NIL. TP..fEOUT dcfaultS to \ETHERTIMEOUT. EXCHANGEXrPS
discards wtthoul cxaminauon any XIPs thal arc currently walling ~>n :OC bd,.'rc
OUTXIP gets sent.

21.22 ()

0 ETiiERNET

21.6.4 NS Deiluggi:ng Aids -

XIPs can be printed automatically by SE?IOXIP and GETXIP analogously to the way pu;,s are. The
follo"1ing variables behave with respect to XIPs the same way that the correspcndfr:g PL'P-oa..-ned Yarlables
behave with resoe::t to Pt.;'Ps: XIPTRACEFLG, XIPTRACEFILE, XIPIGNORETYPES. XIPONLYiYPE.S.
XIPPRINTMACROS. In addition. ti"le functions PRINTXIP, PRHHXIPROUTE and XI Pi RACE are directly
analogous to PRIUTPUP, PRINTPUPROUTE, and PUPTRACE.

21.7 SUPPORT FOR OTHER LEVEL O~'E PROTOCOLS

Raw packers ocher L~an of type PUP or NS c.:lll also be sent and received. This scctio:i describes fucilities
co support such protocols. Many of these functions have a \ in their names to designate that they are
system internal, not to be dealt with as casually as user-level functions.

{\ALLOCATE.ETHERPACKET) [Function]
Returns an ETHERPACKET datum. Enough of the packet is cleared so ti'1at if the
pack-~t represents a PUP or NS packet. that its header is all zeros: no gu.aramee is
made about the remainder of the packet.

(\RELEASE. ETHERPACKET EPKT) [Function]
Rerums EPKT to the pool of free packers. This operation is dangerous if the
cal!er acruaily is still holding on to EPKT. e.g.. in some queue, since this packet
could be returned to someone else (via \ALLOCATE. ETHERPACKET) and suEer
the resulting contention.

From a logical standpoint. programs need never call \RELEASE. ETHERPACKET,
since the p2ekets are eventually garbage-collected after all pointers to them drop.
However, since the packets are so large. nowial garbage collections tend net co
occur freqcently enough. Thus, for best performance. a well-d.isci;,iin~d progrum
should explicitly release packets when it knows it is finished with t..i.e:n. ·

A locally-connected network for the transmission and receipt of Ether packets is sped5ed by a network
descriptor block, an object of type !IDB. There ls one MDB for each directly-connected network: ordina..-Uy
there is only one. Toe NOB contains information specific to the network. e.g., its PUP and HS network
numbers. and information about how to send and receive packets on it.

\LOCALNOBS '[Vari ab le]
Tne first NOB connected to this machin·e. or NIL if there is no netv,ork. Any oc..i.er
NOBs are linked to this first one via the NOSNEXT field of c...'le NOB.

In order co transmit an Echcr packet a program must specify the packet's type and its imrr:cdi~te
destir.ation. The type is a 16~bit im·.:gcr identifying the packet's protocol. There arc preassigned typ(!S
for PUP a..1.d flS. The destination is a host address on ti'le local network. in whatever fonn the lo:~
network uses for addressing; it is not necessarily related to the logical ultimate destination of :he p~-::i-et.
Determi:1ing the i.-runediate destination of a packet is the t:lsk or routing. The functions SEND?UP ar.d
S mo XI P take care of this for the PUP and NS protocols. routing a packet directly to its dcsti.:lati,Jr. lf
th~t !':ost is on the local network. or routin£ it to a gateway if the host.is on s0mc other nctwo!"k ac::css~blc
,·ia the gateway. Of course. a gateway must know about the type (protocol) of a p:icket in order to be

21.23

Support for Other Level One Protocols

abie to forward it.

(ENCAPSULATE. ETHERPACKET NDB PACKET PDH NBYTES ET"fPg) [Fu.r:~JcnJ
Encapsulates FAC-AET for transmission on network NDB. PDH js t.11e ;hysical
destination host (e.g.9 an 8-bit pup host nuober or a 48-bit NS host nurr1ter):
NBYTES is the length of the packet in bytes; ETYPE is the packet's enc.:1ps~lation
type (an integer).

{TRANSMIT. ETHERPACKET NDB PACKET) [F:.mction]
Tra:ismits P.4.C-ICET, which must already have been c:icapsula:eci on network .,:r;a.
Disposition of the packet after transmission is complete is determined by the value
of PAC-~ETS EPREQUEUE field.

In order to receive Ether packets of type other than PUP or NS. the program.mer must specify what to do
with mcorn.ir!g packets. Lisp maintains a set of packet filters. functions whose job it is to .:!pprcpriately
dispcse of incoming packets of the kind they wanL When a packet arrives. t.'le Ethernet driver c3.lls e~ch
filter function in rum until it finds one that accepts the packeL The filter function is c.illed with two
arguments: (PACK.ET TYPE}, where PACKET is the acruai packet. and TYPE is its Ethernet enc.:ipsulation
type (a number). If a filter function accepts the packet. it should do what it wanes to wit.11 it. and rerun
T; else it should return NIL, allowing other packet filters to see the packet.

Si.nee the filter function is run at interrupt level, it should keep its compmation to a minimum. For
e~::.mple9 if there is a lot to be done with the packet. the filter function can place it on a queue and c.ctify
another process of its arrival.

The syste:n already supplies packet filters for packets of type PUP and HS: these filters enqueue the
incomi.,g packet on the input queue of the socket to which the packet is addressecL after checking that
the packet is well-formed and indeed addressed to an existing socket on this machine.

Incoming packets have their EPNETW0RK field filled in with the NOB of the network on which the packet
anived. ·

{\ADD. PACKET.FILTER FII.TER) [Func:ion]
Adds function FILTER to the list of packet filters if it is not already t.'lere.

(\DEL.PACKET.FILTER FiLTER) . [Fu- ... ";Or,J" J..a.\..&..i, •••

Removes FrI.TER from the list of packet lilters.

(\CHECKSUM BASE NWORDS INITS!.TM) [Fcnc:ionJ
Computes the one's complement add and cycle checksum for the NWCRDS ,,,.-ords
s~ng at address BASE. If rNITSUM is supplieci it is treated as the accurr.ub~ed
ehecksum for some set of words preceding BASE: normally INfISvM is omitted
(and thus treated is zero).

(PRDITPACKET PACI.::ET CALLER F'ILE PRE.NOTE DOFTI..TER) {Emcr.ion}

\PACKET. PRINTERS

Prints PACKET by invoking a function ;ippropriatc to PACKET"S type. Sl.!c
PR INT PUP for the intended mcanmg of the olhcr arguments. [n order for
PR INT PACKET co work on a non-standard packet there must be infoITZ1aticn
on the list \PACKET. PRHHERS.

[\',mJbic}
An association list mapping packet type into the name of a function for prmting

21.24

().

~)

(~
\)

---~
r '
')

0

/\. u

0

ETHERl'c'ET

-
that type of packet.

"'
21.8 THE SYSQUEUE MECHAL'l'LSM

Tne SYSQUEUE facility provides a low-level queueing facility. The functions described herein are all
sys,e:n internal: they c.m cause much confusion if misused.

A SYSQUEUE is a datum containing a pointer to the first element of the queue and a pointer to t.l-ie last:
each item in the queue pointS to the ne:ct via a pointer field located at offset O in the item (i::s QL INK
field in the QABLEITEM record). A SYSQUEUE can be created by calling (NCREATE 'SYSQUEUE }.

(\ENQUEUE Q !TEM) [Function]

(\DEQUEUE Q)

Enqueues ITEM on Q, i.e., lin!cs it to the tail of the queue, updating c:;i"s L'.lil pointer
appropriately.

[Function]
Removes the first item from Q and returns it. or returns NIL if Q is e:npty.

(\Uf~QUEUE Q ITEM NOERRORFLG) [Function]

(\QUEUELENGTH Q)

Removes the ITEM from Q, wherever it is located in the queue. and returns it. If
ITEM is not in Q, causes an error, unless NOERRORFLG is true, in which case it
returns r~ I L.

[Function]
Returns the number of elementS in Q.

(\'OHQUEUE ITEU Q) [Function]
True if .ITEM is an element of Q.

21.25

\
"-

The SYSQUEUE mechanism

..

21.26

n

n---- j

()

0

0

0

'l

0

CHAPTER 22

INTERLISP-10 SPEOFICS

This chapter describes a number of features of Interlisp· IO that are machine or impiementation·de;,endent.
and are not expected to be implemented in newer implementations of Interlisp.

22.1 INTERLISP· 10 INI'ERRUPT CHARACTERS

The table below gives the intem.Ipt characters currently enabled in Interlisp· 10.

Note: It is possible to change the assignments of control characters to intemipts with INTERRUPTCHAR
(page 9.17).

control·B

control-C

control·D

control·E

control·H

Generates an immediate error, and causes a break. regardless of the depth or time of the
computation. Thus if the function FOO is looping internally, typing control·B will cause
the computation to be stopped, the st.ack unwound to the point at which F 00 was called.
and then cause a break.

This is a stronger intemiption than control-H. Note that the internal variables of FOO
above are not available in this break. and similarly, FOO may have already produced some
changes in the environment before t.'1e control-B was typed. It may not be possible to
simply continue the computation. depending on the namre of the function interrupted
and when it was interrupted. Therefore whenever possible, it is better to t.:se control-H
instead of control·B.

Computatio:i is stopped. and control returns to the operating system (Tenex. etc.) Toe
program can be continued with the CONTINUE command.

Aborts the computation. and unwinds the stack to the top level Calls RESET (page 9.14).

Aborts the computation. and unwinds the stack to the last ERRORSET. Calls ERROR!
(page 9.14).

At the next point a function is about to be entered. the function INTERRUPT i.s
called instead. LNTERRUPT types INTERRUPTED BEFORE FN. constructs a.'1 appropriate
break expression. a..-id then calls BREAK 1. The user. can then ~x2.i.-r.:..oe the state of the
computation. and continue by typirig OK. GO or E.VAL. a."ld/or RETFROM back to sor:.e
previous point. exactly as wi[Fl a user break. Control-H- breaks are thus always "safe".

Control-H breaks only occur when a function is called. since it is only at this time :."lat
the system is in a "clean" enough state to allow ttie user to interact. Thus. if a compiled
program is looping without calling any functions (or if lmerlisp· 10 is in a 110 w.1it).
com.rol·H will not affect it Control-8. however. will.

22.1

control-0

control-P

control·S

control-T

Type Number Funtrloas

. -
As soon as control·H is typed. Interlisp cle.'.1.I'S and saves the input buEer. and tl:.e::i rings
the bell indicating that it is now safe to type ahead to the upcoming break. If the bre:l(
returns a value. i.e .• is not aborted via 1' or control·D. the contents of the input buffer
before the concrol·H was typed will be restored.

Note: Control-H will not intenupt at linked function calls (see page 12.18).

Cea.rs the teletype output buffer.

Changes the PRINTLEVEL setting (see page 6.18).

Changes the MIN F S setting (see page 22.10).

Prints total execution time for the program. 3S well as other- status information.

22.2 TIPE NUMBER FUNCTIONS

Each data type in Interlisp has an associated "type name··. In Interlisp· 10. each data type also has a '"type
number", which can be accessed and manipulated with the functions below. In general it is preferable
to use the type name functions (see page 2.1).

(NTYP DATUM)

(TYPEP DATUM N)

[FunctionI
Returns the type nwnber for the da~ type of DATUM. e.g.. (NTYP • (A • B)) is
8, the type number for lists.

[Functicn]
Value is T, if che type number of DATUM is equal to N.

(TYPENAMEFROMNUMBER N) [Functic::J
Value is type name for type number N, or HIL if N is not a valid type number.
~~ (TYPENAMEFROMNUMBER 30)=STRING.CHAR~

n.·

0---·

(~\
{TY?EflUMBERFROMNAME NAME) [Function] \ j ·

Value is corresponding type number for NAME. or NIL if NAME is not a type name.
~~ (TYPENUMBERFROMNAME 'STRING.CHARS)=30.

TYPENUMBERFROMNAME will accept REAOTABLEP. TERMTABLEP, CCOOEP. and
ARRAYP, and return the same value for e.:1ch, which for Interlisp-10 is L Note
however that (TYPENAMEFROMNUMBER 1) =ARRAYP.

(GETTYPEDESCRIPTION TYPE) . [Function]
Returns the type description string for TYPE. a type name or type number.

(SETTYPEDESCRIPT ION TYPE STRING) [Funcuor.j
Sets the type description string for TYPE to be STRING. The type description is
used in garbage collection messages and by STORAGE.

22.2

0

0

0

~TIRLISP·lO SPEOFICS

22.3 VALIDITY OF DEFINITIONS IN' INTERLISP-IO

Aithough the function definition cell is intended for (unction definitions, PUT0 a.cd GETO do not cake
thorou~ checks on the validity of definitions that .. look like .. exprs. compiled code. or SUSRs. Thus
if PUTD is given an a..-ray pointer. it treats it as compiled code. and simply stores t.~e array pointer in
the definition cell. GET0 will then return the array pointer. Similarly. a call to that function will s:=;,!y
transfer to what would normally be the entry point for the function. and produce random :-esu!ts if c..,e
array were not compiled function.

Similarly, if PUT0 is given a dotted pair of the form (number • address) where number a."ld
address fall in Llte subr range. PUTU assumes it is a·subr and stores it away as describec! e3.I'lier. GE7D
would then return a dotted pair EQUAL (but not EQ) to the expression originally given PUT0. Si:nil.:iriy,
a call to this function would transfer to the corresponding address.

Finally, if PUTD is given any other list. it simply stores it away. A call to th.is function would then go
through the interpreter.

Note that P.UTD does not actually check to see if the s·expression is valid definition. Le.. begins with
LAMBDA or NLAMBDA. Similarly. EXP RP is true if a definition is a list and not of the form (number •
address}. number = O. 1. 2. or 3 and address a subr address; SUBRP is trUe if it is of this fonn.
ARGLIST and NARGS work correspondingly.

Ocly FNTYP and ARGTYPE check function definitions further than.that described above: bo:h ARGTYPE
and FNTYP return NIL when EXPRP is true but CAR of the definition is not LAMBDA or NLAMBDA. 1

In other words. if the user uses PUT0 to put (A B C) in a function definition cell GETO ...,ill rerurn
this value, the editor and pretcyprint will both treat it as a de.finition. EXPRP will return T, CC0DEP and
SUBRP NIL. ARGUST 8, and NARGS 1.

22.4 REUSL'lG BOXED NUMBERS IN INTERLISP· IO • SETN

RPLACA and RPLACD provide a way of cannibalizing list saucrure for reuse in order to avoid mar.i.:lg new
structure and causing garbage collections.2 This section describes an analogous function in lnterlisp-10 for
reusing large integers and floating point numbers, SETN. SETN is used like SETQ, i.e .• its firs;: argt:.:nent
is considered as quoted. its second is evaluated. If the current value of the variable being set is a la.--ge
integer or floating point number. the new value is deposited into that word in number st.Jrage. i.e.. no
new storage is used. 3 If the current Yalue is not a large integer or floating point m.L.-nber. e.g., it c:µi 'be

1These functions have different values on LAMBDAs and NLAMBDAs and hence must check. The com~iler
and interpreter also take different actions for LAMBDAS and NLAMBDAs. and therefQre generate errc·:-s ir'
ti'le definition is neither.
2The nobox package provides a more aesthetic way of reusing cons cells as well as number boxc-s.
However, it is still the case that tech.Tiiques involving reusing static storage should be used wic.'1 extre:ne
caution. and be reserved for those cases where the normal method of stor::?£C allocation a..'1d £.1.rt':?..:e
collection is not workable or practical. The decl package (page 23.18) takes a- c!ifferent a~proach to :.~e
same problem by avoiding creating number boxes in the first place via type declarations in the body of
the function definition.
3The second argument to SETN must always be a number or a NON-NUMERIC ARG error is generated.

22.3

t'
'---·

CaYe:..ts concerning use of SETN

NIL SETH ocerates exactly like SETQ, Le .. the large integer or floating point number is boxed. and the
vari~ble is set. This eliminates initialization of tb.e variable.

SE:TN v.ill work interpretively. Le .. reuse a word in number storage. but will not yield any savings of
storage bec:,.use the boxing of the second argument wm still take pl:ice. when it is evaluated.. Toe
elli::cination of a box is achieved only when the call to SETH is compiled. since SETN compiles open, and
does not perforn:1 the box if the old value of the variable can be reused.

22.4.1 Cave:its concerning t.SC of SETN

There are three situations to watch out for when using SETN. The first occurs when the same variable is
being used for floating point numbers and large integers. If the current value of the .,-3.riable is a flo;i,ti.,g
point number, and it is reset to .a large· integer, via SE TN, the large integer is simply deposited into a
word in floating point number storage. and hence will be interpreted as a floating point number. Tnus. n.: ..
.. (ScTQ FOO 2.3)
2.3
.. (SETN FOO 10000)
2.189529E-43

Similarly. if the current value is a large integer. and the new value is a floating point number. equally
strange results occur.

The second situation occurs when a SETN variable is reset from a large integer to a small integer. In
this case, the small integer is simply deposited into large integer storage. [t will then print correctly. and
function arithmetically correctly. but it is nol a small integer. and hence will :iot be EQ to anot.~er integer
of the same value, e.g .•

.. (SETQ FOO,10000)
10000
.. (SEnl FOO 1)
1
+-(!PLUS FOO 5)
6
.. (EQ FOO 1)
fHL
.. (S~ALLP FOO)
rnL

ln particular. note that ZEROP will return NIL even if the variable is equal to 0. Thus a program which
begins with FOO set to a large integer and counts it down by (SETN FOO (SUB 1 FOO)) must termina~e
with(EQP FOO 0), not(ZEROP FOO).

Finally, the third siruation to watch out for occurs when you want to save the current value of a SETN
variable for later use. For e:cample, if FOO is being used by SEHi. and the user wants to save ics current
value on FIE. (SETQ FOO FIE) is not sufficcnt. since the next SETN on FOO will :tlso cha.'l~e FIE.
because its changes the word in number storage pointed co by F 00. and hence· pointed co by FIE. The
number must be copied. e.g., (SETQ FIE (IPLUS FOO)). which sets FIE co a new word in number

22.4

(~
\ _).

n

-

0

O·

0

0

storage.

(SETN VAR X)

Il'ffERLISP· 10 SPEOFICS

[NLambda FunC"..!onJ
A nlambda function like SETQ.-v.AR is quote~ xis evaluated. and its value wust
be a number. VAR will be set to··this number. If the current value of VAR is a larae
integer or floating point number, that word in number storage is ettnibalizec.. T.~e
value of SETN is the (new) value of VAR.

22.5 BOX Ai"'ID UNBOX IN INTERLISP·lO

Some applications may require that a user program explicitly perform the boxing and unboxing O?eraticns
that are usua.liy implicit (and invisible) to most progra.-ns. The functions that perform these operations are
L0C .u,d VAG respectively. For exa.'?lple, if a user program executes a TENEX JSYS using the ASSEMBLE
dir~tive, the value of the ASSEMBLE expression will have to be bor.ed to be used arithmeti:clly, e.g ..
(I PLUS X (L0C {ASSEMBLE --)}). It must be emphasized that

Arbitrary unboxed numbers should NOT be passed around as ordinary values bectr.Jse they can cause troubie
for the garbage collector.

For example, suppose the value of X were 150000, and you created { VAG X) , and this just happened to
be an address on the free storage list. The next garbage collection could be disastrous. For this reason.
the function VAG must be used wit.'l extreme caution when itS argument's range is not knov."ll..

LCC is the inverse of VAG. It takes an address. i.e .• a 36 bit quantity. and treats it as a number and boxes
it. For example. L0C of an atom. e.g .• { L0C (QUOTE FOO}} •. treats the atom as a 36 bit quantity, and
m?-1<es a number out of it. If the address of the atom FOO were 125000, (L0C { QUOTE FOO)) would
be 125000. Le., the location of FOO. It is for this reason that the box operation is called LOC, which is
short for location.

Note that FOO does not print as #364110 (125000 in octal) because the print routine rec·ognizes that it is
an atorn. and therefore prints it in a special way. i.e., by printing the indiYidual chai""acters r.i.,a.t c:o~prise
it. Tnus (VAG 125000) would print as FOO. and would in fact be FOO.

{L0C X)

(VAG x).

[Functiocl
Makes a number out of x. i.e., returns the location of x.

[Function}
The inverse of LOC. x must be a number: the value of VAG is t.'le unbox ohc.

The compiler eliminates extra VAG'~ ana L0C's for example (I PLUS X { L0C (ASSEMBLE --))) will
not box the value of the ASSEMBLE, and then unbox it for the addition.

· 22.6 i\11SCELLANEOUS OPERA TING SYSTEM FUNCTIONS

{LOAOAV) [Function]
Returns the current load average as a floating point number (this number is c.'1e

22.5

(ERSTR EE.N -)

Misce!faneous Operating System Functions

first of ti.':te three printed by the SY STAT command).

[Function]
ERN is an error number from a JSYS fail return. ER.v= NIL means the most re::ent
error. ERSTR returns the operating system error diagnostic as a scing.

(JSYS N AC1 AC'2 AC3 REStn:.TAC) [Fu:ictionJ
Loads the (unboxed) values of ACI. AC. and AC3 into appropriate acc-.:.m.1.:~er:.
and executes JSYS number N. If ACl. AC2. or AC3=NIL. 0 is used. JSYS :-etu:::lS
the (boxed) contentS of the aa:-..imulator specified by RE3t.'I.TA.C. i.e .• 1 ::..e:.r.s .ACI.
2 means Ac:z. and 3 means AC3. with NIL equival~nt to 1. Compiles open if .'I is
itself a small in:eger. and RESutTAC is a scall integer, or fU L.

If the JSYS causes a trap, the message TRAP AT LOCATION NNNNN is printed

n

by the operating system. followed by JSYS ERROR: J.D.d the opl!r::uing sys;:em n. . ..

diagnostic. The user is then talking to the operati..,g system ex.:ict!y JS thoug..-i . _
control-C had been typed. If the user then continues using the CONT:i:NUE
corr-.mand, an Interlisp error is generated, JSYS ERROR, and control then proceeds
the same as for any other flavor of error. Le. unwinds to last ERRORS ET or goes
into a break as described on page 9.10.

The CJSYS package (page 23.53) enables calling JSYSes by their corresponding
112me. rather than their number.

(USERNUMBER A FLG) ' [Function]
If A= NIL, returns the login user number: if A= T, returns the connec:ed user
number: if A is a literal atom or string. USERNUMBER rerums the nu:nber of the
corresponding user, or NIL if no such user exists.

On TOPS-20, there is a difference between the user number. which is associated
with the job. and the directory number, which is associated with the file syste:n.
Therefore, on TOPS-20, if FLG= T, USERfWMBER ret'..irns the dire,;:tory• n~ber
rather than the user number.

(HOSTUAME HOSTN FLG) [F1.:nct:or:J

{HOSTNUMBER)

Returns the hosmame as a string for host number HOST,N. e.g. "PARC-MAXCZ".
"B B N-TENEX O ". etc. If HOSTN= NIL. the local host is used. If the local host ls
not an a...-panet host. value is N IL. Also returns NIL if HOST~ is not a yalid host
number.

no is interpreted the same as in USERNAME.

[Function]
Returns the host numer of cbe local host. or NIL. if the local host i.s not an ar.:,a."le!:
host: ·

(TENEX STR FlLEFLG) [Function]
Starts up a lower exec (wichouc a message) using SUB SYS. and then if Frr.EFLG = ."I IL
unreads STR, followed by "QUIT" 4 (using BKSYSBUF. page 6.4i). TENEX ren.:r:is

4 "POP" for Interlisp on· TOPS-20.

22.6 ()

0

0

()

0

22.i

INTERLISP-10 SPEOFICS

T if all of STR is actually processed/read by the lower e::cec. NIL if the 1..:.ser
control-C's and manually QUITs back to Interlisp.

If FZLEFLG= T, TENEX p:?Sses ¢e string as the second argument to SUB SYS. bs:e:ad
of unreading it. Tnis has the advantage that STR can be of any ·lengcb... ~d also
that typeahead will not interfere with the call to the lower exec. T..e cis.ldvam.age
is that iENEX cannot tell whether the cotr.mz.r.ds to J!.~e lower e::c~ ter:r..i::a~d
successfully, or were aboned. Thus, if FZLEFLG=T, the value of TENEX: is always
T.

For example. LISTF ILES (page 11.9) is implemented using TENEX. with FZI.EFLG =NIL.
so LI ST FILES can tell if listings actuall;· were completed.

STORAGE ALLOCATION AND GARBAGE COLLECTION

In the following discussion. we will speak of a quantity of memory be~g assigned to a particular data-type.
meaning that the 5?ace is reserved for storage of elements of that type. Allocation will refer to the process
used to obtain from the already assigned storage a particular location for storing one data element.

A small amount of stora.ge is assigned to each data-type when Interlisp-10 is staned: additional storage is
assigned only during a garbage collection.

The page is t.'1.e smallest unit of memory that may be assigned for use by a particular data-type. For each
pzge of memory there is a one word entry in a type table. The entry contains the data·t:,.-pe resid.i:::g on
the page as well as other information about the page. Toe type of a pointer is deter:nined by exan::i~:.,g
th.e appropriate entry in the type table.

.
Storage is allocated as is needed by the functions which create new data elements. such as CONS. PACK.
MKSTRiNG. For example, when a large integer is created by IPLUS, the integer is stored in t.-i.e next
available location in the space assigned to integers. If there is no available location. a garbage collecticn
is initiated. which may result in more storage beL,g assigned.

The storage allocation and garbage collection methods differ for the various data-types. T.."le major
distinction is between the types wiLli. elements of fixed length and the types wit.1. elementS of arbit.-::.:.--y
length. List cells. atoms, large integers, floating point numbers, and string pointers are fi:cec! lecg:.1.: ail
occupy 1 word except atoms which use 3 words. Arrays, print names. and strings (Si.ling characters) ;;:e
variable length.

Eiements of fixed length types are stored so that they do not overlap page boundaries. Thus the pages
assign~d, _to a fixed length type need not be adjacent. If more space is needed. any empty page -.,.;n be
used. The method of allocating storage for these types employs a free-list of availabie locations: that is.
each available location contains a pointer to the next available location. A new clement is stored at t.":e
first loc:ition on t1:c free-list. and the free-list pointer is updated. 5

5The allocation routine for list cells is more complicated. Each page containing list cells has a scpJ.rJte
free list. First a page is chosen. then the free list for that page is used. ListS are the only data·t:,-pe whi::i
operate this way.

22.i

Storage Allocation and Garbage Collection

Ele:nents of variable length data-types are allowed to overlap page boundaries. Consequently all pages
assig:ied to a pa..--cicular variable length type must be contiguous. Space for a new element is a.110"'..:i.teci
following the last space used in the assigned block of contiguous storage.

When In,erlisp-10 is first called. a few pages cf memory ara assigned to each e2.:a-type. When the
allo:::.ation rcutine for a type determines that no more space is available in c...1.e assigr:.ed storage for ti:at
type. a garbage collection is initiated. The garbage collector determi.:les what dau is currently in \;Se a.t1<!
reclaims t.'lat which is no longer in use. A garb<!ge collection may also be icitiated by the user \loi:.:. the
function RECLAIM.

Data in use (also called active data) is any data that c:m be "reached" from the currently rJn.::iir.g ;:rog:-.u:n
(Le .. variable bindings and functions in execution) or from atoms. To find the active d:l:.a t.r.e ga..'i:Jage
collector "chases" all pointers. begir.ining with the contents of the push-down lists and t..'1e corn~on~n:s
(i.e .• C.4.R, CDR, and function definition cell) of all atoms with ac least one non·trhial component.

When a previously uri.marked datum is encountered. it is marked. and all pointers cont:1..ined in it are
chased. Most data-types are marked using bic ublcs; that is tables containing one bit for each 6c-J.m.
Arrays. however. are marked using a half-word in the array header.

When the mark and chase process is completed. unmarked (and therefore unused) space is reclai:ned.
Elements of fixed length types that are no longer active are reclaimed by adding their locations ta the
free-list for that type. This free list allocation method permits reclaiming space without movi.::g any c.ata.
thereby avoiding the time consuming process of updating all pointers to moved data. To reclaim unused
space in a block of storage assigned to a variable length type. the active e\ements are compac:ed toward
the beginning of t."le storage block. and then a scan of all active data that can conuin pointers to t..'le
moved data is performed to update the pointers. 8

Whenever a garbage collection of any type is initiated.1 unused space for all fixed length types is reclaimed
since the additional cost is slight. However. space for a variable length type is reclaimed only when t.~at
type ·initiated t.iie garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage collection is less tha:i the
minimum free storage requirement for that type, the garbage collector will assign enough add::ic!:al
storage to satisff the minimum free storage requirement. The mini..-num free storage require:r:.e:it fc:- eac:i.

n.·
' .

data may be set with the function MIN F S. The garbage co!lector assigns additional storage to 5.xed !e~gt.1. /'-.,
types by finding empty pages. and adding the appropriate size elements from each page to t.'1e free iist. \) ·
Assigning additional storage to a variable length type involves finding empty pages and moving cau so
that the empty pages are at the end of the block of storage assigned to that type.

In addition to increasing the storage assigned to the type initiating a garbage collectior_ the garbage
collector will attempt co minimize garbage collections by assigning more storage co other fixed lengr..'i.
types according to the following algorithm. If the amount of active data of a type has incre::.sec. si::ce
the last garbage collection by more than 1/ 4 of the M Irff S value for that type. storage is incre::.sed (if
necessary), to attain.the MINFS value. If active data has incre:i.sed by le~s than 1/4 of the MINFS value.

i;If Inter!isp-10 types the message ARRAYS FOULED during a garbage collection. it mc:!Ils chat an array
header has been dobbered and no longer makes sense. This can be due to hardware maJfJnction. or an
as yet undiscovered bug in Imerlisp. The best thing to do under these circumsunces is to give up J...'ld
stJrt over w1t.'1 a fresh system or sysout.

rThe ''type of a garbage collection .. or the ··type that initiated a garbage coilection"' mc:ins eir..'ler th,e type
that ran out of space and called the garbage collector. or the argument to RECLAIM. .

22.8 ()

0

0

..

0

0

INTERLISP-10 SPEOFICS

availabie storage is incre.!Sed to" l/2 MINFS. If there has been no increase. no more storage is adced. For
examole, if the MINFS sett!ng is 2000 words. the number of active words has increased by iOO. and af.er
all unused words have been collected there are 1000 words aYailable. 1024 additional worc.s (:wo pages)
will be assigned to bring the total to 2024 words avail?,ble. If the nu..-nber of acth·e worcs had i:l::-eased
by only 300, and :.'1ere were 500 words available. 512 additional words would be assigned.

(RECLAIM TYPE} [Fu::ctio:i.J
Initiates a garbage collection of type r/PE, where TYPE' is either a tyt='e ::.2.!:le or
type number. Value of RECLAIM is number of words available (for thst type) :i::e:­
the collection.

Garbage collections, whether invoked directly by the user or indirectly by need for storage. do not conff ne
their activity solely to the data type for which they were called, but automatically collect some or all of the
other types.

(GCGAG MESSAGE)

·.

[Function]
Affects messages printed by the garbage collector. If MESSAGE= T. whe:iever a
garbage collection is begun. "co 11 ect i ng,. is printed. followed by the t)·pe
description of the type that initiated the collection.8 \\'hen the garbage collection
is complete. two numbers are printed: the number of words collected for that
type. and the total number of words available for that type, i.e .• allocated but not
necessarily currently in use. Note ~~at other types may also have been coliected..
and had more storage assigned. ·

Example:

+-RECLAIM(18)

collecting large numbers
511. 3071 free cells
3071
+-RECLAIM(LITATOM}

collecting atoms
1020. 1020 free cells
1020

If M;SSAGE=NIL. no garbage collection message is printed. either on entering or
leaving the garbage collector.

If MESSAGE is a .list. CAR of MESSAGE is printed {using PR IN 1} when the garo.?ge
collection is begun, and CD R is printed (using PR IN 1) when the collection i.s
finished. If MESSAGE is a literal atom or string. MESSAGE is prin(ed when c."le
garbage collection is begun, a.,d nothing is printed when the collection fir.ishes.

If MESSAGE is a number. the message is the same as for (GCGAG T). except if
the total number of free pages left after the collection is less than MESSAGE. :.1:e
number of free pages is printed. e.g., ·

8Note that this type description can be set via the function SETTYPEDESCRIPTION (page 22.2).

22.9

Stor:ig~ Allcc:ition and Garbage Col!ectioa

~CGAG(100)
T
~RECLA I?~()

collecting lists
10369, 10369 frae cells, 87 pages left.

The initial setting for GCGAG is 40.

The value of GCGAG is its previous setting.

(GC:-.1ESS MESSAGE# STRING) [FunctiocJ
GCGAG is implemented in terms of the primitive GCMESS which can be used to

n

- fur1.her refine g:irbagc collection messages for specialized applications. The g:irbage
collection message is actually composed of seven separate messages: (-)_

collecting large numbers12
511.3 3071 free ca11s 4 • 875 pages 6 left7

message # 1 is the <&collecting" string. If NIL, then neiL'1er it. nor the type
dependent field (whlch is settable via SETTYPEDESCR I PT ION described below) is
printed.

message #2 is the carriage-return after the type-dependent field. Tnus to simply
print a string at the beginning of a garbage collection. perform (GCMESS 1) and
{GCMESS 2 STRING).

message #3 is the ··," which comes after the number of cells actually collected.
If ~I IL. then neither it nor that number are printed.

message #4 is the "free eel 1 s" which comes after the number of cells that are
now allocated. If :t IL. neither it nor that number are print~d.

m~ssage # 5 is the number of pages left below which the system prints message 6. (')

message #6 is the ··pages left" message. If NIL, neill'1er it nor the number of
pages left are printed.

message #7 is the terminating carriage rerurn.

(M rn F S N TYPE) [Function]
Sets the minimum amount of free storage which will be maintai.~ed by the garbage
cqllector for data types of type number or type name TYPE: If. after any garbage
colkt:tion for that type. fewer than N free words arc prc$cnt. sufficient stor~£:e wiil
be Jddcd (in 512 word chunks) to raise the level LO N.

IfTYPE=NIL. LISTP is used. i.e .• the MINFS refers to list words.

If N= NIL. MIN F S rcrurns the current MIN F S setting for the corrcspcnd.i.ng cype.

22.10

-.

0

o·-

0

INTERLISP·l0 SPEOFICS

A lrtINFS setting can also be changed dynamically. even during a garbage collection. by typing control·S9

followed by a number. followed by a period. When the control-S is typed. Interlisp in"r.ediately clears
and saves t.11.e input buffer. rings the beil, a:id waits for inpuc. which is te:.,r...ica:ed by any con·:i~'ber.
The input buffer is then restored. and t.~e program co:;itinues. If the input was tenr..inated by o:..,er than
a period. it is ignored. If the control·S was typed during a garbage collection. ~11e nu:n:,er is t.-ie aew
MIN F S setti:lg for the type being collected. otherwise for type 8. i.e •• list words.

(MINHASH X}

(GCTRP N)

(CLOSER AX)

(OPENR A)

[Fur..ctionJ
The atom hash table automatically expands by a specified number of pa;es ea:h
time it fills :.ip. The number of pages is set via the function MHlHASH. Tne initial
setting is (MINHASH 2) (room for 1024 new atoms).

[Function]
"Garbage Collection Trap··. Causes a (simulated) control-H inter.u;,t when the
number of free list words remaining equals N. Le .• when a garbage collection would
occur in N more conses. The mess:ige GCTRP is pr.nted. t.11e fu::1cticn INTERRUPT
is called. and a break occurs. Note that by advising UHERRUPT t.."le user can
program the handling of a ~CTRP instead of going into a break.10

GCTRP returns its last setting.

(GCTRP -1} will .. disable .. a previous GCTRP since there are never -1 free list
words. GCTRP is initialized this way. ·

(GCTRP) returns the number of list cells left. Le .• number of CONSes until next
cype LISTP garbage collection.

[Function}
Stores x into memory location A. Both x and A must be numbers.

[Functio:i]
Returns the number in memory location A. i.e .. boxed.

22.8 THE ASSEi.'1BLER A.l'ID LAP

The Interlisp-IO compiler has two principal passes. The first compiles its input into a m:acro assern.biy
language called LAP.11 The second pass expands the LAP code. producing (numerical} machine language
_ inscructions. The output of t."le second pass is wrinen on a file and/or stored in binary program space.

9control-X for Interlisp-10 on TOPS-20.

1°For GCTRP interrupts, INTERRUPT is called with INTYPE (its third argument) equal to 3. If the user
does not want to go into a break. the advice should still allow INTERRUPT to be enterec:.. but first
set INTYPE to -1. This will cause INTERRUPT to "quietly'" go away by cJ.l.ling the function th.:it was
interrupted. Tne advice should not exit INTERRUPT via RETURN. as in this case t.i"1e function i.h:lt w.'.!5.
about co be cailed when the interrupt occurred would not be called.
11The exact form of the macro assembly language is exu-emely implementation dependent. as well J.3 being
influenced by the architecture and insuuction set for the machine that will run the co..ipiled prcgra.-n.

22.11

-

Assemble

Im::ut to the comoiler is usually a standard Interlisp EXPR definition. However. in Interlisp-10. tr.::?C!'-..me
la.n<r:,;age cod.mg -can be inciuded within a function by the use of one er more ASSEMBLE for::-.s as

~ - -
described below. In 01:4'1er words. ASSEMBLE allows the user to write ponions of a fu:c.ction in LA?. :---cte
ti."lat ;1S.SEMBLE is only a compiler directive: it has ::10 independe::u definition. Therefore, fi.:..:.ctio:is whic!J.
use ASSEMBLE must normally be compiled in order to run.12

22.8.1 Assemble

Note: ASSEMBLE is provided for situations where its use is unavoidable. Howe-;er, its use is def.r.ilely r.ot
encouraged. The disadvantages are several ASSEMBLE code is unavoidably depena'ent on the PDP-10.
Tenex. and implementatiott details of Interlisp-JO. Thus. ASSEMBLE code is not Jransporra!;;ie to lr.uriis;:
on another machine or operating system. and implementation changes to Interlisp-JO can (,:ind fre:;-.. c1w)•
do) require changes.Jo existing ASSEMBLE code.

The format of ASSEMBLE is similar to that of PROG:

(ASSEMBLE V S1 Sz ... SN)

V is a list of variables to be bound during the first pass of the compilation. not during the running of the
object code. The assemble statements S1 • • • SN are compiled sequentially, each resulting in one or
more instructions of object code. When run. tfie value of the ASSEMBLE ··rorm .. is the contents of ACl
at the end of the execution of the assemble instructions. Note that ASSEMBLE may appear anywhere in
an Interlisp-10 fu:::i.ction. For example. one may write:

(IGREATERP (!QUOTIENT (LOC (ASSEMBLE NIL

1000)
4)

to test if job runtime exceeds 4 seconds. t 3

22.8.1.1 Assem!:Jle Statements

(MOVEI 1 • -5)
(JSYS13)))

If an assemble statement is an atom. it is treated as a label identifying the location of the next.sta.e::ie:.t
that will be assembled.14 Such labels defined in an ASSEMBLE form are like ?~OG labels in that t.~ey
may be referenced from the current and lower level nested PROGs or ASSEMBLES.

12The MACROTRAN package (page 5.19) does pennit the user to run progr::ims interpretively which cor,r,"lin
ASSEMBLE directives. &Leh ASSEMBLE directive is compiled as a ~cparalc function. There is some iu!IS
in cmcic:1cy c\·er compiling the entire function as a unit. and not all ASSEMBLE expressmns are trac:.1.ble
to this ;,rccedure.
13This example is to illustrate use of ASSEMBLE. and is not a recommendation to use the above cede.
The f..inction J SYS (page 22.6) is the appropriate method.

·14 A label can be the last thing in an ASSEMBLE form. in which case it labels the location of the nrst
instrUction ajier the ASSEMBLE form.

22.12

,r'\
\).

(j.·

()

(_)

0

0

0

INTER.LISP·l0 SPEOFICS

If an assemble s:atement is not an atom. CAR of t.'le statement must be an atom and one of: (1) a nu:i:::,er.
(2) a LAP op-def (i.e .• has a propeny value OPO); (3) an assembler macro (i.e., has a pro;,er:y value
AMAC); or (A.) one of the special assemble instructions given below, e.g .• C, CQ, etc. Anytbl!:.g else will
cause the error message OPCODE? - ASSEMBLE. -.

The typ'!S of assemble statements are described here in the order of priority used i., the ASSE~3LE
processor: that is, if an atom has both properties CPO and AMAC, the OPO will be used. Sm:ii.arly a specia!
ASSEMBLE instr-.1ction may be redefined via an AMAC. Toe following descriptions are of t.11e firs: pass
processing of ASSEMBLE statements. The second pass processing is described in the section on LAP. ;:age
22.15.

(1) nucbers

If CAR of an assemble statement is a number, the statement is not processed in t.'le first pass (see page
22.15).

(2) LAP op-defs

The property OPD is used for t\J.'.O different types of op-defs: PDP-10 machine instructions. and LAP
macros. If t."le OPO defir,jtion (i.e .. t.'le property value) is a number. the op-def is a machine ins.n:cticn.
When a machine instruction. e.g •• HRRZ. appears as CAR of an assemble statement. the s.ate::ient is not
processed d~ring the first pass but is passed to LAP. Toe forms and processing of machine instr..1ctioc.s
by LAP are described on page 22.16.

If the OPO definition is not a number, then the op-def is a LAP macro. When a LAP. macro is encountered
in an assemble statement. its arguments are evaluated and processing of the statement wit:1 eval-:.:a:ed
arguments is left for the second pass and LAP. For example. LDV is a LAP macro. and (LDV (QtJOTE
X) SP) in assemble code results in { LDV X N} in the LAP code. where N is the value of SP. Toe form
and processing of LAP macros are described on page 22.17.

(3) assemble m2eros

If CAR of an assemble statement has a property AMAC. the statement is an assernbie macro call. Toe:e
are two types of assemble macros: lambda and substitution. If CAR of the macro definition is t.11e a:om
LA~SDA. the definition will be applied to the arguments of the call and t.."le resulting list of st::~emer.ts will
be assembled.. For example. REPEAT could be defined as a LAMBDA macro with two arguments. N a.-id
M. which expands into N occurrences of M. e.g .• {REPEAT 3 (CAR 1)) expands to ((CAR 1) (CAR 1)
{CARl)). Tne definition (i.e .• value of propercy AMAC) for REPEAT could be:

(LAMBDA
(PROG

A

(HM)
(YY)
(COt..:O

((ILESSP N 1)
{RETURN {CAR YY)))

(T (SETQ YY (TCONC YY M))
(SETQ N (SUBl N))
(GO A)))))

· If CAR of the macro definition is not the atom LAMBDA. it mtist be a list of dummy symbols. The
arguments of the macro call will be substituted for corresponding appearances of the dumrny symbois i:i

22.13

CO:aEVALs

COR of the definition. and t.1-ie res-..ilting list of statements will be assembled.is For exaI:1ple. ASS could
be a substitution r:1acro which takes one argument. a number, and expa:i.ds into instructions to plac~ tile
absolute value of the number in ACl:

((X)
(CQ (VAG X))
{CAIGE 1 , O)}
(HO'JN 1 , 1))

(4) special assemble statements

(SETQ VAR)

CQ (compile quote) takes any number of arguments which are 3SS"..:med to be
regular Interlisp e:tpressions and are compiled in the normal way. E.g.

cco c corm
((NULL Y)

(SETQ Y 1)))
(SETQ X (IPLUS Y Z)))

Note: to avoid. confusion and minimize dependence on the current implementation.
it is best to have as much of a function as possible compiled in the nor:nal way.
e.g., to load the value of X to ACl, { CQ X) is preferred to (LOV (QUOTE X)
SP).

C (Compile) ta.Ices any number of arguments which are first evaluated. then compiled
in the usual way. Both C and CQ permit the inclusion of regular compilation within
an assemble form. •

E (Evaluate) takes any number of arguments which are evaluated in sequence. For
example, (PST E P) calls a function which increments the compiler variable S?.

Compiles code to set the variable VAR to the contents of AC 1.

{VAR (OP AC , VARN.-\..'d'E)) .

():.

Pennies writing a machine instruction with the value of a var.able as the cperand.
Generates the appropriateb add.:1·essallanbd inddex ~ebl';5 tfro refe~e?c1e r.:u'1Le06vatue of ()
VARNA..\.!E. VARNAME may ea oc y oun va:na .e. ee vanao e. u ALVAR.
etc. Note that VAR may generate more t.1-ian one instruction.

c • . . . > Used t0 indicate a comment: the statement is ignored.

22.8.1.2 COREVALs

There are several lccations in the basic machine code of Interlisp-10 which may be referenced from
compiled code. The current value of each location is stored on the property list under the propcr.y

15 Noce that assemble macros produce a list of stacemenrs co be assembled. whereas compiler rn;;.cros
produce a single expression. An assemble macro wh:ch computes a list of st.ltt":mentS begins with LA~BDA
and may be either spread or no-spread. ·The analogous compiler macro begins with. an atom. (LI! •• is
always no-spread) and the LAMBDA is understood.

22.14

0

0

r-.-·
0

0

INTERLISP-10 SPECIFICS

COREVAL.16 Since t.."iese locations may change in different reasse::nblies of Interlisp-10. they are written
symbolicaily on compiled code files. i.e., the name of the corresponding COREVAL is writte!l. not its value.
Some of the COREVALs used frequently in ASSEMBLE are:

contains (pointer to) atom T KT

KHIL

MX.N

MKFN

IUNBOX

FUNBOX

Contains (a pointer to} the atom NIL.

Routine to box an integer.

Routine to box floating i::.umber.

Routine to unbox an integer.

~outine to unbox floating number.

The index registers used for the push-down stack pointers are also included as COREVALS. These are·
not expected to change, and are not stored symbolically on compiled code files; however. they should be
referenced symbolically in assemble code. They are:

PP Parameter stack.

CP Control staek.

VP Basic frame pointer.

22.8.2 LAP

LAP (for LISP Assembly Processor) expands the output of the first pass of compilation to produce
numerical machine instrUctions.

22.8.2.1 LAP Statements

If a LAP statement is an atom. it is treated as a label identifying the locajon of the next ~..atecent to be
processed. If a LAP statement is not an atom. CAR of the statement must be an atom and ei~~er: (1) a
number; (2) a machine instruction: or (3) a LAP ma:ro.

(1) numbers

If CAR of a LAP statement is a number, a location containing the number is produced in the object
code.17 E.g.,

(ADO 1 , A (1))

16The value of COREVALS is a list of all atoms with COREVAL properties.
17Note that if a function is intended co be swappable, it may not conLJ.i.n any relocatable. indexed
instrUctions.

22.15

---··

A (1)
(4)
(9)

LAP Statements

...
StateI?:e!lts of this type are processed like machine instructions. with the initial number sening as a 36-oit
op-<:ode.

(2) ~lachine Instructions

If CAR of a L.\P statement has a numeric value for the _property OPO, 13 the statement is a tn:3.Chine
instruction. The get.eral form of a machine instruction is:

(OPCODE AC.@ ADDRESS {index))

OPCODB is a.-iy PDP-10 instruction mnemonic or Interlisp UUO. u

AC, the accumulator field. is optional. However. if present. it must be followed by a comma. AC is either
a number or an atom with a COREVAL property. The low order 4 bits of the number or COREVAL are
OR'd to the AC field of the instruction.

@ may be used anywhere in t.'1.e instruction to specify indirect addressing (bit 13 set in the instr.iction)
e.g.. (HRRZ 1 , l! 1 (VP)).

ADDRSSS is the address fieid which may be any of the following:

= CONST.ANT Reference to an unboxed constant. A location containing the unboxed const3Ilt will
be created in a region at the eild of the function. and the address of the loc:i.tion
containing the constant is placed in the address field of the current instr..iction. ~,e
constant may be a number e.g.. (CAME 1 • = 3596): an atom wit.'1 a prnperty
COREVAL (in which case the constant is d1e value of the proper.;. at LOAD time);
any other atom which is treated as a label (the constant is tb.e:i c..'J.e adczess of
the labeled location) e.g .• (MOVE 1 , = T Aa LE) is equivalent co (HOVE I 1 ,
TAB LE) ; or an expression whose value is a number.

n

The address is a rcferer..ce to a Interlisp pointer. e.g .• a list. number. stri~g. etc. r'\
A location containing ti.'le poime:- is assembled at the end of the fur.don. and c..'.e. \.)
current instruction will have the address of this location. e.g .•

•

a literal atom

(HRRZ 1

(HRRZ 1

' "IS NOT DEFINED")

' (NOT FOUND))

Specifies the current location in the compiled function: e.g .• (JRST • 2) has the
sa.'Ile effect as (Sl<IPA).

If the atom has a property COREVAL. it ·is a reference to a system location.
e.g .• (SK IPA 1 • KN IL), and the address used is the value of the COR~VAL.

18Tn~ value is an 18 bit quantity (rather than 9), since some UUO's also use the AC ffo!d of the
instruction.
19Thc TE:-,.;E}(JSYS's are not defined. c...'lac is. ant; must write (JSYS 107) inste:i.d of (KFORK).

22.16
()

0

0

0

INTERLISP·lO SPEOFICS

Otherwise the atom is a label referencing a location in the LAP code. e.g_ (J RS T
A).

a number Toe number is the address; e.g.,

(MOVSI 1 , 400000Q)
(HLRZ 2 , 1 (1))

a list The form is evaluated. and its value is the address.

Anr1.hing else in the address field causes an-error message. e.g .• (SKIPA 1 • KNILL) - LAPERROR.
A number may follow th~ address field and will be added to it. e.g.. (J RST A 2).

INDEX is denoted by a list following the address field. i.e .. the address field must be present if an inc!e:-c
field is to be used. Tne index (CAR of the list) must be either a number. or an atom with a propc:::y
CORE VAL, e.g., (HRRZ 1 , 0 (1)).

(3) LAP macros

If CAR of a LAP statement is·the name of a LAP macro. i.e., has the property O?O, the sta.:ement is a
macro call. The arguments of the call follow the macro name: e.g.. (LQ 2 FIE 3) .

LAP macro calls comprise most of the output of the first pass of the compiler, and may also be used in
ASSEMBLE. Tne definitions of these macros are stored on the property list under the property OPD. and
like ass~mbler macros. may be either lambda or substitution m.lcros. In the first case. t..'le macro defi.."lition
is applied to the arguments of the cal1;20 in the second case. the arguments of t.'1.e call are su~stir..ited
for occurrences of the dummy symbols in the definition. In both cases. the resulting list of statements is
again processed, with macro expansion continuing till the level of machine instructions is reached.

Some examples of LAP macros are shown below.

(DEF LIST
I [(LQ ((x:} c· LOAD QUOTE JO ACl)

(HRRZ 1 , ' X)))
(LQ2 {(X AC) c· LOAD QUOTE TO AC)

(HRRZ AC, ' X)))
(LOV ((A SP) c· LOAD LOCAL VARIABLE TO AC1)

(HRRZ 1 • (VREF A SP))))
(STV ((A SP) c· SET LOCAL VARIABLE FROM ACl)

(HRRM 1 • (VREF A SP))))
(LDV2 ((A SP AC) (• LOAD LOCAL VARIABLE TO AC)

{HRRZ AC. (VREF A SP))))
{LDF {(A SP) c· LOAD FREE VARIABLE TO AC1)

(HRRZ 1 (FREF •A SP)))) ..
(STF ((A SP) (•·SET FREE VARIABLE FROM AC1)

(HRRM 1 , { FREF A SP))))
(LDFZ ((A SP) c· LOAD FREE VARIABLE TO AC)

{HRRZ 2 , {FREF A S?)))l
{CAR1 (rUL (. CAR OF- AC1 TO AC1)

20The arguments were already evaluated in the first pass. see page 22.13.

22.17

Using •Assemble

(HRRZ 1 , 0 (1))))
(CORl (NIL

(HLRZ 1 , 0 (1))))
(CAR2 ({AC)

(HRRZ AC • 0 (AC))))
(CLL ((r-lAM N)

(CCALL N ' NAM)))
(LCLL ((NAM r,)

{LNCALL N , {HKLCL NAM))))
(RET (NIL

(PC!'J CP ,))
(?USHP (NIL (PUSH PP, 1)))
(?USHQ ((X) ..

{ PUSH PP , ' X))}]
'OPO)

22.8.3 Using Assemble

(• CDR OF ACl TO AC1)

(• CAR OF AC TO AC)

(• CALL FN WITH N ARGS GIVEN)

(• LINKED CALL WITH N ARGS)

(• RETURN FROM FN)

(• PUSH QUOTE)

In order to use ASSEMBLE. it is helpful to know the following things about how compiled code is run.
All va.-iable bindings and temporary pointers are stored on the parameter pushdown stack (addressed by
index regis~er PP). Control information is stored on the control pushdown stack (addressed by index
register CP). A function call proceeds as follows:

l. Tne c3.lling function pushes the argument values on the parameter sra::k.

2. Tne c.alling function invokes a routine that adjusts the number of arguments if too few or too many
were supplied, and binds the arguments. Binding usually implies the creation of a basic frame.21

3. Then the called function is run.

The arguments in the basic frame are referenced relative to index register VP. e.g .• l(VP) addresses tt.i.e
firsi: arg,.iment. However. it is better to reference va.riables in less implementation dependent ways. such as
(CQ •••) or (VAR (• • •)) . The compiler will then generate the correct code whether c.';.e ;·ari:l.ole

/'\.
{ ' ' J

(-,,
is bound locally, is a free reference. is a GLOBALVAR. etc. ,)

Tne parameter staek may be used for temporary storage of pointers. Both halves of a word on L~e
parameter stack may be pointers. On the control stack the right half of a word must be a pointer. the
left a non-pointer. Anything else can cause the garbage coilector to fail.

For temporary storage of unboxed numbers. the following ASSEMBLE macros are provided:

(PUSHN ADD.R)

(POPN ADDR)

.. Pushes" the number referenced py ADDR. ADDR may be any leg:tl ASSEMBLE
code address field. for example: (PUSHN 1), (,PUSHN = 0), (PUSHN @ 2-)

"'Pops .. the most recent number to ADDR.

21 Whether a basic frame is created for a P ROG or open lambda dCiJcnds on whether any of the ·,ari.1.bies
are specvars.

22.18 (\
\ /

,-

0

0

0

0

(NRE;:' {OP AC •

INTERLISP· 10 SPECIFICS

N))
References a previously pushed number. OP is the opcode. AC is the ai=umulator.
N is the relative position of the desired number on the pseudo number stack. That
is. N = 0 refers to the most recent number. N = -1 to the next most re:e:.:. etc.
Forexample:(NREF {MOVN 1. -1))

{PUSHNH N1 ·•· Ni.r)
.. Pushes·· a sequence of numbers specified by N; where N; is a list of a.-iy le;al
address field. For example: (PUSHNH (1) (2) (= O}) pusb.es the con~e:i.ts cf
AC 1. the conte:its of AC2. and the constant 0.

(POPNN N) "Pops" the N most recent numbers. discarding the values.

Use of these m2eros is subject to the following restrictions_:

l. PUSHN's and POPN's must be seen by the compiler in the same order and number in which they
are executed. Toe compiler does not analyze the code: it assumes when it encounters a PUSHN in the
sequential processing of the code that the PUSHN will in fact be executed.

2. Every number that is pushed must be popped.

3. In nested ASSEMBLE statements. if a PROG or open lambda occurs between the inner and outer level
ASSEMBLE. numbers pushed in the outer ASSEMBLE may not be referenced from the inner ASSE~BLE.

Toe value of a function is always returned in AC 1. Therefore. the pseudo-function. AC. is availabie for
obtainil:!.g the current contents of ACl. For example (CQ (FOO {AC))) compiles a call to FOO with
the current contents of ACl as argument. and is equivalent to:

(PUSHP)
(E (PSTEP))
(CLL (QUOTE FOO) 1)
(E (PSTEPN -1))

In using AC. be sure that it appears as the first argument to be evaluated in the expression. For example:
(CQ (IPLUS (LOC (AC)) 2))

There are several ways to reference the values of variables in assemble code. For example:

{CQ X) Puts the value of X in ACL

{LOV2 (QUOTE X) SP 3)
Puts the value of X in AC3.

(SETQ X) Sets X to the contents of ACl. .
(VAR (HRRM 2 • X))

Sets X to the contents of AC2 .

. (CQ (LOC (AC)))
Boxes the contents of ACl.

(FASTCALL MKFN)
Floating boxes the contents of ACl.

22.19

J -----~

Interfork Communic:tion in Interlisp-IO

{CQ {VAG X)) Puts the unboxed value of X in ACl.

(FASTCALL FUNBOX)
Gets the floating unbox of ACl. ~

To call a fu.1.ction directly, the arguments must be pushed on the parameter st2ek. and SP must be
updated. and tc.en the fi.mction called: e.g..

{CQ {CAR X))
(PUSHP)
(E (PSTE?))
(PUSHQ 3.14)
(E (PSTEP})

c· stack first argumsnt)

c· stack second argument}
(CLL (QUOTE FUM) 2)
(E f PSTEPN -2})

(• call FUM with 2 arguments)
c· adjust stack count)

and is equivalent co:·

(CQ (FUM {CAR X) 3.14))

22.9 Il'.'TERFORK COMMUNICATION Il'f INTERLISP·lO

The functions described below permit two forks (one or both of them Interlisp-10) to have a common
area of address space for communication by providing a means of assigning a block of storage guaranteed
not to move dun·ng garbage collections.

(GITBLK ."I) [Functior:J
Creates a block N pages in size (512 words per page). Value is the address of
the- first word in the block. which is a multiple of 512 since the block ...,ill always
begin at a page bound.:lry. If not enough pages are available, gene:-ates t.'"le e:Tor
ILLEGAL OR IMPOSSIBLE BLOCK.

Nate: the block can be used for storing unboxed numbers ON L Y. •

To store a number in the block. the following function could be defined:

{SETBLOCK (LAMBDA (START N X) (CLOSER (!PLUS (LOC START) N) X]

Some boxing and unboxing can be avoided by making this function compile open via a substitution
macro.

Note: GE.TBLK should be used sparingly since several unmovable regions of memory can make it difficult or:
impossible for the garbage collector to find a contiguous region large enough for expanding array space.

(RELBLK ADDRESS N) [Fu~ctcn]
releases a block of storage beginning at ADDRESS and extending for :.. pages.
Causes an error ILLEGAL OR IMPOSSIBLE BLOCK if any of the range is nm .1

block. Value is ADDRESS.

22.20

() .. -.
·. /

()

(
\)

-o

0

0

0

L.'ITERLISP· 10 SPEOFICS

22.10 SUBSYS

This section describes a function. SUBSYS. which permits the user to run a Tenex/TOPS-20 s-.ibsyste:n.
such as SNDMSG. SRCCOM. TECO. or even another Interlisp. from inside of an In:erlis? v.iti.~out
destroying the latter. In particular, (SUBSYS 'EXEC) will start up a lower exec. which will pr.:u :.'1.e
operati...g system herald. followed by @. The user can t.'1.en c.o anything at this exec ·1evel t.i.~at l:e can at
the mp level Yrithcut aJfecting his superior Interlisp. For example. he can start 2.Ilcther ln:erEsp. ;,e:-:orr:1
a SYSrn. run for a while. type a control-C returning him to the lower exec. RESET. do a S~D~,iSG.
etc:. The us~r exits from the lower exec via the command QUIT,22 which wi!l re:urn cor.trol to SL1SSYS
in the higher Interlisp. Thus with SUBSYS, the user need not perform a SYSOUT to save t.:.'1.e s:a:•! of
his Interlisp .in order to use a Tenex/TOPS-20 capability which would otherv,ise clobber the core i::nage.
Simiisrly, SUBSYS provides a way of checking out a SYSOUT file in a fresh lmeri.isp without ha,ing to
co~andeer another terminal or detach a job.

While SUSSYS can be used to run any subsystem directly, without going through a.-i interve:iing exec.
this procedure is not recommended. The problem is that concrol-C always re:ums control to the next
highest EXEC. Thus if the user is running an Interlisp in which he performs (SUBSYS 'LISP). and
tr.en types control-C to the lower Interlisp. con:rol will be rerumed to the exec above the fi..--st Interl:5?. If
the user elects to call a subsystem directly. he must therefore know how it is normally exited and always
exit from it that way.23

Starting a lower exec does not have this disadvantage, since it can only be exited via QUIT or POP, Le_
the lower exec is effeC"Jvely "errorset protected" against control-C.

(SUBSYS FILE/FORK INCOMFII..E OUTCOMFlI.E ENTRYPOINTFLG} . [Functioi:::.]
If FlLE/FORJ(= EXEC. sta..-rs up a lower exec. ot.'1erwise runs < SUB SYS >system.
e.g. (SUBSYS 'SNOMSG), (SUBSYS 'TECO) etc. (SUBSYS) is th.e sarr.e as
{ SUBSYS 'EXEC). Control-C always returns control to next higher EXEC. ~cte
thaL more than one Interlisp can be stacked. but t..L'lere is no back.tra::e to help you
figure out where you are.

INCOMFILE and OUTCOMFILE provide a way of speciffing files for input c:1d
output. INCOMFILE can also be a string, in which case a temper&"")" file is c:ea:ed..
and the string printed on it.

ENTRYPO!:'ITFLG may be START, REENTER. or CONTINUE. NIL is equi\'alen: to
ST ART. except when FILE/FORK" is a handle (see below) in which case NIL is
equivalent to CONTINUE.

The value of SUBSYS is a large integer. which is a handle to the lower fork. Toe lower fork is not
reset unless the user specifically does so using KFORK, described below.24 If SUBSYS is gi·,en as its first

2::pop on TOPS-20.
23 fmcrlisp is exited via the function LOGOUT. TECO via the command ; H, SNDMSG via control·Z. and
EXEC via QUIT.
24~e for~ is also reset when the handle is no longer accessible. i.e .. when nothing in the lnteriisp s;·stem
points to 1t. Note that the fork is accessible while the handle remains on the history list.

22.21

JFN Functions in Interlisp· 10

argument the value of a previous call to SUBSYS.25 it continues the subsystem run by that c:ill. For
e:ca.mpte. the user can do (SETQ SOURCES { SUB SYS 'TECO)). load up the TECO with a big sour:e
file. massage the file. leave TECO with : H. run Interlisp for awhile (possibly b.dudil:g ot.'le:- c::.r.s to
SUBSYS) and :hen perform (SUSSYS 'SOURCES) to ret'.irn to TECO. ·,:w·here he will fuid his file leaded
and even the TECO pointer position preserved.

Note tllat if the user starts a lower E.-"'<EC, in which he runs an I:lterlisp. control-Cs from the Interlisp.
then QUIT from the EXEC, if he subsequently conti.cucs this EXEC with SUBSYS. he C3n re:::i~er or
continue the Interlisp.

Note al.so that calls to SUBSYS can be stacked. For example. using SUBSYS, the user c:m run a lower
Interlisp, and within that Interlisp. yet another. etc., and ascend the chain of Interlisps using LOGOUT.
and th.en descend back down again using SUSSYS.

For convenience. (SUBSYS T) continues the last subsystem run.

SNCMSG. LISP, TECO. and EXEC are all LISPXMACROS (page 8.19) which perform the corresponding
calls to suasvs. cornrn is a LISPXMACRO which performs (SUBSYS T), thereby continui:lg the iast
SUBSYS.26

(KFORK FORK) [Function}
Accepts a value from SUBSYS and kills it (RESET in Tenex termmology). If
(SUBSYS FORK) is subsequently performed. an error is generated. (KFORK T)
kills all outstanding forks (from this Interlis;,).

22.11 JFN FUNCTIONS IN INTERLISP·lO

JFN stands for Job File Number. It is an integral part of the Tenex file system and is described in
[1-1ur1J, and in somewhat more detail in the Tenex JSYS manual. In Interlisp·lO, the following functions
are available for direct cianipulation of JFNs:

n

n

{ O?NJ FN F!LE ACCESS) [F:.:.i:c:ionj (")
Rerurns the .JFN for F11..E. If FrLE not open. generates a FILE NOT OP:X
error. ACCESS=NIL. INPUT. OUTPUT. or BOTH as described in discussion of
OPErlP. For example. {JSYS 51Q {OPNJFN FILE) BYTE) will write·a tyte en
a fiie. while (JSYS SOQ (OPNJFN FILE) NIL NIL 2) will read one byte.

(GT J F N FILE EXT V FLAGS) [Function]
Sets up a "long .. call to GTJFN (see JSYS manual). F11..E is a file n:rme pcssib!y
containing concrol-F and/or <esc>. 'EXT is the default extension. v ~'le default
version (overriden if F11..E specifies extension/version. e.2 .• FOO. COM: 2}. FLAGS is

25M ust be the exact same large number. i.e .. EQ. Nace that if the user neglects to set a variable to :he
va!ue of a c:ill co SUBSYS. (and has performed an intervening call so that (SUBSYS T) wm noc work).
he can 5till continue this subsystem by obtaining the value of the d.11 to SUB SYS for the history list l!Slr:g
the function VALUEOF. dc~ribcd in page 8.16.
26.The EXEC LISPXMACRO is defined to save its value on LAST EXEC so that subsequent EXEC comm.:inds
will restart the same exec.

22.22 n

0

c-o

0

{RLJFN JFN)

(J FNS JFN AC3

INTERLISP· IO SPECIFICS

as described on page 17, section 2 of JSYS manual. F'ILE and EXT may be strings
or atoms; v and FLAGS must be numbers. Value is JFN. or NIL on errors.

[Function]
Releases JFN. (R LJ F N -1) releases all JFN' s which do not specify ope~ files.
Value of RLJFN is T.

STRPTR) [Function]
Converts JFN (a small number) to a file name. AC3 is either NIL. mea::.i.::.g format
the fiic n.:r...T.e as would OPE~:p or ot.'icr I:ntcrlisp-10 file functions. or e!se is a
number, meaning format according to JSYS manual. The value of J F NS is atomic
except where enough options are specified by AC3 to exceed atom size. · In this
case, the value is returned as a strir..g.

STRPTR is an optional string pointer to be reused. In this case. the suing characters
arc stored in an internal scratch string. MACSCRATCHSTR ING. so that a subsequent
call to J F NS will overwrite the characters returned by this one. Tne value of J F NS
when STRPTR is supplied is always a string.

Tne following function is available in Interlisp· 10 for specialized file applications:

{OPENF FILE X) [Function]
Opens FILE. x is a number whose bits specify the access and mode for FILE.
i.e .• x corresponds to the second argument to the Tenex JSYS OPE:--..F (see JSYS
Manual). Value is full name of F'ILE.

Toe first a:gument to OPENF can also be a number. which is then interpreted as
a JFN. OPEfJF does not affect the primary input or output file settings. and does
not check whet.'1.er the file is already open • i.e .. the same file can be opened more
than once, possibly for different purposes.

Note that for almost all applications the function OPEHFILE (page 6.1) provides a more convenient (and
implementatio.i independent) way of opening files.

22.12 DISPLAY TERMINALS

The value of t.fle variable DISPLAYTERMFLG indica~es whether the user is running on a display tenninal
or not. DISPLAYTERMFLG is used in- various places in the system. e.g .• PRETTYPRINT. HELPSYS. etc .•
primarily to decide how much infonnation to present to the user (more on a display termL.a.l than on
a hard copy tenninal). OISPLAYTERMFLG is initialized to the value of (OISPLAYTERMP). whenever
Interiisp is (re)·entered. and ·after returning from a. sysout. .

(DISPLAYTERMP) . (Function]
Value is T if user is on a display terminal. NIL otherwise. [n [meriisp· i.O.
DISPLAYTERMP is defined to invoke the appropriate jsys to check the user's
terminal type.

22.23

.. '\

The Interlisp•lO Sm1pper

22.13 THE INTERLISP-10 SWAPPER

InterlL~· 10 provides a vecy 12rge auxilary address space exclusively for swappable arrays (pri.mzrily
co:cr.pil~d functio::i definitions}. In addition to u.'1e 256K of resident address space, th.is .. shadow space" C2.!l.

currently accomodate an add.itonal 256K wcrc!s, can easily be expanded to 3.5 million words. and wir.b.
so:::ie further modifications, could be e:rpanded to 128 million words. Thus, the overlay system provides
ess-;:nti:iliy unfaniced space for compiled code.2T

Shadow sp;;.ce and the swapper are intended to be more or less tra!!.Sparent to the user. However. t."lis
section is included in the manual to give prograI!ll'r.ers a re350nabre feelh,g for what oYer!ays are like.
without getting unnecessarily technical, as well as to document some new functions and system c:oncrois
which may be of interest for authors of exceptionally large systems.

· · 22.13.1 O,,erlays

The shadow space is a very. large auxiliary address space used exclush·ely for an Interlisp cau-cype
called a swappable array. Toe regular address space is called the .. reside:it'' space to distinguish. it from
shadow space. Any kind of resident array • compiied code, pointer data. binary data. or a has..:.i array
- can be copied. into shadow space ("made swappable"), from which it is referred to by a one-word
resident entity called a handle. The resident space occupied by the original array can then be garbage
collected normally (assuming there are no remaining pointers to it, and it has not been made S!'lared. by
a MAKESYS). Sin1ilariy. a swappable array can be made resident ag:tin at any time. but of course r...'lis
requires (re)allocating the net:essary resident space.

The main purpose and iment of the swapping system is lo permit uLilizaJion of swappable arrays direcrly
and interchangeably with residenl arrays, thereby sa,Jing resident space which is then available for other
dara-1ypes. such as lists. atoms. strings. etc.

This is accomplished as follows: A section of the resident address space is permanently r~rved for a
swapping buffer.2s When a particular swappable array is requested, it is brought (swapped) in by mapping

n

or overlaying the pages of shadow space in which it lies onto a section of the swapping buffer. Tb.is
process is L11e swapping or overlaying from which the system takes its name. The array is ::ow (directly)
acc~ssible. However. further requesrs for swapping could cause the array co be overlaid \l,ith someth.i::J.g (j
else. so L."l effect it is liable to go away at any time. Tnus all system code that relates to arrays rr:.ust
recognize handles as a special kind of array. fetch them into the buffer (if not already there), when.
neces..~ check that they have not disappeared., fetch them back in if they have. and eYen be· prepared
for the second fetch co bring the swappable array in at a different place than did the first.

The major emphasis in 'the design of the overlay system has been placed on running compiled code,
because this accounts for r...'le overwhelming majority of arrays in typical systems. and for as much as
60% of the overall daca and .code. Toe system supports the running of compiled code directly from r...'le

2':'Since compiled code arrays point to atoms for function names. and strings for error messages. not to
me:ition the fact that programs usually have daca base. which are typically lists rather than arrays. me:-e ls
still a very real and finite IL-nit to the total size of programs that [ntcrlisp-10 can accomodate. Howeve:-.

- sir.cc much of the system and user compiled code can be made swappable. there is th;it much :-:-:ore
resident space avallable for these other daca·typcs.
2sinitially 64,512 word pages. but can be changed via the function SETSBSIZE described below.

22.24 (--)

0

0

--
0

0

INTERLISP·lO SPECIFICS

swappi:ig buffer. and the function calling mechanism knows when a swappable definition is being c.illed.
finds it in the buffer if it is already there. and brings it in otherwise. Thus. from the user's point of
view. ti."lere is no need to distinguish between swappable and resident compiled definitions. a:i.d in fac:
CCODEP will be true for either.

22.13.2 Efficiency

On~e of the mcst important design goals for the overl::iy system was that swappable code should r.ot
execute any e:ct."3. instructions compared to resident code. once it had been swapped in. Thus. t.he
instructicns of a swappable piece of code are identical {except for two ir.structions at the er.en· point) to
those of the resident code from which it was cop:ed. 29 and similarly when a swappabie function c:tlis
another far:ction (of any kind) it uses the exact sa.-ne calling sequence as any other code. Tnus. all costs
associated with running of swappable code are paid at the point of enc.ry (both calling and returni:1g),3c

Tne cost of the swapping itself. i.e. the fecch of a new piece of swapped code into the buff er. is eve:i
harder to measure meaningfully. since two successive fecches of the same function are not the same. due
to the fact that the instance' created by the first fecch is almost certain to be resident when the second
is done, if no swapping is done in between. Similarly, two successive PMAP's (the Tenex operation to
fetch one page) are not the same from one moment to another. even if the vi.--rual state of both forks is
exactly the same - a difficult constraint to meet in itself.31 Thus. all that can be reported is that e:n;:,iric:tl
measureme:-its and observations have shown no consistent slowdown in performance of systems con~ining
swappable functions viz a viz resident functions.

22.13.3 Specifications

. Associated with the overlay system is a datatype called a SWPARRAY, (type name SWPARRAYP), which
occupies one word of resident space, plus however much of shad.ow space needed for the body of t.11.e
a.-ray. A?.GLIST, FNTY?. NARGS, GETD'Q PUTD. ARGTYPE. ARRAYSIZE. CHANGENAME, CALLS. SREAK.
ADVISE. and EDITA ail work equally well with swappable as resident programs. CCOOEP is tr'Je for all
compiled functions/ definitions.

(Sl;JPARRAYP x} [Functionj
Analogous to ARRAYP. Returns x if xis a swappable array and. NIL other.,,·ise.

29The relocatable instructions are indexed by a base register, to make them. run equally well at any
location in the buffer. The net slowdown due to this extra level of indirection is too small to measure
accurately in the overall running of a program. On analytical grounds. one would expect it to be arot.n-!
2%.
30 If the function in question docs nothing. e.g. a compiled (LAMBDA NIL NIL). it costs api'.)roximate!y
twice as much to enter its definition if it is swappable as compared to resident. However. very Si:;a;i
functions are normally not made swappable (see MKS'.ilAPP. page 22.26). because they don't save m1,.ch
space. :1r:d-arc (typically) entered frequently. Larger programs don't exhibit a measurable slow down s:::.:c
they amomLe the entry cost over longer runs.

~ 1Thc cost of fetching is probably not in the mapping opcraLion itself but in the first rcfrrcncc to the
page. which has a high probability of faulting. This raises the problem of measunng page fault ;ictiv:ty.
another morass of uncertainty.

22.25

(SCOOEP x)

{M!<SWAP X)

{MKUNSWAP X}

{ MKS'WAPP FNAME

_I

(SETSBSIZE N)

Specifications

[Function]
Analogous to CCODEP. Returns T if xis or has a swapped compiled definition.

~ [Fu~cconJ
If x is a reside:.1t array. rerums a swappable array which is a copy of x. ff x is
a literal atom and (CCODEP x) is true. its definition is copied into a swappable
array. and it is (undoably) redefined with the latter. MKSWAP returns x.

[F•.inccor.]
The inverse of Ml<SWAP. xis either a swappable array, or an atom with swapped
definition on its CODE property. ·

CDEF} . . .· [Function]
All compiled definitions begin life as resident array~ whether they are created by
LOAD. or by compiling to core. Before they are stored away into t.i.'1.eir :i.toc·s
function cell MKSWAPP is applied to the atom and the array. If the value of
MKSWAPP is T. the definition is made swappable: otherwise. it is left resic!.ent. By
redefining MK SWAPP or advising it. the user can completely contrcl the swappabilizy
of all future definitions as they are created. The initial defnition of MKSWAPP will
make a function swappable if (1) NOSWAP FLG is NIL. and (2) the nace of tile
function is not on NOSWAP F NS. and (3) the size of its definition is greater than
MKSWAPSIZE words., initially 128.

[Function}
Sets the size of the swapping buffer to N, a number of pages. Rerums the previous
value. (SETSBSIZE) returns the current size withou~ c~anging it.

Note: Currently. the system lacks error recovery routines for situations such as a
call to a swappable function which is too big for the swapping buffer. or when the
size is zero. Tnerefore. SETSBSIZE should be used with care.

22.26

n

n

n

()

0

0

0

CHAPTER 2.3

_LISPUSERS PACKAGES

This cha.pt.er describes paci:ages which are of sufficient utility that they would otherwise be included 2S

part of the In:erlisp system. except for virrual address space limitatio::is. These packages nor::-iall;- res:dc
on the directory <LISPUSERS>.

·23.1 PA TIER.."'l MATCH COl'\.IPILER

Note: The pattern match compiler is a lispUsers package which can be loaded from the file MATCH. DCOM.
The entries have a F ILEDEF property (see page 15.8). so simply using a pattern match construct will cause
the file to be loaded automatically.

The pattc~ match compiler provides a fairly general pattern match facility within CLISP. This facility
allows the user to specify certain tests that would otherwise be clumsy to write. by ghing a pattern which
the datum is supposed to match. Essentially, the user writes .. Does the (expression} X look like {the
pattern) P'?" For example, X: (& 'A -- 'B) asks whether the second element of X is an A. and the
last element a B. The implementation of the matching is performed by computing (once) the equivalent
Interlisp expression which will perform the indicated operation. and substituting this for the pa.tern. and
not by invoking each time a general purpose capability such as that found in FLIP or PLAN~ER. For
example, the tra.1.slation of X: (& 'A -- ' B) is:

(AND (EQ (CAOR X) 'A)
(EQ (CAR (LAST X)) 'B))

Thus the CLISP pattern match facility is really a Pattern Compiler. and the emphasis in its design and
implementation has been more on the efficiency of object code than on generality and sopt-Jstication of
its marching capabilities. The goal was to provide a facility that could and would be used even where
efficiency was paramount. e.g.. in inner loops. As a result. the CUSP pattern match facility does ::ice
contain {yet) some of the more esoteric features of other pattern match languages. such · as re-;,eated
patterns. disjunctive and conjunctive panems. recursion, etc. However. the user can be confide::t tl':at
what facilities it does proYide will result in Interlisp expressions comparable to those he would generate
by hand.1

The syncax for 'pactem match expressions is FOR~: PATTERN. where PATTERN is a list as described be!ow .
. As with iterative statements. the translation of patterns. i.e.. the corresponding Interlisp expressions.

are stored in the hash array CLISPARRAY (see page 16.19). The original expression. FORM:PATTER.N.

is replaced by an expression of the form (MATCH FORM WITH PATTERN). CUSP also recognizes
expressions input in this fonn.

t Wherever possible. already existing Interlisp functions are used in the translation. e.g., the translation cf
(S 'A S) uses MEMB. (S ('A S) S) uses ASSOC. etc.

23.1

Pattern Elements

If FOR.\! appears more than once in the tranSlation. and it is not either a variable. or an expression t.r.i.at
is easy to (re)compute. such as {CAR Y), (COOR Z). etc .. a dwr.my variable will be ge;:ierated and
bound to the value of FOR.\! so that FOR.\! is not evaluated a multiple number of times. For ex~;,le.
the tmnslation of (F 00 X) : { S 'A $) is simply { ME Ma 'A { F 00 X)) • while the translation of (F 00
X) : (I A I B - -) is:

(PROG (SS2)
(RETU:::rn

(ANO (EQ (CAR (SETQ $$2 (FOO X)))
'A)

(EQ (CAOR SS2} 'B]

In th.e interests. of efficiency. the pattern match compiler assumes that all lists end in NIL. i.e .• th.ere are
no LISTP checks inserted in the translation to check tails. For example. the translation of X: { 'A &
--) is (ANO (EQ (CAR X) {QUOTE A)) (CCR X)), which will match with (A 8) as well as (A /\
• B). Simifa.rly. the pattern match compiler does not insert LISTP checks on elemen:s. e.g .. X: { ('A '- / ·
--) --) translates simply as {EQ {CAAR X) 'A). and X:((Sl Sl --) --) as (COAR X).2 Note
that the user can explicitly insert LISTP checks himself by using @. as described below. e.g .• X: ({ S 1 S 1
--)@LISTP --) translates as {COR (LISTP {CAR X))}.

23.1.1 Pattern Elements

.
A pattern cocsists of a list of pattern elements. Each pattern element is said to match either an ele:::ent
of a data structure or a segment. (cf. the editor's pattern matcher ... __ •• matches any arbitrary segment
of a list. while & or a subpattern match only one element of a list.) Those patterns which may match a
segment of a list are called segment patterns; those that match a single element are called element patterns.

23.1.2 Element Patterns

There are several types of element patterns, best given by their synta.i::

,-· Sl or &

'EXPRESSION

=FOP ... -..t

==FOR.\C

Matches an arbitrary element of a list.

Matches only an element which is equal to the given expression e.g.. 'A. • (A B } •

EQ. MEMB. and ASSOC are automatically used in the translation when the quoted
expression is atomic, otheywise EQUAL. MEMBER. and SASSOC.

Matches only an element which is EQUAL to the value of FOR.-..t. e.g.. =X.
= (REVERSE Y).

Same as =·. but uses an EQ check instead of EQUAC

:The insertion of LISTP checks for elements is controlled by the variable PATLISTPCHECl<. Whe::i
PATLISTPCHECK is T. LISTP checks are inserted. e.g .. X:(('A --) --) translates as: (EQ (CAR
(LISTP (CAR (LISTP X)))) 'A). PATLISTPCHECK is initially NIL. [ts value can be changed
within a particular function by using a loc.:tl CUSP declaration (see page 16.10).

23.2

n-

-0
()

·o

0

6

ATOM

LISPUSERS PACKAGES

The treatment depends on setting of PATVARDEFAULT. If PATVAROEFAULT is '
or QUOTE. same as • ATOM. If PATVAROEFAULT is= or EQUAL. same as =ATOM.
If PATVARDEFAULT is== or EQ, same as ==ATOM. If PATVAROEFAULT is .. or
SETQ, same as ATOM+-&. PATVI.\RDEFAULT is initially '.

PATVARDEFAULT can be changed within a particular function by using a local
CLISP declaration (see page 16.10}.

Note: numbers and strings are always interpreted as thoug.lt PATVAROEFAULT
were =. regardles.s of its setting. EQ. MEMB, and ASSOC are used for comparisons
involving si:nall integers.

(PATT.ERN1 •• • PATTERNN) N2! l
Matches a list which matches the given patterns. e.g.. (& &) , (- - ' A) •

ELEMENT·PATT~FN

•

-ELEMENT-PATTERN

Matches an element if ELEMENT-PATTERN matches it. and FN (name of a function
or a LAMBDA expression} applied to that element returns non-NIL. For exa.-n;,le,
&@NUMB ERP matches a number and ('A --) ©FOO matches a list whose first
element is A. and for which FOO applied to that list is non-NIL.

For "simple"' tests. the function-object is applied before a match is ac:empted
with the pattern., e.g.,({-.:. 'A --)@LISTP --) translates as (ANO {LISTP
{ CAR X)) (MEMB 'A (CAR X))) • not the other way around. FN may also be
a FORM in terms of the variable@, e.g.,&@(EQ @ 3) is equivalent to =3.

Matches any arbitrary element. If the entire match succeeds. the element which
matched the • 'will be returned as the value of the match.

Note: Normally, the pattern match compiler constructs an expression whose value
is guaranteed to be non·N IL if the match succeeds and NI L if it fails. However. if
a • appears in the pattern. the e~pression generated could also return N IL if t.'1e
match succeeds and • was matched to NIL. For exam;,le. X: (' A • - -) translaces
as (AND (EQ (CAR X) 'A) (CAOR X)), so if Xis equal to (A NIL 6) then
X : (' A • - -) returns NIL even though the match succeeded.

Matches an element if the element is not matched by ELEMENT-PATT'EP.X. e.g.,
-'A,-=X,-{-- 'A--).

(•ANY• ELEMENT-PATTERN ELEMENT-PATTERN • ·,)

Matches if any of the contained patterns match.

23.1.3 Segment Patterns

S or -- Matches any segment of a list (including one of zero length).

The difference between S and -- is in the type of search they generate. For exampie. X: (S 'A • B S}
translates as (EQ (CADR (MEMB • A X)) • B). whereas X: (-- • A 'B S) translates as:

(SOME X

23.3

. ·. ~ ..

Segment Patterns

(FUNCTION (LAMBDA iSS2 SSl)
(ANO (EQ SS2 'A)

(EQ (CAOR SSl) 'B]

Thus. a pa.."'aphr~e of (S ' A ' S S) would be .. Is the 'element following rl;.e first A a B ? .. , whereas a
paraphrc:.Se of (- - 'A 'B S} would be "Is there any A iir.mediately followed by a ST Note that the
pattern employing S will result in a more efficient search than that employing --. However. (S 'A • 8
S)willc.otmatchwiti.i.(X Y ZAM O AB C},but(-- 'A 'B $)will.

Essentially, once a pattern following a S matches. the S never resumes searching. whereas -- produces
a translation that will always continue se3J.'"'Ching until there is no possibility of success. However. if
the panern match compiler can deduce from the pattern that continuing a search after a par.icular
failure c:mnot possibly succeed, then the translations for both -- and S will be the same. For e:c:imple.
both X: (S 'A S3 S) and (-- 'A S3 --) translate as (COODR (MEMB (QUOTE A) X)). b1.-c:1~:s.:=
if t..~ere are not three elements following the first A, there certainly will not be three elements following n
subsequent A's, so there is no re:ison co continue searching. even for - - . Similarly. (S • A S ' 8 S) 1 - ·

and (-- 'A -- 'B --) are equivalent.

S2, S3, etc.

! EL~.CZNT-PATTERN

Matches a segment of the given length. Note that St is not a segme::it pattern.

Matches any segment which ELEMENT-PATTERN would match· as a list. For
example. if the value of FOO is (A 8 C), ! =FOO will match the segment ... A B
C • • - etc. Note that ! • is permissible and means VALt'E-OF-MATCH .. S. e.g .. X: (S
'A!•) translates to (COR (MEMS 'AX)).

Note: since ! appearing in front of the last pattern specifies a match with some tail of the given
expression. it also makes sense in this case for a ! to appear in front of a pattern that can only march
wiLlJ. an atom. e.g., (S2 ! 'A) means match if COOR of the expression is the atom A. Simifa.riy, X: (S
'A) translates to (EQ (COR (LAST X)) 'A).

!A'..'OM treatment depends on setting of PATVAROEFAULT. If PATVARDEFAUL T is ' or
QUOTE. same as! 'ATOM (see above discussion). [f PATVAROEFAULT is ="Cler
EQUAL. same as ! =ATOM. If PATVAROEFAULT is== or EQ. sa.-ne as ! ==A:.O.\f. [f
PATVARDEFAULT is .. or SETQ, same as ATOw-S.

The atom••.·· is created exact~v like ·• ! ". [n addition, if a pattern ends in an atom.
the ·•. " is first changed to ·· ! ". e.g., (S 1 . A) and (S 1 ! A) are equivalent.
even though the atom ·•. ·• does not explicitly appear in the pattern.

One exception where ·•. :· is not created. like ·· ! ": ... " preceding an :issignmenc
does not have the special interpretation that ·• ! ·• has preceding an assig::iment (se~
below). For example. X: ('A • FOO .. ' B) translates as:

(ANO {EQ (CAR X) 'A)
(EQ (COR X) 'B)
(SETO FOO {COR X)))

but X : ('A ! FOO._' B) translates as:

(ANO (EQ (CAR X) 'A)
{NULL (COOR X))

23.4

()·
')

0

0

Q.

0

LISPUSERS PACKAGES

(EQ (CAOR X) '8)
(SETQ FOO (CDR X)))

SEGMENT·PATTER.:t-,"'@FrJNCTION·03JECT

23.1.4 Asiignments

Matches a segment if the segment-pattern matches it, and the function object
applied to the corresponding segment (as a list) rec,.1rns non·N IL. For exam:;:,!e.
(S©CDDR 'D $) matches (ABC OE) but not (ABO E), since COOR of
·(A B) is NIL.

Note: an @ pattern applied to a segment will require computing the corresponc.ing
structure (with LDIFF) each time the predicate is applied (except when the segment
in question is a tail of the list being matched).

Any pattern element may be preceded by '"v.AruA.BLE , meaning that if the match succeeds (i.e ..
everything rnatches), VARIABLE is to be set to the thing that matches that pattern element. For exampie.
if X is (,\ B C D E), X: ($2 Y+-S3) will set Y to (C O E). Note that assignments are not performed
until the entire match has succeeded. so assignments cannot be used to specify a search for an ele:nent
found earlier in the match. e.g., X : (Y +-S 1 = Y - -) 3 will not match with (A A B C •••) • unless.
of course. the value of Y was A before· the match started. This type of match is achieved by using
place-markers. described below.

If the variable is preceded by a l, the assignment is to the tail of the list as of that point in the pattern.
Le .. that portion of the list matched by the remainder of th~ pattern. For example. if X is (A B C D
E), X:(S !Y 'C 'D $) sets Y to (COE). Le •• COOR of X. In other words. when! precedes an
assignment, it aces as a modifier to the , and has no effect whatsoever on the pattern itself. e.g.. X : ('A

. 'B} and X: ('A ! FOO ' B} match identically, and in the latter case. FOO will be set to COR of X.

Note: PATTERN·El.EMENT and ! •+-PATTERN•ELEMENT are acceptable, e.g .• X: (S 'A ... ('8 --)
:) translates as:

(PROG (SS2)
(RETURN

(ANO (EQ (CAADR (SETQ $S2 {MEMS 'AX))) 'B)
(CAOR $$2)

23.1.5 Place-Markers

Variables of the form #N. N a number. are called place-markers. and are inter;,reted specially by the
pattem match compiler. Place-markers are used in a pattern to mark or refer to a particular pat:e:-n
elemenL Functionally, they are used like ordinary variables, i.e .• they can be assigned values. or used

. freely in forms appearing in the p~,ttem. e.g.. X: (II 1 .. $ 1 = (ADD 1 111)) will match the list (2 3).
However. they are not really variables in the sense that tl1cy are not bound. nor can a function called

3The translation of this pattern is: (COND ({ AND (COR X) (EQUAL (CADR X) Y)) (SEiQ Y
(CAR X)) T)). The AND is used because if Y is NIL. the pattern should match with (A ~UL). but
not with just (A). The T is because (CAR X) might be ~,IL.

23.5

Replacements

from within the pattern expect to be able to obtain their values. For convenience. regard.less of the
ser:c.ng of PATVAROEFAULT. the first appearance of a defaulted. place-marker is interpreted as thoug.1.
P.t\TVARDEFAULT were+-. Thus the above pattern could have been written as X: (1 =(ADDl 1)).
Subsequent appearar:ces of a place-marker are interpre;ed as though PATVARDEFAULT -,,.·ere =. For
er.a::r.ple. X:(#1 #1 --} is equivalent to X:{#1 .. $1 =#1 --). and translates as (AND (CQr\ X)
(EQUAL {CAR X} {CADR X)). (Note that (EQUAL (CAR X) (CAOR X)) would i:J.cor.ectly match
wit.'1 pn L) .)

23.1.6 Replacements

()

The construct PATTZRN-ELEMENT ... ItORM specifies that if the match succeeds. the part of the data th:u
ma.och-::d is co be replaced with the value of FORM. For ex:Jmple. if X = (A B C D E). X: (S • C S 1 +-Y
S 1) will replace the t.'1ird element of X with the value of Y. As with assignments. replacementS arc not
performed until after it is determined that the entire match will be successful n ..
ReplacementS involving segmentS splice the corresponding structure into the list being matched. e.g .. if X
is { A B C O E F) a!ld FOO is (1 2 3), after the pattern ('A $+-FOO 'D S) is matched with X. X
will be (A 1 2 3 0 E F), and FOO will be EQ to CDR ofX. i.e .• {1 2 3 0 E F) .

. Note t.liat {S FQQ .. FIE S) is ambiguous. since it is not clear whether FOO or FIE is the pattern element. .
· i.e.; whether +- specifies assigrunent or replacemenL For example, if PA TVA ROE FAULT is =. this pattern
can be interpreted as (S FOO ... =F IE S). meaning search for the value of FIE. and if found set FOO to it.
or { S =FOO+-FIE S) meaning search for the value of FOO. and if found. store the value of FIE into the
corresponding position. In such cases. the user should disambiguate by not using the PATVAROEFAULT
option. i.e .. by specifying ' or =.
Note; Replacemencs are normally done with RPLACA or RPLACD. The user can specify that /RPLACA
and /RPLACD should be used. or FRPLACA and FRPLACD, by means of CLISP declarations (see page
16.9}.

23.1. i Reconstruction

The user can specify a value for a pattern match operation other than what is rerurned by the ma::ch by
writing FOR.Mi: PATTERN=)FOR.~2-4 For e:c:ample. X: (FOO+-$ 'A --) =) (REVERSE FOO} cransia.:es
as:

(PROG (SS2)
(RETURN

(CONO ((SETQ SS2 (MEMS 'AX))
(SETQ FOO {LO[FF X $2))
{REVERSE FOO]

Place-markers in the pattern can be referred to .from with1n F"ORM. e.g .• the above could also have been
written as X:(!#1 'A --)=>(REVERSE #1). [f -> is used in place of=>. the expression being

tToe original CUSP is replaced by an expression of the form {MATCH F'ORM1 WITH PAT'!'ER.:-. =>
FORM2 }. CUSP also recognizes expressions input in this form.

23.6
_, \

(""'-""'
'·)

()

r-· 0

••

0

LISPUSERS PACKAGES

marched is aL~ physically changed to the value of FOR.\!. For ex2mple. X: (#1 'A ! #2) -> (CONS
#1 #2) would remove the second element from X, if it were equal to A. ·

In general. FOR.M1 :PATTERN->FOR.V2 is translated SQ as to compute FORM2 if the match is su~essfu!..
and t..i.en smash its value into the first node of FOP.M 1• However, whenever possible, the translation <ices
not ac:-c.ally require FOR.'-.!2 to be cooputed in its entirety, but i:lstead the pacter:i match compiler uses
FOR..\!2 as an indication of what should be done to FORM1• For example. X: (# 1 'A ! #2) -> (CONS
111 #2) tra."151:ites as (ANO (EQ (CAOR X) 'A) (RPLACO X (COOR X))).

23.1.8 Examples

X:(-- 'A --)

X:(-- 'A}

-- matches any arbitrary segment. 'A matches only an A, and the second -- again
matches an arbitrary segment; thus this translates to (MEMB 'A X).

Again. -- matches an arbitrary segment: however. since there is no -- after the
'A, A must be the last element of X. Thus this translates to: (EQ (CAR (LAST
X)) 'A).

X:('A 'B -- 'C S3 --)
CAR of X must be A, and CADR must be B, and there must be at least three
elemencs after the first C, so the translation is:

(ANO (EQ (CAR.X) 'A)
(EQ (CADR X) 'B)
(COODR (MEMB ·' C (COOR X))))

X:(('A 'B) 'C Y+-Sl $)

X: (#1 'A S 'B

Since ('A 'B) does not end in Sor--. {CDOAR X) must be NIL.

(CO?m
{(ANO {EQ {CAAR X) 'A)

(EQ (CAOAR X) 'B)
(NULL (CDDAR X))
{EQ (CAOR X) 'C)
(COOR X))

(SETQ Y (CADOR X))
T))

'C #1 $)
#1 is implicitly assigned tb the first element in the list. The S searches for the first
B following A. This B must be followed by a C. and the C by an expression eq1Jal
to the first element.

[PROG ($S2)
(RETURN

(ANO (EQ (CAOR X) 'A)
(EQ [CAOR (SETQ SS2 ·(MEMB 'B (COOR X] 'C)
(COOR SS2)
(EQUAL (CADOR $$2) (CAR X]

X:(#1 'A -- 'B 'C #1 S)

23.7

;

\ -..

_

Printing Reentr:int and Circular List Structures

Similar to ·the pattern above. except that - - specifies a search for any B fellowed
by· a C followed by the first element. so the translation is:

23.2

23.2.1

[AND (EQ {CADR X) 'A)
{SOME {COOR X) ~

{FUNCTION (LAMBDA (SS2 $$1)
(Alm (EQ SS2 'B)

{EQ (CADR SS1) 'C)
{COOR S$1)
(EQUAL (CADOR $St) (CAR X]

PR.INTh'fG REENTRA.i.'IT AND ORCULAR LIST STRUCTURES

ORCLPR.INT

Note: CIRCLPRINT is a LispUsers package contained on the file CIRCLPRINT. DCOM.

HPRINT (.-cage 6.24) is designed primarily for dumping circular or reentrant list su-uctures (as well as
other data structures for which READ is not an inver.ie of PRINT) so that they can be re::i.d back in by
Interlisp. The CIRCLPRINT package is designed for printing circular or reentrant structures so that the
user can look ~t them and understand them. ..
A reentrant list strucrure is one that contains more than one occurrence of the same (EQ) structure. For
example. TCONC (page 2.17) makes uses of reentrant list scrucrure so that it does not have to search for
the end of the list each time it is called. Thus. if X is a list of 3 elements. (A B C) , being const..'1.lcted
by TCOrJC, the reentrant list structure used by TCONC for this puJ:l)ose is:

1.,.,-----------------1
----- I
I I
V V

IAt.1---->1a1.1---->1c111

This structure would be·printed by PRINT as ((A B C) C). Note that PRINT would produce the same
output for the non-reentrant structure:

I .1. 1---->1c111

I
V

IAI. 1---->IBI. 1---->ICIII

23.8

n--·

n

0

0

LISPUSERS PACKAGES

In other words. PRINT does not L'ldicate the fact that portions of the structure in the first fig,.:re are
identical. Similarly, if PRINT is applied to a circular list structure (a special type of reent:r..:!lt SC"i.lct:'..1re)
it will never ten::tinate.

For example, if PRINT is called on the structure:

1--->1. Ill
I
I I
1-----1
it will print an endless sequence of left parentheses. and if applied to:

1--->IAI. 1----1
I I
I I
1-------------1
will print a left parenthesis followed by an endless sequence of A's.

Toe function CIRCLPRINT described below produces output that will exactly describe the structure of any
circular or reentrant list structure. This output may be in either single or doubl~line formatS. Below a:-e
a few examples of the expressions that CI RCLPRINT would produce to describe the structures dis.::.:.ssed
above.

First Figure, single line:

({AB •1• C) {1})

First Figure. double-line:

((A B C) {1})
1

Q Tr..ird Figure, single-line:

c·1· {1})

0

Third Figure. double-line:

({1})
1

ForJt Figure. single-line:

· · Forth Figure. double-line:

(A. (1})
1

. .

23.9

\"' .

ORCLPRINT

The more complex structure:

.
1-------->1.1 .1--------------------------t
I ----- I
I I I
I V V
I -----
1 1--->1 -1- 1---->1.1. 1---->IAI. 1---->IBI -1
I I·
I I 1-t
I 1-----1 I 1-------------------1
I I
1--------------------1

is printed as follows: .

Single-line:

(•2• (•1• {1} •3• {2} A •4• B • {3}) . {4})

Double~line:

(({1}
21

{2} A
3 4

B . {3}) . {4})

In both formats. the reentrant nodes in the list structure are labeled by numbers. (A reentr'..nt node is
one that has two or mor,: pointers coming into it.} In the single-line format. the label is printed betwee!l.
asterisks at the beginning of the node (list or tail} that it identifies. In the double-tine format. c..'1.e label is
printed be!ow the beginning of the node it identifies. An occurrence of a reentrant node that has alre:Jdy
been identified is indicated by printing its label in brackets.

(C !RCLPR INT LIST PR.INTFLG RLKNT) [Function]
Prints an expression deS<:ribing LIST. [f PRINTFLG =NIL. double-line focr.:i.t :s
used. oLrierwise singie-line for:nat. CIRCLPRINT firs: calls CIRCL~.11.RK. ar:.d t.:.:en
calls either RLPRU: 1 {if PRI~TFLG= T) or RLPR IN2 (if PRINTFLG= NIL). Finally,
RLRESTORE is called to restore LIST to its unmarked state. Returns LIST.

(CIRCLMARK LIST RLKNT) [Function]

(RLPR IN 1 UST)

(RLPR IN2 LIST}

Marks each reentrant node in LIST with a unique number. starting at R.LX~T + l
(or l. if RLKNT is NIL). Value is (new) R.LKNT.

Marking LIST physically alters it. However. the marking is performed unc!oably.
In addition. LIST can always be restored by specific:illy c:illing RLRESTORE.

. (FunctonJ
Prints· an e:tpression describing LIST in the single-line format Does not rcscore
LIST co its unC IRCLMARKed State. LIST must previously have been C IRCLMARKed
or an error is generated.

[F:.m..:,~vnl
Same as RLPR IN 1, except that the expression describing I..JST is printed in the
double-line format

23.10

0-·

n-·

n

Cl

0

o-

0

0

LISPUSERS PACKAGES

(RLRESTORE LIST)
Physically restores list to its original. unmarked state.

[Functicn]

Note that t.ie user can mark a:id print several structures which together share common substr..:cr.ires. e.g_
several pro~erty lists. by making several calls to CIRCLMARK. follov;ed by calls to RLPRINl or RLPRIN2.
and finally to RLRESTORE.

(C IRCLMAKE R LIST} [Function]
L.rs-:may contain labels and references following t.lie convention used by C IRCL?R INT
for printing reenu-~t structures in singie line format. e.g.. (• 1 • . { 1}) .
CIRCLMAKER performs ti'le necessary RPLACA's and RPLACD's to cake !.IST
correspond to the indicated structure. Value is (altered) LIST.

(CIRCLMAKERl LIST) [Function]

23.2.2 PR.11\"TL

Does the work for CIRCLMAKER. Uses free variables LABELST and REFLST. LASELST
is a list of dotted pairs of labels and correspondL.,g nodes. REF L ST is a list of
nodes containing references to labels not yet seen. CIRCLMAKER operates by
inidalizing LABELST and REFLST to NIL. and then calling CIRCLMAKERl. It
generates an error if REFLST is not NIL when CIRCLMAKE Rl returns. Tne
user can call C IRCLMAKE Rl directly to "connect up·• several scrucrures c..'lat s...1.are
common substructures. e.g., several property lists.

Note: PR/NTL is a LispUse_rs package contained on the file PRINTL.COM.

The PR INTL package uses a different scheme than C IRCLPRirlT to present circular structures in an easily
readable formaL PRINTL uses indentation a la PRETTYPRINT to make it easier for the user to see L1e
nesting of list stn1cture. and prints index numbers· for the beginning and ends of expressions so that the
user can find what is referred back to easily. Note that PRilHL does not provide an output fom::u: w:r,_,.kh
can be read back: in to reconstruct the original list structure: it is intended primarily as a debcg,;ing a.ic!.

Tne following example illustrates the use of PR INTL:

32~(PRINTL (NCONC (SETQQ X (ABC ti)) X))
1: (AB CO • {1}) :1

NIL
33~(PRINTL (LIST X (COR X) (COOR X) (CDDOR X]

1: ((ABC D . {2}) {3} {4} {5}) :1
NIL
34~(PRINTL (LIST X (CONS 'P (CDR X)) (CONS 'Q {COOR X))
(CONS 'R (COODR X]

1: ((A ~ C D . {2}) :·2
6: (P . {3}). :6·
7: (Q. {4}} :7
8: (R . {5})) :1

N!L
35~USE LIST FOR CONS

1: {(AB C D . {2}) :2
6: (P {3}) :5

23.11

-
..• '

8: (Q {4})
10 (R {5}))

NIL

Indexing and Cross Referencing Files

:8
: 1

PRINTL uses the following algorithm: Each list node that is printed (CAR or CCR) is assigned a number.
T..'le second and s'!.lbsequent appearences of this list node are represented si::nply by print:i.cg c.'le number
correspcr.cling to the node in {} brackets. Every line on which the representation of a list beg-.z.s snows
the corresponding num::,er of the first such list. i.e. this number corresponds to the first op~:::i pare::u: .. "leisis
on the En'!. Si.mik:.rly. to the rig.ht of every line on which a list ends is j)rintcd t'le :iu..-rnbe:- :h~: co::-cs,;oncs
to the las: c!ose · par:::m:hesis on the line. The numbers for those list nodes w:lich c.o net cor.cs~0r:d to
the ti.st open parem.11.eses or the last close parentheses on a line can be obtained by simply coun::ing from
the lase numbered parenthesis. For example. in tr.~e line

i: {(ABC O • {2}) {3} {4} {5}} : 1

2 is (A B C D) , 3 is (B C D) , 4 is (C O) , and 5 is (D) •

(PR UHL ITEM DEPTF. LMARG ·&\!ARG FZ!.E} [Function]

PRINTDEPTH

(PRNTL ARGS)

Prints an item which is known to be, or suspected of being a circular list structure •
in the form described above. DEPTH controls the depth of rec-.. usion in the
CAR direction and defaults to the value of the varibie PRINTDEPTH (initially 4).
Eements of the structure at this depth are printed as .. { - - } ...

LMAP..G is the left margin. If tH L. L,\!ARG defaults to (POSIT ION FZ!.E). P-\.!.A..~G

is the position at which the righthand column of numbers will be printed. If NIL.
R:.!ARG defaults to (L;NELENGTH)·S.

Printing is to FILE. which is opened if necessary.

[Variable]
Toe default DEPTH argument for PRINTL. Initially 4.

l,Prog. Asst. Corr.i.I:land]
Programmers Assistant command that performs (PR INTL • ARGS) provic.e::.

n ' ,

n ...

{CAR A.RGS) is not a m..L.'Ilber. If it is. or if ARGS=NIL. cte item to be pr.n:ec. is r'\
taken co be the last event on the history list with a non-null value. Thus ? RN TL. \)
6 will print the last non-null value with DEPTH= 6.

23.J L.'lDEXING ,\!'ID CROSS REFERENONG FILES

23..3.1 SINGLEFILEL1'1DEX

.Vote: SI,VGLEF!LEINDEX isa lispUsers package that is contained on the file SINGLEF ILE INDEX. DCOM.

SI~GLEFILEINDE,"{ is a package for giving the user an alphabetical function index on the front of eJch
lisp file iistcd by Interlisp. This package is similar co the \ttCLTIFILEINDEX package descr.bed ~eiow.
exce;n that SI~GLEFILEl).iDEX provides a t.1ble of contents for functions only. and oper;m!s on 0r.e
file at a ci:ne. However. SINGLEFILEI:--IDEX is much simpler and faster thJ.n ~lULTIFILEl:--;DEX .:m.:i

23.12 ()

0

Q

0

LISPUSERS PACKAGES

-
is useful e·(ery time a file is ~de.

The first page gives the file!la!Ile, time of creation. and the time of the listing. Following that (on possibly
more than o:::.e page) are N columns of function na.-nes and index numbers, where tee ~cex 01 .. 1..~ber
indicates t.~e fanction·s Ur.ear occurrence wit.i"Jn the fJe. Tne number of columns is deter:nined b:· r..'1e
length of t..'1.e longest function name. as well as by the number of functions in the fiie as descri~ed below.
The file is then printed with the filename and page number at the top of every page. and e.a:h function
is preceded by its index number right·jc.stified on the page.

\Vnen the SI7',;GLEFILEINDEX package is first.loaded. it redefines LISTFILESl {I=age 11.9) so faat ali
files listed by LISTFILES will be listed by calling {SHJGLEFILEHIDEX FILE NIL NIL}. Note t.":.at
the file being indexed docs not have to be loaded. or even noticed in the file pack ... ge sense.

(SINGLEFILErnDEX Fa.E OUTPUTFa.E NEWPAGEFLG} [Function]
Fa.Eis the lisp source file. OUTPUTFa.E is the destination file. lf 0tJ':"?ti"TFJI.E =NIL,
then the value of PRINTER (initially LPT:) is used. NE'W'PAGEFLG= T me:.ms each
function will be printed on a new page. The value of FILELINELENGTH deter­
mines the position of the index numbers. as well as the placement of t.'1.e colum..-is.
The value of LINESPERPAGE (initially 58) determines the number of lines per
page.

23.3.2 MULTimEINDEX

Note: MULTIFILEINDEX is a LispUsers package that is contained on the.file MULTI FILE INDEX. DC0M.

Many syste:r.s built in Interlisp consist of a number of symbolic source files. Finding one·s way around
in the listings can often be very tedious. even for the impiementor of the system. if you don't k.."1.ow
the system and u'1.e structure of the files intintately. The MULTIFILEINDE.'X pad.age is an atte~;,t
to help users deal with chis problem by creating a listing of an entire system or set of files. includi:ig
an al::habetized table of contents containing entries for each function on any of the files. [nfcr.nation
(but ii.ct unique index nun:bers} is included for other ectities in the files such as records. blocks. a:id
proper..ies. The function MUL TIF ILE INDEX implements this mechanism.

(MULTIFILErnDEX SO'CJR.CEFII.ES DESTINATIONFII.E NEVr'PAGEFLG) [Fun-:no:i]
SOUR.CEFII.ES is a list of file names (if atomic. (LIST sot"RCE:Fa.Es) is used). If
it is NIL. MUL TIF ILE H!OEX returns immediately. [fit is T. the \·alue _of F ! LELST
is used (page 11.13). DEST~'ATIONF!LE is the output file. lf DESTr:-;ATIO:-."F:;..E is
NIL. the value of PRINTER is used (below). If NEV--PAGEFLG=T. each function
in the listing will be placed on a page by itself.

[n the default case.MULTI F ILEHlDEX does the followin~:

(l) Outputs an alphabetized table of contents (index) indicating the name of an object (function. record.
block. variable. and so on}. the file that it belongs to. and its type (property. variable (set or saved).
record. block. and so forth). If the object is the name of a function. then the information inciudes a
unique index in the listing for the function. its type (EXPR. FEXPR•. etc.). and its argument lis~ '.'icte
that it handles functions/files that use DECL (page 23.18). Otherwise. the index represents the index of
the func::ion i.T.rnediately preceeding the definition of the enmy.

(2) Ompms a listing of the files with each function being preceeded by its index number rig.,.i.t·;usuned

:!3.13

1"1UL TIFILEil'-ITIEX

on the line. Header information is placed at the top of e:ach page. and the pages are numbered.

(3) Undoably removes the names of the files indexed from NOTLISTEDFILES (page 11.9}.

MUL iI FI LE HJDE:X is effected by the following variables:

MULT!FILEINOEXMAPFLG (Vat.able]
If T. indicates that you want the file index output. Initially T.

MULT IFILEHJOEXFILESFLG [Y~.rfa!?!e]

PRINTER

If T. indicates that you want the file listings ouc;,ut to DESTINATIONFrLE. Ini~al:y
T.

.__ [\"ari::.bie]
lf the MAPFILE argument to MULTIFILEINOEX is NIL. it defaults to the \·alue of

n·

PRINTER. Initially {LPT} in Interlisp-D. LPT: in lnterlisp-10. ().

LlNESPERPAGE [Variable]
The value of LINESPERPAGE determines the number of lines per page. Initially
65 in Interlisp·D. 58 in Int~rlisp-10.

FONTCHANGEFLG [Variable]
If NIL. page headings and the index numbers that preceed the definition of
each function are printed bold: that is. overprinted: otherwise. they are printed
using the BOLDFONT (PRETTYCOMFONT if BOLD FONT doesn·t exist} in the cur.ent.
FONT PROF ILE (see page 6.55).

FILELIHELENGTH [Variable}
The value of FILELINELENGTH determines the width of the page.

Tne following four parameters affect how the columns are placed:

MULTIF!LEINOEXCOLS [Variable]
MULTI FILE !NOE.X.NAMECOL [Var.able]
MULTI F ILEINDEXF IL ECOL [Va.-fabtej

(. MUL TIFILEINDEXTYPECOL [Var:aoie] f\
The value of MULTI FI LE INOEXCOLS indicates how the other three are to oe 1,.)

interpreted. If MULTI FILE INDEX COLS is the atom FLOA TCOLS (its L.1.itial
value). then an attempt is made to fit the columns onto the page m a way
that ma."Cimizes the amount of space for the type information (the .:i..-ncum of
space allocated for the type field muse be at least 45% of F ILELINELE~:GTH in
this case). If MULTIFILEINOEXCOLS is either Tor FIXCCLS. then :."le value
of the other variables are treated as absolu~e column positior:s on the page. If
MULTIFILEINOEXCOLS is either fHL or FIXFLOATCOLS. the columns will be
floated. but will not be any smaller than che column positions defined 'by the other
vanablcs. ·

The initial values of these four variables are F LOA TCOLS. 0. 26 and 41. respecuve!y.

MULTIFILEINDEX has an interface co Masrerscope. If the value o·f either of the next two \'ari:lb!es :s
T. then MULTIFILEINOEX assumes that the sourccrlks have already been analyzed by ~tastersccpe .. md
calis UPOA TE CHANGED.

23.14 n-

0

0

LISPUSERS PACKAGES

MULTIFILEINOEXFNSMSFLG. [Varia'bie]
If T, indicates that you want the Masterscope information about each fa:ic:.ion
outpuL This includes who calls each function. who this function calls. and what
variables are set or referred to ~it.'ler locally or freely. Initially NIL.

MULTIFILEINDEXVARSMSFLG r1ariableJ
If T, indicates that all variables used in the files should ha\'e some infomation
output about them at the end of the listing. The list of ,·arfabies to. icck at
is obtained by effectively asking Masterscope the question: "WHO IS USED SY
ANY ANO WHO IS SET BY ANY... Tne listir.g will include b1forr:1a::c::i at:out
who binds. uses freely or locally, or smashes freely or localiy each va.-:a:>le. Tne
variable map is case-independently sorted by the n:une of the variable. Initially
NIL.

In order to make the index. or map, of the files. the filecoms for all the files being listed need be
loaded (sec page 11.21): MULTIFILEINDEX does a GETDEF on each file (file names are obtained using
F mo FILE) to obtain its filecoms. As other indirections are noted. they also are obtained using GET DEF.
For e;i:ample. if you have a file TEST, and its filecoms is ((ms • TESTFNS)). just doing a GETDEF
on TESTCOMS will not suffice; as the expression (FNS • TESTFNS} is parsed. a GETOEF is also done
to ob2in the value of TESTFNS.

MUL TIFILEINDEXLOAOVARSFLG [Variable]
If T. then a LOADVARS of all the VARS on a panicular file is performed before
the filecoms is loaded with GETDEF. Initially NIL.

MULTI EI LE INDEXGETOE F FLG [Variab!eJ
If T. MULTIFILEINOEX will inform· the user when it does GETOEFs. Initially
NIL.

23.4 . DATA.BASEFNS

l) Note: Data.basef.'?S is a LispUsers package thal is contained on che file DATABASEFNS. DCOM.

0

Dar.abasefr..s is a very small pac!cage whose purpose is to make the construction and main:ena.."":ce of
MASTERSCOPE databases an essentially automatic process. It modifies MAKEFILE. LOAD. and LOADFROM
to behave in the following way:

A database wtll be maintained automatically for any file (containing functions} whose file na:."Tle has c.~e
property DATABASE with value YES. Whenever such a file is dumped via MAKEFILE. MASTERSCCPE
will analyse a.-,y new or changed functions on the fUe. and a database for all of the functions on t.i!e fiie
wiil be written on a separate file whose n:111le is of the form F'II.E< DAT ABASE. Whenever a file whic::
has a DATABASE property with value YES is loaded via LOAD 1Jr LOAOFROM, then che corrcspondi:1g
.DATABASE fi!e. if any. is also loaded. The database will not be dumped or loaded if the value of the
DAT ABASE property for the tile is NO. The OAT ABASE property is considered to be rm if the fiie is loaded
wiL'1 LDFLG = SY SLOAO.

[f the DATABASE propcrcy is not YES or NO. then for MAKEFILE. LOAD. and LOADF ROM wlli ask the user
whe:hcr he wants automauc database maintenance. TI1e user's answer will be ·stored on the DATABASE
property so that he will not be asked again. Thus when a file is dumped for the fi~t ti.me. tile user will

23.15

Lambdatran

be asked "Do you want a Masterscope Database for this file? ... Similarly. if the user loads a file which
has an associated dac.-abase. the cser will be asked "load database for Frr.E'?".

Toe above i.!lteractions may be controlled via the global variables SAVEDBFLG and LOADOBFLG. \Vhe:i
a file wrJch has neither a YES or NO database property is being durr.peq. MAKEFILE will assu.t.e (a.cd
s::ore) a YES value if !h.! value of SAVEDBLFG is YES. and a rJO value if SAVEOSFLG is f,O. T.-:e user
will be cueried onlv if SAVEi:.l6FLG is ASK (its initial value). Similarly. if LOADDBFLG is YES. LOAD a:id
LOADFRCM will automa.tically load a::i existing .DATABASE file-for a file which does oot have a YES or
NO value fur its DATABASE property. The database will n.ot be loaded if LOADCBFLG is NO. and t£':e use:­
will be in:errcg:m:d as described .i!::>ove if LOADCSFLG is ASK. (its initial v::i.:.ue).

Toe user can dump and restore databases explicitly via the following functions:

(OUMPDB F!LE) [Function]

n

Dumps a database for F'ILE then sets the DATABASE property to YES. so t.'lat n .. :
database maintenance for F'ILE will subsequently be automatic. . _

{LOADOB FitB) [Fur.c:ion]
Loads the file Frr.E. OAT ABASE if one exisrs. After the database is loaded. the
DATABASE propeny for F'ILE is set to YES. so that maintenance will thereafter be
automatic. .,

Database files include the date and full filename of the file to which they correspond.
LOADOB will print out a warning message if it loads a database that does not
correspond to the in-core version of the file.

Note that LOADDB is the only approved way of loading a database: Attempting to
load a database file will cause an error. ·

23.5 LAJ.'\1BDATRAN

Note: lambdatran is a lispUsers package that is contained on the file LAMBDA TRAN. OCOM.

The purpose of this package is to facilitate defining new LAMBDA words in such a way that a varie:y of
other system packages will respond to them appropriately. A LAMBDA word is a word chat can appe3! as
CAR of a function defir,ition. like LAMBDA a."ld NLAMBOA. New LAMBDA words are usef..:i because t.-iev
enable tb.e user to define his own conventions abouc such things as the incerprer.ation of argu:::1e:u.s. md
to build in certain defaults abuut how values are returned. For example. the DECL package (page :!.3.!S)
defines DLAMBDA as a new LAMBDA word with unconventional arguments such as the following:

{DLAMBDA ((A FLOATP} (B FIXP) (RETURNS SMALLP)) (FOO A 8)) . .
In order for such an ~xpression to be e:cccutable Jnd compilable. a mechanism must be provid:!d for
tr~sliting this expression to an ordinary U\MBOA or NLAMSO~. with the special behavior associated wi:h
the .1rgumcr.ts built into rhe function body. The lambdacran package accomplishes this via an appropnate
enr.ry on DWIMUSERFORMS (see page 15.10) that computes the translation.

Besides executing and compiling. !merlisp applies a number of other operations to function Jcfinnicns
(e.g. breaking, advising), many of which depend on the system being able co detcnmnc cert::un prcpe~:es

23.16

Cl

n

0

0

0

0

LISPUSERS PACKAGES

of the function. such as the names of its arguments. their number. and the type of the function (EXPR.
FEXPR. etc.). The lambdacran package also provides new definitions for the functions FNTYP. ARGLST.
NARGS. and ARGTYPE which can be told how to compute properties for the user's LAf~SDA·words.

A new LAMBCA-word is defined in the following way: •

1. Add the LAMBDA-word itself (e.g. the atom DLAMBDA) to the list LAMB0ASPLST. This suppresses
attempts to correct the spelling of the LAMBDA-word.

2. Add an encry fer the LAMBDA-word to the association-list LAMB0ATRANFNS. which IS a list of clements
of the forr.:i: (LAMBDA-WORD TR.WFN FN'TYP ARGLIST). where

LAMDDA-WORD is the name of the LAMBDA-word (e.g. DLAMBDA).

TR.A.NFN is a function of one argument that will be called whenever a real definition is needed for
the LAMBDA-word definition. Its argument is the LAMBDA-word definition. and its value sho'..lld ·be a
conventional LAMBDA or NLAMBDA expression which will become the translation of the L.A.MBDA·word
form. The free variable FAUL TFN is bound to the name of the function in which the LAMBDA-word form
appeared (or TYPE-IN if the form was typed L11.).

F!v'T'YP determines the function-type of a definition beginrjng with LAJ,lBDA-WORD. It is consulted if the
definition does not already have a translation from which the function type may be deduced. 1f F'NTYP ~s
one of the atoms EXPR. FEXPR. EXPR", FEXPR•. then ail definitions beginning with LAMBDA•word are
assumed to have that type. Otherwise. FNTYP is a function of one argument that will be applied to t.11e
LAMBDA-~ord definition. Its value should be one of the above four function types.

AJ?.GLIST determines the argument list of the definition if it has not already been translated (if it has.
the J...g_Gr.IST is simply the ARGUST of the translation). It is also a function of one argument. the
LAMBDA-word definition. and its value should be the list of arguments for the func:ion (e.g. (.~ B) in
the IJLAMBDA example abo,;e). If the LAMBDA-word definition is ill-formed and the argument list Ca.:J.:lot
be computed. the function should return T. If an ARGLIST enuy is not provided in the LAMS0ATRANFNS
element. then the argument list defaults to the second element of the definition.

As an example. the LAMB0ATRANFNS entry for DLAMBDA is (0LAMBDA 0ECL EXPR 0LAMARGLIST),
wi:.ere DECL and DLAMARGLIST are functions of one argument.

Note: if the LAMBDA-word definition has an argument list. with argument names appearing ei:her as literal
atoms or as the first element of a list. t.'1e user should also put the property INFO with value B HIDS on
the property list of the LAMBDA-word in order to inform DWIMIFY (page 16.14) to take notice of ::.'le
names of the arguments when DWIMI FYing.

23.6 PERlV!STA TUS

.Vote: Permstcws is a LispUsers package that is contained on the file PERMSTATUS. COM.

-The function PERMSTATUS defined in this package can be used in conjunction with WHENCL0SE (page
6.11) to make a file ''permanently"' open in the sense that as much of ics status as possible ·,,,ill :-e
restoied when a SY SOUT is' resumed. This includes its access mode. file-pointer position. bytes1ze. :i~c
any pages mapped in by the page mapping facility (page 14.17). Tne desired effect is achieved by say1::g

23.17

The Deel Package

(\'IHENCLOSE F1I.ENAME 'STATUS 'PERMSTATUS) after the file has been opened.

Note that u.~e permanency of files is not guaranteed in tllat files may be deleted or renamed. or t.i.eir
ccnt:ms changed. despite their perma:ient attribute in some SYSOUT. When restarting a SY SOUT, a
war..ing message will be prin:ed if the file cannot be found or restored. However, PERHSTATUS -.viil :;.ct
be able co de:ect that the contents of a file haYe been mod.L.'i.ed since the SYSOUT was c:-e:i:ed. :--;ote
also that "permanent'" files will still be closed by CLOSEF. and will not be immune to CLOSEALL or :o
closi:lg en end-of-file er.:-ors unless the appropri:ite WHENCLOSE attributes for CLOSEALL and EOF are
also esublishcd.

23.7 THE DECL PACKAGE

Note: Deel is a LispUsen package that is contained on the file OECL. DCOM. The Deel package requires
the LAMBOATRAN package (section 23.S). so LAMBDATRAN. OCOM will automati'caily !;~ loaded wi1h Dec/
if il is not already present.

The Deel package extends Interlisp to allow the user to declare the types of variables and expressions
appearing in functions. It provides a convenient way of constraining the behavior of programs whe::i u.~e
generality and flexibility of ordinary Interlisp is eiL'1er unnecessary, confusing. or i.ne_fficient.

The Dec! package provides a simple language for declarations. and augments the interpreter and tlle
compiler to g,Jarantee that tllese declarations are always satisfied. The declarations make prosr2.I:1s i:iore
readable by indicating tlle type. and therefore something about the intended usage. of .,-ariables and
expressions in the code. They facilitate debugging by localizing errors ~at manifest ther..selves as cype
incompatibilities. Finally, the declaration information is available for other purposes: compiler rr.ac:-cs
can consult the declarations to produce more efficient code; coercions for arguments at user ince:fxes can
be automatically generated; and the declarations will be noticed by the Masterscope function analyzer.

Tne declarations interpreted by tlle Deel package are in terms of a set of declaration types c:tlled decilypes.
each of which specifies a set of acceptable values and also (o_ptional!y) ou.'ler type specific behavior. The
Deel package provides a set of facilities for defining declcypes and their relations to each other, ir:c!udi..-ig
type valued expressions and a comprehensive treatment of union types.

The following description of the Deel package is divided into tllree parts. First. the sync.adc exte:1siocs
which per::tit tlle concise attachment of declarations co program elements are discussed. Second. t."!e
rnechanisrr:.s by which new decltypes can be defined and manipulated are cove:ed. Finally. some 3.ddit±or.ai
capabilities based on tlle availability of declarations are outlined.

23.i.1 Using Dcdarations in Programs

Declarations may be ·atuchcd to the values of arbitrary expressions and to LAMBDA and PROG va..--ia:,lcs
throughout (or for pan of) their lexic:il scope. The declarations are acuched using const.--ucts that rese:r.bie
the ordinary lnterlisp LAMBDA. PROG. and PROGN. but which also permit the expression of deciararions.
The following examples illustrate the use of declarations in programs·.

Consider t..'1e following dcfinitioq. for the factorial functio_n (FACT N):

23.18

n

0

n

()

0

()

0

o.

[LAMBDA (N)
c corm

{(EQ N O) 1)
(T (HIMES r~

LISPUSERS PACKAGES

(FACT {SUB1 N]
,.

Obviously. this function presupposes that N is a number, and the run-time checks in !TIMES and SU81
will csuse an error if this is not so. Fer inst.a.nee. (FACT T) will cause an error and print the mess.age
PWN-NUi~ERIC ARG T. By defining FACT as a DLAMBOA. the Deel package analog of LAMBDA. this
;,res .. :;:-;-c5i~on CJJl be sut:d d.:rectly i~ the code:

[OLA~SOA ((N NUMBERP))
(CONO

((EQ N O) 1)
(T (!TIMES N (FACT (SUB1 N]

With this c.efinition. (FACT T) will not result in a NON-NUMERIC ARG T error whe:i the body of the
code is executed. Instead. the NUMBERP declaration will be checked when t.'le function is first entered.
and a declaration fault will occur. Thus. the message that the user will see will not dwell on the offendbg
value T. but instead give a symbolic indication of what variable and dt.•daration were violated. as follows:

DECLARATION NOT SATISFIED
{(H NUMBERP) BROKEN)

Toe user is left in a break from which the values of variables, e.g. N. can be examined to determine what
the problem is.

Tne fancticn FACT also makes other presuppositions concerning its argument. N. For example, FACT will
go into an infiz,Jte recursive loop if N is a number less than zero. Although the user could prograt:1 an
explicit check fQr this unexpected situation, such coding is tedious and tends to obscure the underlying
algoriti'un. Instead. the requirement that N not be negative can be succinctly stated by declaring it to
be a subtype of t:UMBERP which is restricted to non-negative numbers. This can be done by adding a
SAT IS F IE S ciause to N's type specification: ·

[DLAMBDA ([n NUMBERP (SATISFIES (NOT (MINUSP N]}
(COtm

((EQ N O) 1)
(T (ITIMES H (FACT {SUBl N]

The predicate in the SATISFIES clause will be evaluated after N is bound and found to satisfy NUMB ERP.
but before the function body is executed. [n the event of a declaration fault. the SAT IS F IE S ccnci:ion
will be included in the error me~sage. For example. (FACT -1) would result in:

DECLARATION NOT SATISFIED .•
((N !wlJMBERP {-SATISFIES (NOT (MINUSP N))) BROKEN)

Tne DLAMBOA construct also permitS the type of the value that is returned .by the function to be declared
. by me::u-:s of the pseudo-variable RETURNS. For example. the following definition specifies that FACT is
to return a positive integer:

[OLAMBOA ([N NUM3ERP (SATISFIES (NOT (MINUSP NJ

23.19

--

DLAl'\1BDAs

(RETURNS FIXP (SATISFIES {IGREATERP VALUE O])
ccorm

{{ EQ N O) 1)
(T (!TIMES N (FACT {SU81 "]

After the fanction body is evaluated, its value is bound to the variable VALUE and the RETURNS
dedaraticn is checked. A declaration fault will occur if the value is not satisfac:ory. This prevents a bad
value fro:n propagating to the caller of FACT, perhaps c.iusing an error far away from the sou..-ce cf±~
difficulty.

Declaring a variable causes its value to be checked not only when it is first bound. but also wr.e::ever
that variable is reset by SETQ within the OLAMBOA. In other words. the type checking machine::-1 will
not allow a deci:.i.rcd variable to cake on an improper value. An iterative version of r.."1e factorial fonction
illustrates this feature in the context of a DP ROG, the Deel package analog of PROG:

{OLAMSDA ([N ~UMBERP (SATISFIES (NOT (MINUSP N]
[RETURHS FIXP {SATISFIES (!GREATER? VALUE O])

(OPROG ([TEMP 1 FIXP {SATISFIES {IGREATERP TEMPO]
[RETURNS FIXP {SATISFIES (IGREATERP VALUE O]}

LP {COND ((EQ N 0) (RETURN TEMP)))
(SETQ TEMP (!TIMES N TEMP))
(SETQ N {SUBl N))
(GO LP]

OPROG declarations are much like OLAMBOA declarations. except that they also allow an initial value for
the va.1iable to be specified. In the-above example, TEMP is declared to be a positive integer u;.roug.riout
the computation and N is declared to be non-negative. Thus, a bug which caused an incorre-:t Yalue to
be assigned by one of the SETQ expressions would cause a declaration failure. Note that the RETURNS
decl~ation for a OPROG is also useful in detecting the common bug of omitting an explicit RETURN.

23.7.2 DLAi'vlBDAs

n.

().

The Deel package version of a LAMBO.~ expression is an expression beginni.-ig w1tn the .;.tee •n. - ·

OLAMBOA. Such an expression is a function object that may be used in any context where a LA~BDA
expression :nay be used. It resembles a LAMBDA expression except that it penr.its declaration ex~ress:o~s
in its argument list. as illustrated in the examples given earlier. Each element of the arg~e:u list of a
DLAMBDA may be a literal atom (as in a conventional LAMBDA) or a list of the form (NA.\!E. T'!?E •

EXTR .. AS).5

NA.V.E fulfills the sta.-idard function of a parameter. i.e. providing a name to which the ,.-a!ue of rn.e
corresponding argument will be· bound.

TYF'F. is either a Deel package· type name or type expression. When the OLAMBOA is entered. its argurr:e:1:s
will be evaluated Jnd bound to the corresponding argument names. and then. after ail the argument nJJT:cs

jSmctly. this would require a declaration with a SATISFIES clause to t::1ke the form '(N (NUMBERP
(SATISFIES --)) --) (page 23.27). However. due to the frequency with which this cons:r.;c:ion
is used. it may be written without the inner set of parentheses. e.g. (N NUMBER P (SAT IS FIE. S - -)
--).

23.:0 (j

0

0

0

o-

LISPUSERS PACKAGES

have been bound. the declarations will be checked. Toe type checking is delayed so that SAT IS F IE S
predicates can include references to other variables bound by the same DLAMBOA. For e:tample. one Irjg.ht
wish co detine a function whose two arg-,.iments are not only both required to be of some gi•,en type. but
are also required to satisfy some relationship (e.g •• that one is less than t.1'1e other).

E:~"7P--\S allows so::ie additional properties to be atta.c:ied to a variable. One such propeny is the
accessibility of NA.V:Z outside t.."le current lexical scope. Accessibility specifications include t."ie atoms
LOCAL er SPECIAL. which indicate that this variat-le is to be co:npiled so that it is either a L0CALVAR
or a-SPECVAR. respectively. This is illt:strated by the following example:

[0LAMS~A {(A LISTP SPECIAL)
(B FIXP LOCAL))

...]
A more informative equivalent to the SPECIAL key word is the USED IN form. the tail of which can be
a list of the oti.'ler functions which are expe-:ted to have access to the variable:6

[0LAMB0A {(A LISTP (USEDIN FOO FIE))
{B FIXP LOCAL))

...]
EXT.?..AS may also include a comment in standard format, so that descriptive information may be given
where a variable is t-ound:

[DLAMBOA ((A LISTP {USEDIN FOO FIE)
(B FIXP LOCAL))

.. ,]
(• This is an important variable))

As mentioned earlier. the value returned by a DLAMB0A can also be declared. by means of the pseudo­
variable RETURNS. The RETURNS declaration is just like other DLAMBDA declarations. except (1) in any
SATISFIES predicate. the value of the function is referred to by the distinguished name VALUE: and(:?)
it makes no sense to declare the return value"to be LOCAL or SPECIAL.

23.7.3 DPROG

Just as DLAMB0A resembles LAMBDA. 0PROG is analogous to PR0G. As for an ordinary PR0G. a va.'iable
binding may be specified as an· atom or a list including a..-i initial value form. However. a D?R0G 'bind.in~
also allows TI'?S and EXTRAS information to appear following the initial value form. Tne format for -:..'1.ese
augmented variable bindings is (NAME INIT!ALVALt,"E TYPE • EXTRAS). The oniy difference between
a 0PROG bir.ding and a DL.~MBDA binding is that the second position is interpreted as ti.":e initial va!ue
for the variable. Note that if the user wishes to supply a type declaration for a variable. an initial value
must be specified. The same rules apply for the interpretation or the type info!1f1ation for DPROGs ~ for
DLA.'!SDAs. and the same set of optional EXTRAS c~ be used. DPR0Gs may also declare the -type of t."1e

value they return. by specifying the pseudo-variable RETURNS.

6USEiJ IN is mainly for documentation purposes. since there is no way for such a restriction to be
enforced.

23.21

Declarations in Iterative Statements

Jt:St as for a DLAMBOA. type tescs in a OPRCG are not assened until after all the variables have been
bound.. thus permitting predicates to refer to ot."ler variables being bound by this OPROG. If NIL appea.r-s
as th:: initial value for a binding (i.e. the atom NIL actually appears in the code. not simply an expression
which e\"alu:m:s to NIL) the initial type test will be supp~essed. but subsequent type tests..-e.g. follo'wi::::i.g
a SETQ, will still be performed.

A coir.mon ccnstl'""1Ct i:l Lisp is to bind and initialize a PROG variable to the value of a complicated
er.;,ression. b order to avoid recomputing it. and then to use this value in i."litializing other P ROG variables.
e.g.

[? ROG ({ A E:a'RESSION))
(RETURri (PROG ((B (··· A ···})

(C (·•·A ...)))
...]

The ugliness of such constructions in conventional Lisp often tempts the programtner to loosen the scoping
relationsr.ips of the variables by binding them all at a single level and using SETQ's in the body of the
PROG to establish the initial values for variables th.at depend on the initial values of other variables. e.g.

[PROG {(A EXPRESSION) B C)
{SETQ 6 (... A···))
{ SETQ C { .. • A · · ·))
...]

In the Ded package environment. this procedure undennines the protection offered by the type mechanism
by encouragLi.g c..iie use of uninitialized variables. Therefore. the OPROG offe~ a syntactic fo:m to
encourage more virtuous initialization of its variables. A OPROG variable list i:nay be segme::ited by
occurrences of the special atom THEN. which causes the binding of its variables in stages. so th:it the
bindfags made in earlier stages can be used in later ones. e.g.

(DPROG ({A (LENGTH FOO) FIXP LOCAL)
THEN (B (SQRT A) FLOATP)
THEn (C (CONS AB) LISTP))

.. ·]

I~
\ /

0--

(Each stage is carried out as a conventional set of OP ROG bindings (i~e .• simultaneously. followed by the LJ
appropriate type testing). Tnis layering of the bindings permits one to gradually descecd in:o a inner
scope. binding the local names in a very structured and clean fashion. with initial values type-checked as
soon as possible.

23.iA Declarations in Iterative Statements

· The CLISP iterative statement (page 16.1) provides a very useful facility for specifying a variety of P RCGs
th..1l fol:1Hv Ct.'rt:un widely used funn~cs. ·n1c D1.•d pack:igc Jllow.:; dcdaraunns to be m:idc for the •;cope
of ..1n itcr;iuvc Stltcmcnt via _the OECLAR'f CUSP i.s.opr. DECLARE can appear as an operator .inywhcre
in an iterative statement. followed by a list of declarations. for example:

(for J from 1 to 10 declare (J FIXP) do ...

~oce that DECLARE dcclarntions do not create bindings. but merely provide declarations for e:cisting
bindings. For this reason. an initial value cannot be specified and the form of the-declaration is the sa.'?1e

23 . .:!~ (l

0
LIS?USERS PACKAGES

as that of DLAMB0As, namely {NAME TYPE • E..TI'RAS).

Note that variables bound outside oft.lie scope of the iterative statemenL i.e. a •.-axiable used freely in t.i.e
i.s. can also be declared using this construction. Such a declaratio:i will only be in ef ect for the scope of
the iterative statemenL ·•

23.7.S Declaring a Variable for a Restricted Lexical Scope·

Toe Deel package also pemtl~ declaring the type of a variable over some restricted portion of its existence.
For exai=pie. suppose the variable X is either a fixed or floating number. and a p:-ogra.-n bra..'lc!":.es to treat
the two cases separately. On one path X is known to be fixed. whereas on the other it is known to be
floating. The D.x! package 0PR0GN construct can be used in such cases to sute the type of the vari:lhle
along each paL'1. 0PR0GN is exactly like PR0GN, except that the second element of t.'ie form is mcerprct~d

(--)- as a list of DLAMB0A format declarations. These declarations are added to any existing declarations in the
~ cont.ai.ning scope. and the composite declaration (created using the ALL0F type expression. page 23.::?6) is

considered to hold t.."lroughout the lexical scope created by the DPR0GN. Thus. our example becomes:

0

0

(if (FIXP X)
then (DPR0GN ((X F IXP)) · · ·)
else (0PR0GN ((X ,FLOATP)) ···))

Like DPR0G and 0LAMB0A. the value of a DPR0GH may also be declared. using the pseudo-variable
RETURNS.

DPROGN may be used not only to restrict the declarations oflocal variables. but also to declare ,·a.:.-;ables
wrJch are being used freely. For example, if the variable A is used freely inside a function but is known
to be F!XP. this fact could be noted by enclosing t.'le body of the function in (0PR0GN { (A Fr.x::i
FREE)) BODY). Instead of FREE. the more specific construction (BOUND IN FUNCTION! F'C,""NCTION2

·. · ·) can be used. This not only states that the variable is used freely but also gh·es the names of the
fun::tions w},jch might have pro-vided this binding.7

Since t.."l·~ DPROGN form introdt.:ces another level of parenthesization. which results in the enclosed forms
being prettyprin-.:ed indentecL me Deel pa::kage also permics such declarations to be att.a.ched to ~ri~ir
enclosing DLAMBDA or DPR0G scopes by placL"'lg a DECL expression. e.g. (DECL (A FIXP (B0UflDHJ
FUM)). before the first executable form in that scope. Like DPROGN's, DECL declarations use DLAMS0A
format.

23.7.6 Declaring the Values of Expressions

Toe Deel package allows th·e value of an arbitrary form to be declared with the Deel construct THE.
A THE expression is of the form (THE TYPE • FORMS). e.g. (THE FI XP (FOO X)). F'OF .. \lS are
evalu;ited in order. and the value of the last one is checked to see if it satisfies TYPE. a type name or
type expression. lf so. its value is returned. orilerwise a declaration fault occurs.

:-uke USEDIN declarations. FREE and B0UN0IN declarations cannot be checked. and are provided for
documentation purposes only.

23.23

A$ertions

23.7.7 Assertions

Toe C-ecl package also allows for checking that an arbitrary preg.icate holds at a particular point in a
program's execution. e.g. a cocdition ti.':at must hold at function ent..-y but not throughout its execution.
Such p!edica:es can be c!iecked usmg an expression of the form (ASSERT FOP.!.!1 FOF-Y.:z ···).in which
each FOR..~i is either a list (which will be evah:.ated) or a variable (whose d~laration will be checked).
Unle"~ a!1 ekme::us of the ASSERT form are satisfied.. a declaration fault will take place.

ASSERTi::ig :i variable provides a convenient way of verifying that the value of the .-ar:iabie has not bee~
i..-npro:.,l;!:-iy ch~'1£Cd by a lower function. Although a sL-nilar effect could be achieved for pre::!icates oy
explicit checks of the form {OR PREDCCATE (SHOULDNT)). ASSERT also pro,;ides the ability t-oth to
check that a variable's declaration is currently satisfied and to rc:nove its checks at compile ti."Tle witb.out
source code modification (see page 23.25)~

23.7.8 Using Type Expressions as Predicates

The Ded package extends the Record package TYPE? construct so that it ~cepts decltypes. as well as
record naces. e.g. {TYPE? {FIXP (SATISFIES (ILESSP VALUE 0))) EXPR). Tn.us. a TYPE?
expression is exactly the same as a THE expression except that. rather than causing a declaration fault.
TY?E? is a predicate which determines whether or not t.'le value satisfies the given type.

23.7.9 Enforcement

The ~l package is a .. soft'" typing system - that is. the data objects themselves are not inherently C"fped.
Consequently, deciarations can only be enforced within the lexical scope in which the dec!araticn Uk.es
place. and then only in certain contexts. In general. changes to a variable's value such as :hose resulting
from side effects to embedded structure (e.g .• RPLACA. SETN. etc.) or free variable references from

.. outside the scope of the declaration cannot be, and therefore are not. enforced.

Declarations are enforced i.e. checked. in three different siruations: when a declared variable is bound

Cl

n

:o some value· or rebound with SETQ or SETQQ, when a declared expression is evaluated. and wt.en /\
an ASSERT expression is evaluated. [n a binding come:tt. the type check ta.lees place after rt1e binding, \) ·
including any user-defined behavior specified by the type's binding fui:ction. Any failure of ~he dec!ar:i.t:oz:s
causes a break to occur and an informative message to be printed. [n that break, the name co which ti."le
decl:lration is attached (or VALUE if no name is available) will be bound to the offendL'lg valt.e. Thus. in
the (FACT T) example above. ~ would be bound to T. The problem c:i..'l be repaired either by rerur.:ing
an acceptable value from the break via the RE TURN command. or by· assigning an acceptable value to i:.~e
offending name and rerurning from the break via an OK or GO command. The unsatisfied dec!ar:i.tion will
be reasserted when t..'le computation is continued. so an unacceptable value will be detected.;

Th~' ;1urom:.icic cnt'hrccment of type declarations is a very llc:tihle and powerful aid to prngr:un development.
It ,foes. however. cx~u;t a ClmsiJcrablc nm·timc cost hccau~c of all the checking involved. F..1cturs ,if two
to t~n in running speed are not uncommon. especially where low level. frequently used funcuons employ
cype deciarations. As a result. it is usually desirable co remove the declaration enforcement coc!e when

~With chis e:ccci:cion. assignments co variables from within the break are not considered to be in the :;cooe
of the declarations chat were in effect when the break took place. and so are not checked. ·

23.24 (~
\. J

0

0

LISPUSERS PACKAGES

t..'J.e system is believed to be bug-free and performance becomes more central. Tnis can be done with t.'1e
variable COMP ILE IGNOREDECL:

COM?: LE IGNOREDECL [Variablej
Setting the value of the variable COMPILEIGNOREDECL to T (initi:illy NIL)
instructs the compiler not to insert declaration enforcement tests in t.i.e cc:npi!ed
code. More selective removal can be a::hieved by setting COMPILE!Gi'JOREDECL
to a list of function na.-nes. Any function whose name is found on· this list is
compiled without declaration enforcement.

· (IGNOREDECL • VAL) [File Package Com .. T..a.nd]

23.7.10 Decltypes

Declaration enforcement may be suppressed selecth·ely by file using the I G Pl ORE DEC L
file package command. If this appears in a file's file co::ir.::ands. it rccefines the
value of COMPILE IGHORE-DECL to v:u. for the compilation of this f.le only.

A Deel package type, or decltype, specifies a subset of data values to which values of this type are
restricted. For example, a "positive number" type might be defined to include only those values that are
numbers a::id g:ro...ater tb.an zero. A type may also specify how certain operations. such as assignment or
binding (see page 23.28), are tO be performed on variables declared to be of this type.

The inclusion relations among the setS of values which satisfy the different types define a natural partial
ordering on types, bound by the universal type ANY (which all \·alues satisfy) and the empty type
NONE (which no value satisfies) ... Each type has one or more supertypes (each type has at least M!Y as
a supercype) and one or more subtypes (each type has at least NONE as a subtype)~ This strucr .. m: is
important to the user of Deel as it provides the fra.,nework in which new types are defined. Typically,
much of the definition of a new type is defaulted. racher chan specified explicitly. The definition will be

· completed by inheriting atttributes which are shared by all its immediate supertypes.

An initial set of decltypes which defines che interlisp built-in data.types ar.d a few other commonly
used types is provided. Thereafter, new decltypes are created in terms of existing ones using the· type
exp::essions described below. For conciseness, such new types can be associated with literal atoms using 0 the function OECLTYPE (page 23.28).

0

23.7.11 Predefined Types

Some commonly used types. such as che Interlisp built-in data types. are already defined when t.'IJ.e Deel
package is loaded. Tnese types. indented to show subtype-supertype relations. are:

ANY
ATOM

LI TATOM
NIL

NUMBERP
FIXP

LARGEP
SMALLP

FLOATP

LST 9 •

ALI ST 10

LISTP

.
ARRAYP STRINGP

HARRAYP
READTABLEP

23.:?5

FUNCTION STACKP

_.,,--···---

Type Expressions

NOHE

Ncte that the defutition of LST causes NIL to have multiple supercypes. i.e. LIT ATOM and LST. reflecti.::.g
the c.ualicy of NIL as an atom and a (degenerate) list.

In addition. declarations made using the Record pack.age (page 3.1) also define types which are attached
as subtypes to an ~ppropriate existing type (e.g •• a TYPE RECORD dedaration defines a subtype of LISTP,
a DAT A TYPE dec!aration a subtype of ANY. etc.) and may be used directly in c!ec!aratio:i ccnte:::!S._

23.7.12 Typ.e Expressions

n-

Type expres:iions provide convenient ways for defining new types in terms of modifications to. or n ..
compositi~ns of one or more. existing types.

(MEMQ VALml:1 • • • VALUEN) [Deel Type B::pression}
Specifies a type whose values can be any one of the fi.""ted set of elements {vAu.-::1
• • • VALUEN}· For example. the status of a device might be r~resented by a
datum restricted to the values BUSY and FREE. Such a .. device status" cype couid
be defined via {MEMQ BUSY FREE). The new type will be a subtype of ti.1i.e
n2.ITowest type which all of the alternatives satisfy (e.g .• the .. device s:acus .. type
would be a subtype of LITATO~). The membership test uses EQ if L'lis supert";pe
is LI TATOM; EQUAL otherwise. Thus. lists. floating point numbeI"S. etc .• can be
included· in the set of alternatives.

(OflEOF TY1'E1 • • • TYPE,..,) [Deel Type Expression]
Specifies a type which is the union of two or more other types. For exa..-r:p!e. the
notion of a possibly degenerate list is something that is either I:. IS T P or NIL. SL:ch
a cype can be (and the built-in t;.-pe LST in fact is} defined simply as (Or~EOF
NIL LISTP). A union data type becomes a supenype of all of the alte:-native
types specified in the ONEOF expression. and a subtype of their lowest corr..:r.on
supert;,-pe. Toe type propenies of a union type are taken from its alte:native types
if they all agree. otherwise from the supertype.

(ALLOF TYPS1 • • • T"'fPEN) {Deel Type Expression)
Specifies a type which is the intersection of two or more other types. For e:cJ..-n;:,l~.
a variable may be required to satisfy both FIXP and also some ty~e which is
defined as (NUMBER p (SA TI s FIE s PREDICATE)) . The latter type will .l~it
numbers that are not F IXP. i.e. floating point numbers: the former does not
include PREDICATE. Both restrictions can be obtlined. by using th.e type (ALLOF
(NUMBERP {SAT.ISFIES !'R~DICATE0

)) FIX·P).L~

•
9 LST is.defined as either LISTP or NIL. i.e. a list or NIL. The name LST is used. because the name
LI ST is treJ.tcd specially by clisp.

10ALIST is defined as either NIL. or a list of elements each of which is of type LISTP.

t L When a value is rested. the component type tests are applied from left co right.

23.26

n

n

0

0

0

0

LISPUSERS PACKAGES

(AGGREGATE OF ELEMENTr [Deel Ty1;e &;,ression]
Specifies a type which is an aggregate of values of some ot.i.er type (e.g_ list of
numbers. array. of strings, etc.}. AGGREG.ATE must be a type which pro..-ic!es an
EVERYFN property (page 23.28). Tne EVERYFN is used to ap;,ly an a:-bitr~·-y
f:.1:::c:io-;i to each of the ele~ents of a datum of the aggregate type. ace! check
whet.'lcr the result is ::ion·N IL for each element. ELEMENT may be any type
expression. For example. the type "list of either strings or atoms .. ca."1 be defined ·
as (LISTP OF (ONEOF STRING? ATOM)). The type test for tI1e new type will
consist of applying the type t•::st for ELEMENT to each e!e:nent of the aggr~gate
type using the EVERYFN property. The new type will be a subtype of its a~grega,e
cype.12

(TYPE (SAT Is FIE s FORM l .. • FORM N')) {Deel Type Expression]

(SHARED TYPE)

Specifies a type whose values are a subset of the values of an existing type. The
type test for the new type will first check that the base type is satisfiec!. i.e. that
the object is a member of TYPE, and t.i.en evaluate FOP.M1 • • • FOR...v:~. If each
form returns a non·N IL value. the type is satisfied.

The value that is being tested may be referred to in FOR1.<1 .. • FORMN by either ·
(a) the variable name if the type expression appears in a binding context such .1s
OLAMBDA or DPROG (b) the c!istinguishedatom ELT fora SATISFIES clause on
the elements of an aggregate type. or (c) the distinguished atom VALUE. when
the type expression is used in a context where no name is available (e.g.. a
RETURNS declaracion). For example. one might declare the program variable A
to be a negative integer via (FI.XP (SATISFIES (MINUS? A))). or dec!.:i.re
the value ofa OLAMBDA to be of type ((ONEOF FIXP FLOATP) (SATISFIES
(GREATERP VALUE 25))). Note that more than one SATISFIES clauses may
appear in a single type expression attached to different aiternati..-es in a ONEOF
type expression. or attached to both the elements and the o'lr·erall structure of an.
aggregate. For example.

[LISTP OF [FIXP (SATISFIES (ILEQ ELT (CAR VALUE]
(SATISFIES (ILESSP (LENGTH VALUE) 7]

specifies a list of less than 7 integers each of which is no greater than dle first
element of ui.e list.

[Deel Type Ex;,ression]
Specifies a subtype of TYPE with default binding behavior. i.e .• he bindL'lg fu=icticn
(see page 23.23). if any. will be suppressed.13 For exampie. if the type FLOAT?
were redefined so that DLAMBDA and DPROG bindings of variables that were
declared to be F LOATP copied their initial values (e.g .• to allow SET Ns to be free
of side effec~). then variables declared (SHARED FLOATP) would be initialized
in the normal fashion. without copying their ·initial valufs.

12The built·in aggregate types are ARRAYP. LISTP. LST. and STRING? (and their subtypes).

13 As no predefined type has a binding function. this is of no concern until the user c!efi:les or redcf.r:es
a type to have a binding function.

23.27

t
(_

Named Types

23.7.13 Nam'ed Types

Although cype expressions can be used in any declaration context. it is often. desirable to save the defnition
of a new type if it is to be used frequently. or if a more complex specification of ics behavior is to be
gi•;en. than is convenient in an expression. The ability to define a named type is provic.ed by the func::on
OECLTY?E.

{ DECLTYPE TYPENAJ.ra TY?E PROPz VAL1 •• • PROPN VALN) [NLambd.a '!'ioSpread Function]
Nbmbda. nospread function. TYP'E.'UME is a literal atom. TY?E is ei.:i:er the =a..-:.e
of an existing type or a type expression. and PROP1• vAL.1, • • ·, PROP~. VA!.N is a
specification (in property list format) of other attributes of the type. DECL TYPE
derives a type from Ti'PE. associates it with TYPENAME, and then defines :my
properr..ics specified with the values given.

n .

The following pr~perties are interpreted by the Deel package.1" Each of these properties can have as its n .
value either a function name or a LAMBDA expression.

TESTFN

EVERYFN

BINOFN

will be used by the Deel package to test whether a given value satisf es this type.
The type is considered satisfied if FN applied co the item is non·N IL. For exa:nple.
one might define the type INTEGER with TESTFN FIXP.15

specifies a mapping function which ca.'1. apply a functional argument to each
.. element" of an instance of this type. and which will rerum NIL unless the result
of every such application was non-NIL. FN must be a function of cwo arguments:
the aggregate and the function to be applied- For example. the EVERYFN for the
built-in cype LISTP is EVERY. As described on page 23.2i, the Deel pack:.!ge uses
the EVE RY FN property of the aggregate type to construct a cype test for aggreg:ate
type expressions. In fact. it is the presence of an EVERYFN property which allows
a type to be used as an aggregate type. 1 s 11

is used to compute from the initial value supplied for a OLAMBOA or OPROG
variabie of this cype. the value to which the variable will actt.1ally be initi:ilized. FN

must be a function of one argument which will be applied to t:he initial valt.:e.~s
ar!d which should produce another value which is co be used to make ::b.e btndL"lg. ,f'_
For example. a B rnoFN could be used to bind variables of some type so tr.i.at new , ;

14Act'Ja.:ly, a..-iy property can be attached co a type. and will be available for use by user functions via the
function GE TOE CL TYPEPRO?. described below.
15Typic2.ily, the TESTFN for a type is derived from its type expression. rather than specified explicitly. The

. ability to speciff the TESTFN is provided for those cases where a predicate is availabie th.at is much :nore
efficient than that which would be q.erived from the ,type expression •. For example. the cype SMALL? is
defined to have the function SMAl,LP as its TE5TFN. rather than (LAMBDA (DATUM) (ANO { NUMBERP
DA TUM) (F IXP DA TUM) (SMALLP DATUM))) as would be derived from the subtype sc..-ucture.

113 :-,.fote that a type's EVERYFN is not used in type tests for that type. but only in cype tests for ~ypes
defined by OF expressions which used this type as the aggregate type. For example. EVE RY is not used
in determining whether some value sausfics the type LIST P. · ,

1·The Oed package never applies the EVERYFN of a type co a value without first venfying that the value
satisfies that type. · · ·

18 For a OP ROG binding, F'N will be applied to no arguments if the initial value is le:c1cally NIL.

23.28 n
\ J

.

0

0

O .·
: .

0

SETFN

LISPUSERS PACKAGES

bindings-are copies of the initial value. Thus. if FLOATP were given the BrnDFN
FPLUS. any variable declared FLOATP would be initialized with a new flea.tin~

. box, rather than sharing with that of the original initial value.L 9

is used for performing a SETQ or SETQQ of variables of utiis c:--pe. FN is a f..mcjon
of two arguments. the name of the variable. and its new value. A SET rn is
t~-pical!y used to avoid the allocation of storage for interml!d.iace res-:.ilts. ~ote that
the SETrn is not the mechanism for the enforce:nent of type ccrnpatibilicy. which
is checked after the assignment has taken place. Also note that not all fu~ctions
wtiJch can chil.,ge values arc afft .. -ctcd: in particular. SET and SET N are r.ot.

23.7.13.1 Manipulatbg Named Types

OECL TYPE is a file package type (page 11.1). Thus all of the operations relating to file package types.
e.g. GETDEF, PUTDEF. EDITDEF, DELDEF.20 SHOWOEF, etc .• can be performed on declt}-pes.

T.1.e file package command. DECL TYPES, is provided to dump r..!llled decltypes symbolically. They will
be written as a series of DECL TYPE forms which will specify only t..~ose fields which differ from the
corresponding field of their supenype(s). If the type depends on any unnamed types. those types will
be dumped (as a compound type expression). continuing up the supert;-pe chain until a named ty-;:,e is
found. Care should be exercised to ensure that enough of the named type context is dw:iped to allow
the typ~ definition to remain meaningful.

The functions GETDECL TYPE PROP and SETDECL TYPE PROP. defined analogously to the property list
fuc.::tions for atoms. allow the manipuiation of the properties of named types. Setting a propeny co NIL
with SETCECL TY!:EPROP removes it -from the type.

23~i.14 Relations Between Types

Tne noticn of equivalence of two types is not well defined. However. type equivalence is rarely of ~terest.
What is of interest is type inclusion. i.e. whether one type is a supenype or subtype of a.,ot."le::-. T.1e
predicate COVERS can be used to determine whether the values of one type include t.liose of anot.'.er.

(COVERS HI LO) [Function}
is T if HI can be found on some (possibly empty) supenype chain of z:.o: else
NIL. Thus. (COVERS 'FIXP (DECLOF 4)) =T. even though the DE CL TYPE of
4 is SMALLP. not FIXP. The extremal cases are the obvious identities: (COVERS
'ANY ANYTYPE) = {COVERS ANYTYPE 'NONE) = {COVERS Xx) for any
type X = }•

COVERS allows df!Claration based cransformations of a form which depend on elements of t.'le form being
of a certain type lO express their applicability conditions in terms of the weakest type to which they

l 9The B mo F N. if any, associated with a type may be suppressed. in a declaration context by creatinl? a
subtype with the type expression operator SHARED. as descnbcd on ;,age 23.27. -
20De!eting a named type could possibly invalidate other type definitions that have the named type ;is .1

subtype or supenype. Consequently. the deleted type is simply unnamed and left in the type sp.1ce ~
long as it is needed.

23.29

The Decl:u:ition Database

apply, ·1r·i:hout explicit concern for other types which may be subtypes of it. For example. if a p:i..-tic:-.1!ar
transformation is to be applied whenever an e!ement is of type NUMB ERP, the program which applies ttat
tra..l"J.Sformation does not have to check whether the element is of cype SMALLP, LARGEP, FIXP, FLOAT?,
etc .• but can simply ask whether NUMB ERP COVERS the type of that element.

The eler.ientary relations among the types. out of which arbitrary traversals of the type space can be
const..'1.?cted. are made available via;

(SUSiYPES TYPE) ~ [Function]
Returns the list of types wr...ich are immediate subtypes of TY?E.

(SUPERTYPES TY.PE) [Function]
Returns the list of types which are immediate supcrcypes of TY.PE.

23.7.15 The Dec!ar.itioo Database

One of the primary uses of type declarations is to provide .information that other systems can use to
interpret or optimize cede. For example, one might choose to write all arithmetic operations in ter:ns of
general functions like PLUS and TIMES and then use variable declarations to substiruce more efficient.
special pur;,ose code at compile time based on the types of the operands: To this end. a data ba..c:e of
declarations is made available by the Deel package to support these operations.

(DECLOF FOR."4)

DECLOF

[Function}
Returns the type of FORM in the current declaration comext.21 If FOR.•,< is
an· atom. DECLOF will look up that' atom directly in its database of currem
declarations. Otherwise, DECLOF will look on the property list of (CAR FOR.\!) tor
a DECLOF property, as described below. If th.ere is no DECLOF property, OECLOF
will check if (CAR FORM) is one of a large set of fur..ctions of known result
type (e.g .• the arithmetic fu:ictions). Failing that. if { CAR FOR.\f) has a MAC RO
property. DECLOF will apply itself to the result of expanding (with EX?ANDMACRO.
page 5.19) dle macro definition. Finally. if FORM is a Lisp program elerr.e:ic t..~.at
OECLOF ··understands·· (e.g .• a co:m, PROG, SELECTQ, etc.). OECLOF appiies itself
re-;ursively to the part(s) of the contained form which will be rerurned as value.

[PrcI=erty :'-,"~eJ
Allows dle specification of the type of the values returned by a panic'.liar f..!::c:ic~.
Toe value of the OECLOF property c:in be either a type, i.e. a type na.T.e or a ty-;:e
expression. or a list of the form { FUNCTION FN), where FN is c1 function ocjec:.
FN will be applied (by DECLOF) to the form'whose CAR has this DECLOF prc~e::y
on its property list. The value of this function application will the:1 be consi.:ie::;j
to be the type of the form.

:.?tToe "current declaration context" is defined bv the environment at the time that DECLOF is cJ.Jled. Code
reading systems. such as the compiler and the· interpreter. keep crack of the lexic:ll scope within which
they :ire currencly operating, in particular. which declarations arc curtcmly in elfecc. Note thJ.t 1cur.enc.!:,)
DECLOF docs not have access to any global data base of dcc!J.rations. For cxarr:p:c. DECLOF CL'CS r:cc
have information available about the types of the arguments of. or the value returned by. a ;::;ir::.:~i..:.r
function. unless it is currently ··inside" of that function. However. the DECLOF property (descnbed =-~low)
can be used co inform DECLOF of the type of the value re~urned by a particular function.

23.30

()

n

()

()

u

0

0

0

LISPUSERS PACKAGES

As an example of how declarations can be used to automatically generate more efficient code. consider
an arith.-netic package. Declarations of numeric variables co:.ild be used to guide code generation to
avoid crie inefficiencies of Interlisp's hand.liI:g of arithmetic values. Not only could the generic a."'it.:.. ... ":letic
functions be automatically specialized. as suggested above. but by redefir..ing ::b.e BI NO F N and u'1.e SET F N
properties for the types FLOAT? and LARGEP to re-use storage in u'i.e a;:i?ropriate contexiS (i.e .. wten t..11e
new value can be determined to be of the appropriate type). tremendous econocies could be realized by
not allocating storage to intermediate results which must later be reclaimed by ui.e garbage collector. Tr.e
Ded package has been used as the basis for several such code optimizing systems.

23.7.16 Dedar:itions and 1\itasterscope

The Deel package notifies Mi\STERSCOPE about type declarations and defines a new MASTERSCOPE
relation. TYPE. which depends on declarations. Thus. the user can ask questions such as 0 WHO USES
HUMBLE AS A TYPE?." "DOES FOO USE F IXP AS A TYPE?.'' and so on.

23.3 TRAN'SOR

Note: TRANS OR is a LispUsers package contained on the file TRANSOR. DCOM.

TRANSOR is a LISP-to-LISP translator intended to help the user who has a program coc.ed ill one
· dialect of LISP and wishes to carry it over to another. The user loads TRANSOR along with a fi!e
of transformations. These transformations describe the differences between the two LISPs. e:cpre-:...sed in
terms of lnterlisn editor coir.mands needed to conven the old to new. i.e. to edit fonns writ!.en in the
source dialect to· make them suitable for the target d.ialecL TRANSOR then sweeps throug..1. the user"s
program and applies the edit transformations. producing an object file for the target system. In addition.
TR.ANSOR produces a file of translation notes. which catalogs the major cha.,ges made in tr."l.e coce as
weil as the forms that require further attention by the user. Operationally, therefore. TRA:--:SOR is a
facility for conducting massive ediiS. and may be used for any purpose iruch th.1.t may sug_;est.

Since the edit transformations are fundamental to tliis precess. lee us begin with a definici0n and scme
examples. A transfonnation is a list of edit com.'!lands associated with a literal a.tom. usually a function
name. TRA~SOR conducts a sweep through the user's code. until it finds a form whcse CAR is a
literal atom which has a transformation. The sweep then pauses to let the editor e~ecuce the list of
comoands before going on. For exa.-nple. suppose the order of argumencs fur the f.lnction TCONC must
be reversed for the target system. The transformation for TCONC would then be: ((SW 2 3)) . When
the sweep encounters the fonn (TCONC X (FOO)). chis transformation would be retrieved i.-id execu:ed...
conver-..ing the expression to (rcm,c (FOO) X). Then the sweep would locate the next fun:-.. ii:i this
case (F 00). and any transformations for Foo· would be executed. etc.

Most instances of TCONC would be. successfully translated by tlus transformation. However. if ;:here were
no second argument to TCOl~C. e.g. the fonn to be translated was (rcor~c x). the command (sw 2
3) would cause an error. which TR.\NSOR would catch. 1be sweep would go on as before. but a note
would appear in the translation listing stating that the transformation for chis pan:ic:Jlar farm f.li:ed :o .
work. The user would then have co comp.ire the form and the commands. to figure out what caused the ·
problem. One might, however. anticipate this difficulty with a more scphistic:ncd transfor.:i.lc..on: ((I 'f
(## 3) ((SW 2 3)) {(-2 NIL)))). which tests for a third element and does (SW 2 3) or (-2
NIL) as appropriate. le should be obvious that the translation process is no more sophistic.:ncd ::ha.'l the

23.31

Using TRA.1"iSO R

transformations used.

T.1is doc-1.m:entati.on is divided into two main parts. The first describes how to use TRANSOR assu .• ":"..ing
that the user :-.:.:e:1dy has a complete set of tranSformations. The second documents TRANSORSET. an
interz.cti-.·e routine for building up such sets. TRAHSORSET contains commands for writing a.-id ec:idng
transfon::natio:,.s, saving one's work on a file, testing transformations by translating 52.I:lp?e fur::-.s. e:c.

Two t,...ansformations files presently exist for translating programs into Interlisp. <LIS?>S0S940. XFORMS
is for old BBN LISP (SDS 940) programs. and <LISP>LISP16. XFORMS is for St.1nford AI LISP 1.6
programs. A set for LISP 1.5 is planned.

23.8.1 Using TRA.J.'lSOR

,,-)
\ .

- · · Tne first and most exasperating problem in carrying a program from one implementation to another is I\
··, simply to get it to read in. For example. SRI LISP uses I exactly as Interlisp uses ~. i.e. as :?n esc:i.pe ' j.

character. Tne function ?RESCAN exisrs to help with these problems: the user uses PRESCAN to ~erfor-.n

'"'·--.

an initial scan to dispose of these difficulties, rather than attempting to TRANSOR the foreign sour.::e::i.les
directly.

PRESCAN copies a file, performing character·for-character substitutions. It is hand~oded and is much
faster than either READC's or text·editors.

(PRE SCAN FILE CHARI.ST) [Fux:ction]
Makes a new version of FILE. performing substitutions according to- CF.AR!.ST.
Each element of CHARI.ST must be a dotted pair of two character co<ies. (CL:,.

CHAR-CODE • NEW·CH.AR.-CODE).

For ~xample. SRI files are PRESCAHed with CF..A.RLST = ((3 7 • 4 7) (4 7 . 3 7)) , which excha.cges
slash (47) a.,d percent-sign (37).

The user should also ma.Ice sure that the treatment of double quotes by the source and ta.5 et systems is
similar. In Interlisp, an unmatched double·quote (unless protected by the escape character) will cause the
rest of t:.11e file to read in as a sc..-ing.

Fini.1}. t.i.e i.:.ck of a STOP at .he e-:id of a file is harmless. since TRA;sSOR will suppress END OF FILE
e!":'.>rs .l.,d e:m norn1ally.

23.8.! Translating

TR.AN SOR is :he mp·level function of the lr"..nslator itself. and ta.Ices one a.-gurnent. a fJe to be tra:1Sla~ed.
The file is assumed to contain a sequence of fonns. \\'.hich are read in. tr3.f1Slated.. ~d out~ut to a
file called {FILE}. TRAN. The translation notes are meanwhile output to {FILE}.LSTRAN. T.1us t."le

· usual sey_ucnce for bring· a foreign file to Interlisp is as follows: PRE SC.I\N the file: cxJm:ne ccc.c ,J.nd
trJnsformations. making changes to the tr:insformatii:ms if needed: TRMISOR the file: :ind c!e:.rn U?
remainmg problems. guided by the notes. ·n,,e user can now make a pretty file and proceed co exer::se
ar.d check out his prngram. To export a file. it is usually best to TRA:\SOR it. th~n PRE SCAN 1t. J.:1d
perform clean-up on the foreign system where the file can be loaded.

23.32 ()

..

0

(TRA?ISOR FILE)

LISPUSERS PACKAGES

[Function}
Translates FILE. Prettyprints translation on {FILE}. TRAH; translation listing on
{FILE}. LSTRAN.

{ T RAHSORFORM FORM) '" [Function]
FOPJ.t is a LISP fonn. Returns the.(destructively) translated form. 1:'1e c:-anslation
listing is dumped to the primary output file.

(TRANSORFNS FNLST) [Function}
FNLST is a list of function nan1es whose interpreted definitions are dcs.r-... ctively
transiated. Listing to prL'Tla.ry output file. ·

TRAHSORFORM and TRANSORFNS can be used to translate expressions that are already in core. whereas
T RANSOR it.~!f only works on files.

Q · 23.3.3 The Translation Notes

0

0

The translation notes are a catalog of changes made in the user·s code. and of problems which require.
or .r.ay require. far1.;.i.er attention from the user. 11ris catalog consists of two cross-indexed sect.:o:::.s: an
index of fonr.s and an index of notes. The first tabulates all the notes applicable to any form. where~
the second tabulates ail the forms to which any one note applies. Forms appear in the index of for.r.s in
the order in which they were encountered. i.e. the order in which they appear on the source and output
files. The index of notes shows the name of each note. the entry numbers where it was used. and its text.
and is alphabetical by name. Toe following sa.-nple was made by translating a small tes: file wnnen in
SRI LISP.

LISTI~G FROM TRANSORING OF FILE TESTFILE.:7
DONE ON 1-NOV-71 20:10:47

1. APPLY/EVAL at
[DEFINEQ

(FSET (LAMBDA 8r
(PROG ••• 3 •••

c SETQ z c corm
{(ATOM (SETQ --})

(COND

INDEX OF FORMS

((ATOM {SETQ Y (NLSETQ "(EVAL W}"~))
--)

]
2. APPLY/EVAL at

[OEFINEQ
(FSET (LAMBDA &

--))
--))

(PROG ••• 3 ...
(SETQ Z (CONO

((ATOM (SETQ --)}
(COND

((ATOM (SETQ --))

23.33

(
~- --·

n
Errors and Messages .. .

-"(EVAL {NCONS W))")

]
3. MACHINE-CODE at

[DE:F!NEQ

--))

(LESS1 (LAMBDA &

--))

(PROG ••• 3 . ••
(CONO

••• 2 •••

"

{(NOT {EQUAL (SETQ X2 •(OPEMR (MAKNUM & -))"
)

]
4. MACHI~E-COOE at

(O_EFINEQ

--))

{LESS1 (LAMBDA &
{PROG ... 3 •.•

{CONO
••• 2 •••

--))

{(NOT (EQUAL & (SETQ Y2

]

"(OPENR (MAKNUM & --))"})}
--))

INDEX OF NOTES
APPLY/EVAL at 1. 2 .

. TRANSOR will translate the arguments of the APPLY or EVAL expression. but
the user must make sure that the run-time evaluation of the arguments returns
a BBN-compatible eipression.
MACHINE-CODE at 3, 4.

Expression dependent on machine-code. User must recode.

n

The rrai:slation notes are generated by the transformations used. and therefore reflect the judgment of their ()
author as to what shou!d be included. Scraightfor-Nard conversions are usually made without cmn.-:1ent:
for exa:npie. the OEFPROPs in this file were quietly changed to DEFINEQs. TRA~SOR found four
noteworthy forms on the file. and printed an entry for each in the index of forms. consisting of an emry
number. the na..,ne of the note. and a printout showing the precise location of the for.n. The fem:. a;,pears
in double-quotes and is the last thing primed. except fur closing parentheses and dashes. An ..ur:pe::-5and
represencs one non-atomic element not shown. and two or more elemencs not shown 1re represer.:ed JS

•.. • 'I • ••• where N is the number of elements. Note that the printouts describe expressions iJn ±e 01.:t;::,ct
fiie. rather than the source file: in the example. the OEFPROPs of SRI LISP have been rep!.:.ced ,,.,ith
DEFH:EQs.

23.8.4 Errors and Messages

TRr\i\'.SOR records its progress through the source file by terminal princoucs which identify e:ich expression
as it is read in. Progress within large expressions. such .15 a long DEF INEQ, is reported every three mi::1utes

2J.J4

0

0

0

0

LISPUSERS PACKAGES

by a pdntout showing the location of the sweep.

If a transformation fails. TRA.."NSOR prints a diagnostic to the teletype which identifies the faulty
tr:msfor:r..a.tion. and resumes the sweep \\oith the·next fonn. The cranslation notes will identify the form
wrich caused this failure. and the extent to which the form and its arg,.1r::1entS were compromised by t.-ie
error.

If the transformation for a common function fails repeatedly. the user can type control·H. \V"nen the
system goes into a break. he can use TRAi~SORSET to repair t.i.e trar.sformation. a."'1d even test it out (see
TEST command. page 23.36). He may then continue the main translation with OK.

23.8.S TRANSO RSET

To use TRMlSORSET. type (TRANSORSET) to Interlisp. TRANSORSET will respond with a + sign. its
prompt character. _and await input. The user is now in an executive loop which is like EVALQT with
some extra context and capabilities intended to facilitate the writing of transformations. TRANSORSET
will thus progress APPLY and EVAL input. and execute history commands just as EVALQT would. Edit
commands. however. are interpreted as additions to the trar.sform:ation on which the user is currently
working. TRANSORSET alv;ays saves on a variable named CURREHTFN the name of the last function
whose tran.sformation was altered or examined by the user. CURRENTFN thus represents the function
whose transformation is currently being worked on. Whenever edit commands are typed to the +
sign. iRAtlSORSET v.ill add them to the tra.risformation for CURRENTFN. This is the basic mechanism for
writing a transformation. In addition. TRANSORSET contains commands for printing out a transforr:1ation.
editing a transformation. etc .• which all assume that the command applies to CURRENTFN if no function
is spe::ified. The following example illustrates this process. ..

~TRANSORSET(}
+~N TCONC {I]
TCONC
+{S\I 2 3) {2]
+TEST (TCONC AB) ·[J]
p
(Tcm,c s A)
+TEST (TCONC X) {4]
TRANSLATION ERROR: FAULTY TRANSFORMATION
TRANSFORMATION: {(SW 2 3)) {5}
OBJECT FORM: (TCONC X)

1. TRAHSFORMATION ERROR AT {6/
.. {TCONC X)"

(TCONC X)
+(IF (## 3) ((SW 2 3)) ({-2 NIL] {7/
+SHOW
TCONC

[(SW 2 3)
(IF (## 3} · {8/

((SW 2 3))
{(-2 NIL]

TCONC

23.35

+ERASE
TCONC
+REDO IF
+SHOW
TCO~IC

[(IF(## 3)

TRANSORSET Commwds

{9]

[IO]
...

((S111 2 3))
((-2 NIL]

TCONC
+TOST
=TEST
(TCONC NIL X)
+

{ll]

In this example. the user begins by using the FN command to set CURRENTFN to TCONC {If. He the:i
adds to the (empcy) transformation for TCmJC a cotTu-nand to switch the order of the argume:irs[J./ and
tests the transformation {3]. His second TEST {4] fails. e2using an error diagnostic {5} and a c..;.nslation
note {6/. He writes a better command {7] but forgecs that the original SW command is still in t.i.e way
{8]. He therefore deletes the entire transformation [9] and redoes the IF {!OJ. This time. the TEST works
{II/.

23.3.6 TRA.i.'fSORSET Commands

The following commands for manipulating transformations are all Prag. Asst. commands which t..-eat the
rest of their input line as arguments. All are undoable.

FN

SHOW

EDIT

ERASE

TEST

[rranscrset Coir..=:1,.,dJ
Resecs CURRENTFN to itS argument. and rerurns the new value. {n effect Fri says
you are done with the old function (as least for the moraent) and wish to work
on anomer. If the new function already has a cr-...nsfcrmation. the mess.1ge (OLD
TRANS FORMAT IONS) is printed. a..'1.d any editcommancs typed in will be Jc.::ed
to the end of t.."le existi:;:ig commands. FN followed by a carriage rerurn will re~.1m
the value of CURREtHFN without changing it.

IT r:mso rset c ornma.nd. I
Command to prettyprint a transformation. SHOW tallowed by a carriage re:urn
will show the cransfonnation for CURRrnTFN. and rerum CURRENT FM as its value.
SHOW followed by one or more function names will show e::i.ch one :r:. :urn. :-eset
CURRENTFN to the last one. and return the new value of CURRENTFN.

[rransarset Corr ... -n.mdl
Command co edit a rransfmmatiori. Similar to SHOW excepc that insteJd of
prcttyprinting the transtbnnation. ED IT gives it co ED ITE. The user can the!l work.
on the transfotmation until hi! leaves the editor with OK. ·

[rransorsec Com .. -n.1nd!
Command to delete a transformation. Otherwise simil.1r co SHOW.

[Tr:msorset Corr:m.:mdl
Command for checking out transformations. TEST cakes one argu:r.enc. a form

23.36

()

()

0

0

0

o·

DUMP

EXIT

"LISPUSERS PACKAGES

for translation. Tne translation notes. if any. are printed to the teletype. but
in an abbreviated format which omits the index of notes. The ..-alue rerurned
is the transiated form. TEST saves a copy of its _argument on t.11e free variable
TEST FORM. and if no argument is given. it uses TEST FORM. Le. tries the pre..-ious
test again. ..

ffra:isorset Co:n..-iand]
Command to save your work on a file. DUMP takes one argument. a filena:ne. Tne
argument is saved on the variable DUMPF !LE. so that if no a.rgi.:ment is provided.
a new version of t.~e previous file will be created.

The DUMP command creates files by MAKEFILE. Normally FII.EFNS will be
unbound. but the user may set it himself; functions called from a tr:?...,sformation
by the E command may be saved in this way. DUMP makes sure tha: the nccessa..··y
command is included on the FILEVARS to save the user's transformations. The user
may add anything else to 1:-Js FILEVARS that he wishes. \Vhen a transformation file
is loaded. all previous transformations are erased un!ess the variable MERGE is set
to T.

ff rar..sorset Command}
Exits TRAUSORSET. returning NIL.

23.8.7 The REMARK Feature·

The translation notes are generated by those tranSfonnations that are actually executed via an edit macro
called REMARK. REMARK ta!ces one argument. the name of a note. When the macro is executed. it saves
the appropriate information for the translation. notes. and adds one entry to the index of :arms. The
location that is printed in the index of forms is the editor"s location when the REMARK macro is executed.

To write a t.'c.!lSformation wf:iich makes a new note, one must therefore do two thir.:;s: defute tr.e note.
Le. choose a new name and associate it with the desired text: and call the new note wi~, th.e RE~ARK
macro. i.e. insert the edit command (REMARK NAME) in some transformation. The NOTE comma."'l.d.
described below, is used to define a new note. The call to the note may be added to a transfur:nation like
any other edit command. Once a note is defined. it may be called from as many different transformations
as desired. ·

The user can also specify a remark with a new text. without bothering to think of a na.-ne and perform
a separate defining operation. by calling REMARK with more than one argument. e.g. (REM.C.RK TEX7-
0F-REMA.'~K). This is interpreted to mean t..i.at the arg-..iments are the text. TRANSORSET ~ctices all
such expressions as they are typed in. and handles naming automatically: a new n~-ne is generateci2 :? and
defined with the text provided. and the expression itself is edited to be (REMARK GENERATED-N~-/.E}.
The following example illustrates the use of REMARK. • · •

.,.TRArJSORSET()
·-+NOTE GREATERP/LESSP (BBN'S GREATERP ANO LESSP ONLY TAKE TWO ARGUMENTS, WHEREAS

SRI'S FUNCTIONS TAKE AN INDEFINITE NUMBER. AT THE PLACES NOTED HERE, THE SRI
CODE USED MORE THAN TWO ARGUMENTS, ANO THE USER .MUST RECODE.] {If

22The name generated is the value of CURRENTFN suffixed with a colon. or with a number and a colon.

23.37

··~--

The R.Ei.'\'IARK F e:iture

GREATERP/LESSP
+FU GP.EATER?
GREATER?
+{!f (IGREl,TERP {LENGiH (##))3) NIL {(REMARK GREATERP/LESSP] [2]
+rn LESS?
LESSP
+REDO IF {3}
+Sl·!O\if
LESS?

[(IF (IGREATERP {LENGTH(##))
3)

NIL
{(REMARK GREATERP/LESSP]

LESS?
+FN ASCII n
(OLD TRANSFOR~A-T IONS} '
ASCII
+(REMARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL TO THE BBN FUNCTION CHARACTEF
THE USER MUST MAKE SURf THAT THE CHARACTER BEIUG CREATED SERVES THE SAME PURPOSE
ON BOTH SYSTEMS, SINCE THE COrffROL CHARACTERS ARE ALL ASSIGliED DIFFRENTLY.] {4}

+SHOW {5]
ASCII

((1 CHARACTER)
(REMARK,. ASCII:))

ASCII
+NOTE ASCII: {6]
EDIT

•p
ASSIGNED OIFFRENTLY.)

•(2 DIFFERENTLY.)
OK
ASCII:
+

In this example. the user defines a note na.-ned GREATERP /LESSP by using the NOTE command{!]. and
writes transformations which call this note whenever the sweep encounters a GREATERP or LESSP wit,.11
more t.'ian two arguments [2/ and [3]. Next. the implicit naming feature is used {4} :o add a RE!-iARK
command to the transformation for ASC[I. which has already been partly written. The user re:llizes he
mistyped pa."'t of the text. so he uses the SHOW command co find the name chosen for the note [5/. Then
he uses the NOTE command on chis name. ASCII:. to edit the note [6].

NOTE (Transor;cc C,mmanc.11
Fir-.it Jrgumcnt 1s note O.!.ITlC .111d muse be a literal Jtom. lf airca<ly ddinctl. rw r E
edits the old text: otherwise it defines the name. reading the text either from the
rest of the input line or from me next line. The text may be given as a line or JS

a list Value is name of note.

23.38 ()

0

0

(J

o·

LISPUSERS PACKAGES

The text is acr ... ally stored. 23 as a comment. i.e. a • and %% are added in front when the note is first
de5.ned. Tne text will therefore be lower-cased the first time the user DUMPs (see page 6.52).

0EL~lOTE [Transorsec Cor:-..u.and]
Deletes a note completely (although any calls to it remain in tl:e transfu:i::iatioc.s).

23.3.S Controlling the Sweep

TRANSOR's sweep sear.:hes in print-order until it finds a form for which a transformation exists. Tne
location is marked. and r...i.e tr211sformation is executed. Toe sweep then takes over agair.. beginning
from the marked location. no matter where the last cclTlliland of the c.ransforn:ation ieft the edi~or.
User transformations can therefore move around freely to examine the context. without worrying. a::,out
confusing the i.ra."!slator. However. there arc rr.cllly cases where the user wanes his t.""3nsfarmaticn to gi;~dc
the sweep. usually in order to direct the processing of special forms and FE X P Rs. For e:-camplc. t;"le
transformation for QUOTE has only one objective: to tell the sweep to skip over the argument to QUOTE.
which is (presumably) not a LISP form. NLAM is an edit macro that permits this.

NLAM [Transorset Command]
An atomic edit macro which sets a flag which causes the sweep to skip the arguments
of the current form when the sweep resumes.

Special forms such as cmm. PR0G. SELECTQ, etc .• present a more difficult problem. For example. (C0UD
(A B)) is processed just like (FOO (A B)): Le. after the transformation for COim finishes. the sweep
will locate the .. next form." (A B) , ret.--ieve the transformation for the function A. if any. a."ld e:tecute
it. Therefore. special fo::ms must have transformations that preempt the sweep and direct the t..-a:i.slation
themselves. Tne following two atomic edit macros permit such transformations to process their fcr.:is.
t.."anSlati.ug or skipping over arbitrary subexpressions as desired.

0OTHIS

D0THESE

[rrari.sorset Comma..,d]
Translates the editor's current expression. treating it as a single form.

[Transorset Co1r.ma:id}
Translates the editor's current expression. treating it as a list of forr..s.

For example. a transformation for SETQ might be (3 DOTHIS).24 This translates the second argument
to a SETQ without tr3!'1Siating the first. For C0tlD, one might write (1 (LPQ ~X 00THESE)). which
locates each clause of the C0ND in tum. and trai:slates it as a list of forms. instead of as a single form.

Tne user who is star-Jng a completely new set of transformations must begin by writing cra.i.,sfcrmatio~s
for all the special forms. To assist him in this and prevent oversights. t..'1e file <LIS?> SP EC :i:AL. XF0RMS
contains a set of transformations for LISP special forms. as we!l as some other transformations whi::h

• sh9u!d also be included.. The user will probably have to revise these tra..'lsformations subst.antialiy. si::ice
they merely perform sweep control for Interlisp, i.e. they make no chang;es in c..'1e object code, They
Jre provided chiefly as a chcclclist and trnorial device. since these transfonnations arc both the first 10 be
wmtcn and the most diilicult. especially for users new to the Interlisp editor.

:!3On the global list USERN0TES.

24 Recall that a transformation is a list of edit commands. In this case. there are two coIIu-nands. 3 and
DOTH IS.

23.39

WHEREIS Package

When the sweep mechanise encounters a form which is not a list. or a form CAR of which is not an
atom. it retrieves one of the following special transformations.

NLISTPCCMS ~ [Vat.ab!eJ
Global value is used as a transformation for any form which is not a list.

For examole, if the user wished to make sure chat all st."'ings were quoted. he might set NLISTPCOMS to
((IF (STRING?(##}} ((ORR cc~ QUOTE}}({MBO QUOTE)))} NIL)).

LM180ACGMS [VariaJ!eJ
Global value is used as a transformation for any form. CAR of which is ::iot an
atom.

These variables are initialized by <LISP>SPECIAL.XFORMS and are saved by the DUMP ccc-..::n:ind.
NLISTPCOMS is initially NIL. making it a NO-OP. LAMBOACOMS is initialized to check first for ope::1·
LAMBDA expressions, processing them without translation notes unless the expression is badly for.:::ed.
Any other forms with a non-atomic CAR are simply treated as lists of forms and are always me:iticned
in the translation notes. ·Toe user can change or add to this algorithm simply by editing or resetti:lg
LAMBDACOMS. •

23.9 WHEREIS PACKAGE

Note: The WHEREIS is a LispUsers package that is contained on the file WHERE IS :COM. WHEREIS
requires the hash file package {page 23.41). Loading WHERE IS. COM will also load HASH. COM. if it ha.s
nol already been loaded.

This package extends the fuz:ction WHERE IS (page 11.10} such that. when asked about a given name as a
function. WHERE IS will consult not only the commands of files that have been noticed by the file package
(page 11.1) but also a hashfile database (page 23.41) that associates function names wit.~ filena::i.es.

n·

()

(WHEREIS NA.VE TYPE FILES FN) [E1r.ctionj
Behaves exactly like the definition on page 11.10 unless TYPE= F NS (or NIL) .l!ld ()
FILES=T. In this case. WHERE IS will consult. in addition to the flies on FILELST.
the hash.file that is the value of WHERE IS. HASH (initially <LISPUSER>WHERE rs. HASH).

Note: Most system functions call WHEREIS with FlLES=T. so loading this package automatically :nakes
the information contained in the WHERE IS database available throughout the system.

Information may be added co a WHEREIS hashfile by explicitly calling the foilowing function:

(WHEREISNOTICE FlLEGROUP NE\.VF'r.G) [Function!
[nsen:s the infonnauon about all of the functions on th'! files in FTI.ECROt."? into
the WHERE IS data base contained on (the value of) WHERE!S.HASH. FT!.ECROC."?
is given as a filegroup argument co DIRECTORY (page 14.6), so&. S. etc. may be
used. If NEWF'I.G= T. a new version of WHERE IS. HASH will be creJted cor.umir.i:
the database for the Functions specified in F'lLECROC."?. -

23.40 ()

0

. o

LISPUSERS PACKAGES

23.10 HASH FILES

Nole: The hash file facility is a Lisp Users package that is contained on the file HASH. COM. It c-.1n-ently
only works in· Interlisp-JO. ._

Tne hash file facility permits information associated with string or atom "keys" to be stored on and
rett.eved from files. The ir.fonnation (or .. values") associated with the keys in a fJe may be numbers.
srzings. or arbiw-; Interlisp expressions. Toe associations are mcintained by a hashicg sche:ne t.~:lt
minimizes the m.:.rn.ber of page-m:ips it takes to access a value from its key.

A ha.shfile may contain information other than key-value associations. The :.iser may print on the file usi:1g
ordina.-y printing functions (e.g. PRHJ1, PRitHDEF), and he may also store non-c!.aracter infcr.:1ation
(e.g. binuy d.at.1) formatted to suit his particular applications. This information is stored in rc~mns of
the file distinct from the hash index. The hash index can be used to locate non-hash information. 1f the
necessary file addresses are stored as hash values.

A hash.file is created by the function CREATEHASHFILE:

(CREATEHASHFILE FILE VAUJETYPE ITEMLENGTH #ENTRIES) [Function}
A new version of FILE is opened and initialized as a hashfile. VALtJETY?E is an
atom interpreted as follows:

NUMBER Toe values are 24-bit unsigned integers.

STRING The values are strings with less than 128 characters.

EXPR Toe 'ialues are arbitrary Interlisp expressions. The values are sUJred
by printing them in the file with readta.ble HASHFILEROTBL. initially
ORIG.

SMALLEXPR
The values are arbitrary Interlisp expressions such ti.'1.at (N~HARS
VA.Lt'E T HASHFILEROTSL) is less than 128. Storing and re~-ieving
is more efficient than if VALUETY?E= EXPR •

SYMBOL TABLE
Tne values are 24-bit unsigned integers. as when VALL'ZTY?E= NUMBER.
except that the numbers are treated as the addresses of ··srmbois·· lo·
cated on non-hash pages in the file. See the discussion of symbol-tables
below.

Toe other arguments to CREATE HAS HF r LE are optional. ITEMI.ENGTH is the user·s
estimate of the average number of characters in the entries he expects to Store in
the hashfile (= the average key. length plus- the average number of charac::ers :n
tl1e values for VALUE'TYPE. s TfU NG or SMALL EX p R). # ENTRIES is an esur:,a:e
of the the total number of key-value associations he is likely to store. These
~wo arguments determine how many pages in the fiie wiil be initi~ly alloc~ned as
hash-pages: accurate estimates can reduce the number of times that the f.le rr.ust be
rehashed as information is stored in it. [f these arguments are not gi\'en. re;isJna::'le
defaults are supplied.

After being initialized. FILE is left open and CREATEHASHFILE rerurns as its Yalue

23.41

{ OPENH.~SHFILE

Hash Files

-
a "hash.file datum." a handle on the hashfile that may be used as an argument fur
mcst of the functions described below.

FILS ACCESS} • [Fw:.c::ion]
Re-opens the previously existing hzshfile F'!LE. ACCESS may be INPUT (c-r :-IIL).
in which case FTLZ is opened for reading only, or BOTH, in which case r-:r.z is
open for bolli. input and output. Causes an error NOT A HASHFILE. if FII.E is
not recognized as a hasb.file.

If ACCESS is BOTH and F'!LE is a h.'.lSh!ile ope:1_ fer re~ding only. CPE~LHASHF I L.E
attempcs to close it an.d re-open it for writing. Other.vise. if F-:Z.E desig:iatcs a!1

alre:idy open hashfile, OPErlHASHFILE is a no-op.

O?ENHASHFILE returns a hash.file darum.

(HASHFILEP X) f fi d b [Function] Q
Returns Xi xis a hash le datum (i.e., a value retume y CREATEHASHFILE
or OPENHASHFILE). If xis NIL, rerums SYSHASHF ILE if it is a hashfile datum.
If x is the name of an open hashfile, rerurns the corresponding hashfile dat".J..:."11.

Otherwise, returns rJ IL.

The fol!owing functions require an open hashfile as an argument. i.e. an object for which HASHFILEP is
no:i.-NIL.

(PUTHASHFILE KEY VALUE HASBF'!LE) [Function]

(GETHASHFILE

Puts VALU&; in HA..CHFILE, indexed under KEY. [f VALUE is NIL. any previous e~t.-y
for KEY is deleted.

KEY HASH.FILE) [Function]
'Returns the value corresponding to KEY in HASHF'!LE. For files where VALt."E":-Y'?E:

is STRING, NUMBER, or SYMBOLTABLE. the value rerumed by GETHASHFILE is
temporary in chat any S'Jbsequent calls to a hashfile or page mapping function m2.y
smash it. CONCAT or MKATOM must be applied if the value is a string. or I?LUS
if it is a number. in order to make t.'1.e value permanent.

(HASHFILEPROP HASEFZLE PROP) [Function] ()
Returns the value of the PROP propeny of HASHFILE. The recognized PP.C?S :i::.d
the values returned are:

VALUE TYPE
One of NUMBER. STRING. EXPR. SMALLEXPR. or SYMBOL TABLE.

NAME The full name of the file. ..
ACCESS BOTH if file is open for writing, INPUT if it is re:id·only.

(HASHFILENAME HA.Sh"FILE) [Ft..:.cticn)
Same as (HASHFILEPROP HASHFILE • NAME).

(CLOSEHASHF ILE FIASHFILE) [Funct!onj
Same as {CLOSEF (HASHFILEPROP HASHFILE 'NAME)).

The function HASHSTATUS can be used as a STATUS function for WHENCLOSE (page 6.11) to restore

23.42 n

0

o-

0

LISPUSERS PACKAGES

the state ofa hash.file when a SYSOUT is resumed. IfHASHSTATUS is used. the PERMSTATUS package
(page 23.17) must also be loaded.

(M.~PHASHFILE H:ASF.FlI.E MAPFN) [Fu~:::tion]
For each entry in HASRFILE: performs (MAPFN KEY (GETHASHFILE KEY
P.:ASHFiI.E) } • If MAPFN is a function of only one arg-.une::it. perfon:::-.s { }t!.AFFN
KEY} thereby avoiding the call to GETHASHFILE needed to ob:.:..in th.e value.
KEY is temporary, as for GETHASHFILE. VA!.CJ'E is also temporary, for STRING.
NUMBER, and SYMBOL TABLE files.

{ REHASHFILE HAS.a:F!I.E} [Fu::1ctio:1J
After many insertions and deletions much of the space in a has.i.file may be
unusable. REHASHf'ILE reclaims that space by reh.?Shing all the keys. The
information on non-hash pages in the file is not altered or rno•,ec!. except that the
print name pointers in a SYMBOL TABLE file are updated (see below).

{~OPYHASHFILE HASHFILE NEWNAME FN VTYPE) [Function]

:

Calls CREATEHASHFILE to open NEWNAME as a hashiiie. with VAI.t,-STY.PE,
ITEMLENGTH and #ENTRIES determined by examining rhe open has..i.file HASHFII.E.
Then maps through all the keys in HASHFILE, doing the equivalent of:

(PUTHASHFILE
KEY
{GETHASHFILE KEY HASHFZLE)
NEWXASHFILE)

for each key KEY. In essence, COPYHASHFILE copies the hash portion of HASHFr:.E
to ~"EWNAME.

If FN is given. then it is applied to the successive values of HASHFII..E. the old
HASHFILE, and the new h~1file, and the value returned is used as the value L11 the
new file. In effect.

{PUTHASHfILE
KEY
{FN (GETHASHFILE KEY HA.SHFILE)

HAS'F.FII..E
NEWHASHFILE)

NEvVHASHFILE)

is evaluated for each key. Thus. the user c~ intervene as each key is processed in
order to copy information associated \\irh rhe key that resides on non-hash pages.

For example. an EXPR file could be implemented by printing .he full expressioi:.s
in a NUMBER me·s printing region (see below) and storing their byte·;,ositio:1s as
hash values. Instead of reading an expression into internal data structures before
writing it out to the new file. a FN could be given that transferred the exp:-ession
to rhe new file more efficiently, via COPYBYTES. The function would rerurn th~
byte-position on rhe new file where the expression ended up. (Actually. this is :.he
way EXPR files are copied if FN is not specified.)

If FN is given. rhen VTYPE', if specified. is a temporacy valuetype (NUMBER.

23.43

Hash Files

STRING. etc.) to be used during copying. This permits the use:- to for;:e tl'!e
valuetype of both files to one more suited for FN. e.g. SMALLEXPR to STRrnG
or EXPR to ::UMBER. as in the example. VTTI'E does not affect the pe:-:na:ie::t
valuccype of eit!ler file.

(HASHFILESPLST HAS1IF1!.E} [Fu:iction]
Rerurns a ''generator,. for the keys in HASEFrLE that is acceptable as an ar;:u.=ie::::.t to
FIXSPELL (page 15.18). Thus, { FIXSPELL BADWORO iO (HAS HF I LESPLST
H.ASHF!LS)) will spelling correct a word using the keys in H.ASE:Frr.E:.

(LOOKUPHASHFI.LE KEY VALUE HASHFII.E CALLTYPE) [Fu:ictio:i]
A generalized encr:, for inser~ng and retrieving values: provides ce:-..ai.-i cptions
not available with GEiHASHFILE or PUTHASHF ILE. LOOKUPHASHF ILE lcoics u?

KEY i.'l HASHFrI.E. CALLTYPE is an atom or a list of atoms. These keywords are

n

interpreted as follows: Q.

Examples:

RETRIEVE
If KEY is found. then if CALLTYPE is or contains RETRIEVE. the old
value is returned from LOOKUPHASHFILE: otherwise returns T.

DELETE If CALLTYPE is or contains DELETE, the value associated with KEY !S
deleted from the file.

REPLACE If CALLTYPE is or contains REPLACE. the old value is repiaced with
VALClE.

IHSERT If CALLTYPB is or contains rnSERT. LOOKUPHASHFILE inserts ,·alue
as the value associated with KEY.

If KEY is not found. LOOl<UPI-!ASHFILE returns NIL.

-
To eitber return an old Yalue or insen a new value in the file if one does not already e~ist. ;:,enorm
(LOOKUPHASHFILE KEY NEWVALUE HASHF.l!.E ' (INSERT RETRIEVE)). The value returned will /\
be NIL if NBW-vALUE was inserted. or the old value if KEY was found. _.)

To merely check whether KEY exists in t.t:le file without actually retrieving its value (which may be
expensiYe for the more general valuecypes), perform (LOOKUPHASHFILE KEY fUL HASHF:Z.E NIL).

The function PUTHASHFILE is defined as:

(LAMBDA (KEY VALUE HASHFILE)
(H VALOE=N IL . .

t~t~ (L~C(~?~AS~FILE KEY ~IL HASHFILE 'DELETE)
,~s~ ,.~~,.:~~s~f:LE \r, \Al~E ~ASriflLE 'lI~SE~T RE?LACE})

V,4LUE))

And GETHASHFILE is. defined as:

(LAMSC~ {KEY HASHFILE)
tt,OOKU?HASHFlLE KEY NIL HASHFILE 'RETRIEVE))

23.44 n

.~--:_;·
U·

o·

LISPUSERS PACKAGES

23.10.1 UnstrJctured Pages and Symbol Tables

The non-hash information in a hash-file may be formatted as printed character strin;;s or binary data.
Primed in.i."brmation resides in a fUe's .. pri.nting region ... while binary data is stored on "unstruct.tred
pages".

U~t."1.lctured pages in a file are allocated a.,.,.d deallocated by the hash package so L'1at they do not encroach
on i1a.s.'1 or printing pages. Other than that. u"le user has complete freedom to rr.ap them in for arbitrary
rc;..,ding and wnti.ng. The primitive operations arc:

(GETPAGE HASHF'ILE N) [Fu!lcticn]
Returns the page number of a free page in HASHF'ILE. If N is gi...-en. t."len the user
is guaranteed that the page returned is the first of N contiguous p.1gcs 311 of which
are free.

(OELPAGE PAGE# B'ASHFILE) [Functiooj
Removes page PAGE# from H.ASHFILE. PAGE# should be the number of an
unstructured page, either a value of GETPAGE or within the block of free pages
guaranteed by GEiPAGE. The contents of the page in the file a.re lost. ar:d t.,e
page itself becomes available for re-allocation either by GEiPAGE or in:e::naily as
a hash page. If PAGE# happens to be the number of a hash page, the hashing
inform.ation will be destroyed.

Unstruct.tred pages are available on hashfiles so that the user can link hash keys to data in special formats.
For example. the user might associate lists of properties \\ith a key by writing the properies on an
unstructured page, and then storing the file address of the properties as the value of thc!key in a NUMBER
file .

. A SYMBOLTABLE hashfile provides an additional feature that makes it possible to implement arbicra.ry
file-:-esident symbol processing sys:er-~. Toe user may store the data to be associated with a key on
unstructured pag-~ and he can then link t.lte fiie address to the ~ey via PUTHASHFILE. as des:nbed
above. Tne difference between a NUMBER and SYMBOL TABLE file is that for a SYMBOL TABLE. t..1e hash
package also stores the reverse link from the file address to the key. This ma.'<es it possible to cbc.a:n a
"print-nace" for an address on an unstructured page, via the function GETPNAME:

{GETPNAME FILEADR HASHFZI.E) [Fun::tion]
Rerurns a temporary string containL'lg the characters of the key whose hash value is
the 24-bit unsigned FILEADR. Causes an error if HASHFILE is not a SYMaOLT ABLE
file.

The hash package automatically updates the print-name information for the file address if the key is
relocated by rehashing. a.'ld it destroys the back-link if the value for the key is deleted. A SYMBOL T ASL E
file imposes one restriction on the way unstructured pages are treated: If a file address is stored as a
hash-value for sou:e key, then the right-most 24 bits of the word at that location in the file Jre reserved
for the use of t..,c hash mcchanism.25 The user must not write into it.

\Vit., these primitives. a list-processing system wich a 24-bit non-resident address space is easy to build.
The ~ser is responsible for allocating ··atoms''. on unstructured pages. and updating the "atom hash t.:1bie"

25The left-most 12 bits are available and can be used for a number of applications. e.g. to store type·bics.

:!3.45

\_.,.:

Tha Printing Region

with PUTHASHFILE. The second (and subsequent) words after an atom address may be used to srore
the ate.n's "property list", conta.inbg other atom addresses. or other addresses interpreted as pcbters to
"cons .. cells. These can al..c:o be allocated Em unstructured pages. It is a simpie matter to imple:r.ent t..~e
equiYalent of CA?., CDR, RPLACA, and RPLACD. ~

23.10.2 The Printing :!_:?.egion

Hash.files Jre organized so that it is always permissib!e to print at the e~d of the fJe with ordL-:a..--:; Interlisp
output functio~. That is, the file is arranged so that the hash and unstr'.lctured pages are aiways loc:ated
before c."le end-cf·file for sequential reading and writing. This is accomplished by creating t!i.c i!e with
the end·of·file some number of free pages past the last hash or uns:ructurcd page. Whe:1 all free pages
below the end·of·lile have been used. the end-of-file is moved so that there are again a reservoir of free
pages before it.

Thus, the printing region may shift as a result of calls to GET PAGE or PUTHASHF ILE. and tt1e user
cannot rely on the output from two different printing operations being located at adjacent positions in
the file. The expressions printed cannot be retrieved by successive calls to standard readmg functions.
Instead. the user shculd record the byte position of each pri..'1.ted e~pression as a hash va!ce or on an
unstructured page so that he may use SETFILEPTR to position the file properly. If he does change the
file's byte-pointer, he must be sure to reset it to the.end-of-file (e.g. (SETFILEPTR FILE -1)) before
more printing is done.

23.11 EDITA

.Vote: EDITA is a LispUsers package contained on the file EDITA. Cet.t That portion of EDITA refa:.~-zg
to compiled code may not be available in implementations of Interlisp other than Interlisp-JO. EDIT A also
has a FILEDEF property so that the user can simply call EDITA and the.file wiil be automa:fcaily !oded.

EDITA is an editor for arrays. However. its most frequent application is L'l editing compiled ft:::ctior.s
(which are also ar."Tays in Interlisp-10), and a great deal of effort in irnplementi...,g EDITA. and mes: cf ir.s
special features. are in this area. For example. EDITA knows the format and conventions of !nterlisp-10
compiled code, and so, in addition to decoding inSLi.lctions a la DDT (one of t.'le oldest d.cb:.igging
systems still around). EDITA can fill in t..'1e appro;,riate COREVALS, symbolic names fur inc.ex registers.
referentes co literals. linked function calls. e~. The following output shows a sequence of insU"Jc':.i.ons in
a compiled function first as tlley would be printed by DDT. and second by EDIT A.

23.46

() ..

()

rP

0

0

,··-

.----'\._)

0

LISPUSERS PACKAGES

466i16/ PUSH 16, LISP&KNIL 3/ PUSH PP,KNIL
466717/ PUSH 16, LIS?&KNIL 4/ PUSH ?P, K~IIL
466720/ HR::i.Z 1,-12(16) 5/ HRRZ 1,-l0(PP}
466721/ CAME 1, LISP&KNIL 6/ CAME 1,KNIL
466722/ JRST 466724 11 JRST 92s
465723/ HRRZ 1,@-<16i575 8/ HRRZ 1.@'BRKFILE
466724/ PUSH 16,1 9/ PUSH PP,1
466i2S/ LISP&IOFIL,,467576 ·101 PBINO 'BRKZ
465726/ -3., -3 11/ -524291
465727/ HRRZ 1,-14{16} 12/ HRRZ 1,-12{PP}
465730/ CAMH 1,467601 13/ CAMN 1, 'OK
466731/ JRST 466734 14/ JRST 17
465732/ CAME 1,467602 15/ CAttlE 1, 'STOP
466733/ JRST 466740 16/ JRST 21
466i34/ PUSH 16:467603 17/ PUSH PP,'BREAKl
466i35/ PUSH 16,467604 18/ PUSH PP, '(ERROR!)
466736/ LISP&FILEN,,467605 19/ CCALL 2,'RETEVAL
466737/ JRST 467561 20/ JRST 422
466740/ CAME 1,467606 21/ CAME 1. 'GO
465741/ JRST 466754 22/ JRST 33
466742/ HRRZ 1,@-12(16} 23/ HRRZ 1,@-l0(PP)
466743/ PUSH 16, 1 24/ PUSH PP,1

Therefore. rather than presenting EDIT A as an array editor with some extensions for editing compiled
code. we prefer to consider it as a facility for editing compiled code, and point out that it can also be
used for editing arbitrary arrays. •

23.11.1 Onmew

EDIT A is envoked by calling the function ED IT A:

(EDITA FN CO.MS} [Functio::1]
Envolces EDITA to edit th: function FN. To the user. EDITA looks very m'.!:h
like DDT with Interlisp-10 extensions. If COMS is given. it should be a list cf
comrna.'lds for EDIT A. These are then executed exactly as t..11.ough they had been
typed. EDITA can be exited with the command OK.

Individual registers or cells in the function may be examined by typing their address followed by a slash.
e.g.

25:'iote that EDITA prints the addresses of cells contained in the function relative to the origin of the
function.

23.47

' \ .'-

Input Protocol

6/ HRRZ 1,-lO{PP)

The slash is really a command to EDITA to open the indicated register.27 Only one register at a tice
c:m be open., and only open regis:ers can be changed. To ~ange the contents of a regis,er. the user :lrst
ope:is it. types the new contents. and then closes the register wir...'1. a carriage-return. 2s e.g.

7 / CAME 1 , ' 1" CAMH 1, '1'Cr

If the user closes a register without specifying the new contents, the contents are left unchanged. SL."!lilarly,
if an error occurs or the user types control·E. the open register. if any, is closed without bei.:lg changed.

23.11.2 Input Protocol

EDITA processes all inputs not recognized as commands in the same way. If the input is the n:une of an
instruction (i.e .• an atom with a numeric OPO property), the corresponding number is added to the input
value being assembled. 29 and a flag is set which specifies that the input context is that of an instruction.

The general form of a machL'le instruction is (OPCODE AC • @ ADDRESS (INDEX)) as described on
page 22.15. Therefore. in instruction context. EDITA evaluates all atoms (if the atom has a COREVAL
prcp.erty, the value of the COREVAL is used), a."ld then if the atom corresponds to an Ac,30 shifts it left
23 bics· and adds it to the input value. otherwise adds it directly to the input value. but performs the
arit.;...r::1etic in the low 18 bits.31 LlstS are interpreted as specifying index registers, and the value of CAR
of the list (again COREVALs are pemlitted) is shifted left 18 bits. Examples:

PUSH PP, KNIL
HRRZ l,-l0(PP)
CAME 1, 'GO
JRST 33 ORG

EDIT A cannot in general know whether an address field in an instruction that is typed in is relative or
absolute. Tnerefore. the user must add ORG. the origin of the function. to the address fieid hilr.self. ~oce
that EDITA would print this instruction. JRST 53 ORG. as JRST 53.

(l.

The user can also specify the address of a literal via the ' cor.i...-nand. see page 23.50. For e:carip!e. if the LJ
literal " UNBROKEN" is in cell 85672. HRRZ 1, '" mJBROKEN" is equivalent to HRRZ 1. 85672.

:z-:-EDIT A also cortveru absolute addresses of cells within the function to relative address on inpuc. Thus.
if the definition of FOO begins at 85660. typing.SI is exactly the same as typing 85666/.

:.:ssince c:L."Tiagc-rerurn has a special meaning, ED lT A indicates the balancing of parentheses by cyping a
space.

z,The input value is initially 0.
1"i.e .. if a ·•• ·• has not been seen. and the value of the atom is less than 16. and the low 18 bits -0f ,he
input value are all lero.

31 If the absolute value of the atom is greater than 10 O O O O OQ, full word arilhmetic is used. For example.
c.he indirect bit is handled by simply binding@ to 20000000Q.

23.48

0 LISPUSERS PACKAGES

When t..i.e input context is not that of an instruction. i.e .• no OPD has been seen. all inputs are evaluated
(the value of an atom with a COREVAL propeny is the COREVAL.) Then numeric values are simply added
to the previous input value: non-numeric _values become the input value.32

The only exception to the entire procedure occurs when a register is open that is in t..11e pointer region
of fae function. i.e .. literal table. In this case. atomic inputs are not evalua~ed. For exa:n;>le. the ~ser
can chax:.ge the literal FOO to FIE by simply opening that register and then typing FIE followed by
c2rrbge-rerurn. e.g.

'FOO/ FOO FIE er

Note that this is equivalent to

'FOO/ FOO (QUOTE F IE) Cf'

Q 23.11.3 EDITA Commands and Variables

0-

o-·

c,. (carnage-return) If a register is open and an input was typed. store the input in the register and
close it.33

ORG

I

tab (control·!)

If a register is open and nothing was typed. close the register without changing it.

If a register is not open and input was typed. type its \'alue.

Has the value of the address of the firs: insuuction in the function. i.e .. LOC of
GETO of the function.

Opens the register specified by the low 18 bits of the quantity to the left of the /,
and types its contents. If nothing has been typed. it uses the last thing typed by
EDITA. e.g .•

35/ JRST 53 I CAME 1,'RETURN I RETURN

If a register was open. / clos~s it without c.'langing its contents.

After a / com:nand. EDIT A returns to that state of no input having been typed.

Same as carriage-return. followed by the address of the quantity to the left of t."'le
tab. e.g .•

35/ JRST 53 <tab>
53/ CAME 1, 'RETURN

Note that if a register was open and input was typed. tab will change the open
register before closing it. e.g.. ·

:i:Presumably there is only one input in this case.
33 lf the register is in the unboxed region of the function. the unboxed value is stored in the register.

23.49

'-

...... __ .

• (period)

line-f~d

1'

SQ (<esc>Q)

LITS

BOXED

S (dollar)

=

Ql(

?

EDITA Commands and Variables

35/ JRST 53 JRST 54 TAB
54/ JRST 70 c,.

35/ Jr?ST 54
,.

Has the value of the adciress of tb.e curre:it (last} register examined..

Same as carriage-return followed by (ADO 1 •) / Le. cioses any open register a..:.d
oper.s t.11e nexz register.

Same as carriage-return followed by (SUB 1 •) /

Has as its value the last quanticy typed by EDIT A e.g.

35/ JRST 53
.I JRST 54

SQ 1 er

Has as value the (relative) address of the first literal.

Same as LITS

Has as value the relative address of the last literal in the function.

Sets R.~o IX (page 6.19) to ·8 and types t.1le quantity to the left of the = sign. Le..
if anything has been typed. types the input value. otherwise. types SQ. e.g.

35/ JRST 54 =254000241541Q
JRST 54=254000000066Q

Following =. RAO IX is restored and EDIT A rerurns to the no input state.

E.u:s EDITA.

.:\:;:-..:~ .o .. ::io i=;:-..:~·· s.a.:e. ? is a -weak .. cox:.:roi·E. Le .• it ~e:...a .. es any b-;;u~
typed. but does not close any registers.

ADDRESS1 • ADDR.ESS2I

·x

:ATOM

Prints the contents of registers ADDRESS 1 through ADDF..Ess2•
after the completion.

is set to ADDRESS2

-
Output goes to FILE. initially set to T. The user can al.c:o set FILE (while in
EDITA} co the name of a disc file to redirect the output. (Tne user is responsible for

· opening and closing FILE.) Note that FILE only affects output for the ADDREss1 ,

ADDRESS2I command.

Corresponds to the ' in LAP. Tne next expression is read. and if it is a sr:13.ll
number. the appropriate offset is added co it. Otherwise. t...'le literal t.lbie is se:i..rchcd
for x. and the value of 'x is the (absolute) address of that cell. An error 1s
generated if the literal is not found. i.e.. ' cannot be used to create literals.

Defines ATOM to an address: (l) the value of SQ if a register is open. (2) the input
if any input was typed. otherwise 13) the value of··.·· (Only the low 18 bits ire
used and converted co a relative ;iddress whenever possible). For cx.:unph::

35/ JRST 54 : FOO~,.

23.50

n

n

n

u

o-

o·

LISPUSERS PACKAGES

-
: FIE Cl"

FIE/ JRST FOO .=35

EDITA keeps its symbol tables on two free variables. USERSYMS and SYMLST. USERSYMS is a list of
ele:ne:n~ of the form (NAME • VALli"E) and is used for encoding in:;,ut. i.e .. all variables on USERSYMS
are bouc.d to their corresponding values during evaluation of any expression i.-...side EDIT A. SY:.4LST is a
list of elements of the fonn (VALUE • NAME} and is used for decoding add.:esses. USERSY~S is ini:ially
NIL. while SYMLST is set to a list of a!l ct:ie CO?.EVALS. Since the : cotr.mand adds t."?e ap~rcp::ia~e
info~ation to both t.'1ese cwo lists. r:.ew definitions will remain in effect even if t.-ie user exits from EDITA
and then reenters it lacer.

Note that t.'1e user can effectively defi...,e sy:nbols without using the : command by appropriately bind.i~;
USEP.SYMS and/or SYMLST before calling EDCT'A. Also. he can thus use different symbol tables for
different applications.

SW (<esc>\\I) Search command.

Searching consists of comparing the object of the search with the contents of each register. and printing
those that match. e.g.,

HRRZ @ swc,.
8/ HRRZ 1,@'BRKFILE
23/ HRRZ 1,@-10(PP)
28/ HRRZ 1,@-12(PP)

The SW command can be used to search either the unboxed portion of a function. i.e.. instructions. or
the pointer region. i.e .• literals. depending on whether or not the object of the search is a nUI:1ber. If
any input was typed before the SW. it will be the object of the search. otherwise the next expression :s
rea.d and used as the object. 34 The user can specify a starting point for the search by typing an ac!dress

· followed by a .. , " before calling SW. e.g., 1, J RST SW. If no staning point is specified. L'1e search will
begin at O if the object is a number. otherwise at LITS, the address of the first literal. 3s After the search
is completed. ... " is set to the address of the last register that matched.

If the search is operating in the unboxed portion cf the function. only those fields (i.e .• INSTRUCTION. AC,

~"DIRECT, INDSX, and ADCRESS) of cge object that contain one bits are compared.~6 For exa:r.pie. HRRZ
(g SW will find all instances of HRRZ indirect. regardless,of AC, INDEX. and ADDRESS fields. Sicil.a.riy.
• PRINT SW will find all instructions that reference the literal PR rn T. 37

34~-l'ote that inputs typed before the SW will have been processed according to the input protocol. i.e .•
e,·aluated: Lr1puts typed after the SW will not. Therefore. the latter form is usually used to specify searchicg
the literals. e.g .• SW F 00 is equivalent to {QUOTE F 00) SW.

35Thus the only way the user· can search the pointer region for a number is to specify the starting point
via ··. ·· .

. :16 Altemately. the user can specify his own mask by setting the variable MASK {while in EDIT A). to the
appropriate bit pattern.

3-:-Toc user may need to establish instruction context for input without giving a specific instruction. For
exa.'11plc. suppose the user wan~ co find all instructions with AC= l and INDEX= PP. In this CJ.Se. the user
ca:n give & as a pseudo-instruction. e.g .. type & 1 , (PP).

23.51

Editing Arrays

· If the search is operating in the pointer region. a·"match" is as defined in the editor. For example. SW
(&) will fi:.d all registers that contain a list consisting of a single expression.

SC (<esc>C) Like SW except only pri..,tS the first match. then printS the number of matches
when the search finishes.

23.11.4 Ed;dng Am.ys

ED IT A is called to edit a function by giving it the name of the function. ED IT A cm also be called to
edit an array by giving it the array as ir.s fi..-st argument.38 in which case the following differences are to
ce noted:

n

(~. 1. decoding • The contents of registers in the unboxed region are boxed and printed as numbers. i.e.. ("-. .
\ L.i.ey are never "interpreted as instructions. as when editing a function. 1. ; __ ..

"·--·

-·

2. addressing convention • Whereas O corresponds to the first instruction of a function. the first element
of an array by convention is element number 1.

3. input protocols - If a register is open. lists are evaluated. atoms are not evaluated (except for SQ which
is always evaluated). If no register is open. all inputs are evaluated. and if the value is a number. it is
added to the "input value",

4. left half - If the left half of an element in the pointer region of an array is not all o·s or NIL. it is
printed followed by a "; ... e.g. ..
10/ {A B) ; T

Similarly, if a register is closed. either its left half. right half. or both halves can be changed. depending
on the presence or absence, and position of the •• : " e.g.

10/ (A B) ; T B; er [changes left]
.I B T NIL er [changes right/
.I B : NIL A : cer [changes both/
.I A ; C

If";" is used in the unboxed portion of an array, an error will be generated.

38the array itself. not a variable whose value is an array, e.g.. (E OITA F 00) , not (E OITA ' F 00).

23.52

'~
_ ./.

0

o-

LIS?USERS PACKAGES

The SW command will look at both halves of elements in the pointer regio~ and match if either half
matches. Note that S~'l A : B is not allowed.

...

23.12 CJSYS

Note: Cjsys is a LispUsers package that is contained on the file CJ SYS. COM. It only works with lr.terlisp-10.

This pacxage provides assistance to Interlisp-10 users who wish to make direct calls on the ope:ating system
(via JSYSes). It also makes the coding of certain common ASSEMBLE constructions more conve:::.ient.
The package defines the following functions:

(JS JSYSNAME ACl AC AC3 RESULT) [NLambda Function]
All arguments are evaluated except for JSYSNAME. Like JSYS (see page :?2.6),
loads the unboxed values of ACl, AC2. and AC3 into the appropriate registers. and
executes the JSYS JSYSNAME. JS differs from JSYS in that the JSYS may be
indicated by its symbolic name. not jest by its number. JS also generares sli8,1'1tly
cleaner code than JSYS. JS also differs from JSYS in that:

(a) if any argument is supplied as NIL. then it is not loaded at all. i.e. the
corresponding AC will contain garbage. (JSYS loads the AC with. 0.)

(b) if RESULT is NIL. then no value is loaded (interpreted. JS returns the string
"garbage result fr~m Js·i

(c) RESULT can be T. meaning rerum T if the JSYS skips. NIL if not.

Because of these differences. caution must be exercised in turning JSYS calls into
JS calls •

. The symbolic JSYS name is looked up on the list JSYSES. an as..~iation-list with
elements of the fonn (JsYSNAME JSYSNtJMBER #SKIPS). If no ent.-y is fot!nd.
then the file STENEX.MAC (or SYS:MONSYMS.MAC forTops-20) is sc:mned.

Examples: {JS BIN {OPNJFH FII.E) NIL NIL 2) rerurns the value of AC2 after doing a srn from
the JFN of FILE. (JS BOUT (OPNFJN FII.E} 3) sends a control-C to FILE. The 't'alue of_this JS can
is garbage.

[Function]
Rerurns { LOGOR (LLSH N1 18) (LOGANO N2 777777Q)), i.e. the word with
N 1 in the left half and N 2 in the right.

(BIT BIT# WORD) [NoSpread Function)
[f WORD is not specified. sr'r simply returns a number with bit BIT;:. set to l and.
all other bits 0. lf WORD is given. then BIT is a predicate that returns T if mT #
is set in WORD. Bits are numbered from left to right.

Examples: (BIT 32) is 8 (=lOQ). (BIT 32 8) is T.

23.53

n-
Nobox

(JSYSERROR ERRORN) [NI.ambda Func:icnl
Returns the TENEX/TOPS-20 error number for ERP.ORN. For e:ta.T..ple. (JSYSERROR
GJ FX23) is 600103Q. JSYSERROR compiles open as a constz:nt.

This pac!cage also defu:.es the following ASSEMBLE macros:

(JS JS"'i'SNA.\!E)

{CV EXPR)

(CV2 :e:x:?R}

23.13 NOBOX

Can be used in ASSEMBLE statements instead of (JSYS JSYSNIX..rBER).

Expands to (CQ (VAG (FIX EXPR))). which unboxes EX!'.R to AC1.

Expands to (CQ2 (VAG (FIX E.--c?a))). which unboxes EXrR to AC2. saving
AC1.

Note: Nobox is a LispUsen package that is contained on the file NOBOX. COM. It only works -,.,frh
lr.teriisp-10.

This package contains facilities for subverting the normal manner of dynamically allocating and collecting
cm:s cells. large mteger boxes. and floating boxes in Interlisp-10 by using static. compile-time allocation.
Storage allocation is controlled by allocating the memory for temporary results (e.g. a list that wiil be
thrown away or a floating n~ber that wtll not exist outside a local computational context) at compile·ti.1le
or load-time. This .. static·· storage will be reused whenever the given line of code is re-executed. Because
functions which use these facilities may exhibit bizarre behaviour if they are called recursively or if values
escape cw:side of them. these facilities must be used with extreme caution. and should be reser,..ed for
those cases where the normal method of storage allocation and garbage collection is not workable or
practical. Note: compiled functions need no run-time support for these facilities. i.e. NOBOX does not
have to be ioaded to execute compiled cede.

23.13.1 CONS Cells

The function CBOX may be used to avoid allocation of CONS cells. When run interpreted. CBOX is e::uctly
ec;uivalent to the f'..lnction CONS. Compiled. CBOX operates like CONS. except that the CONS cell reru:ned
is constructed (once) at compile or load time. New values for CAR and CDR are smashed into the cell at
each execution.

The function LBOX performs an anclagous role for LIST. When run interpreted. LB0X is exactly equivaient
to LIST. Compiled. the coqes9onding CONS cells are allocated at compile or load time. For e:v::un;,!e.

· • { LBOX A 8 C) will cause a 3-element static li~t to be included with a compiled function·s liter:iis. ~ch
tirn~ the corresponding compiled code is executed. those three cells will be'rcrurned contJ..ini::g c.,c cur.ant
valul!s of the variables A, 8, and c:
LBOX allccates as many cells as there are arguments in the corresponding form. i.e. the number of sc:-::uch
ceils is determined at compile time. The itcr:mve statement operator' SCRATCHCOLLECT enables .ivoidir.g
C0NSes when the lengc.h of a list is not known at compile-ame. SCRA TCHCOLLECT is used in itcm.:.ve
sr.accme:m exactly as COLLECT. ~ch time it 1s executed. it reuses £.he cells that it returned on orevtm.!s
executions; which it remembers as an internal scr:?.tch list. The lenath of this scratch list is al•,;,avs L'1e = .

23.54

o.: ..

n

0~

O·

0

o·

LISPUSERS PA"'CKAGES

lengt.'i. of the longest value th.at was ever returned: new cells are allocated whenever the scratch list runs
out. and they are permanently remembered.

Toe SCRA iCHCOLLECT i.s.opr and u"le- function SCRATCHLIST (page 14.2) have si::nilar a;,p!ications.
Wit.'1 SC~ATCHLIST. the user makes explicit the origin of the list getting smashed.. while with the
SCRATCMCCLLECT i.s.opr. the scratch list is hidden (and there is a different scratc!'l·list for each oc:ure~ce
of the i.s.opr).

23.13.2 Number Boxes

Tne functions IBOX, FBOX. and NBOX. and the record declarations I Box· and FBOX are provided to
improve the efficiency of arithmetic computations. They permit information to be given to the Interlis~· 10
compiler that will inhibit the allocation (and subsequent collection) of number boxes needed for holding
temporary results of numeric computations.39 In addition. access time to variab!e-,·alues that are known
to be large integers or floating point numbers is improved.

The records IBOX and FBOX essentially describe the structure of large integer and floating point boxes
respectiveiy. ISOX consis:s of a single field. called I. which corresponds to the actual conte:its cf :he la.--ge.
integer box. FBOX consistS of a single field. called F. which corresponds to the contentS of the floating
point box. For example. the user can create a large integer box containing a given value and assign it to
X by sayL'lg (SETQ X (create IBOX I .- FORM)). Even if the value of FORM is a small integer,
the result will be stored in a new. large number box. This seeming inefficiency is impor--...act be:ause if
some values of FORM might be large, making all values large means that the compiler can be told how •
to treat all refere:ices to X without generating run-time tests to disco·,er how to do the unbox:ing. Thus.
wherever the value of Xis to be referenced. the user simply writes (fetch I of X). In compi~g.this
expression. the compiler generates a single MOVE insuuction without any type-testing whatsoever. Tne
user can reuse that .:iu.-nber box by saying (replace I of X with (FOO)), which is equi.,.alent to .

. but much :nore efficent t..'lan. (SETN X (FOO)). In other words. once it is known that X is bound to a
!arge integer. (r9p 1 ace I of ...) can be used in all :iumber-contextS to inform the compiler of that
fact.

The facilities described so far do nothing to suppress the creation of unnecessary boxes: indeed. oe
(create IBOX --) will produces box~s for small numbers that would not be ailo:ated ct..,erwise. Tr.e
functions (not records} I30X, FBOX. and UBOX are used to suppress unnecess.u-y boxing of tem;,oraries.
Effectively, they cause .. constant" or "static·· boxes of the appropriate type to be aliocated a..:.d stored in a
function·s literals when a function is compiled or loaded. Those boxes can be use::i (and reused) to held
temporary results. ·

IBOX and FBOX can be called with O or 1 arguments. If no arguments are specified (as opposed to a
single argument whose value is NIL), then the value of the function is a large-integer or floating number
box which is allocated statically. For example. L'1ese might be used to construct an initial bi:iding fc: a
variable into which temporary values will be stored using the I or F assignments. For exa.mpje:

{PROG ((X (IBOX))) (replace I of X with {FOO)) ···)

39 In the latter respect. these duplicate some of what SETN (page 22.5) does. except that they are more
convenient to use and are executed wiL'l less run-time checking (i.e. SET N will never smash r:mdo:n
memory locations).

23.55

\.

,·
(

Cautions

If an argument is specified for IBOX or FBOX. then a static box of the appropriate type will be alloe2.t~d
at comoil~ or load-time, and :.i.i.e vaiue of the argument will be stored in that box whenever :."le I6OX
stamnent is executed. For example, suppose the ~er wanted to set a file pointer to l past a g:ve:1 byte
;,ositio:i. Tne expression

(SETFILEPTR FILE (ADOl POS))

wcuid generate a new number box on e:ich e::cecution for which POS h:?ppened to be a large number.
Th::it box would be passed icto SETFILEPTR and then returned as its value. Since the value is not saved.
the box would be thrown away. to be collec:ed later. The e:i:pression

(SETFILEPTR FILE {ISOX.{ADD1 POS)))

wculd store the desired position in a constant box. and no allocations would take place.

As another example. consider a complicated integer expression whose value must be saved in a variable
to be used a little further do.,,1n in a program:

(SETQ X {!PLUS 2000 (ITIMES FOO (!QUOTIENT FUM 5))))

(SETQ Z (!PLUS X (GETFILEPTR FILE)))

The Interlisp-"10 compiler is smart enough to suppress the boxing inside the (I PLUS 20 O O &) expression.
but it w-iJl generate a box when it comes to do ti.'le SETQ. This box can be suppressed by writing

{SETQ X (IBOX (IPLUS 2000 (ITIMES FOO (!QUOTIENT FUM 5)))))

Fur-..hermore, since it is known that X is bound to a large integer. the Z assignment can be speeded up
by writing .

(SETQ Z (IPLUS X:I {GETFILEPTR FILE)))

The function FSOX behaves the sa,.-ne as IBOX, except that it uses.cons.ant floating boxes. Note t.'lat if
the argument of !BOX is FLOATP. then it will be FIXed: if the argument of FSOX is FIXP. it will be
FLOATed..

The function NBOX is a generic function for copying unknown values into constant number boxes. [t
alloc::1tes two constant box.es. one integer and one floating, and stores the value of its argu:nent in i'..he one
compJtible wic.i. the value's type. NBOX is useful if the argument value is a constant number box lbut
one of unknown type) that needs to be copied (see caution (2) below).

23.lJ.J Cautions

There are some dangers in using these facilities. The user of this package should be par-Jcularly aware of
the fol!owing:

(l) The F and I fields aim at efficiency more than validity. This me:ins that they do not check ri:.e type of

23.56

n.

,~.
(\J
' /

0

0

0

LISPUSERS PACKAGES

the pointer that they smash into. For example. if Xis bound to NIL. the expression (replace I of X
w; th z will clobber CAR and CCR of NIL! The user must be very c.ireful t."iat the argt!!!lents given for
repladng do indeed point to cells that unboxed numbers can be smashed into. Note: the DECL pact.:?.ge
(~age 23.18) can be used to generate t.tie replaces. IB0Xes. FBOXes automatically in a safe and e~cie=.t

' way.

(2) CBOX. LS0X, SCRATCHC0LLECT, IB0X., and FB0X all allocate constant boxes. and t.'lose boxes will
be re~sed (i.e. smashed with new values) every time the co:ie ccnta.i:i.ing ti.'1at function call is ex~ .. m:ci.
If that box is saved in a variable or da.ta·srructure (e.g. by a SE TQ) as a way of ;:,rese:--ving tbe va!ue it
cont.:tins. and then tb.e code is re-executed. the value that was savec! will be sm:?S!lcd. Tr.us. the user Clt!St

beware of us,:ig constant boxes to save information in loops or recursions that can get ba:::k to c.i.e sa..rr.e
statement. In these situations. the values must be copied into ot.i.'ler cells. perh.aps a cons:.:..,t a.sso:ia~ed
with so.:te other line of cede. or into cells allocated in the ordinary way. The user must also be c~reful
abot..t returning a constaat box as the value of a function. since the calll!r might unknowma:ly SJ.Ve the
vaiue and re-invoke the box-returner.

(3) Because the constant boxes are allocated only in compiled code, these functions .,. .. m work quite
differently compiled and interpreted. Side effects which occur because of inadvenent smashing of shared
structures will only occur when running compiied definitions and will not be detectable whe:i running
interpreted.

23.14 DATEFOR!vl.c\T

Note: Datefonnal is a LispUsers package that is contained on the file DA TE FORMAT. COM. Ir only works
in Interlisp-JO.

· Dateformat is a small file (one function) which provides ¥5istance for constructing format bits for the
OOTIM JSYS (output date/time) as required by DATE and GOATE (page 14.9).

(DATEF0RMAT KEY1 ••• KEYN) [NLambda NoSpread Function}
Ia:Y1 • • • KEYNare a set of keywords (unevaluated). DATEFO:=:MAT re:-.i:-::.s a number
suitable as a parameterto DATE and GDATE. The variable DATE FORMAT. DE f AULT is
the number used as the initial vaiue to work with. Therefore. to S\1ritch ,my of
the defaults. set the variable DATE FORMAT. DEFAULT to be the ,·alue of a. c::.il to
0ATEF0RMAT with the appropriate keys.

The keywords are given below (usually in pairs) and can be thought of as switches (i.e. tum on or off a
particular format feature}. If no keyword is given for a panicular pair. the default is used.

The variable DATEFORMAT. KEYS is a list of the keywords used for spelling correction.

DA TE (default)
NO.DATE Do/don't include the date infonnauon.

NAME. OF. MONTH (default)
NUMBER.OF.MONTH

Show the·month as a name WAME. OF. MONTH) or a number (NUMBER. OF. MONTH).

MONTH.LONG

23.57

Dateformat

MONTH. SHORT (default)

YEA.R. LDr~G

If the name of th.e month was requested. spell it out (MONTH. LONG) or abbreviate
it (MONTH. SHORT).

YEAR. SHORT (default)
Print four digit year. e.g. 1978 (YEAR. Lm~G) or two digit year. e.g. 78
(YEAR. SHORT}.

DAY.OF.WEEK
rm. DAY. OF. WEEK (default}

Do/Oon:t include the day of the week in the date information.

OAY.LCNG
DAY. SHORT (default)

If the day of the week was included. spell it out (DAY. LOP,G) or abbreviate it (\ _
· (DAY. SHORT).

DASHES (default)
SLASHES
SPACES

USA.FORMAT

Separate the <day>, <month>. and <year> fields with dashes/slashes/spaces.

EUROPE. FORMAT (default)
Print the date in the order <month> <day> <year> (USA. FORMAT) or i:i the order
(day) <month) (year) (EUROPE. FORMAT).

LEAD rnG. SPACES (default}
UC.LEADING.SPACES

TIME (default)
r~o. TIME

TIME. ZONE

If LEAD ING. SPACES is specified. the <day> field will always be cv.-o chara.eters
long. If NO. LE,!\O ING. SPACES. the <day> field can be one charac:er for dates
earlier than the 10th.

Do/Don't include the time information.

NO. TIME. ZONE (default}
Do/Don't include the time zone in the time specification.

SECONDS (default)
NO. SECONDS Do/Don't include the seconds.

CIVILIAN. 7IME
MILITArtY. TIME (default)

. .
Use 12 hour time wich AM or PM (CIVILIAN. TIME) or 24 hour time

23.58 r----.
\)

C)

0

LISPUSERS PACKAGES

(MILITARY. TIME).

"'
23.15 EXEC

Note: The Exec package is a li.spUsers package that is contained on the file EXEC. COM. Tn.e Exec package
uses the passwords package (see page 23.62). Loading EXEC. COl'i1 will load PASSWORDS. COM if it has
not already been loaded. Note: some of the facilities described below will work con-ectly only on TEl·./EX
syszerr.s. others o:-tly on TOPS-20. The system will inform the user when he attempts to use a faciiity not
supported by his particular operating S')Stem.

This package defines a set of programmer's assistant commands which resemble features of the Tent::t
EXEC. [t also defines functions that provide certain EXEC capabilities for Interlisp programs. e.g. ch~ging
the connected directory, detaching the job. etc.

23.15.1 Exec Commands

DA

LO
SY
WHE

LO tTSERNA.'.!E

LD ALL

DET

QU

LINK USER
TALK USER . .

BR

CONN DIR P'WD

Prints out the current time and date.
(E.'tec Command]

[Exec Command]
[Exec Comm~dj
[Exec Coil".mand]

Prints SYSTAT information. just lite the LO subsystem. Jobs are sorted in in·,erse
order of CPU utilization.

[Exec Command]
Prints information for the specified user only.

[Exec Command]
Like LO, but includes system jobs.

[Exec Cot:m1andl
Detach.es the current job.

[Exec Command]
Does a (LOGOUT). Does not go on history list.

[Exec Command]
[Exec Commanc.l

Mimics the exec link command. tf USER has multiple jobs logged in. asks which
tty to link to.

[Exec Comma:1c!l
Breaks links.

[Exec Cornm:md]
Connects to the directory DIR. If the password PWD is not given and is rcqci:ec..
CONN will prompL DIR can be abbreviated: if omitted. it defaults to the user's login

23.59

·-.'---

Norn FILEGROtl°P

EXEC Functions

directory. If .?WD is given in command line. it is removed from the histcry list so
that ?? wiU not print it out. Password prompting is handled by GET?ASS',.i"QRD
from the passwords package (page 23.62).

Prints the files in FILEG.ROUP in a multi--column format.

NOIR FIZ.EGROCJP [E"Cec Cor..:r.and]
Deletes specified files. Uses OI°RECTORY (page 14.6). Note that if <esc> is speci5ed.
al/ files that match will be deleted. This command is undoab le.

UHO FII.EGii.OUP • [Exec Command}
Undeletes the specified files (undoabty).

O.E.L VER FILEGROUP [E.'tec Com.-nand}

EXP Dm

Deletes all but l version of the filegroup specified. Uses D !RECTORY (;,age
14.6), so FILEGROUP may utilize any of the options allowed for directory filegroup
specifications. ·

[E"Cec Command}
E,.vpunges directory DIR. If the user does net have access to DIP.. a c:.essage is
printed. ·

TY F!LE OUTFrLE BYTESIZE [Exec Command)
SEE FILE OUTFrLE BYTBSIZE [E."Cec Ccm.'.la.-:df

OSK om DAYS

FI

FI JFN

Copies FILE to OUTFILE. or to T if OUT FILE is not given. Assumes that tte bytes
of FILE are BYTESIZE bits wide (BYTESIZE= NIL defaults to 7). Suppresses blank
lines and control character sequences used to indicate font changes.

[Exec Command}
Prints out disk allocation and usage for the directory om using OS KS TAT. Aiso
prints total size of files untouched in days DAYS (90 if DAYS not specified).

[faec Commanc}
Like t.'le EXEC FILE ST AT command. prints out starus of all currently :lSsigned
JFNS for the current job.

[Exec CoII".mandl
Prints information for JFN only.

23.1:5.2 E.."XEC Functions

(JOB#) [Function)
Returns the job number for the logged in job.

(TTY#) [Function}
Returns the teletype-number of the current job.

{DETACH) [Function I
Detaches the current job.

23.60

n
\ / ~

<:-·
' /

()
' .·

()

.o

0

(OETACHEDP)

... ,_,-----------------------------

LISPUSERS PACKAGES

[Function]
Returns T if the current program is running detached.

{LINKTOTTY TTY#) [Fun:ticn]
Genera:es a two-way link between the controUing te:minal of the user"s job .a::id
TTY#. Returns T if the link was successful., otherwise prints an error message and
returns M I L.

(LINKTOUSER -USER) [Function)

·. (BREAKLINKS)

Links t.1.e controlling terminal to a terminal associated with USER. Generates ::.,
error if the user is not logged in or not attached. If USER has more t.:.i.an one
attached job. then a systat of his jobs is printed. and the user is asked to provide
the proper tty nwnber for the job. Returns T if successful.

[Function]
Breaks all links to the user's controlling terminal.

{CNDIR DIR PASSWORD} _ [Function]

(/OELFILE FILE)

{/UNOELFILE F.II.E)

(EXPUNGE DlR)

Implements the CONN command.

[Function]
Undoable version of DELFI LE.

[Function]
Undeletes a single file (undoably).

[Function}
Expunges directory DLR. On TENEX. Dm is ignored. and the connected directory
is expunged. On TOPS20. if the user does not have access to om. a message is
printed.

{COPYALLBYTES FROMFILE TOFII..E BYTESIZE)
Implements the SEE command.

[Function}

{ DSKSTAT DIR PRINTI:FOV'ER PRINTSYS PRINTDEL PRINTOLD) [Function] o: Prints disk usage statisti::s for directory DIR (either a name or number}.

:.J

-.

If PRINTIFOVER is NIL. this means always print. If PP.INTIFOVER is T. this me3J."'l.S
only print if DIR is over allocation. If PR!NTIFOVEF. is a number. this" means only
print if DlR has more than that many pages in use.

If PRINTSYS is T. this means print system disk statistics too.

If PRINTDEL is T. this means print total size of deleted files for DlR (this is slow). .
If PRINTOLD is T or a number. this means print total size of files untouched in 90
(or PRJNTOLD) days .

. (MEMSTAT PGl PGN FORK) [Function}
Prints the status of the memory pages PG1 · (0 if PGl =NIL) to PGN (the tast pafe
of memory if NIL) in fork FORK. FORK is either NIL. meaning the currem [0:-k.

23.61

\;

Passwords

or a fork liand.le.

..
23.16 PASSWORDS

Note: Passwords is a LispUsers package Lr.at is contained on the file PASSWORDS. COM. It only '1-'0rks with
lr.terlisp-10.

(GET PASSWORD .O!RECTORYNA.\f.E} [Function]

23.17 TELNET

Prompts the user for the password for the given directory. The user·s response
is. not echoed. GET PASSWORD remembers the password so that it need not ask
again: however. saved information is cleared before SYSOUT. so that the SYSOUT
contains no passwords.

Note: Telnet is a LispUsers package that is contained on the file TELNET. COM. It only works with
interlisp-IO. Since lhe telnet package uses the net packcge. loading TELNET. COM will also load NET. COM
unless it has already been loaded.

This package makes it possible co inter-c:.et with conne::tions created via the net package (page 23.64)
wit:.i.out leaving [ncerlisp. In addition. all typeout is included in the OR IBBLE file. It pen:tits connections
to ARPANEThosts {a la TELNET).

(TELNET CONNECTTON Tr.:>E SKT -) [Function}

23.18 ITP

CONNECTTON may be an instance of a CONHECTION record (as c:-e.'.lted by
MAKENEWCOTlNECTION, page 23.64). Alternatively, if CONNECTION is a lit.atom.
TELNET uses (MAKEr!EWCONNECTION CONNECTION TYPE SKT) for the con·
nection. In any case. TELNET returns the connedon as an insr.a..'lce of :..."le
co;-rnECTION record. so that ic is possible to TELNET back.

Note: Ftp is a LfspUsers package that is contained on the file FTP. COM. It only works with lnteriisp-10.
Since the Ftp package uses the net.and passwords packages. loading FTP. COM will also lo_ad NET. COM and
PASSWORDS. COM 1/ they are·nol already loaded.

The ttp package makes it possible co deal with files at other hoses on the Arpa network almost as if they
were files on the user"s local machine. i.e. the files can be opened via INF ILE. OUTFILE. OPENFILE.
read from and printed co by the ordinary reo.ding and printing functions. J.lld dosed in the sc:mci.'.lrd way.

Files on remote hoses are designated by including the host name between curly br.:ickecs. {}. Jt c..'1e
front of the ordinary file name. Since curly brackets are illegal characr.crs in regular file n.'.lliles. J. BAD

23.62

r ··.
' "'. _ J -

r----
i)

'· /

0

0

I·· "\ I ' ,.,
t.. __ .J

LISPUSERS PACKAGES

FILE r,i,.ME error is generated. This error is intercepted by an entry on ERRORTYPELST (see page
9.16) which then establishes the appropriate network connections.4° For exa.-npie, (I~FILE '{SSN­
O}<LE\HS>!fHT. LIS?) will open the file <LE'WIS>IN_IT .LISP on the host BBN-0 and :r..ake it ce
the prunm-; input fil-:. The cser could ihen say (READ) to obtain the first ex;:,ression on that file. The
ftp package extends the fu.m:tions PACl<FILEllAME, UNPACKFILENAME, and F ILENAMEFIELO so t..'.at
ti.'ley will associ:itc the curly bracket syntax with the new file field HOST. Thus, { PACKFILENAME 'HOST
'Si3HD 'NAHE 'I UT) will return {BoND} IN IT.

Remote files have cenain properties that limit how they may be used:

(1) RANDACCESSP is NIL for such files. and SETFILEPTR may not be applied to them. Titis means, for
exa.-:npie. that functions a.,d variables may not be loaded from such files ,·ia LOAOFNS.

(2) The open bytesize of a remote file may not be changed (e.g. by SETFILEINFO.). This me:?.lls that
Interlisp-IO compiled files may not be loaded from remote hosts.

(3) The remote host may close the connection spontaneously (e.g. because of a timeout if the file is not
refere:::iced for some length of time. or because of a crash). If t.i.iis happens. the next attempt at reading
or writing on the file will generate FILE DATA ERROR. Note: it is unwise to keep a remote file open
for long periods of time.41

When the connection for the remote tile is first established, a password for the remote machine/ directory
may be required. Toe user will be asked to supply one via the passwords package (page 23.62).
Alternatively, if the host name has on itS property list the property LOGIN with value of the form (NAMZ
PASSWORD ACCOUNT), then the indicated NAME. PASSWORD. and ACCOUNT will be used to log the user
into the remote host. 42

(FTP HOST FILE ACCESS USER PASSWORD ACCOUNT BYTESIZE) [Function]
Opens a network connection to the ftp server at HOST. If ACCESS= INPUT
or OUTPUT, FTP works lii(e OPEfffILE: value is a literal atom of t.lie form
{HOST}Fru: which can t..rien be used as a file name by all Interlisp input and output
functions, e.g. READ, PRINT, COPYBYTES, etc.43 For example, (FTP 'SU-AI
'YU:.1YUM%(P ,DOC'%] 'INPUT) will allow the Stanford Res.raurant Guide to be
read. Note that F'ILE must satisfy the file name conventions of t..'1e remote host.

40Note: it is fairly expensive to open a network connection as compared with the time to open a local
file, e.g. an order of magnitude slower.

. .
41 For input files. these limitations may be skirted conveniently in the following way: if a colon appears be­
tween the iast character of the host name and the right curly bracket (e.g. {BBNO: }<LEWIS> INIT. LIS?).
then the remote fiie will be copied to a temporary local file when it is opened. and all subsequent references
will be to that local file.
4:Ifthe value is of the form (N'AME NIL ACCOUNT). then (GETP.~SSWORO NA..\fE) will be used for
the password. If the ACCOUNT field is r, IL. no account will be supllicd to the remote host. lf no LOGIN
j,ropcrty is supplied.· ANONYMOUS will be used as the user name.
43 1n reality. this ··file"' is a network connection to the host"s ftp server. lbis "'file"' has a WHENCLOSE
attribute (page 6.11) associated with it so that when Interlisp closes the file. the correct terminating
sequence will be performed.

23.63

23.19 ~""ET

Net

If ACCESS=DIRECTORY, then FTP will print on the terminal the nar::es of
all files which match FILE, e.g. {FT? 'PARC-MAXC2 '<NETLISP>*.SAV
'DIRECTORY).

uszR. PASSWORD, and Accour,,-r are used for logging in to the remote host. if not
supplied, the values are obtati~d frcm the LOG In prcperty (if any) z.s c!escri:ed
above. BYTESIZE is the byte·size in which to open the connection. Byte sizes of i,·
8. 16. 32 J.nd 36 are supported. BYTESIZE= NIL c!efaults to 7.

Note: Net is a li'spUsers package that is contained on the file NET. COM. It only works with lnterlis;;-10.

Tnis package con .. 'lins functions for es~blishing ARPANEf connections from an Interlisp-10 job. A
con:iecticn is d.escrib~d by and is an instance of the record CONNECT ION. The only fields of interest to
L~e user in t.lus record are IN and OUT, which are guaranteed to be CAR and CADR. respectively. IN is a
file na.:ne which can be read from. OUT a file name which can be printed to.

{MAKENEWCONNECTIOU HOST TYPE SKT SCRATCHCONN WAITFLG) [Function]
Makes a connection to HOST. For TYPE= ARPA. HOST is the name of the hcst
to which the connection is to be made. For SKT= NIL (the normal c3.Se). the
connection will be to the telnet server of HOST: connections to other servers c:m
be made by supplying the appropriate value for SKT.

The value of MAKENEWCONNECTION is a CONNECTION. If WAITFLG is non-NIL.·
MAK EN EWCONN E CT ION waitS until ics request for connection is ack:;.owiec.ged..
Otherwise. CHECKCONNECTIOt-1 must be called on the result before it is used
(this allows additional processing to be <!one while waiting for the rer:iote host to
re~o~~ -

If SCR.ATCHCONN is non-NIL. it is a scratch connection which is reused.
()-

For example, (MAKENEWCONNECTim~ 'BBND) makes an ARPA connection to BB~TI. (MAKENEWCONNECL. _.;·,
• SU-AI 'ARPA 'F rnGE~) makes a connection to the Stanford WHERE IS service.

(CLOSECONNECTION CONNECTION) [Function]
Ooses the given CONNECTIO~ and replaces the IN and OUT fields with N: L.

{ CHECKCONNECT ION CONNECTION) [Function]
Checks to make sure that the given connection is still open (e.g. ic h2.5;:i·t bee:i
closed remotely). If the connection is valid.· CONN~CTION is returned. If the .
connection is in an in-between state. i.e. in the process of being op~ned or
closed. CHECXCONNECT ION waits to sec what happens bdorc rcturnmg. Ot.!':~:-,.i.ise
the connection is cleaned up (as if a CLO"SECONNECTION were performed) Jed
CHECKCONNECTION rerurns NIL.

(NETSERVER ARPA# WAITFLG) [Fu!:c:wnj
[mtbtcs :.1 ··scrv~r"· connection. ·rnis is a connection which w1ll ulk to :.1 ··:..:s~~ ..
connection. [f WAITFLG is non-NIL. waitS for a user to connect: if WAIT:LG =~Ir L.

23.64

().
LISPUSERS PACKAGES

(NETUSER HOST

-rerems immediately (and CHECKCOrrnECTI0'4 must be called on the con.::.ection
before t.i.i.e connection is actually used). ARPA# defaults to 0.

USER AF.PA# WA.ITFLG) [Ft.:i:ctioz:.]
Initiates the other half of an Arpa cor.nection. ARPA# defaults to O a."ld oust be
the same as t.'le argument given t.'le corresponding call to NETSERVER. t.'SER must
be the USERMUMSER (directory number) under which the server job is legged in.

For exa.·n:;:,le. to establish an ARPANET connection between two Interlis;, jobs (whi::h c::l.Il t.~en be
written to a.'1d read from like files}. do (SETQ CONrl (NETSERVER)) in one job and (SETQ CO!lN
(r~ETUSER HOST USER)) in the other job. where HOST is the machine on which the first job is
runr.ing and us~R is the directory number under which the first job is logged in (cbta:.nab!e th1"ot.:gh t.:.1"1e
function USERNUMBER). Then. perform (CHECKCONNECTION corm) in eJCh job~ when these return.

,,.- the connection is ready to be used. '- u (FORCEOUT CONNECTION/Frr..E) {Fun.:tion]

(,,---)
... - "----.-

Normally. characters sent to the "OUT" of a connection are buEered locally. Tne
r • .mction FORCE OUT can be used to force panially filled packets of bytes to be sent
across the connection. The argument to FORCE OUT can either be the CONNECT ION

record or the OUT filename.

23.65

(
_

/

\
)

0

{ A Ez • • • EM) (Editor Command) 17.~24

a-lists (in EV ALA) 5.12

A000n (gensym} 2.11

ABBREVLST {Variable) 6.53

(ABS x) 2.4S

AC (in an ASSEMBLE statement) 22.19

ACl 22.19; 22.12.14

access chain 7.2

ACCESSFNS (Record Type) 3.8
,.---,
/ \ active frame 7.2
·._)

.o

(ADO .DATUM ITEM1 ITEM:.z ···)
(Change Word) 3.13

(ADO. PROCESS FORM PROP1 VALt7Ez
PROPN VALUEN) 18.26

(AOOl X) 2.39

(AOOMAPBUFFER TEMP ERRORFLG)
14.18

(AOOMENU MENU WINDOW POSITION
-) 19.38

(A.DDPROP ATM PROP NEW FLG) 2.7

{ ADC SPELL X SPLST N) 15.17; 15.18·19

ADDSPELLFLG (Variable) 15.12: 11.4;
15.14.18

(AOCSTATS STAT1 •·• STATN) 8.21; 18.6

(AODTOCOMS COMS NAME TYPE -
-) 11.33

(AOOTOFILE NAME rt?E FILE -
-) 11.33

(AODTOFILES? -) 11.8

(ADDTOSCRATCHLIST VALUE) 14.2

{AODTOVAR VAR _x1 X:1 .:. XN) 11.38

(AOOVARS (\';-\.R1 • L.ST1) • • • { VARN
• I..STr,:)) (File Package Command}
11.23

(ADIEU VAL##) 7.16

{AOJUSTCOLORMAP PPJM.ARYCOI..OR DELTA
COI..ORMAP) 19.46

INDEX

(ADJUSTCURSORPOSITION .om.TAX
DELTAY) 19.16

A9V-PROG (Function) 10.8·9

ADV-RETURN (Function) 10.8·9

ADV-SETQ (Function) 10.8·9

advice 10.8

(ADVICE FN1 ••• FNN)
(File Package Command) 11.24;
10.11

AOVI CE (File Package Type) 11.15

ADVICE (Property Name) 10.10-11: 1L12

ADVINFOLST (Variable) 10.10

(ADVISE FN1 ... FNN)
(File Package Command) 11.24:
10.11

{ADVISE FN WHEN WHERE .Wli'A.T)
10.9: 10.8

ADVI SEO (Propeny Name) 10.9; 5.9

ADVISEDFNS (Variable) 10.9-10

(AOVISEDUMP X FLG) 10.11

advising 10.7

AFTER (as argument to ADVISE) 10.9;
10.8

AFTER (as argument to BREAKIN) 10.5;
9.2

After (DEdit Command) 20.4

AFTER UTATOM (Prog. Asst. Command)
8.13; 8.20.27 -

AFTER (in INSERT command)
(in Edizor) 17.25

AFTER {in MOVE command) (in Editor)
17.29

AFTEREXIT (Process Property) 18.2i

AFTERMOVEFN rWindow Property} 19.32

AFTERSYSOUTFORMS (Variable) 6.8;· 14.4

ALAMS (Variable} 12.7

ALIAS (Property Name) 10.4; 10.6

ALINK 7.2.6

Index.l

(ALISTS {VA.RI KEY1 KEY2 ···)
• •• (VARN KEY3 KZY4 • ••))
(File Package Commani:i) 11.23

ALISTS (F:1e Package Type) 11.15

ALL (in evenl specifa:aJ.ion) 8.6

ALL (in file package command PROP)
11.23

ALL (Liratam) 11.35

{ALLOCATE. PUP) 21.15

{ALLOCATE.XIP) 21.ll

11 -- {ALLOCSTRING N lNl'TCXA.R OLD) 2.28

{ALLOF TYP'E1 •• • TYPEN)
(Deel Type Expression) 23.26

{ALLOW.BUTTON.EVENTS) 18.36

ALL?ROP (LitaJ.om) 5.9; 8.24; 11.4.38

ALONE (type of read-macro) 6.31

{ALPHOROER AB) 1~9

ALREADY UNDONE (Printed by System)
8.11; 8.34

ALWAYS FOP..M (LS. Operator) 4.6

ALWAYS (type of read-macro) 6.31

AMAC {Property Name) 22.13

AMBIGUOUS (Printed by DWIM) 15.13

r AMBIGUOUS DATA PATH (Em,r Message)
_ · 3.2

AMBIGUOUS RECORD FIELD
{Error Message) 3.2

AMONG (ivfasterscope -Pazh Option) 13.14

ANALYZE SET (Masterscope Command)
13.5 .

{ ANO Xz X:z , • • XN) 4.2

ANO (in e\·ent specification) 8.7

ANO (in USE command) 8.8

ANSWER (Variable) 6.62

(ANTILOG X} 2.46

ANY (in Deel package) 23.25

INDEX

(APPEND x1 x2 ... XN) 2.16

(APPLY FN ARGUST -) 5.12; 12.14

(AP~L Y• F'N A.RGI ARG2 • · · ARGN)
5.12; 12.14

approval (of D WlM corm:zions) lS.3;
15.2.18

APPROVEFLG (Variable) 15.12; 15.18.20

(APROPOS STRING A.U.FI.G) 14.l

(ARCCOS x RADIA.NSFZ.G) 2.46

ARCCOS: ARG NOT IN RANGE
(Error Message) 2.46

ARCH IVE EnzJtS;,ec {Prog. A.SSL Command)
8.13

ARCHIVEFLG (Variable) 8.19

ARCHIVEFN (Variable) 8.19; 8.13

ARCHIVELST (Variable) 8.25; 8.32

(ARCSIN X RADIA.NSFLG) 2.46

ARCSIN: ARG NOT IN RANGE
(Error Message) 2.46

(ARCTAN X RADL\NSF!.G) 2.46

(ARCT AN2 Y X .R.ADIANSFI.G) 2.46

SET ARE SET (Ma.sterscope Command)
13.5

(ARG VAR M) 5.4

ARG ~OT ARRAY (Error }vfessage)
2.33

9 .,,,__

ARG NOT HARRAY (Error Message) 9.2-6

ARG NOT LIST (Error t\.f essage) 9.22:
2.15.17.25-26

ARG NOT LITATOM (Error Message) 9.23:
2.5-6.8; 4.3; 5.2.8: 6.4: 11.38

(ARGUST FN) 5.7; 9.6: 22.3

ARGNAMES (Propeny Name) 5.1

ARGS (Break Command) 9.6

ARGS NOT AVAILABLE (Error ~fessag~
5.7

(ARGTYPE FN) 5.6; 22.3

Index.2

C).

0.

().

0

.:J

0

argument list S.2

arithmetic functions 2.38

AROUND (as argument to ADVISE) 10.9:
10.10

AROUND (as argume1it to BREAKIN)
10.5: 9.2

{ARRAY NP v) 2.34

(ARRAY SIZE TYPE 1NlT ORIG) 2.32

array header (in Interlisp· 10 arrays) 2.33

a.-ray pointers (in lnterlisp-10 arrays)
2.33: 2.34

(ARRAYBEG A) 2.34

ARRAYBLOCK (Record Type) 3.8

{ARRAYORIG A) 2.3:¥34

(ARRAYP X} 2.2.34: 22.25

ARP.AYRECORD (Record Type} 3.6

arrays 2.32: 2.2

ARRAYS FOULED (Error Message) 22.8

ARRAYS FULL (Error Message) 9.24; 2.34

(ARRAYSIZE A) 2.33

(AR:=!AYTYP A) 2.3:;.34

AS VAR (l.S. Opera1or) 4.9

(ASXUSER WAIT Du~UI.T MESS
ICEY.LST T'YPEABEAD USPXPRNTFLG
OPTIONSI.ST FZLE) 6.57.64

ASKUSERTTBL (Variable) 6.59

ASSEMBLE macros 22.13

ASSEMBLE statements 22.12

ASSERT (in Deel package) 23.24

assignments (in Pattern Match Compiler)
. 23.S

assignments (in CL/SP)" 16.7

(ASSOC KEY ALST) 2.25

associauon list 7 .1

ASSOCRECORO (Record Type) 3.6

INDEX

(ATOM X) 2.2

atom hash table · 22.11

ATOM HASH TABLE FULL (Error Message)
9.23

ATOM TOO LONG (Error Message) 9.23;
2.4

ATOMRECORO (Record Type) 3.6

(ATTACH X L) 2.li

ATTEMPT TO BIND NIL ORT
(Error Message) 9.25: 4.3: S.2

ATTEMPT TO RPLAC NIL (Error Message)
9.23: 2.8.15

ATTEMPT TO SET NIL (ETTOr Message)
9.23; 2.!i

ATTEMPT TO SET T (ETTOr Message) 2.5

ATTEMPT TO USE ITEM OF INCORRECT
TYPE (ETTOr Message) 9.24

(AU-REVOIR VAL##) 7.16

AUTOBACKTRACEFLG (Variable) 20.11

AUTOCOMPLETEFLG (ASKUSER option)
6.63

AUTOPROCESSFLG (Variable) 18.25

AVOIDING SET (Mascerscope Path Option)
13.14

(AWAIT .EVENT EVENT TIMEOUT TIMERP)
18.30

(B E1 ••• EM) {Editor Command) 17.8.24

back-quote 6.39

background shade 19.6

BackgroundMenu (Variable) 19.22

Bae kg roundMenuCommands (Variable}
19.22

BACKGROUNOPAGEFREQ (Variable) 18..J

backspace 6.13.41

backtrac!!' 9.6: 7.8.12

lndex.3

. ,

/"
i
'--

(BACKTRACE IPOS E?OS FI.A.GS FrL,E

PP.INTFN) 7.8

backtraee fr-c:.me window 20.10

BACKTRACEFONT (Variable) 20.11

SP,O ARGUMEHT - FASSOC
(Error Message) 2.25

SAO A?.GU~ENT • FGETO (Error Message}
5.S

BAD ARGUMENT - FLAST (Error Message)
2.20

-,BAO ARGUMENT. - FLENGTH
(Er.or Message) 2.21

BAO ARGUMENT - FMEMB (Error Message)
2.23

BAD ARGUMENT - FNTH (Error Message)
2.20

BAO FILE NAME (Error Message) 9.25

9AO FILE PACKAGE COMMAND
(Error Message) 11.22

BAD PROG BINDING (Error Message)
12.21

BAD ·SETQ (Error Message) 12.21

BAD SYSOUT FILE (Error Message) 9.24

{ BAK TRACE IPOS EPOS SKI?FNS FLAGS
FILE) 7.8

BAKTRACELST (Variable) 1.9

basic frame 7.2; 7 .1.5

{BCOM?L nI..ES CFII.E - -) 12.17:
12.14.16

BEFORE (as argument to ADVISE) 10.9:
· 10.8 •

BEFORE (as argument to BREAKIN)
10.5: 9.2

Before (DEdit Command) 20.4

BEFORE !.ITATOM (Prog. Asst. Command)
8.13: 8.20.27

BEFORE (in INSERT command)
(in Edilor) li.25

INDEX

BEFORE (in MOVE command) (in Eduo1
17.29

BEFORESYSOUTFORMS {Variable) 14.3

bell (in history event) 8.16: 8.11.26.32

bell (Printed by System) 6.19: 22.2.11

bells (printed by DWIM before an inleractior:}
15.3

(BELOW COM) (Editor Command) 17.19

(BEL0\11 COM X) (Editor Command) 17.19

BETWEEN (record field type) 3.7

BF (Edi_ror Command) 17.7

BF PATTERN {Edilor Command) 17.17

(BF PATTE:W) (Editor Command) 17.17

BF PATTERN T {Editor Command) 17.17

BF PATTERN NIL {Editor Command}
17.17

(BI N} (Editor C omrru:znd} 17.31
•

(BI N M) (Editor Command) 17.31

(BIN STRE.4.M) 1&12

(BIND COMS1 ••• COMS!V)
(Editor Command) · 17.49

BIND VAR (l.S. Operator) 4.1

BIND VARS (l.S. Operator) 4.1

BI NO (in Masterscope template) 13.17

BIND (Masterscope Relation) 13.9

bindings in a basic frame 7.5

BINDS (Lilatom) 16.14

{ 8 IT BIT# WORD) 23.53 •

bit tables 2.32

(8 ITBLT SOURCEBITMAP SOURCEI..EFT
SOURCEBOTTOM DEST!NATTONB!TMAP
DEST!NAT!ONLEFT DEST!NATIONBOTTOM
WIDTH HEIGHT SOt'RCET'YPE
OPERATION TEXTURE
CLIPPINGREGION) 19.J

(BITCLEAR N MA.SK} ~41

Index.4

CJ

n

()

n

o--

o·

0

0

INDEX

(BITMAPBIT BITMAP X Y NEWVALu'E)
19.4

(SITHAPCOPY BITMAP) 19.4

(BITMAPCREATE WIDTH HEIGHT
'SI"::S:?ERPIXZL) 19.4

(BITMAPHEIGHT BlTMA.P) 19.4

bi:ma;,s 19.3

(BITMAPWIDTH BITMAP) 19~

BITS (as a field specification) 3.15

BITS (record field type) 3.1

{BITSET N MASK) 2.41

(BITSPERPIX:.L BITMAP) 19.4

(BITTEST N MASK) 2.41

_ BK (Edi1or Command) 17.7

(BK N) (Editor Command) 17.11

{BKLINBUF STR) 6.47

(BKSYSSUF X FLG RDTBL) 6.47; 22.6

BLACKSHAOE (Var.able) 19.6

BLINK 7.2

blip functions 7 .12

blips 7.12

(BLIPSCAN .B.t..I?TYP lPOS) 7.12

(BLIPVAL BLlP'!'YP IPOS FLG) i.12

SLKAPPL Y (F!lnction) 12.14

BLKAPPL y• (Function) 12.14

BLKA?PLYFNS (in Masterscope Set Specification)
13.11

BLKAPPLYFNS (Variable) 12.14; 12.15-16

B0LKFNS (in Masterscope Set Specification)
13.11

BLKLIBRARY (Variable) 12.14; U.15 · •

BLKLISRARYDEF (Property Name) 12.14;
8.21

BLKNAME (Variable) 12.15

(BLOCK USECSWAIT TIMER) 18.28

block compiling 12.13

block compiling functions 12.16

block decla.--ations 12.14; 11.25

bJock library 12.14 ·

(BLOCKCOMPILE BI.KN.AME BLKFNS
ENTRIES FLG) 12.16; 12.15

BLOCKED (Printed by Editor) 17.51

{BLOCKS BLOCK1 ••• BLOCKN)
(File Package Command) 11.25;
12.14

(BO N} (Editor Command.) 1731

BORDER {Window Property) 19.32

(BOTH TEMPLATE1 TEMPLATE2)
(in Maslerscope template) 13.18

BOTTOM (Argument to ADVISE) 10.9

(BOTTOMOFGRIDCOORO GRmY G.RmSPEC)
19.43 ·

BOUND IN (in Deel package) 23.23 .

(BOUNOP VAR) l.5

(BOUT STREAM BYTE)

(BOXCOUNT TYPE N)

BOXCURSOR (.Variable)

BOXED (Variable} 23.50

boxed numbers 2.37

boxing 2.36; 22.3-5

18.ll

14.14

19.36

Boyer-Moore fast string sear-Jling algorithm
6.10

BR (Exec Command) · 23.59

brackets (use with ftp package) 23.62

Break within a break on FN
(Prin_ted. by System) 9.ll

Break (DEdit Command) '20.6

BREAK (Error Message) 9.23

{ BREAK x) 10.4: 9.2: 10.1.5-6

BREAK (Litatom) 9.17

BREAK (Synra:x Class) 6.35

break characters 6.33: 6.14.46

lndex.5

break COIIl!I".2.0ds 9 .3,12 .

break e~pressio:i 9.2.8

SREAK rnsERTEO AFTER
(Printed by BR.EAKIN) 10.6

{BRC:Al{O FN WEEN COMS - -)
10.3: 10.4-6

(BREAK 1 :aR.KZXP B~ BP..KFN
BRKCOMS SRKTY1'E Ea.RORN) 9.11;
9.14: 10.l ·S; 15.20: 22.1

BREAKCHAR (Synlax Class) 6.33

- (BREAKCHECK ERRORPOS ERXN) 9.10;
(9.14,16.22

/

'-··

BREAKCHK (Variable) 9.16

BREAKCOMSLSi (Variable) 9.12

BREAKCOf-iNECTION (Function) 18.15

BREAKOELIMITER (Variable) 9.6

{BREAKDOWN FN1 •• · FNn). 14.15

(BF.EAKIN FN WHERE WHEN COMS)
10.5; 9.2; 10.1·2.4,6 .

breili'lg CLISP expressions 10.3

(SREAKLINKS) 23.61

BREAKMACROS (Variable) 9.12

(BREAK READ TYFE) 9.12

BREAKRE·~!or,sPEC (Variable) 20.11

BREAKRESETFORMS (Variable) 9.13: 6.39

(BRECOMPILE FrLES CF"lLE FNS -)
12.17: 11.8; U.14,16

BRKCOMS {Vanabie) 9.12: 9.4·5,11: 10.3

BRKDWf~COMPFLG (Variable) 14.17

(BRKOWNRESULTS RET~"VALUESFLG)
14.16

BRKDWNTYPE (Variable) 14.16: 14.17

BRXDWNTYPES (Variable) 14.16

BRKEXP (Variable) 9.2: 9.5.7·8.10·12: 10.3

BRKF rLE (Vanable) 9.12

BRKF N (Variable) 9.11: 9.3: 10.3

INDEX

BRKINFO (Property N<Z!'fe) 10.3,5-6

BRKINFOLST (Variable) 10.6-7

BRKTYPE (Variable) 9.12

BRKWHEN {Variable) 9.11: 10.3

SROAOSCOPE (Property Name} 16.ll

BROKEN (Property Name} 10.3; 5.9

BROKEN-IN (Property Name) 10.S;
5.9; 10.6

BROKENFNS (Variable) 10.3-6; 15.20

brush 19.14

BT (Break Command} 9.6

BT (dL71lay break command) 20.10

BT I {display break command) 20.10

BTV (Break Command) 9.6

BTVI (Break Command) 9.6

BTV• (Break Command) 9.6

BTV+ (Break Command) 9.6

BUF (Editor Command) 20.37

BUILOMAPFLG (Variable) 11.39; ll.4;
u.u

BURY {Window Menu Command) 19.20

(BURYW wrNDOW) 19.27

BUTTOr:EVENTFN (Window Property) 19.30

BY FORM (with IN/ON) (l.S. Operator)
4.9

BY FORM (without IN/ON) (l.S. Operator)
4.9: 4.8.12

BY (in REPLACE command) (in Editor)
17.2S

(BYTE SIZE POSITION) (Macro) 2.42

(BYTEPOSIT ION BYTESPEC) (Macro)
i.42 .

(BYTESIZE BYTESPEC) {Macro) 2.42

C (in an ASSEJI BLE sta1emen1) 22.14

C (MAKEFILE option) 11.7

Index.6

Cl

()

n

()

0

0

0

0

C ••. R functions 2.14

CALL (in Ma.sterscope template) 13.17

CALL (Ma.sterscope Relation) 13.8

CALL SOMEHOW (Masterscope Relation)
13.8 .

CALL O I RECTL Y (Masterscope Relation)
13.9

CALL FOR EFFECT (Ma.sterscope Relation)
13.9

CALL FOR VALUE (Masterscope Relation)
13.9

CALL INDIRECTLY (Ma.sterscope Relation)
13.9

(CALLS FN t'SEDATAB.ASE -) 13.19

(CALLSCCODE FN -) 13.19

CAH' T - AT TOP (Printed by Editor)
17.10; li.3

CAN'T BE BOTH AN ENTRY ANO
THE ·sLOCK NAME (Error Message)
12.20: 12.16

CAN'T FihO EITHER THE PREVIOUS
VERSION ••• (Printed by System)
11.11

CAP (Editor Command) 17.41

(CAR X) 2.14

{CARET NEWCARET) 19.15

ca..-riage-rerum 6.13.16; 8.30

carriage-return (ED IT A command) 23.49;
23.48

(CASEARRAY O.LDA.RR.AY) 6.10

CAUTIOUS (DWIM mode) 15.3; 15.2.20:
16.3-4

CBOX (Function) 23.54

(CCODEP FN) 5.6; 22.3.25

(CCR X) 2.14

Center (D£dit Command) 20.5

CENTERFLG (Menu Field) 19.40

INDEX.

(CENTERPRINTINREGION EXP REGION
DI.S'PLA.YSTREAM') 19.13

C¥XPR (Litatom) 5.6
CEXPR• (Litatom} 5.6; 5.7

CFEXPR (Litatom) 5.6: 5.7
CFEXPR• (Litatom) 5.6; 5.7

CH.DEFAULT .DOMAIN (Variable) 21.12

CH.DEFAULT.ORGANIZATION (Variabk)
21.12

(CH. OOMAI NS DOMA.lNPATTERN) 21.13

(CH. ENUMERATE OBJECTPATTERN
PROPERTY) 21.13

(CH. LOOKUP. USER NA.ME) 21.13

CH. NET. HINT (Variable) 21.12

(CH.ORGANIZATIONS ORGANIZATIONPATTER.N')
21.12

(CHANGE DATUM FORM) (Change Word)
3.13

(CHANGE I TO B 1 ••• EM)
(Editor Command) 17.25

(CHANGEBACKGROUND SBADE} 19.6

(CHANGE CALLERS OLD NEW TYPES FlI.ES'
M:ETHOD) 11.18

CHANGECHAR (Variable) 6.55; 17.22

(CHANGECURSORSCREEN SC'P..EENoIT?.!A.P)

19.49

CHAtlGED {M.4.RKASCHANGED re::son)
11.11 .

CHANGED, BUT NOT UNSAVED
(Printed by Editor) 1 i .54

CHANGEFONT (font class} 6.55

• {CHANGEFONT FONTCI..ASS1 6.57

(CHANGEHAME FN FROM TO)' 10.7; 17.58

CHAHGEOFFSETFLG (Menu Field) 19.40

(CHANGEPROP X PROPI PROP2) ~7

CHAHGESARRAY (Vanable) 17.::!2

(CHANGE SLICE N HISTORY -) 8.18:
8.26

Index.7

r

Change:ran 3.11

CHANGEWORD (Property Name) 3.14

changing record c!eclaratioI!.S 3.11 .
(CHARACTER N) 2.12

character cedes 2.1:?

(CHARCODE c) 2.12

CHAROELETE (syntax class) 6.41.43

(CHARWICTH CHARCODE FONT) 193

(CHARWIOTHY CHARCODE FONT) 19.9

' CHAT 20.17

(.CHAT HOST I..OGOPTION INITSTP..E.AM
WINDOW -} 20.18

CHAT .ALLHOSTS (Variable) 20.19

CHAT.DISPLAYTYPE (Variable) 2049

CHAT. FONT (Variable) 20.19

(CHCCN X FLG RDTBL) 2.12

(CliCONl x) 2.U

CHECK SET (Masterscope Command)

{ CHECl<COHNECTION CONNECTION)

13.7

(CHECKIMPORTS FILES NOASKFLG)

11.29

CHOOZ (Function) 15.16

(CIRCLMAKER LIST) 23.11

23.64

_- - {CIRCLMAKERl UST} 23.11

(CIRCLMARK UST RLKNT) 23.10

(CIRCLPRINT LIST PRI~'TFLG RLKNT)
23.10: 23.9

cjsys package 23.53

CL (Editor Command) 16.20: 17.43

CL: FLG (Variable) 16.18

(CLO I SABLE OP) 16.19; 4.6

(CLEMIPOSLST PI.ST) 7.17

(CLEANUP FTI.E1 FTI.E2 • • · FTLEN) 11.8

CLEANUPOPT IONS (Variable) 11.8

C 1 ear (DEdit Command) 20.S

INDEX

CLEAR {Window Menu Command) 19.20

(CLEARBUF FILE FLG) 6.46; 6.47

clearing input buffer 6.19

de.a.ring output buffer 6.19

(CLEARMAP ra.z PAGES .REI.EASE) 14.19

(CLEARPUP PUP) 21.15

(CLEARSTK FLG) 7.7

CLEARSTKLST (Variable) 7.7

(CLEARW WINDOW) 19.27

CLINK 7.2.6

CLISP 16.1; 15.7,9

CLISP (in Masterscope lemplate) 1347

CLISP (MARKASCHANGED reason)
11.12

CLISP and compiler 12.7.11

CLISP declarations 16.13

CLISP interaction with user 16.4.

CUSP internal conventions 16.21

CLISP operation 16.11

CUSP words 15.8

CL ISP: (Editor Command) 16.20: 16.14

CLISPARRAY (Variable) 16.19: 16.13.20;
23.l

CLISPCHARRAY (Variable) 16.19

CLISPCHARS (Variable) 16.19

(CLISPDEC DECI.ST) 16.9.19

CLISPFLG (Variable) 16.19

CLISPFONT (font class) 6.55

CLISPFORWORDSPLST (Variable) 4~

CLISPHELPFLG (Variable) 16.16: 16~

CLISPI. S. GAG (Variable) 4.13

CLISPIFTRANFLG (Variable) 16.~0

CL ISP I FWORDSPLST (Vanable) 4.4

(CLISPIFY XL) 16.17: 11.7: 16.11

Index.8

().

n

n-

0

0

0

CLISPIFY (MAKEFILE option) 11.7:
16.20

(CLISPIFYFNS FN1 • •• FNN) 16.17

CLISPIFYPACKFLG (Variable) 16.18

CLISPIFYPRETTYFLG (Variable) 6.54;
16.20: 11.7

CL!SP I FYUSERFN (Variable) 16.18

CLISFINFIX (Property Name) 16.22

CLISPINFIXSPLST (Variable) 16.19; 16.6

CL!SPRECORDTYPES (Variable) 3.10

CLISPRETRANFLG (Variable) 16.16: 16.14

(CLISPTRAH X TRAN} 16.19

CLISPTYPE (Property Name) 16.21

CLISPWORD (Property Name) 16.22: 3.13

(CLOCK N -) 14.10

CLOSE (Window Menu Command) 19.20

.. (CLOSE.NSFILING.CONHECTIONS) 21.14

(CLOSEALL ALLFLG) 6.3; 6.11

CLOSEBREAKWitlOOWFLG (Variable) 20.11

CLOSECHATWirmOWFLG (Variable) 20.19

(CLOSECONNECTION CONNECTION) 23.64

(CLOSEF FILE) 6.2

{CL~SEF? nr.E} 6.3

CLOSEFU (Window Property) 19.30

(CLOSEHASHFILE RASBFILE} 23.42

{CLOSENSOCKET NSOC NOERROR.1:'LG)
21.22

(CLOSEPUPSOCKET PUPSOC
NOERRORJ'-Z.G} 21.16

(CLOSER A X) 22.11

{ CLOSEW WTNDOW) 19.26

closing a."ld reopening files 6.11

CLREMPARSFLG (Variable) 16.18

(CLRHASH HARR.AY) 2.35

(CLRPROMPT) 19.19

INDEX

(CNOIR BOST/DIR) 18.11

(CHOIR DIR PASSWORD} 23.61

CNTRLV (syn.lax class) 6.42

CODE (Property Name) 5.9; 5.10; 22.26

COLLECT FORM (I.S. Operator) 4.6

collecting (Printed by System) 22.9

color bitmaps 19 .43

(COLORDEMO) 19.49

(COLORDEM01) 1~49

(COLORDEM02 SIZE} 19.50

(COLOROISPLAY COLORMAP •
BITSPERPIXEL CI.EA.RSCREENFLG)
19.47

(COLOROISPLAYP) 19.47

(COLORFILL REGION COZ.OR.NVM13ER
• COLORBITMAP OPERATION} 19.49

(COLORFILLAREA LEFT BOTTOM
WIDTH HEIGHT COLOR.NUMBER
COLORBI'TMAP OPE..~TION) 19.49

{COLORIZEBITMAP BITMAP 0COLOR
I COLOR BI'TSPERP!XZL} 19.49

{ COLORKINETIC REGION FZP.STCOLOR
L.A.STCOLOR) 1950

(COLORLEVEL COLORM.>.P COLOR."IUMBEP.
PRlMARYCOLO.?. h"EWI.E"l'EL) 19 .46

(COLORMAPCOPY COLOP-MAP
BITSPERPIX:EL) 19.46

(COLORMAPCREATE INTENSITIBS

BITSPERPDCEL) 19.45
•

(COLORMAPP COLORMAP~ BITSPERPIXEL) .
19.46

COLORNAMES (Variable) 19.4:4

(COLORNUMBERP COLOR 0 BI'TSPERPIXEL
NOER.RFLG) 19.45

(COLOR POL Y·OEMO COLORDS) 19.50

(COLORSCREENB ITMAP) 19.43

COLORSCREENHEIGHT (Variable) 19.44

COLORSCREENWIDTH (Variable) 19.44

Index.9

COM (as S'.iff.x to file name) 12.10

COrf'\MAr:O (Variable) 20.44

com.I!:a:ids that move parentheses (in
Editor) 17.31

com.:::cnt p{?iDters 6.51: 17.43-

COMME l-JT USED FOR VALUE
(Error Message) 12.W

(COMMENT 1 L -) 6.50

COMMENTFLG {Variable) 6.50: 6.52

COMMENTFOtH (Joni class) 6.55

COMMENTL!NELENGTH {Variable) 6.37

comments (in listings) 6.49

{COMPARE Nk\!El NAME~ TYPE SOURCE1
SO t"?.CE2) 11.19

(COMPAREDEFS NA.Jw!E TYPE SOURCES)
11.19

(COMPARE LISTS X Y) 14.9

compar.i.ng lists 14.9 .

(COMPILE X FI..G) 12.10: 12.11

CO~iP I LE. EXT (Variable) 12.10; 18.5

(COMPILEl FN DEF-) 12.11

compiled file 12.10

compiled functions 5.5

~ COMPILED on
'--- . (Printed Wizen File is Loaded) 12.10

(COMPILE FI LES F"ILE1 FILE:z · · · FILEN)
11.10

COMPILEHEADER (Van·able) 12.10

COMP I LE IGNOREDECL (Variable) i3.25
com~iler 12.1

compiler error messages 12.20

comp1kr rum:tions 12.10: 12.16

compiler printout 12.2

com;,iler questions 12.1

com;Jiler stn.:.crure 22.11

COMP ILERMACROPROPS (Variable) 5.17

INDEX

COMPILETYPELST (Variable) 12.9;
5.11: 12.7-8

COMPILEUSERFN {Vanable) 1~7; 12.8

compiling by datatype 12.8

~om,Piling CLISP 12.9: 12.7.ll

compiling files 12.11: 12.17

co:npiling FUNCTION 12.8

compiling function calls 12.6

COMPLETEON (ASKUSER option) 6.63

COMPSET (Function) 12.1

(COMS x 1 • • • xM) (Editor Command)
17.46

(COMS COM1 • •• COMN)
(File· Package Command) 11.24

{ COMSQ cou1 • • • COMN)
(Editor Command} 17.46

(CONCAT x1 X2 ··· XN) 2.30

(CONCATLIST X) 2..30

(CONO CI...AUSE1 CL.AUSE2 CLAUSEK)
4.1

COND clause 4.1

COrffIRMFLG (ASKUSER option) 6.62

Conjunctions (in Masterscope) 13.13

CONN DIR PWD (E.xec Command) 23..:9

CONN {DE'VTCE/HOST} (DIRECTORY>
(Prog. Asst. Command) 18.11

(CONS x Y} 2.14

(CONSCOUfH N) 1~.14

CONSTANT (Function) 12.5

{ CONST ~NTS VAR 1 · · · VARN)

(File Package Command) 11.27

(CONSTl\NTS VAR 1 VAR 2 ... VARN) 12.6

constants in compiied code 12.5

construcung lists (in C LISP) 16.8

CONTAHJ (.\fasterscope Relation) 13.9

context switching 7.3

Index.10

/~
\ - j

(~

.·

. ()

0

C)

C_)

0

CONiIN (Prog. AssL Command) 8.15

CONTINUE SAVING? (Printed by System)
8.33

COfiT I NUE WITH T CLAUSE
(Primed by DWIM) 15.6

continuing an edit session 17 .39

(CONTROL MODE TT.BL) 6.45: 6.13.15

control chain 7.2

control character echoing 6.42

control-A 6.13.41.43

control-A (TOPS-20) (Editor Command)
17.13

cono-ol-B 9.22-23: 18.1

control-B (Interlisp-10) 22.l

controi-C 18.1

control-C (Interlisp-10) 22.1.21

control-D 6.8,46; 9.2.12.14: 12.4;
17.38: 18.1

control· D (lnterlisp-10) 22.1

control-E 6.46; 9.2.14; 10.6; 15.4,6;
. 17.2; 18.1

CONTROL-E (Error Message) 9.26

control-E (typed to EDIT A.) 23.48

cont.~l-E (lnterlisp-10) 22.l

control-F (in file name) 6.3

control·G (in history list) 8.16; 8.11

control-H 6.46; 18.1

control-H (lnterlisp-10) 22.1.11

comrol-L 6J.7

control·L (TOPS-20) (Editor Command)
17.13

controi-N {TOPS-20) 8.16

control-O 18.2

control-0 (Interlisp· 10) 22.2

conc.rol·P 6.19: 6.46: 9.6; 18.1

control-P (lnterlisp· 10} 22.J.

INDEX

control-Q 6.13,41,43

control·R 6.41

control·S 6.46; 18.2 .
control·S (lnterlisp-10) 22.2,11

control·T 18.1

COHTROL-T (Litatom) 9.17

control-T (Interlisp· IO) 22.2

control-U 8.16: 6.13.41; 8.31

control-V 6.13.42

control-W 6.14; 6.13,40-41

control-X (Editor Command) 17.13

control·X (TOPS-20) 22.11

control-Y 6.39; 17.59

control·Z (Editor Command) 17.13

control-Z (TOPS-20) 6.15.46

copy 2.19: 2.16.24-25,27

COPY (DECLARE: Option) 11.26

Copy (DEdit Command) 20.5

(COPY X} 2.19

(COPY ALL X) 2.19

{COPYALLBYTES FROMFII..E TOFII.E
BYTESIZE) 23.61

(COPYARRAY A} 2.33

{ COPYBYTES SRCFII. DSTFIL START

END) 6.9

{COPYDEF OLD NEW T'Yr'E SOURCE
OPTIONS) 11.18

(COPYFILE F'R.OMFII.E TOFII.E) 18.11

(COPYHASHFILE HASHFII.E NE:WNAME FN
VTYPE) 23.43

COPYING (Record Package) 3.3

(COPYREADTABLE RDTBL) 6~3

COPYRIGHTFLG (Variable) 11.37

COPYRIGHTOWNERS (Vanable) 11.37

(COPYSTK POSI POS.2) i.1

Index.11

/'

(COPYTERMiABLE TT.BL) 6.41

COPYWHEN (DECLARE: Option) 11.26

CORE (core device) 18.13

(COREOEVICE NAME} 18.13

CORE:VAL (Property Name) 22.15; 2216:
23.48-49

COREVALs 22.14-15

COREVALS (Variable) 22.15

(COROUTINE CALLPTR##
COROTJT?TR:## COROUTFORM##

ENDFORM##) 7.15

coroutines 7.14; 7.13

(COS X R.ADIA.NSFI..G) 2.46

(COUNT x) 2.21

COUNT FORM {LS. Operator) 4.6

(COUNTDOWN x, N) 2.21

(COURIER.CALL STREAM PROGRAM
PR.OCZ:DURE ARG1 • • • ARGN
NOEP-q_QRFLG) 21.9

(COURIER.OPEN HOSTNAME SERVERTY1'E
;,.-o;sp_qoRFI..G NAME) 21.7

(COURIER.READ.BU~KDATA STREAM
PP.OGF •. A}J: TYPE) 21.10

{COURIER. READ. REP UST.OF. WO.RDS

PF..OGF .. A},! TYPE) 21.10

(_ (COURIERPROGRAM NAME···) 21.7

(COURI:RTRACE FLG REGION) 21.10

COUT FILE (Variable) 12.3

(COVERS HI LO) 23.29

CQ (in an ASSElvf BLE statement) 22.14

CREATE (in Masterscope template) 13.li

CREATE (Af as:erscope Relation) 13.9

CREATE (Record Operator) 3.3

CREA TE (Record Package) 3.9

CREATE NOT DEFINED FOR THIS
RECORD (Error ,\tf essage) 3.8

(CREATE. EVENT NAME) 18.30

INDEX

(CREATE.MONITORLCCK NAME-) 18.30

(CP.EATEHASHFILE FrLE. VALUZTYPE
ITEMLENG'TH #E~-nu:E:S) 23.41

(CR"EATEREGION LEFT BOTTOM WI:n'H

HEIGHT) 19.2

(CREATETEXTUREFROMSITMAP Bl'TMAP)
19.6

{ CREA TEW P-EGION TITLE BORDER

- NOOPENFLG) 19.25

CROSSHAIRS (Variable) 19.36

CTRL V (syntax class) 6.42

CTRLVFLG (Variable) 20.39

curly brackets (use wilh ftp package}
23.62

current declaration context 23.30

current expression (in Ediior} 17.2:
17.3.5~7-9.15 -

CURRENTFN (Variable) 23.35

CURRENTITEM (Property Name) 20.li

(CURSOR NEWCUP..SOR -) 19.16

(CURSORS ITMAP) 19.4

(CURSORCREATE BITY.AP X Y) 19.16

CURSORINFN (Window Property) 19.29

CURSORMOVEDFN (Window Property) 19.29

CURSOROUTFN (Window Property} 19 • .29

(CURSORPOSITIQr~ NEWPOSITION
DISPLAYSTREA.M OLDPOSITION) ·
19.15

CURSORS (File Package Command) 19.16

CV (ASSEMBLE macro) 23.54

CV2 (ASSEMBLE macro) 23.54

D (Editor Command) 17.44

DA (Exec Command) 23.59

dashing 19.14

DATA TYPES FULL (Error Message) 9.25

[ndex.12

n

l)

n

0

DATABASE (Propeny Name) 23.15

DATABASE:COMS (Variable) 13.21

dztabasefns p~ka.ge 23.15

OATAiYPE (Record Type) 3.7

(OATAiYPES -) 2..1

(DATE -) 14.9

(OATEFORMAT K'EY1 ••• K'EYN) 23.57

dateformat package 23.57

OATEFORMAT .DEFAULT (Variable) 23.57
~ U OAT£FORMAT. KEYS (Variable) 23.57

DATUM (in Changetran) 3.13

DA TUM (Property Name} 20.17

DATUM (Variable) 3.8-9

DATUM OF INCORRECT TYPE
(Error Message) 3.15

•
{ DC FILE) 2.0.2

(OCHCON X SCRA.Tc:m.IST FLG RDTBL)
2..12

DCPM "(as s-.1.ffi:x 10 file name) ll.10-11;
12.17

DDT 23.46

debugging 10.1

C) OECL (in Deel package) 23.23

Deel package 23.18

0

declaration fault (in Deel package) 23.19

DECLARATION NOT SATISFIED
(Error Message) 23.19

declarations in CLISP 16.9: 16.7 . .
DECLARE {Function) 12.5: 16-.15

DECLARE DECL {1.S. Operator) 4.11:
23.22

DECLARE AS SPECVAR
(Af asterscope Relation) 13.9

DECLARE AS LOCALVAR
" (Masterscope Relation) 13.9

INDEX

(DECLARE: . F1LEPKGCOMSfFLAGS)
(File Package Command) 11.26:
12.11.14

DECLARE: (Function) 11.26

DECLARE: I>ECL (l.S. Operator) 4.11

DECLARE; expression lUS-26

(CECLAREDATATYPE TYPENAME
FIELDSPECS) 3.14

OECLARETAGSLST (Variable) ll.27

(OECLOF FOP.M) 2330

DECLOF (Property Name) !3.30

{DECLTYPE TYPEN.AME TYPE PROP1 VAL1

· • · PROPN VALN) 23.28

DECL TYPES (File Package Command)
23.29

declcypes (in Deel package) 23.18

(DECODE/WINDOW/OR/DISPLAYSTREAM
DSO.RW "WlNDOWV.AR TITLE BORDER)
19.25

(OECCOEBUTTONS BUTTONSTATE) 19.18

Dedit 20.l

DEDITL (Function) 20.2

DEditL inger (Variable) 20.8

DEDITTYPEINCOMS (Variable) 20.8

deep binding 7 .1: 2.6

OEFAULT.INSPECTW.PROPCOMMANDFN
(Function) 20.16

DEFAULT.INSPECTW.TITLECOMMANOFN
(Function) 20.16

DEFAULT.INSPECTW.VALUECOMMANDFN
(Function) 20.16

DE FAUL TCHATHOST (Variable) 20.19:
20.18 .

DE FAUL TCOPYRIGHTOWHER (Variable)
11.37

DE FAUL TCURSOR {Van.able) 19.16

DEF AUL TF I LETYPE (Variable) 18.16

DEFAULTFONT (font class) 6.55

lndex.13

(OEFAULTFONT DEVlCE FONT-) 19.9

OEFALll n:HTIALS (Variable) 17.60

DEFAULTMAKEnEWCOM (Function) 11.20

OEFAULTMAPFILE (Variable) 14.18

OEFAULTMENUHELOFH (Function} 19.39

OEFAULTPRIUTrnGHOST (Variable) 18.16

OEFAULTPROMPT (Variable) 20.38

DEFAULTR,JlAMEMETHOO (Variable) 1Ll9

OEFAULTTTYREGION (Variable) 1832

DEFAULTWHEHSELECTEOFN (Function}
19.39

OE FC (Function} 8.22

· DEFERREDCONSTANT (Function) 12.6

(DEFEVAL T'YP~ FN) 5.11

{DEFINE X -) 5.9

DEFHlED (MARKASCHANGED reason)
11.11

DEFINED. THEREFORE DISABLED IN
CLISP (Error Message) 4.6; 16.4

(OEF_IHEQ x1 x2 ••• XN) 5.9

defining file package commands 1130

defining file package types 11.19

defini.'lg nzw iterative statement operators
4.13

(OEFLISi L PP.Or) 2.7

(OEF?RINT TYPE FN) 6.23

del 6.15.41,46

(DEL. PROCESS PROC -) 18.27

(OELDEF NAUE TYPE) 11.18

De 1 ete (DEdit· Command) 20.4
'

DELETE (E.ii1or Command} 17.9

(DELETE . @) (Edi1or Command)
li.24·25: 17.22

OELETECHAR (syntax class) 6.41

(OELETECONTROL TYPE MESSAGE TTBL)
6.43

INDEX

DELETED (MARKASCHANGED reason)
11.12

DELETELINE (:syniax class) 6.41
' { DELETEMENU MENU CLOSEFLG

FROMWim)OW) 19.38

(DELFILE FILE) 6..3

(OELFROMCOMS COMS N.A..~E TY?E)

11.33

(OELFROMFILES NAME Tn'E FII.ES)
11.33

OELNOTE (Transorset Comm.and) 23.39

{ DELPAGE PAGE# B:ASIU'IIZ} 23.45

DELVER FII.EGROUP (Exec Command)
23.60

(OEPOSITSYTE N POSITION SIZE .BYTE)
2.42

DESCRIBE SET (Ma.sterscope Com.numd)
13.6

OESCRIBELST (Variable} 13.?

DESTINATION IS INSIDE EXPRESSION
BE ING MOVED (Printed by Editor)
17.29

destructive functions 2.3.24.27

DET (Exec Command) 23.59

(DETACH) 23.60

(DETACHED?) 23.61

Determiners (in Masterscope) 13.12

{ OF FN) 20.1

OFNFLG (Variable) 5.9: 5.10: 8.24:
11.4; 17.54

{ DIFFERENCE X Y) 2.44

different expression (Printed by Editor)
17.51

DIR FTLES • COMMANDS

(Prog. A.:ssL Command) 14.8

DIRCOMMANOS (Vanable) 14.7

DIRECTORIES (Variable} 18.12: 15.20

Index.14

0

n

0

0

.,,---\

_'J

()

0

(DIRECTORY FILES COMM.ANDS
DE.z."':A.DI:.n::X'r DEFAC.'LTVE.RS) 14.6

(OIRECTORYNAME FLG STRPTR) 18.12

{OIRECTORYMAMEP DIR.NAME BOSTNA.ME)
18.6

disabling CUSP operators 15.20

(OISCARO?l.!PS soc) 21.16

(OISCAROXIPS NSOC) 21.22

(OISKFREEPAGES - -) 18.11

(DISKPARTITION) 1~11

(DISMISS MSECSWAlT TIMER) 14.1

D I SM I SS IN IT (Variable) 6.16

OISMISSMAX (Variable) 6.16

Display Break Package 20.10

(DISPLAYDOWN FORM NSCANLINES)
18.22

OISPLAYHELP (Function) 20.38

OISPLAYTERMFLG (Variable) 22.23

(DISPLAYTERMP) 22.23

DISPLAYTYPES (Variable) 20.45

OLAMBOA (in Deel package) 23.20; 23.19
1Q

O~ACRO {Property Na,--:1e) 5.17

(OMPHASH &R..~Y1 HARRAY2 • • •
F-4.RP.AY N) 2.36

DO COM -(Editor Command) 17.42; 8.35

DO FORM (l.S. Operator) 4.6

(DOBACKGROUNDCOM) 19.22

(DOSE) 6.18

(OOCOLLECT ITEM LST) 2.18 '

DOCOPY (DECLARE: Option) 11.26

DOEVAL@COMPILE (DECLARE: Option)
ll.2i

DOEVAL@LOAD (DECLARE: Option) 11.26

DCNTCOMPILEFNS (Variable) 12.11:
12.12.15

DONTCOPY (DECLARE: Option) 11.26

INDEX

OONTEVAL@COMPILE (DECLARE: Option)
11.27

DONTEVAL@LOAO (DECLARE: Option)
11.26

{OOSELECTEOITEM MENU ITEM BC.'TTON)
1'9.41

{OOSTATS FORM T1TU:: - - -) 18.22

OOTHESE (Transorset Command) 23.39

DOTHIS (Transorset Command) 23.39

(OOWINOOWCOM WINDOW} 19.22

(OP NAME PROP) 20.1 ·

(OPB N BYTESPEC VAL) (Macro) 2.42.

DPROG (Function) 23.20-21

OPROGN (Function) 23.23

(DRAWBETWEEN POsrrION1 POsrTION2
W!Z>TH OPERATION DZS'PLA'YSTREAM

COLOR) 19.13

(ORAWCIRCLE X Y RADIUS BR~"SB'
DASHING DISPLAYSTREA.M) 19.14

(ORAWCURVE KNOTS CLOSED BRC."SB'
DASHING DISPLAYSTP.EAM) 19.14

(DRAWELLIPSE x Y SE.\!!1.aNORR.ADiu~
SEMZMAJORRADIUS OR.IE!-<-rATION
BRUSH DASHING DISPLA'YST?..EA..\l)

19.14

(ORAWLINE x1 Y 1 X2 Y2 WIDTB'
OPE.~TION DLS'PLAYSTRSAM COLOR)
19.13

(ORAWTO X Y WIDTH OPERATION
DZS'PLAYST?.EAM _COLOR) 19.13

(DREMOVE x L} 1..27

(DREVERSE L) 1..27

(DRIBBLE FILENAME APPENDFLG
THAWEDFLG) 6.12

(ORIBBLEFILE) 6.12

OSK DrR DAYS (Exec Command) 23.60

{OSKSTAT DrR PIUNTIFOVER PIUNTSYS
PRINTDEL PRINTOLD) 23.61

CSP (Window Property) 19.33

Index.ls

(OSPBACKCOLOR COLOR DlSPLA.1"STREA.M)
19.43

{OSP6ACKUP ¼-:iDTH DlSPLAYSTP..EAM)

19.13

(CSPC~IP?INGREGION REGION
.OISPLAYSTJU:AM) 19.11

(CS?COLOR COLOa DZSPLA.YSTRl!:A.M)
19·.48

(OSPCREATE DEST.IN.ATION) 19.10

(OSPOESTIHATION DESTINATION
DZSPLAYSTRSAM) 19.11

,· ---. {OSPFILL REGION' TEXTURE OPERATION
' DISPLAYSTP..E.AM) 19.12

(OSPFONT FONT DZSPLAYSTREA.M) 19.11

(DSPLEFTMARGIN XPOSITION
DISPLAY.STREAM) 19.11

(DS?LINEFEEO DEL.TAY DlSPLAl'S'TlU!AM)
19.12

{OSPOPERATION OPERATION
.DlSPLAYSTREAM) 19.12

(OSPRESET DISPLA'l"STRSAM') 19.12

{OSP_RIGHTMARGIN XPOSlTlON

DISPLAYSTREA..V.} 19.11

{OS?SCROLL SWITCP.SETTING
DIS?I..AYSTP .. EAJ·,!) 19.12

((OSPSOURCETY?E SOURCETYPE

\...... DIS.?!.AYSTREAM) 19.12

(OS?TEXiURE TEXTv"'RE DlSPLA.YSTREAM)
19.11

(OSPXOFFSET XOFFSET DISPLAYSTREAM)
19.11

(OS?XPOSITION XPOSITION

DISPLAYSTJU!A.'1!) • 19.11

(DS?YOFF SET YOFFSET DtSPLA.YSTREAM)
19.11

(OSPYPOSIT!ON YPOSITION
DISPLAYSTREAM) 19.11

(OSUBLIS ALST EXPR FLG} 2.24

(OSUBST NEW OLD EXPR} 2.24

INDEX

(DUMMYFRAMEP POS) 7.4

DUHP (Transonet Commc.rui) 23.31

(OUMPOATABASE FNLST) 13.21
{ OUMPOB FILE) 23.16

I

DUMPFILE (Variable) 23.37

dumping circular lisrs 6.23

dumping unusual data stt-ucrures 6.23

(OUNPACK X SCP.ATc:2LJST FLG RDTBL)
2.10

during INTERVAL (l.S. Operator) U.12

(DV VAR) 20.1

OW (Editor Command) 16.21; 17.43

DWIM 15.1

(DWIM x) 15.3

DWIM interaction with user 15.3

DWIM variables 15.10

OWIMCHECK#ARGSFLG (Variable) 1~16

OWIMCHEC~PROGLABELSFLG {Variable)
16.16: 16.15

DWIMESSGAG {Variable) 16.16; 12.9

DWIMFLG (Variable) 15.12: 15.19; 17.52.55

(OWIMIFY X QTJIETFLG Z:.) 16.14· 15:
16.11

dwimify (Printed by DW!M) 12.9

OWIMIFYCOMPFLG (Vanabie) 16.16:
U.9.11.li

DWIMIFYFLG (Variable) 15.11

{ OWIMIFYFNS FN1 • • • FNN) 16.16;
16.15

OWIMLOAOFNS? (Function} 15.11 .
DWIMLOADFNSFLG (Variable) JS.12: 15.11

DWIMUSERFORMS (Variable) 15.10:
15.8-9: 23.16

DWtMWAIT (Variable) 15.11; 15.4·5

E (Editor Command). 17.45
Ai

[ndex.16

n

()
\ /

()

().

0

(E x) (Editor Command) 17.45

(E x T) (Editor Command) 17.45;
8.36; 17.6

(E FOP-~ 1 · • • FORM N)
(File Package Commar.d) 11.24

E (ir. a floatil7.g point number) 2.42; 6.13

E (in an ASS EM BL£ statement) 22.14

E (use in comments) 6.50

EACHTIME FORM (l.S. Operator) 4.11;
4.12

,---\ (ECHOCHAR C'BARCODE MODB TTBL)

U 6.43

0

0

(ECHOCONTROL qHA.R MODE TTBL) 6.4?

echoing 6.42

{ ECHOMOCE FLG TT.BL) 6.43

ED (Editor Command) 20.3i

R.EL.ATIONED IN SET
(Maszer:scope Set Specification) 13.11

RELATIONED BY SET
(Maszerscope Set Specification) 13.11

EDIT (Break Command) 9.8: 9.9

Edit {DEdil Command) 20.5

EDIT {display break command) 20.10

ECIT (Lita.tom) li.39

EDIT SET [- EDITCOMS/
(l,,f a:;zerscope Command) 13.6

EDIT WHERE SET RELATION SET [­
EDI":'COMS/ (Masterscope Command)
13.6

EDIT (Printed by Editor) 17.56

E O IT (T ransorser Command) 23.36

edit chain 17.2: 17.4.7-9.15

edit commands that search 17 .D

edit corrr.:nands that test li .46

edit macros 17.48

EDIT-SAVE (Property Name) 17.38-39

(ECIT4E PAT X -) 17.57

INDEX

EDITA 23.46

{ EDITA FN COMS) 23.47

(EOITBM BITMAP) 20.8

(EOITCALLERS ATOMS FILES CO.MS)
17.59

(EDITCHAR C'RA.RCODE FONT} 20.10

EDITCHARACTERS (Vanable) 17.60

(EDITCOLORMAP VAR NOQFI..G) 19.47

EditCom (DEdit Command) 20.6

EDITCOMS (Function)-. 17.50

EDITCOMSA (Variable) 17.53; 15.7.9: 17.52

EDITCOMSL {Variable) 17.52; 15.9: 17.53

ED ITDATE (Function) 17.60

EDITDATE? (Funcrion) 17.60

(EOITDEF NAME TYPE SOti"'RCE
EDITCOMS) 11.18

EDITDEFAULT (Function) 17.51: 8.36

(EDI TE ED'R COMS ATM T'Y?E
IFCHANGEDFN) 17.56; 17.1.55

EDITEMBEDTOKEN (Variable) 17.28: 20.8

(EDITF NAME COM1 COM2 ••• COMp;)
17.53: 17.1.55

(EOITFI~DP X PAT FLG) 17.57

(EDITFNS NAME COM1 COM2
COMr-,·) 17.55

(EDITFPAT PAT -) 17.57

EDITHISTORY {Variable) 8.35:
8.25-26.29 ,36

editing arrays · 23.46

editing compiled code· 10.7: 17.58: 23.46

{ ED ITL L COMS ATM MESS

EDITCH.ANGES) 17.56

(EOITLO L ·coMS MESS -) li.5i

• (EDITLOAOFHS? FN STR ASKFLG FILES}

17.58

EDITLOAOFNSFLG (Variable) 17.54

Index.17

(EDITMODE NZW'MODE) 20.2

{ EOITP N~\!E COM1 COM2 • • • COMN)
17.56; 17.1

EDITPREFIXCHAR (Variable) 20.34

EDITQUIETFLG {Variable) 17.14

(EOITRACEFH CCU) 17.59

EDITRDTBL (Van'able) 6.32; 17.56

{ EDITREC NAME COM1 • • • COMN) 3.11

(EDIT SHADE SHADE) 20.10

.,···, EDITl.!SERFN (Variable) 17.51

{EOITV NAME COM1 COM'J ••• COMN)_
17.55; 17.1

EE (Editor Command) 20.37

EF (Editor Command) 17.40

E F (Fune lion) 20.2

EFFECT (in Masterscope templa1e) 13.17

(EFT? HOST F!LE PRINTERFLG #S]I)'ES)

21.5

element patterns
(in Paaem Match Compiler) 23.2

{ EL T A N) 2..33-34

(ELTD A N) 2.34

EMACSFLG (Variable) 20.43

(EMS ED @ IN • x) (Editor Command)
17.28

(EMPRESS FILE #COP'!ES HOST HEADING

#SIDES) 18.17

EMPRE SS#S IDES (Variable) 18.li

EMPRESS. SCRATCH (Variable) 18.17

empzy list 2.15

(ENCAPSULATE. ETHERPACKET NDB

PACKET PDH NBYTES ETYPE) 21.24

ENO OF FILE (En-or lvfessage) 6.8.13

end-of-line 6.3.13.16

(ENOCOLLECT LST TAIL) 2.18

{ ENO FI LE FILE) 6.25

INDEX

ENTRIES (in Masterscope Set Specification)
13.11

entries (to a block)

ENTRIES (Variable)

{ENTRY# HIST X)

12.13; 12.16

12.15

8.33

(ENVAPPLY FN ARGS APOS CPOS AFLG
CFLG) i.6

{EHVEVAL FORM APOS CPOS AFLG
CFLG) 7.6

(EOFP FILE) 6.9

E O L { syntax class}· 6.42

E? (Editor Command) 17.40

E P (Function~ 20.2

(EQ X Y) 2.2

(EQLEUGTH X N) 2.21

(EQMEMB X Y) 2.23

(EQP X Y) 2.3.37

(EQUAL X Y) 2.3; 2.37

(EQUALALL x Y} 2.3

(EQUALN X Y DEPTH) 2.22

ERASE SET (M asterscope Command) 13.5

ERASE (Transorset Command} 23.36

ERROR (Error Message) 9.23; 9.14

(ERROR MESS! MESS2 NOBRE.AK) 9.14;
· 9.23,26

ERROR {Litatom) 9.17

error correction 15.1

error number 9.22

(ERROR I) 9.14: 9.3

(E RRORMESS u) 9.15: 9.22

ERRORMESS (Variable) 9.16

(ERRORMESS1 MESSl MESS2 MESS3) 9.15

(ERR ORN) 9.14: 9.22

ERRORPOS (Varwble) 9.16

errors in compiler 12.20

Index.18

()

()

0

()

errors in Editor 17.2

errors in iterative statements 4.13

{ ERRORSET FORM FLAG -) 9.15;
9.11.14

{ ERRORSTRING N) 9.15

ERRORTYPELST (Variable) 9.16: 6.5

{ ERrtORX EF-XM) 9.13

ERRORX (Lilalom) 9.12

(ERSETQ FOP.M) 9.15: 4.4

(ERSTR ERN -) 22.6; 18.6

ESC (type of read-macro) 6.31

{ESCAPE FLG RDTBL) 636

ESCAPE (Syntax Class) 6.33

esca?e character 6.13; 2.4

ESCQUOTE (type of read-macro) 6.31

{ESUSST NE"H OLD EXPR ERROP.FLG
CH.ARFLG) 17.5Z; 8.8

(ETHERHOSTHAME PORT
US.C:.OCTAL.DEFAUI.T) 21.5

(ETHERHOSTMUMBER NAME) 21.4

ethernet 21.l

(:THERPORT NAME ER..~ORFLG MUI.TFLG)
21.5

Q EV (Editor Command) 17.40

0

EV {Function) 20.2

EVAL (Break Command) 93; 10.5

Eva 1 {DEdit Command) 20.6

EVAL (display break command) 20.10

EVAL (Editor Command) 17.45

(EVAL X -) 5.11

EVAL (i~ Masterscope Lemp/ate) 13.17

-EVAL ! (display break command) 20.10

(EVAL. AS. PROCESS FORM) 18.37

• { EVAL. IN. TTY. PROCESS FORM

WAITFORRESULT) 18.37

I!'.'DEX

EVALlilCOMPILE (DECLARE: Option)
11.27

EVAL@COMPILEWHEN (DECLARE: Option)
~ 11.27

EVAL@LOAD (DECLARE: Opzion) 11.26

EVAL@LOADWHEN (DECLARE: Op1ion)
11.26

(EVALA X A) 5.12

(EVALV VAR POS) 7.7

(EVE NP X Y) 2.41

EVENT (Variable) ·s.18

event address 8.5·

event number 8.26: 8.S.11.18.33

event specification 8.5; 8.17

(EVE RY EVER'l'X .E'VERYT.Nl EVERYFm)
. 5.14

(EXAM x) (Editor Command) 17.48

(EXCHANGEPUPS soc·OTJTPUP DUMMY
' IDFILTER TlMEOt.7) 21.16

{ EXCHAHGEXIPS soc OUTXIP ZOFILTER
TIMEOUT) 21.22

EXEC (Prog. Asst. Command) 8.15

exec package 23.59

Exit (DEdit Command) 20.6

EXIT ([ransorset Command) !3.37

EXP DIR (Exec Command) 23.60

EXPAND (Window Menu Command) 19.21

{EXPANDBITMAP BITMAP WII:>TBFACTOR

HEIGHTFACTOR) 19.4

EXPANDFN (Window Property) 19.31

{EXPANDMACRO FORM Qtm::TFLG -)

5.19

(EXPANOW ICON) 19.28

EXPLAINDELIMITER (A.SKUSER option)
6.63

EXPLAINSTRING (ASKUSER option) 6.62

lndex.19

(EXPORT COM1 • • • COMN)
(File Package Command) 11.27

EXP R (Litatom) 5.6

EXPR (Property l•.fame) 5.9: 5.10; 11.4,12:
12.10,14; 15.8-9; 17.54-55

EXP R (Variable) 15.11: 13.18

:XPR., (Li1.::.tom) _5.6: 5.7

EXPRESS IONS (File Package Type) 11.15;
8.13

(EXP RP FN) 5.6; 22.3

--- EXP RS (Litatom} 11.35

{ EXPT M N) 2.45

(EXPUNGE DlR) 23.61

l (EXTENDREG rm, REGION

INCI..UDEREGION) 19.3

EXTENT (Window Property) 19.32;
19.23-24.34

(EXTRACT @1 FROM . @2)
(Editor Command) 17.27

F PATTERN (Editor Command) 17.15

(F PATTERN) (Editor Command) 17.16

F PATTERN T (Editor Command) 17.16

F PATTERN N (Editor Command} 17.16

,__ F PATTERN HI L (Editor Command) 17.16

(F PATTERN N) (Editor Command)
li.16~ 17.4

F (in event address) 8.5

F (Response to Compiler Question) 12.2

F / L (as a D W!Af construct) • 15.8

(F= EXPR.Ess;oN x) {Editor Command)
17.17

(FASSOC KEY ALST) ~25: 16.10

FAST (,\! AKEF!LE -option) 11.7

fast functions 2.3

fast symboiic dump 6.54

INDEX

FASTY?EFLG (Variable) 15.17

FAULT IN EVAL (Error Message) 9.24

FAUL TAPPL Y (Function) 15.6; 12.19;
. 15.10

FAUL TAPPLYFLG (Var.able) 15.10

FAUL TARGS (Variable) 15.10

FAUL TEVAL (Function) 15.6; 9.24; 15.10 .

FAUL TFN (Variable) 15.11

FAUL TX (Variable) 15.10

FBOX (Function) 23.55

FBOX {record declaration) 23.55

(FCHARACTER N) 2.1.2

(FDIFFERENCE X Y) 2.43

{ FEQP X Y) 2.44

FETCH (in Masterscope template) 13.17

FETCH (in record package) 16.7

FETCH (Masterscope Relaiion) 13.9

FETCH (Record Operator) 3.1

(FETCHFIELD DESCRIPTOR. DATUM) 3.15

FETCHFN (Property Name) 20.17

FEXPR (Litatom) 5.6; 5.7

FEXPR• (Litatom) 5.6; 5.7

FFETCH (Record Package) 3.2

{FFILEPOS PATTERN F'ILE STAR~ END

SKJP TAIL CASEAJU?AY) 6.10

(FGETD FN) 5.8

(FGREATERP X Y) ~44

FI (Exec Command) 23.60

FI .JFN (Exec Command) 23.60

(F IELDLOOK FIELDNA .. \!E) 3.11

FIE LOS (File Package Type) 11.16

FIELDS OF SET
(i\,fasterscope Set Specrfication) 13.11

(FI LO IR FrLEGROUP -) 14.8

FILE (Property Name) 11.13

Index.20

n-\ _/

()

n

~
\)·

0

o·

·O

0

FI LE (Variable) 23.50

file attributes 6.6

FILE DATA ERROR {Error Message) 23.63 .
file maps 11.38

file names 6.3; 6.4·5

FILE NOT FOUND {Error Message) 9.24:
6.LS

FILE NOT OPEN (Error Message) 9.23;
6.2.S.9: 22.22

file package commands 11.21

file package functions 11.32

file pointer 6.8-9

FILE SYSTEM RESOURCES EXCEEDED
{Error Message) 9.24; 6.1.4

FILE WO~' T OPEN (Error Message)
9.23: 6.1 ·

FILE: (Compiler Question) U.l

(FILECHAUGES Fr;:.E TYPE) 11.36

FILECHAPJGES (Property Name) 1Ll3;
11.11

filecorr.s 11.21; 11.3-4

(FILECOMS FILE TYPE) 11.34

(FILECOMSLST FrI..E TYPE -) 11.33

(F!LECREATED x) 11.35

FILECREATED expression 12.10

(FILEDATE FILE -) 11.36

FILEDATES (Property Name) 11.13;
11.11,36

FILEDEF (Property Name) 15.8:)5.9

(FILEFNSLST FILE) 11.34
FILE GROUP (Property Name) lLS

F ILELINELENGTH (Variable) 23.14: 6.54

FILELST (Variable) 11.13: 11.4,8: 15.20

FI LE MAP (Property Name) 11.13,38

FILEMA? DOES NOT AGREE WITH
COllTENTS OF (En-or Message)
11.39

INDEX

(FILENAMEFIELD F'ILENAME FIEI.DNAME}
6.5

FILE?KG.S..:RATCH (file) 11.19

(FILEPKGCHA?~GES TYPE I.ST) 1L12

(FILEPKGCOM COMMA..VDNA..VE PROPz
VAL1 • • • PROPN VA.Lr,:) 11.32

(FILEPKGCOMS L1TATOM1 ••• L!'TATOMN)
(File Package Command) 11.24

FILEPKGCOMS (File Package Type) 11.15

FILEPKGCOMSPLST (Variable) 11.22

FILEPKGFLG (Variable) 11.3: 11.4

(FILEPKGTYPE TYPE PROP1 VAL1 •••

PROPN VALN) 11.ZO

FILEPKGTYPES (Variable) 11.14

(FILEPOS PATTERN FILE ST.ART END
SKIP TAZL CASEA.RRAY) 6.9

FI LE RDTBL (Variable) 6.32: 6.16.24·25:
11.4.34: 18.i

files 6.1

(FILES • FILES/LISTS)
(File Package Command) 11.28

FILES (File Package Type) 11.16

(FILES?} 11.8

FIL:ETYPE (Property Name) 12.9.11: 16.20

filevars 11.30: 11.4,34

FILEVARS (File Package Type) 11.16

(FILLCIRCLE X Y RADrt~ n:xTORE
DISPLAYSTREAM) 19.12

FINALLY FORM (l.S. Operator) 4.10: 4.U

Find (DEdit Command) 20.5

FI NO (-1.S. Operaror) 4.15

{FINO.PROCESS PROC ERRORFLG)
18.28

l j_.c:.9 (FINDCALL.ERS ATOMS F.II.ES)

(FINOFILE FILE NSFLG DIRLST) 15.20

FIRST (Argument 10 ADVISE) 10.9

FIRST (DECLARE: Oprion) 11.Zi

Index.21

r---.

FIRST FOR.V (l.S. Operator) 4.10: 4.12

FIRST (type of read-macro) 6.31

FIRSTCOL (Variable) 6.53; 6.54

(F!X X) 2.40

FIX EVl!ZltSpec (Prag. A.SSL Command)
S.10; 8.27

FIX for:r..at (in PRINTI•HJM) 6.21

fixed number of arguments 5.2

FIXEDITDATE (Function) 17.60

FIXP (as a field specificatl'on) 3.14

(FIX? X) 2.1.37

FIX P (record.field type) 3. 7

(F IXSPELL xworu, REL SPL.ST FLG
TAlI, FN TIEF.LG DONTMOVETOPFLG
- -} 15.18; 15.19-20

FIXSPELLOEFAULT (Variable) 15.12;
15.4; 16.14

FIXSPELLREL {Variable) 15.13

FLAG (record field lype} 3.7

_ (FLAST X} 2.20; 16.10

(FLENGTH X) 2.21

(FLESS? X Y) 2.44

(FL!PCURSOR) 19.16

(FLOAT X) 2.44 l_ .
--· FLOAT format (in PR.INTN1.JM) 6.22

FLOATrnG (record field type) 3.7

FLOA i!'IG OVERFLOW (Error Message)
9.26

floating point aritl-.metic 2.43

floating point numbers 2.42: 2.1.36-37.40:
6.13: 22.3

FLOATING UNDERFLOW (EITOr Message)
9.26

FLOAT? (as a field specification) 3.15

{FLOATP X) 2.1.37

FLOATP (record field type) 3.1

.... . - .

INDEX

FLOPPY (File Device) 18.13

(FLTFMT FORMAT} 6.20

(FLUSHRIGHT POS X MIN P2FLA.G
' CENTERFLAG FII.E) 6.31

(FM.AX x1 x2 .•• XN) 2.44

(FMEMB X Y) 2.23: 16.10

(FMIN Xi X:z ... XN) 2.44

(FMUlUS x) 2.43

FN (Transorset Command) 23..36

FN (Variable} 13.1

(FNCHECK FN NOERRORFLG SPEU.FLG
Pfi.OPF?.G TAZL) 15.19: 5.7

(FNS FN1 •• • FNN)
(File Package Command) 11.22.

FMS (File Package Type) 11.15

(FNTH X N) 2.20

(FNTYP FN} 5.6;" 5.10: 22.3

font package 6.55

FONTCHANGEFLG (Variable) 6.56; 23.14

(FONTCOPY OLDFONT PROPz VALz PROP:z
VAL:z • • ·) 19.8

(FONTCREATE FA.',tILY SIZE FACE
ROTATION DEVICE NOERRORFLG)
19.8

FONTOEFS (Variable) 6.si

FONTOEFSVARS (Variable) 6.56

FONTDIRECTORIES (Variable) 19.8

FONTESCAPECHAR (Variable) 6.56

FONTFNS (Variable) 6.55

(FONTNAME NAME} 656

(FONTP X) 19.8

FONTPROF I°LE (Vanable) 6.56

(FONTPROP FONT PROP) 19.8

(FONTSET NAME} 656

FONTWIOTHSF ILES (Variable) 18.18; 19.8

FOR VAR (l.S. Operator) 4.1

Index.22

0

()_

()

0

o-

0

CJ

FOR VARS (l.S. Operator} 4.7

FOR OLD VAR {l.S. Operator} 4.7

FOR (in USE command) 8.8

FOR VARIABLE SET L.i.TA.lI.
(Masterscope Command) 13.7

FOR (in INSERT command) (in Editor)
li.25

(FORCEOUT COW."ECTION/FILE) 23.65

forOuration lNTEJW.AL (I.S. Operator)
14.12

FORGET EwintSpec (Prog. Asst. Command)
8.13: 8.18

fork handle 22.21

forks 22.20

FORM (Process Property) 18.27

. format and use of history list 8.25

(FPLUS Xz X: • •• XN) 2.43

(FQUOTIEHT X Y) 2.43

frame 7.2

frame extension 7.2

fra!ne ::tmle 7.2

fr.imes ·7.2

(FRAMESCAN ATOM POS) i.5
FREE (in Deel package) 23.23

FREELY (use in Masterscope) 13.8

(FR E EVA RS FN t,--SEDATABASE) 13.19

(FREMAirmER X Y) 2.43

FREPLACE (Record Package) 3.2

FROM FORM (l.S. Op~razor) 4.8: 4.9

FRO~ (in event spec~ication) 8.6

FROM SET (Masterscope Path Option)
13.14

FROM {in EXTRACT command)
(in Ediior) li .27

(FRPLACA X Y) 2.15; 16.10

(FR?LACD X Y) 2.15; 16.10

INDEX

(FRPLNOOE X AD) 2.15

(FR?LNOOE2 X Y) 2.15

{fRPTQ N FORM1 FORM: ••• FOR.',IN)
5.13

{ FS PATTERNi • • • PA.Tn:.R.NN)
(Editor Corr.mand) 17.16

FSUBR (Lita:om) 5.6; S.7

FSUBR• (Litatom) 5.6: 5.7

,C FT IMES Xi X2 ••• XN) 2.43

(FTP HOST F'lLE ACCESS CiSER PASSWORD
ACCOUNT B'YTESZ2E) 23.63

ftp package 23.62

full •file name 6.4

{ FULLHAME X RECOG) 6.4; 6.5

FULLPRESSPRINTER (Variable) 18.18

FUHARG (Litatom) 5.15; 5.6

(FUNCTION FN ENV) 5.15

FUNCTION (in Masterscope template) 13.16

function definition cell 5.8: 12.18: 22.3

function definition cells 2.6

function types 5.2

FUNCTIONAL (in Masterscope template)
13.17

functional arguments 12.8

FUNNYATOMLST (Variable) 16.18

(GAINSPACE) 14.13

GAINSPACEFORMS (Variable) 14.13

garbage collection 18.2: 22:J .

(GATHEREXPORTS FROMFILES TOFILE
FLG) 11.29

(GCO x :Y)- 2.40

(GCGAG MESSAGE) 18.2: 22.9

(GCMESS MESSAGE# STRING) 22.10

(GCTRP} 18.2

Index.23

,'

(__ __

(GCTRP N) 22.11

GCTRP (Prir.Letl by System) 22.11

(G DATE .DATE FOP.MA."I'BITS STRPT.R)
14.10

GE (CLISP Operazor) 16.6

(GE?-:ER.l!iTE HANDLE VAL) 7.13

(GE:t:ERA. TOR FORM##· CO.M'V.A.R##)
i.13

g'!nerator handle 7.13 /

generators 7 .13

generators for spelling correction 15.15:
23.44

GEnf-.lUM (Van"able) 2.11

{ GEHSYM CHAR) 2.11: 10.3,8-9

(GEQ X Y) 2.45

GET (old name for LISTGETI) 2.26

GET• (Editor Comm.and) 17.43: 6.51

{GETATOMVAL VAR) 2.6

(GETBLK N) 22.20; 9.24; 18.6

{GETSOXPOSITICN WIDTH HEIGHT ORGX

ORGY \V!NDOW FROMPTMSG) 19.36

(GEiBOXREGION WIDTH EEIGHT ORGX
ORGY vl-"I!\1'0W PROM?TMSG). 19.37

(GETBRK R.D~EL) 6.35
{ G ETCHARB I TMAP CHAE.CODE FONT)

19.9

{GETCOM~ENT x DESTFL -) 6.51

(GETCONTROL TTBL) 6.45

GETD (Eqitor Command) li.44

(GETO FN) 5.8: 5.10; 22.3

GETOECL TYPEPROP (Function) 23.29

·(GE.TD E F :VAME T'YPE SOURCE OPTIONS)
11.17

(GETOELETECONTROL T'YPE TTBL) 6.44

(GETDESCRIPTORS TYPENAME) 3.15 .

(GETECHOMOOE TT.BL) 6..43

INDEX

(GETEOFPiR FILE) 6.9

(GETFIELOSPECS rnENAMJ::) 3.15

(GE.TFILEINFO FILZ ATTR13) 6.6

(GETFILEPTR FII.S) 6.9

(GETHASH KEY ZA.R.R.A.Y) 2. ~.c::: 16.14

(GETHASHFILE KEY HAS.liTZLE) 23.42

(GETLIS X PROPS) 2.8

(GETMOUSESTATE) 19.18

GETP (old name of GETPROP) 2.1

(GET PAGE HASHFILE N) 23.45

(~ETPASSWORO D.!RBCTORYNAM'E) 23.62

• (GETPNAME F!LEADR I:lA.SB1'I!.E) 23.45

(GETPOSITIOH wmz::ow Ct7RSOR) 19.36

(GETPROP ATM PROF} 2.7

(GETPROPLIST ATM) 2.8

(GET PUP Pt.TPSOC WAIT) 21.16

(GETPUPBYTE PUP BYTE#) 21.18

(GETPUPSTRING PTJ? OFFSET) 21.18

(GETPUPWORD PUP woR.D,#:) 21.17

(GETRAISE TTBL) 6.45

(GETREAOTABLE RDTBL) 6.32

{ GETREGION MINvVIDTH MIN'F.EIGHT
IN!Trl.EGION N'EvV"R.EGIO!-.T'N

NEW?.EG101',"FNARG) 19.37

(GETRELATION ITEM RELATION

INVERTED) 13.20

(GETSEPR RDTBL) 635

(GETSTREAM FILE ACCESS) 18.12

(~ETSYNTAX CH TABLE} 6.34

(GETTEMPLATE FN} 13.18

(GETTERMT ABLE TTBL) 6.41

(GETTOPVAL .VAR) 2.5

(GETTYPEDESCRIPTION TYPE) 222

GETVAL (Edilor Command) li..J6

(GETXIP NSOC WAIT} 21.22

Index.24

()·

n

n

()

0

0

0

O·

(GIVE. TTY. PROCESS WINDOW) 18.34

(GLC X) 2.29

global variables 12.4: 16.15

GLCBALVAR (Property Name) 12.3; 16.15

(GLOB,~.LVARS VAR1 ••• VARN)
(File Packcge Command) 11.25

INDEX

(HARRAY LEN) 2.35

(HARRAYP X) 2.2

(.HARRAYSIZE .F.AP-1::tAY) 2.35

{ HASOEF NAME TYPE SOURCE SPE:I.I.FLG)
11.17

GLOBALVA~S (in Masrerscope Set Specification)

HASH ARRAY FULL (Error M es:sage) 2.36

hash arrays 2.35; 2.2
13.11

GLOBALVARS {Variable) 12.3: 12.15: 16.15

(GNC x} 2.29

GO (Break Command) 9.3

(GO LABEL) (Editor Command) 17.17

(GO X) 4.4

GO (in iterative statement) 4.11

GRAYSHAOE {Variable) 19.6

(GREATERP X Y} ~45

(GREET NAME -) 14.5

GREETDATES {Variable) 14.6

(GREETFILEHAME USER} 14.6

greeting and user profiles 14.5

{GR IO GRIDSPEC t1NITSWIDE UNITSHIG'B
G.atD.BOP..DER DIS?LAYSTREAM
GF.IDSKA.DE') 19.42

(GR!OXCOORO XCOORD GRIDSPEC) 19.42

(GRIDYCOORO YCOORD GRIDSPEC) 19.42

Gi (CL/SP Operator) 16.6

{GTJFN FILE EXT V FLAGS} 22.22: 18.6

handle 22.24

HA.RD DISK ERROR °(Error Message) 9.22

HAROCOPY (Window Menu Command)
19.11

(HAROCOPYW \-,7NDOW/BITMAP/RECION

FILE HOST SCAL.EFACTOR
ROTATION} 18.18

{ HARD RESET) 18.25

hash file facility 23.41

has."l keys 2.35

hash overflow 2.36

HASH TABLE FULL (Error Message)
9.24: 2.36

hash value 2.35

hash values 2.35

(HASH FILENAME HASSFlLB) 23.42

(HASHFILEP X) 23.42

{ HASHFILEPROP HASIIFILE PROP) 23.42

HASHFILERDTBL (Variable) 23.41

(HASHFILESPLST EASBFILE) 23.44

HASHLINK (Record Type) 3.6

HASHOV~RFLOW {Function) 2.36

HASH ST A TUS (Function) 23.42

(HASTTYWINDOWP PROC) 18.32

{ HCOPY ALL X) ~19: 6.24

HEIGHT (Window Property) 19.33

(HEIGHTIFWINOOW INTERIOREEIGBT
TITLEFLG BORDER) 19.26

(HELP MESS1 MESS2 BRKTYPE) 9.14

HELP (Litatom) 9.17

HELP (Maszerscope Command) 13.7

HELP I (Error Message) 9.14

HELPCLOCK (Variable) 9.ll: 8.8.29

HELPDEPTH' (Variable) 9.10

HELPFLAG (Vanable) 9.11: 9.22

HELPSYS (Function) 5.7: 18.5

lndex.25

-·

HELPT IME (Variable) 9.11

HERALDSTRrnG (Vanable) 14.4

HE RE (in edit co;r.mand) 17.25

HISTORY (Property Na,ne) 8.U

HISTOR't ('l'ariable) 8.18

historf list 8.2; 8.25; 17.51

HISTORYCCHS {Variable) 8.36

(HISTORYFIMD LST INDEX MOD

EVENTADDRESS -) 8.32

-, (HISTORYMATCH -INPUT PAT EVENT}
8.33

{ HISTORY SAVE HISTORY ID INPTJTl
INPUT2 INPUT3 PROPS) 8.32:
8.25.27-28.35

HISTORYSAVEFORMS (Variable) 8.18

HISTSTR0 (Var.able) 8.26

HIS1'STR1 (Variable) 20.40

{ HLSP X) 19.45

(HORRIBLEVARS VAR1 • • • VARN)
(File Package Command} 11.25; 6.24

HOST (as a file name field) 23.63

(HOST UAME HOSTN FLG) 22.6; 18.6

(HOSTHAME P NA.MF) 18.6

(HOST~lUMBER) 22.6; 18.6

_ (HPRHlT E:X?R. F'ILE UNCIRCULAR

DA':'ATY?ESEEN) 6.24

(HREAD FIT..E) 6.24

(I c x 1 • • • xN) (Editor Command)
17.45

(I. S. QPR NAME F'ORM OTHERS

E\~.\LFLG) 4.13

I. S. OPR (Property Name) 11.12

i.s.oprs 4.5

(I.S.OPRS OPR 1 ··· OPRN)
(Fiie Package Command} 11.25; 4.15

I. S. OPRS ~File Package Type) 11.16

INDEX

Ls.type 4.6; 4.13

IBOX (Function) 23.55

IBOX (record declaration} 23.55

icon 19.21

ICOH (Window Property} 19.31

ICONFN {Window Propeny} 19.31

ICO:~WINOO'.'/ (Window Property) 19.31

IconWi ndowMenu (Variable) 19.22

IconWindowMenuCorrmands (Variable)
19.22

ID (Variable) 8.18

{ IDA TE STR) 14.10: 18.6

{!DIFFERENCE x Y) 2.38

{ IEQP N M) 2.39

{IF x} (Editor Command) 17.46

{ IF X COMS1) (Editor Command) li.41

(IF X COMS1 COMS:2) (Editor Command}
17.47

(IF E:a'RESSION TEMPLATE l TEMPLATE:2)
(in M asterscope template) 13.18

IF-IBEN-ELSE statements 4.4

(IF PROP PROP NAME LIT.ATOM 1
LITATOMN) (File Package Command)
11.13; 11.30

(IGEQ X Y) 2.39

IGNORE (Litatom) 20.44

(IGrWREDECL • VAL)
(File Package Command) 23.25

IGNOREMACRO (Litatom) 5.19

(IGREATERP X Y) 2.39

(ILEQ X Y) 2.39

(ILESSP X Y) 2.39

ILLEGAL ARG (Error Message) 9.24: 2.9:
5.8: 6.4.43: 7.5

ILLEGAL DATA TYPE (Error Message)
3.15

Index.26

(',
\ -L

()

0

0-

()

0

ILLEGAL DATA TYPE NUMBER
(Error Message) 9.25

ILLEGAL EXPONENTIATION
(Error Message) 2.45

ILLEGAL GO (Error Message) 12.21

ILLEGAL INSTRUCTION (Error i'ffessage)
9.22

ILLEGAL OR IMPOSSIBLE BLOCK
(Error Message) 9.24: 22.20

ILLEGAL REAOTABLE (Error Message)
9.25; 6.32-33,42

ILLEGAL RETURN (Error Message) 9.22;
12.21: 4.4

ILLEGAL -STACK ARG (Error Message)
9.23: 7.3

ILLEGAL TERMINAL TABLE
(Error Message) 9.25; 6.41-42

IMAGEHEIGHT (Menu Field) 19.40

IMAGEWIOTH (Menu Field) 19.41

(IMAX x1 x2 ... X1v) 2.39

(IMIN x1 x2 • • • XN) 2.39

(IMINUS X) 2.33

IM11ED (type of read-macro) 6.38

IMMEDIATE (type of read-macro) 6.38

c:moo x Y) 2.39

(IMPORTFILE FILE RETURN'F'LG) 11.29

(FNI IN FN2) (arg lo BREAKO) 10.4

IN FORM (l.S. Operator) 4.7

IN OLD VAR (l.S. Operator) 4.8

ON OLD { VAR""FORM) (I.S. Operator) 4.8 ·

IN OLD (VAR+-FO.RM) (l.S. Operator)
4.8: 4.9.12

IN (ir. USE command) 8.8

IN EX?P..ESSION
(\I ::sterscope Set Specification) 13.10

If~ (in EMBED command) (in Editor)
li.28

INDEX

IN? (Break Command} 9.9

INCORRECT DEFINING FORM
(Error Message) 5.9

~

incorrect number of argu:nents 5.3

(INFILE FILE) 6.2.

(INFILECOMS? NAME T'TI'E COMS
-} 11-32

(INFILEP FILE) 6.4; 6.5

INFIX (type of read-macro) 6.36

infix operators in CLISP 16.S

INFO (Propeny Name) 5.4: 8.34;
16.14.17: · 23.17

INFOHOOK (Process Property} 18.36: 18.27

RELAT!ONING SET
(Masterscope Set Specflication) 13.11

IN IT (in record declarations) 3.9

INITIALS {Variable) 17.60

INITIALSLST (Variable) 17.60

(INITRECORDS REC1 • •• RECr,;}
(File Package Command) 11.25: 3.8

(INITVARS VAR1 • •• VARr,;)
(File Package Command) 11.22

(INPUT FILE) 6.2

input buffer 6.15.19,46; 9.12: 22.2.11

input functior.s 6.12

(INREAOMACROP) 6.38

(INSERT E1 ••• EM FOR • @)
(Editor Command) 17.25

(INSERT E 1 • .. EM AFTER • @}
(Editor Command) 17-25

.(INSERT E1. • .. EM BEFORE • @}
(Edilor Command) 17.25

INSIDE FORM (/.S. Operator} 4.8 .

(INSIOEP REGION X Y) 19.3

(INSPECT OBJECT ASTYI'E WF.ERE)
20.13

INSPECT /ARRAY (Function) 20.15

lndex.27

rns?ECTALLFIELDSFLG (Variable) 20.15

(INSPECTC0DE FN) 20.14

IUSPECiMACROS (Variable) 20.15

In...c:p~tor 20.12

(INS?ECT~.CREATE DATUM
PROPER"::':I:S FETCHFN
STOF..ZFN PROPCQ.",!M.ANDFN

vj,\LC,"ECOMMAJ\IT)FN TITLECm\!MA.NDFN

T:TLZ SE.LZCTIO,.VFN WF..£.1:?E

PROPPRI:iTFN) 20.16

(INSPECTW.REDISPLAY rNSPECTW

PROPERTY -) 20.li

(INSPECTW.REPLACE INSPECTW
PROPERTY NEWVALUE} 20.17

(lNSPECTW. SELECTITEM INSPECTW

PROFZRTY VALVZFLG) 20.17

INSPECTWTITLE (Property Name) 20.17

INSTRUCTIONS (Litatom) 5.19

INTEGER (record field type) 3.7

integer arithmetic 2.38

(INTEGERLENGTH N) ~41

imeg~rs 2.38; 2.~

(I~TENSITIESFROMCOLORMAP COLORMAP)
19.46 ..

interf ork communication 22.20

(interpreter 5.11
'-- .

INTERRUPT (Function) 2Z.1; 22.11

INTERRUPT (Litatom) 9.12

int·~r.upt characters 9.17: 18.1: 22.l

(INTE RRUPi ABLE FLAG) 9.18

(;NTERRUPTABLEP) 9.18

(INTE RRUPTCHAR CH.AR TYP/FORM
HAHDF'LG) 9.'l 7

INTERRUPTED BEFORE
(PrinLed by System) 22.1

(INTERSECTION x Y) ~22

(INTERSECTREGIONS REGION1 P..EGION2
· · · REGJONN) 19.3

INDEX

(IOF ILE F'l!.E) 6.2

(!PLUS Xi X2 • • • XN) 2.38

{IQ~OTIENT X Y) · 2.39 -

(!REMAINDER X Y) 2.39

SET IS SET (Master-scope Command) 13.S

ISTHERE (l.S. Operator) 4.15 _

IT (Variable) 8.16

ITEMHEIGHT (Me.'1u Field) 19.40

ITEMS (Menu Field) 19.39

ITEMWIDTH (Menu Field) 19.40

iterative statements 4.S

(ITIMES Xi x2 · • · XN) . 2.39

JFN 22.22-23

(J FNS JFN AC3 STRPTR) 22.23; 18.6

JMACRO (Property Name) 5.11

(JOB#) 23.60

JOIN FORM (l.S. Operator) 4.6

JO INC (Editor Command) 17.42

JS (ASSEMBLE macro) 23.54

(JS JSYSNAME ACl AC~ AC3 RESUI.T)
23.53

JSYS 22.22-23

(J SYS N ACi AC2 AC3 RESti1: .. TAC) 22.6

JSYS ERROR (Error Message) 9.22; 22.6

(JSYSERROR ERRORN) 23.54

JSYSES (Variable) 23.53

.·
(KEY ACT ION KEYNAME ACTION_S) 18.8

keyboard layouts 15.5.12

(KEYDOWNP KEYNAME) 18.8

KEYLST (ASKUSER argument) 6.59

KEYLST (AS KUSER option) 6.62

KEYSETSTA TE (Macro) 19.17

Index.28

n

()-

0

0

0

KEYSTRING (ASKUSER option) 6.63

(KFOR:< FOR.TC) 22.22; 22.21

KNJ\l.'ij (Master.>Cope Set Specification)
13.11

(K't:OTE X) 5.11

(L-CASE X FLG) 2.11; 17.41

LABELS (Litatom) 16.17

LABELST (Variable) 23.11

LAMBDA (Litazom.) 5.2; 5.10; 22.3

lambda functions 5.2

la:nbda·nospread functions 5.4

lambda-spread functions 5.2

LAMSCACOMS (Variable) 23.40

LAMBOAFONT (font class) 6.55

LAMSDASPLST (Vanable) 15.12; S.7;
15.8-9; 23.17

lambdatran package 23.16

LAMBDATRAHFNS (Variable) 23.17

LAMS (Variable) 12.7; U.11

LAP ~15; U.l; 22.11

LAP macros 22.17; 22.13

LAP op-defs 22.13

LAP statements 22.15

LA?FLG (Variable) U.l

large integers 2.1.36-37; 22.3

LARGEST FOP..M {l.S. Operator) 4.7

LAST (Arg-..lment 10 ADVISE) 10.9

(LAST X) 2.20

LASi AIL (Variable) 17.10: 17.15.57

(LAS TC FII.E) 6.15

LASTEXEC (Variable) 22.22

LASTKEYBOARO (Varjable) 19.18

LASTKEYSETSTATE (Macro) 19.17

INDEX

..

LASTMOUSEBUTTOHS (Variable) 19.li

(LAST?-~OUSEST ATE BUTTONFOP.M)
(Macro) 19.17

LASTMOUSETIME (Variable) 19.18

(LASTMOUSEX DISPLAYS'!'RE.A.M) 19.lS

LASTMOUSEX (Variable) 19.17

(LASTMOUSEY DISPLAYSTREA..V) 19.18

LASTMOUSEY (Variable) ·19.17

(LASTN L N) 2.20

LASTPOS (Variable) 9.3: 9.4~.8: 20.11

LASTVALUE (Property Name) 17.39

LASTWORO (Variable) 15.15; 15.17·19;
16.8: 17.55

LBOX (Function) 23.54

(LC • @) (Editor Command) 17.18

LCASELST (Variable) 6.53

LCFIL (Variable) U.1-2

(L CL • @) (Editor Command) 17 .18

(LCONC PTR X) 2.18

LO (Exec Command) 23.59

LO ALL (Exec Command) 23.59

LO tTSEP.NAME (Exec Command) 23.59

(LOB BYTESPEC VAL) (M aero) 2..42

(LDIFF X Y Z) 2.22

LDIFF: NOT A TAIL (Error Mes:;ag~
2.22

. (LOI FFERENCE x Y) 2.22

LE (CLISP Operator) 16.6

LEF_T (key indicator) 19.17

LEFTBRACKET (Syntax Class) 6.33

LEFTKEY (key indicator) 19.17 •

LEFTMIODLEKEY (key indicator) 19.17

(LEFTOFGRIOCOORO GRIDX GIUDSPEC)
19.43

LEFTPAREr~ (Syntax Class) 6.33 111

Index . .:?9

/
I

\

'-··

(LENGTH x) 2.21

(LEQ X Y) 2.45

(LESS? x Y) 2.45

(LI N) (Editor Co,r.mand) 17.32

LIKE ATOM (Masterscope Set .Specification)
13.10

{ LIN3UF FLG) 6.47; 6.46

LINE (Variable) 20.44

line buffer 6.45: 6.46-47

line-buffering 6A5; 6.lJ· 15

line-feed 6.13.16

line-feed (ED IT A command) 23.50

line-feed (Editor Com."'rl.and) 17.13

LINEDELETE (syntax class) 6.41,43

(LI?~ELEfiGTH N FILE) 6.8

LINELENGTH N (Masterscope Path Option)
13.iS

LINESPERPAGE (Variable) 23.14

LINK USER (Exec Command) 23.59

linked function calls U.18

LINKED F NS {Variable) 12.19

LINK F NS (Variable) 12.18; 12.15-16,19

(LrnKTOTTY TTY#) 23.61

(LINKTOUSER VSER) 23.61

Lisp.virtual mem (File) 18.3

LISPF~ (Property Name) 16.22

LISP X Printing Functions 8.20

(LISP X LISF:CC LISPXID LISPXXMACROS

LIS?:OCUSERFN LISPXFLC) 8.28;
8.10.16.26-27.29.36; . 15.3.14,20:
17.39.45

(LISP XI X 'FN V.ARS) 8.34: 8.22

LI SP XCOMS (Variable) 8.29; 11.25

(LISP XE VAL LISPXFORM LISP'XID) 8.29

(LISP X F IND HISTORY LINE TYPE BACKUP

-) 8.32: 8.36

INDEX

LISPXFINDSPLST (Variable) 8.7

LISPXHIST (Variable) 8.27; 8.24.28.34

LIS?XHISTORY (Variable) 8.25; 8.29.36

LISPXHISTORYMACROS (Var.able) 8.19

LIS?XLINE (Var.able) 8.19 ·

(LISPXMACROS LITATOM1 • • • IJTATOMN)
(File Package Command) 11.24

LISPXMACROS (File Package Type} 11.15

LISPXMACROS (Vanable) 8.19: 8.19: 22.22

(LISPXPRIN1 X Y Z NODOFLG) 8.10

(LISPXPRIN2 X Y Z NODOFLG) . S.:0

(LISPXPRINT X Y Z NODOFLG)
8.20; 8.27

(LISPXPRINTOEF EXPR FILE LEFT DEF
TAIL NODOFLG) 8.20

LISPXPRINTFLG (Variable) 8.21

{ LISPXREAO FILE RDTBL) 8.31;
8.4,16.26.28,35

LISPXREAOFN {Variable} 8.29: 8.30

(LISPXREADP FLG) 8.31: 8.35

(LISPXSPACES X Y Z NODOFLG) 8.20

(LISPXSTATS RETV'?.NVALUESFLG) 8.21:
18.6

(LISPXSTOREVALUE EVENT VALu~) 8~2

(LISPXTAB X Y Z NODOF!..G) 8.20

(LISPXTERPRI X Y Z NODOFLG) 8.20

(L ISPXUNREAO LST -} 8.31

LISPXUSERFN (Variable) 8.20: 8.29

LISPXVALUE {Variable) 8.20

(lISPXWATCH STAT N) 8.21: 18.6

(LIST X1 x2 · · · XN) 2.16

LI ST {lvf AKEF!LE option) 11.7

LIST (Property Name) 5.10

list cells 2.14: 2.2

list functions 2.16

[ndex.30

()

()

()

(~
\ ' _/

0

(LIST FILES FILEl FILE2 • • • FILEN)
11.9; 11.7

LISTFILES1 (Function) 11.9

LISTFILESTR (Variable) 6.57; 11.10

(LISiGET !.ST PROP) l.25

{LlSTGETl LST PROP) 2.26

LIST!NG? (Compiler Question) 12.l

LISTP checks (in Pauern Match Compiler)
23.2

(LISTP x) 2.2

0 (LIST PUT LST PROP VAL) 2.26

0

(LISTPUT1 LST PROP VAL) 2.26

lists 2.14-15

(LiiATOM X) 2.1

litatot:'lS (liter.J atoms) • 2.4; 2.1: 6.13

LITS (Variable) 23.50

{ LLSH X N) 2.40

(LO N) (Editor Command) . 17.32

{ LOAD FILE I.DFLG PRlNTFLG) 11.4:
8.33: 12.10

(LOAD? FILE LDFLG PB.u~LG) 11.4

(LOAOAV) 22.5; 18.6

(LOAiJSLOCK FN FILE LDFLG) 11.6

(LOAOSYTE N POSITION SIZE) 2.41

(LOAOCOMP FILE LDFLG) 11.6

{ LOAOCOM?? FILE I.DFI.G) 11.6

(LOAODB FlLE) 23.16

LOADOBFLG (Variable) 23.16

(LOADOEF NAME Tl'l'E SOURCE) 11.18

LOAOEDFILELST (Variable) 11.13

(LOAOFNS FNS FILE LDFLG VARS) 115

(LOAD FROM FrLE FNS I.DFLG) 11.6:
12.13

LOADOPTIONS (Variable) 11.4

{LOAOVARS VARS FILE LDFLG) 115

INDEX

(LOC X) 21.S
LQCAL (in- Deel package) 23.21

local record declarations in CLISP 16.10

local variables 4.3

LOCALLY (use in Maszerscope) 13.8

(LOCALVARS VARz ••• VARN}
(File Package Command) 11.25

LOCALVARS (in Masterscope Set Specificarion)
13.11

LOCALVARS (Variable) 12.4

location specification 17 .17

location specification (in Editor)
17.17: 17.18.46

LOCATION UNCERTAIN (Printed by Editor)
17.10

(LOCKMAP PTR) 14~9

(LOG X) 2.45

(LOGANO Xl X2 • •· XN) 2.40

(LOG IN HOSTNAMZ - - - } 18.14

LOGIN (Property Name) 23.63

LOGINHOST /DIR (Variable) 18.12

(LOG NOT N} 2.41

logo window 19.19

(LOGOR x1 x2 ••• XN) 2.40

(LOGOUT FAST) 14.2: 22.22

LOGOW (Variable) 19.19

(LOG XOR X1 x2 • • · Xr,;) 2.40

(LOOKUP.NS.SERVER.NAME TYPE)
21.13

(LOOKUPHASHFILE KEY VALVE BASHFrLE
CALLTYPE) 23.44

LOWER (Editor Command) 17.41

(LOWER x) (Editor Command} 17.41

lower case 2.11

lower case comments 6.52

lower case in CLISP 16.21

lndex.31

---..~.

/

lower case input 6.44

(LOWERCAS~ FLG) 16.21

(LP CO!.£S1 •• • COMSN) (Editor Command)
17.47

LPARKEY (Variable) 15.12: 15.5

(L?Q CCUSz ••• COMSN)
(Edtror Co1r.mar:d) 1i.4i

LPT (pri,·uer device) 18.18

(LRSH X N) 2.41

(LSH X N) 2.40

LSTFIL (Variable) 12.1

LSTVARS (Variable) 4.14

{ LSUBST Nc:'N OLD E:XPR) 2.24

LT (CL/SP Operator) 16.6

(M C COMSz ••• COMSN)
(Editor Command) 17.48

(M (C) A.RG COMS1 •• • COMSM)
(Edilor Command) li.49

(M (C) (ARG1 • • • ARGr,;) COMS1
COMSM) (Edilor Command) 17.48

machine instructions 22.15: 22.16: 23.48

(MACHI~lETY?E) 18.6

(MACRO • MACRO)
(in M asterscope template) 13.18

MACRO (Property Name) 11.12: 12.8

MACRO (type of read-macro) 6.36

~{aero Expansion (in Masterscope) 13.15

MACROCHARS (ASKUSER option) 6.63 .
MACROPROPS (Variable) 5.17

m:icros 5.17

(MACROS L.1TATOM1 •• • L.JTATOM)
(Fife Package Command) ll.25

MACROS (File Package Type) 11.15

macros (in Editor) li.48

MAC'ROTRAN (Func1ion) 5.19: 15.11

INDEX

MACSCRATCHSTRING (Variable) · 14.10:
22.23

(MAKE ARCNAME E:XP) (Editor Command)
• 17.44

(MAKEBITTABLE L NEG A) 2.32

{MAKEFILE F!I.E OPTIONS REPRINTTNS
SOVRCEF!l:.E) 11.6; 11.10; U..13:
15.20

MAKEFILE and CUSP 16.20

MAKEFILEFORMS (Variable) 11.8

MAKEFILEOPTIONS (Variable} 1L7

MAKEFILEREMAKEFLG {Variab/e 1 11.10·
~7 ~ •

(MAKEFILES OPTIONS 1'ILES) 11.8

(MAKEFN {FN. ACTUAL.ARCS) ARGl.LST
N1 N2) (Editor Command) 17.44

{MAKEINTERPRESS FILE OUTFII.E FONTS
HEADING TABS) 18.17

(MAKEKEYLST I..ST DEFAOI.TXET

LCASEFI.G -) 6.65

(MAKENEWCOM NAME TYPE - -) 11.33

(MAKENEWCONNECTION HOST T'l'l'E SKT
SCRATCHCONN WAlTFLG) 23.64

(MAKEPRESS FILE OUTFII..E FONTS
HEADING TASS) 18.17

(MAKESYS FILE NAME) 14.4

MAKESYSOATE (Variable) 14.4

manipulating file names 6.5

(MAP MAPX MAPFNI MAPFm) 5.13

{MAP. PROCESSES MAPFN) 18.28

{MAP2C MAPX MAPY MAPFN1 MA.PF~}
5.14 .

(MAP2CAR MA.PX MA.PY M.APF'NI ."r!A.PFN2)
5.14

(MAPATOMS FN} ~11

(MAPBUFFERCOUNT ONLYUNLOCKED)
14.18

(MAPC MAPX MAPFNl MAPFN2) 5.13

lndex.32

0 -

n
_/

, -
\.) ..

0

0-

_, ~ u

{ MAP CAR MAPX MAPFNl M.APFm) 5.13

(MAPCOf~ MAPX M.APFN'l M.APFN2) 5.13

(HAPCONC MAPX MAPFNl MAPFN2) 5.13

(MAPOL MAPDI..FN .M:AP.OLPOS} 7.8

(MAP HASH F.A.1?.P..A.Y MA.PF.TN) 2.35

(MAPHAS!iFILE I:.ASHFILE MAPFN) 23.43

(MAPL!Si M.APX MAPFNl 1r'..A.PFN2) 5.13

{MAPOFACOLOR p~s) 19.46

(MAPPAGE PAGE# F"ll..E -) 14.18

(MAP RELATION RELATION MAPFN) 13.20

(MAP R !HT L.ST FILE LEFT RIGHT SEP
PFN LISPXPRINTFLG) 5.14

(MAPWORO FILEAD.R FILE) 14.19

margins (for PREITYPRINT) 6.49

MARK (Editor Command) li.21

(MARK UT.ATOM} (Editor Command) .
17.21
. .

(MARKASCHMJGED NAME TYPE REASON)
11.11

MA:Ri<LST (Variable) 17.21; 17.57

MASK (Variabie) 23.Sl

(MASK.O'S P05m0N SIZE) ~41

{MASK.l'S POSITION SZ%E} ~41

(MASTERSCOPE COMMAND -) 13.19

Master;)Cope Commands 13.4

MATCH (use in pattern match in CLISP)
23.1

(MAX X 1 X2 · • • XN) 2.45

MAX. FIXP 0 (Variable) 2.38: 2.39

MAX. FLOAT (Variable) 2:43; 2.44

MAX. INTEGER (Variable) 2.38

MAX. SMALLP {Variable) 2.38

MaxBkMenuHeight (Variable). 20.11

MaxBkMenuWi dth (Variable) 20.11

MAXHiSPECTARRAYLEVEL (Vanable)
20.15

INDEX

MAXINSPECTCORLEVEL (Variable) 20.14

MAXLEVEL {Variable) 17.15; 17.17

MP,XLOOP (Variable) 17.47

MAXLOOP EXCEEDED (Printed by Editor)
17.47

(MBD E1 • • • EM) (Editor Command)
17.28

(MEMS X Y) 2.23

(MEMBER X Y) 1.23

(MEMQ VALVE1 •• • VALUEN'}
(Deel Type Expression) 23.26

{MEMSTAT PGl PGN FORK) 23.61

(MENU MENU POSITION) 19.38

MENUBORDERSIZE (Menu Field) 19.40

MENUBUTTONFN (Function) - 19.38

MENUCOLUMNS (Menu Field) 19.40

MENUFONT (Menu Field) 19.39

MENUFONT (Variable) 19.22.40

MENUHELDWAIT (Variable) 19.39

{MENUITEMREGION ITEM ME.NU) 19.41

MENUOFFSET (Menu Field) 19.39

MENUOUTLINESIZE (Menu Field) 19.40

MENUPOSITION (Menu Field) 19.39

MENUROWS (Menu Field) 19.40

(MERGE A B COMPAREFN) 14.9

MERGE {Variable) 23.37

(MERGEir,:SERT NEW LST ON'EFLG) 14.9

(METASHIFT FLG). 18.9

• MIDDL~ (key indicator) 19.17

MIDDLEK_EY (key indicalor) 19.17

MILLISECONDS {Timer Unit) 14.11

(MIN x1 x2 • •• XN') 2.45

MIN • FIX P (Variable) 2.38: 2.39

MIN. FLOAT (Variable) 2.43: 2.44

MIN. INTEGER {Variable) l.38

Index.33

MIN.SM1'LLP (Variable) 2.38

(MINESHAFT N OUTFLC) 19~0

(M!NFS N Tn'E) 22.10; 18.2; 22.8-9,11

{MINHASH X) 22..11

(MINUS X) 2.44

(M mus? x) 1.40.44

MISSING OPERAND (DWh'vf error message)
16.11

MISSING OPERATOR
(CL/SP error message) 16.0

.~. -~, (MISSPELLED? XWORD REL SPLST FLG

TA.I?.. FN) 15.18; 15.19· 20

mixed a.-ithmeti.c 2.44

{ MKA T-CM X} 2.9

{MKLIST x) 2.16

{MKSTRING X FLG RDTBL) 2.28

(KKSWAP X) 22.26

(MKSWAPP FNA.VZ CDEF) 22.25

MKSWAPSIZE (Variable) 22.26

(MKUNSWAP X) 22.26

MODIFIER (Litatom) 4.15

(;",ODffY .KEYACTIONS KEYACTIONS
SAVE~NT?) 18.9

_ (MOr~ !TOR. AWAIT. EVENT RELEASZLOCX
EVZ:-:T TIMEOUT TIMERP) 18.31

mouse 19.16

(MOUSESTATE BUTTONFORM) (Macro)
19.16

{ MOVD FROM TO CO:P'YFLG) 5.8

(M0V0? FROM TO CO.P1?"LG} 5.9

(MOVE @1 TO COM • @2)
(Editor Command) li.29

MOVE (Window Menu Command) 19.20

MOVEFN (~Vindow Property} 19.32

(MOVETO X Y DISPLAYSTRE.AM) 19.12

INDEX

(MOVETOFILE TOF'ILE NAMB T'l'r'S
FROMF'IL.E) 11.33

(MOVETOUPPERLEFT DLS'PLAYST.REAM

REGION} 19.13

{ MOVEW WINDOW POSorX Y) 19.26

MSMACROPROPS (Variable) 13.15

(MSMARKCHANGEO FN T'l'r'E REASON)
13.21

(MSNEEDUNSAVE FNS MSG
MAR.KCHANC:EFLG) 13.20

MSNEEDUNSAVE (Variable) 13.21

MSPRINTFLG (Variable) 13.2

{MULTIFILEINOEX sou~CEF'ILES
DESTTNATIONFILE NEWPAGE'FLG)
23.13

MULTIFILEINOEXCOLS (Variable) 23.14

MULTIFILEINOEXFILECOL (Var..abk)
23.14

MULTIFILEINOEXFILESFLG (Variable)
23.14

MULTIFILEINDEXFNSMSFLG (Variabk)
23.15

MULTIFILEINDEXGETOEFFLG (Variabk)
23.15

MULTIFILEINDEXLOADVARSFLG (Variabk)
23.15 .

MULTIFILEINOEXMAPFLG (Var.able)
23.14

MULTIFILEINOEXNAMECOL (Variable).
23.14

MULTIF ILE INOEXTYPECOL (Variable)
23.14

MULTIFILEINDEXVARSMSFLG (Variabk)
23.15

MULTIPLY DEFINED TAG (Error Message)
12.21

MULTIPLY DEFINED TAG, ASSEMBLE
(Error Message) 12.21

MULTIPLY DEFINED TAG, LAP
(Error ,\,/ essage) 11.21

{ndex.34

0

n

n

0

o--

0

·N (N a number) (PRINTOUT command)
6.26-27

N (N> 1) (Editor Command) 17.10

-N (N~l) (Editor Command) 17.10

(N) (N~ 1) (Editor Command) 17.3

(N El • • · EM') (Editor Command) 17.22

{ N El · • · EM) (N~ 1) (Editor Command)
17.3

(-N E1 ••• EM) (N~l)
(Editor Command) 17.3

NAME (Process Property) 18.26

NAME LITA.TOM E,-C.Spec'
(Prog. AssL Command) 8.12

NAME LITA.TOM ARG1 ••• .ARGN
: EvmiC.Spec (Prog. AssL Command)
8.12

NAME LITA.TOM (ARG1 ••• ARGN)
: Eve:itSpec (Prog. AssL Command)
8.12: 8.13.27

NAMES RESTORED (Printed by System)
10.7

NAMESCHAHGED {Property Name) 10.4

(NARGS FN) 5.7; 22.3

NBOX {Fur.czion) 23.5S-56

(NCHARS X FLG RDTBL) 2.10: 6.8

(NCC NC x1 x2 • • • XN) 2.17; 2.18

(NCONC1 LST X) 2.17; 2.18

(MCREATE TYPENAM:E FROM) 3.15

NDIR F!LEGROVP (Exec Command) 23.60

NEGATE .(Editor Command) 17.42

(NEGATE X) 14.2: li.42

{HEQ X Y) 2.2

net package 23.64

~ NET SERVER ARPA# WAJTFLG) 23.64

(NETUSER HOST USER ARPA# WAJTFLG)
23.65

HETWCRKOSTYPES (Variable) 18.14

INDEX

NEVER FOR.V (l.S. Operator) 4.6

NEW (MAKEFILE option) 11.7

(?~EW/FN FN) 8.34

NEWREGIONFN (Window Property} 19.31

NEWVALUE (VarilJble) 3.8

NEX (Editor Command) li.19

{ NEX COM) {Editor Command) 17.19

NIL (Editor Command) 17.43: 17.46

NIL (in Block Declarazior.s) 12.16

NIL (in Maszerscope template) 13.16

NIL (Litatom) 2.2.S
NILCOMS (Variable) 11.9

(NILL) 5.10

NILNUMPRINTFLG (Variable) 6.%2

NLAM (Fransorset Command) "23.39

NLAMA (Variable) 12.1

NLAMBOA (Litatom) 5.2: 22.3

nlambda functions 5.2

nlambd.2.-nospread functions 5.S

nlambda-spread functions 5.3 n

NLAML (Variable) 12.1

(NLEFT L N T..AlL} 2.20

(NLISTP x} U

· NLISTPCOMS (Variable) 23.40

(NLSETQ FOP.M) 9.15: 4.4; 8.24

NLSETQGAG (Variable) 9.15

NO BINARY CODE GENERATED OR
LOADED· (Error M essa;el 12.22

(FN - NO BREAK INFORMATION SAVED)
(vaiue of REBREAK) 10.7

NO DO. COLLECT, OR JOIN
(Error Message) 4.13

NO FILE PACKAGE COMMAND FOR
(Error Message) 11.24

Index.35

NO LCNGER INTERPRETED
AS FUNCTIONAL ARGUMENT
(Error J'l,,f e!:SIJge) 12.21

NO PROPERTY FOR (Error Message)
l,1.23·24

NO USERMACRO FOR (Em,r Message)
11.24

NO VALUE SAVED: (Error Message) 8.24

NOBIND (Litctom) 2.S; 7.7: 8.23-24:
11.4; 17.55

1'i'obox package 23.54

1 -----. NOBREAKS (Variable) 10.6

NOCASEFLG (ASKUSER option) 6.62

NOCLEARSTKLST (Variable) 1.1

NOCLISP (JfAKEFILE option) 11.7:

l ..

16.20

NOOIRCORE (core device) 18.13

NOECHOFLG (ASKUSER option) 6.62

tlOESC {type of read-macro) 6.31

NOESCQUOTE (type of read-macro) 6.31

NOFILESPEL.LFLG (Variable) 15.20

NOF!XFNSLST (Variable) 16.16; 11.6:
12.9; 16.15

~!OFIXV-6.RSLST (Variable) 16.16; 11.6;
12.9: 16.12.15

NOLINKDEF (Funczion) 12.19

NOL!NKFUS (Variable) 12.18: U.15·16.19

NON-ATOMIC CAR OF FORM
(Error Jf essage) 12.21

Nml-NUMERIC ARG (Error _Message) 9.23;
2.38.43-44 .

NONE (in Decrpackage) 23.25

NO~E (s;·ntax class) 6.42

NONIMMED (type of read-macro) 6.38

NONIMMED !ATE (1ype of read-macro) 6 • .38

NOPACKCALLSFLG (Vanable) 13.19

NOP RI NT (litatom) 8.24

INDEX

NORAISE (TENEX Corr.mand) 6.44

NORMALCOMMENTSFLG (Variable) 6.:,,
NOSAVE (Function) 8.33

f~OSAVE (Litalom) 8.24.33

NOSPELLFLG (Variable) 15.J.2; 16.16

nospread functions 5.2

NOST ACKUNOO (Lilatom) 8.24

NOSWAPFLG (Variable) 22.26

NOSWAPFflS (Variable) 22.26

(NOT X} 2.3

NOT A BINOABLE VARIABLE
(Error M e:ssage) 12.21

NOT A FUNCTION (Error Message)
10.9

S.7.10: · .
NOT A HASHF ILE (Error Message) 23.42

NOT BLOCKED (Printed by Editor} 17.51

(NOT BROKEN) (value of UN BREAK.OJ
10.6

NOT CHANGED. SO NOT UNSAVED
(Printed by Editor) 17.54

NOT COMPILEABLE (Error Message)
12.20; 12.10.15

{FlLE NOT DUMPED)
(returned by MAKEFILE) 11.8

NOT EDITABLE (Error Message) li.54-56

NOT FOUND (Error }fe:ssage) 12.20

{ NOT FOUND} (printed by BREAKIN)
10.5

(FN NOT FOUND) (printed by break) 9.4

FTI.ENA..VE NOT FOUND
(printed by LISTF!LES) 11.9

(PROP NOT FOUND)
(value of UNSAVEDEF) 5.10

(FNl NOT FOUND IN F"N2}
(value of BREA.KO) 10.4

NOT FOUND, SO IT WILL BE WRITTEN
ANEW (Error Message) 11.35

index.36

()

().

0

0

0

NOT IN FILE - USIHG DEFINITION IN
CORE (Error Message) 12.20

NOT ON 8LKFNS (Error Message) 12.20;
12.14.16

NOT ON FILE, COMPILING IN CORE
DEFINITION (Error Message) 12.15

(FN NOT PRINTABLE}
(returned by PRETTYPRINT) 6.48

NOT-FOUND: (Litatom) 11.S

{ NOT ANY SOMEX SOMEFNl SOMEFN2}
5.14

NOTCOMPILEDFILES (Variable) 11.10;
11.6

(NOTE VAL LSTFLG) 7.16

NOTE (Transor Command) 23.37

NOTE (Transorsel Command) 23.38

NOTE: BRKEXP NOT CHANGED.
(Printed by Break) 9.8

(rmTEVERY EVERYX EVERYFNl
EVZRYFN'2} 5.14

NOTFIRST (DECLARE: Option) 11.27

(NOTHING FOUND)
· (value of UNSA VEDEF) 5.10

NOTHING SAVED (Printed by Editor)
17.50

NOTHHlG SAVED (Printed by System)
8.22; 8.11

noticir.g files 11.12

(NOTIFY. EVEHT EVENT ONCEONLY)
lS.30

NOTLISTEDFILES (Variable) 11.9;
11.6; 23.14

NOTRACE SET (Masterscope Palh Option)
13.15

NS.DEFAULT .PRINTER (Variable) 21.11:
18.li

(NSCREATEOIRECTORY HOST/DIR) 21.13

(NSDIRECTORY PATTERN) 21.13

(NSOCKETEVENT NSOC) 21.22

INDEX

(NSOCKETNUMBER NSOC) 21.22

(NSPRINT PRINTER
FILE.NAME DOCUMENT.NA.\!£

-. DOCUMENT.CREATION.DATZ SE:mER.N.AJil.3
RSCIP!ENT.NA.IJ:E #COP'!ES MEDitJ'M
PRIOR.ITY STAPLEt TWO-SIDED~)

21.11

{NSPRINTER.PROPERTIES PRINTER)
21.12

(NSPRINTER .STATUS PRINTER) 21.12

(NTH N) (Editor Command) 17.12

(NTH COM) (Editor Command) 17.20

(NTH X N) 2.19

{ NTHCHAR X N FLG RDTBL) l.10

(NTHCHARCODE X N FLG RDTm.) 2.11

{NTYP DATm,l) 22.2

(NULL X) 2.3

null string 2.28·30

null-che"'...k 2.20-23.25

(NUMBERP X) 2.2,37

numbers 2.36: 2.2; 6.14

(HUMFORMATCODE FORMAT SMASHCODE)
6.23

NX (Editor Command) 17.11

(NX N) (Edicor Commar.d) 17.11: 17.6

(OBTAIN.MONITORLOCK LOCK DONTWAIT
UNWINDSAVE) 18.31

OCCURRENCES (Printed by Editor) 17.47

octal 6.13; 2.38: 6.17

(OCTALSTRING N) 2L21

(OOOP X Y) 2.41

(AGGREGATE OF ELEMENT)
(Deel Type Expression) 23.27

BLOCKTYPE OF FUNCTIONS
(Masrerscope Set Specification) 13.11

OK (Break Command) 9.3; 9.8

lndex.37

CK (DEdit Command) 20.5

o:< (display break command) 20.10

Q:{ (EDITA command) 23.50

OK (Editor Command) li.38: 17.41.56

OK (Master-scope Corr.mand) 13.2

OK (Prog. A.SSL Command) 8.29

OK TO REEVALUATE (Printed by DWIM)
15.6

OKRE EVALST (Variable) 15.12; 15.6

OLD (l.S. Operator) 4.8

. OLCVALUE (Van"able) 9.21

ON FOR.V (l.S. Operator) 4.8

ON OLD VAR (l.S. Operalor) 4.f: 4.9

ON PATH PATHOPTIONS

(Masterscope Set Speci/ication) 13.11

BLO'7A'TYPE ON FILES
(Master.;cope Set Specification) 13.11

(ONEOF TYPEz • • • TYPEN)
(Deel T;;pe Expression) 23.26

OPCODE? - ASSEMBLE (Error Message)
12.22; 22.13

CPO (Property Name) 22.13: 22.16-17:
23.4f-49 •

open functions U.8

(OPEN.NS.PRINTING.STREAM
FR.INTER DOCtJ°MENT.NA.J.!E
DO~?.!SNT.CREATION.DATE

SE:N'!)Eri.NAME RECIP:E:N':'.NAME
#COFIZS .\fEDIUM PRIORITY STAPLE?
TWO.SIDED? NOWATCHDOG?) 21.11

(OPENF FILE X) 22.23: 18.6

(OPEN FILE FILE ACCESS
RECOG BYTESIZE

MACHINE.DEPENDENT.PARAMETERS) 6.1

OPENFN (Window Property) 19.30

(OPEtJHASHr ILE FILE ACCESS) 23.42

opening files 6.1

(OPENNSOCKET SKT# IFCLASH) 21.22

INDEX

(OPE NP FILE ACCESS) 6.2: 6.5

(OPENPUPSOCKET SKT# ZFct.A.m) ll.16

{ OPENR A) 22.11
.

(OPENTEXTSTREAM TEXT WINDOW START
END PROPS) 20.24

{ OPE NW WINDOW) 19.26

{ OPEr~WHl00\11S) 19.25

(OPENWP WINDOW} 19.25

OPERATION (BITBLT argument) 19.5

(OPNJFN FILE ACCESS) 2l.ll: 18.6

{OR x1 x3 ·~· XN) 4.2

order of precedence of CLISP operaco~
16.9

(ORF PATTERN1 • • • PATTERNN)
(Edi1or Command) 17.17

ORG (Variable) 23.49

ORIG (Litatom) 6.32

ORIGINAL (Break-Command) 9.1

(ORIGINAL COMSz ••• COMSN)
(Edilor Command) 17.50

(ORIGINAL COM1 ••• COMN)
(File Package Command) 11.27

ORIGINAL I.S.OPR OPERA.ND
(l.S. Operalor) 4.11: 4.15

(ORR COMS1 ••• COMSN)
(Edi1or Command) 17.48

OTHER (Syn1ax Class) 6.33

(OUTFILE FILE) 6.2

(OUTFILEP FILE) 6.4: 6.5

OU:OF FORM (l.S. Operator) 4.10; 7.14

{OUTPUT FILE) 6.2

OUTPUT (Masterscope Command) 13.7

output buffer 6.19

OUTPUT FI LE? (C ompi/er Question) 12.2

output functions 6.16

OUTPUTBUFFER (Liratom) 9.17

Index.38

()

().

c1.·

(J

- --

::=)

<J

OVERFLOW (ETTOr Message) 9.26; 2.38

(OVERFLOW FLG) 2.33

overlays 22.24

P (Editor C orr,mand) 17 .37

(P M} (Editor Command) 17.37

(P M N) (Edilor Command) 17.37

(P O} (Editor Command) 17.37

(P O N) (Editor Command) 17.37; 17.2

(P EXP 1 • • • EXP N)
(File Package Command) 11.24

(PACK X) 2.9

(PACK* X1 X2 ••• XN) 2.9

(PACKC X) 2.12

(PACKFILENAME FIELDNAME1
F!ELDCONTENTS1 • • • FIELDNA.MEN
FIELDCONTEN'I'S N) 6.6

• page 127

page holding 19.15

page Ir..apped files 14.17

{ PAGE FAUL TS) 14.14

(PAGEFULLFH WINDOW) 19.33

PAGEFULLFN (Wir.dow Property) 19.33

(PAGE HEIGHT N) 19.15

PAINT (Window Menu Command) 19.20

PARENT (Variable) 15.11

pare:itheses counting by READ 6.13: 6.45

PARENTHESIS ERROR (Error Messag~
5.11

(PARSE RELATION ~LATION) 13.20

passwords package 23.62

Path Options (in Masterscope) 13.14

Paths (in Mastersccpe} 13.13

PATLISTPCHECK (Variable) 23.2

pattern match (in Erii1or) 17.13: 17.57

INDEX

pattern match compiler 23.1

PATVARDEFAULT (in Pattern Match Compiler)
23.6 -

PA TV ARD E FAULT (Variable) 23.3-4

PB (Break Command) 9.5

PB LIT.ATOM (Prog. AssL Command) 8.14

(PEEKC FrI..E .RDTBL) 6.15; 6.46

period (in a list) 2.15

PERMSTATUS (Function.) 23.17

(PF FN FROMFII..ES TOFILB) 6.A8

(PF• FN FROMFlLES TOFILE) 6.50

PFDEFAULT (Variable) 6.49

PL L.ZTATOM (Prog. AssL Command) 8.14

place-markers (in Pattern Match Compi1er)
23.5

{ Pl,.US :?Ci X:z · • · XN) 2.44

PLVLFILEFLG (Variable) 6.19 ..
POINTER (as a field specification) 3.14

POINTER (record field type) 3.1

(POP DATUM} (Change Word) 3.13

Pop- (DEdit Command) 20.5

(PORT ST RI NG NETHOST SOC'"'AET) 21.20

(POSITION FILE N) 6.7

(POSITIONP X) 19.2

(POSSIBILITIES FORM#=#) 7.16"

possibilities lists 7.16

POSSIBLE NON-TERMINATING
• ITERATIVE STATEMENT

: (Error Message) 4.13

POSSIBLE PARENTHESIS ERROR
(Error Message) 16.15

POSTGREETFORMS (Variable) 14.6

(POWEROFTWOP N) 2.41

PP (Editor Command) 17.37: 17.2

(PP FN1 · • • FNN) 6.48

[ndex.39

pp• (Editor Command) 17.37

(pp• X) 6.50

PP E (in 1-,,f c.sterscope template) 13.16

p pe (uad in Mcsterscope} 13.16

PPT (Editor Command) 17.37: 16.14,.20

(PPT X) 16.20: 16.14

P PV (Editor Commar.d) 17.37; 6.49

pre:edence rules for CLISP operators 16.6

prefix operators in CLISP 16.5

- - PREGREETFORMS (Variable) 14.6

(PRES CAH FILE CHAP..LST) 23.32

(PRESSFILEP FILE) 18.18

PRESSTABSTOPS (Variable) 18.17

PRETTYCOMFONT {font class) 6.55

{PRETTYCOMPRINT X) 11.36

{PRETTYOEF PRTTYFNS PRTTYFTLE

PR.TTYCOMS P..EPRINTFNS

SOUR.CEFJLE CHANGES) 11.34: 10.11

PRETTYEQUIVLST (Variable) 6.54

PR.ETTYFLG (Variable) 6.54; 11.7

PRETTYHEADER (Variable) 11.36; 11.35

PRETTYLCOM (Variable) 6.53; 6.54

(?RETTY?RINT FNS PRETTYDEFLG -)

6.47

prettyprinting by system functions 6.18

. PRETTY?RINTMACROS (Variable) 6.54

PR::TTYPRINTYPEMACROS (Variable) 6.54

PRETTYTASFLG (Variable) 6.53

'PRETTYTRANFLG (Variable) 16.20;
11.i; 16.14

prim=iry input file 6.2: 6.12

pr.mary output file 6.2: 6.16

primary readtable 6.32: 6.12.16.42

pmn~ry tcnmnal table 6.40.42

'(PRINl X FILE) 6.17; 6.18

INDEX

(PRINZ X FILE RDTBL) 6.17; 6.18

PRrnZ-names 2.8.10,12

{ PRJN3 X FILE) 6.17

(PRIN4 ;c FILE RDTBL) 6.17

{PRINT X FILE RDTBL) 6.17; 6.18

print names 2.8

{ PRINTBELLS) 6.18: 15.3

PRINTBINOINGS (Function) 8.14; 9.6

(PRINTBITMAP BITMAP) 19.6

PRHHCOOE (Function) 20.14· ·

(PRINTCOMMENT X} 6~1

(PRINTCONSTANT VAR CONST.ANTLIST

FILE PREFIX) 21.21

(PRINTOATE FILE CHANGES) 11.35

{PRINTOEF EXPR LEFT DEF TAlLFLG

FNSLST FILE) 6.49: 6.54

PRirdTDEPTH (Variable) 23.12

PRINTER (Variable) 23.14; 23.13

(PRINTEROEVICE NAME) 18.18

(PRINTERMOOE X) 18~6

(PRINTERSTATUS PRINTERNAME) 21.5

(PRINTFNS x -) 11.35

(PRINTHISTORY EISTORY ur-.~ S-AIPFN
NOV.ALUES FILE) 8.35; 8.11

printing circular lists 23.8

printing numbers 6.19

(PRINT INGHOST -) 18.16

(PR INTL ITEM DEPTH L.M.ARG RMARG

FILE) • 23.12 .
(PRINTLEVEL CARVAL CDRVAL) 6.18

PRINTLEVEL (Li1a1om) 9.17

PRINTMSG (Variable) 9.16

{ PRINTNUM FOR.MAT NUMBER FILE) 6.21

PR IN TOUT (C LISP word) 6.25

PRINTOUTMACROS (Van·able) 6.30

Index.40

()··

(---~
\ I

. .

(\
\)

0

0-

(PRINTPACKET PACKET CAI..t.ER FILE
PP.E.t."OTE DOFILTER) 21.24

(PRINTPACKETOATA BASE OFFSET
MACRO LENGTH FILE) 21.20

(PRINTPARA I.MARG RMA.RG LIST P21'I.AG
P.A.REN'F"LAG FILE) 6.31

PRiflTPROPS (Fu.nczior.) 8.14

(PRINTPUP PACKET CALLER FILE
PRE.NOTE DOFILTE.R) 21.19

(PRINTPUPROUTE PACKET CALLER FILE)
21.20

(PRIHTROUTINGTABLE TABLE SORT
FI!.E) 21.17

PRINTXIP (Function) 21.23

PR!NiXIPROUTE (Function) 21.23

private pages 14.4

(PRNTL ARGS) (Prog. AssL Command)
23.12

PROCESS (Window Property} 19.33; 18.34

Process Me"..hanism 18.25

(PROCESS.APPLY PROC FN ARGS
WAZTFORRE.stl'LT} 18.29

(PROCESS.EVAL PROC FORM
WA!TFO.R.RESUI.T) 18.29

{PROCESS.EVALV PROC VAR) 18.29

(PROCESS.FINISHED? PROCESS) 18.28

{PROCESS.RESULT PROCESS
WAITFORRSSUI.T) 18.28

(PROCESS.RETURN VALUE) 18.28

(PROCESS. STATUS. WINDOW WimRE}
18.36

(PROCESSP PROC) i8.28

(PROCESSPROP_PROC PROP NEWVALUE)
18.26

(PROCESSWORLD FLG) 18.25

(PRODUCE VAL) 7.13

(PROG VARL.ST E1 E2 ••• EN) 4.3

P ROG label 4.4

Il'iDEX

{ PROGl Xi x2 · · · XN) 4.3

(PROG2 Xi x2 •• • XN) ~.3

(PROGN Xi x2 ··· XN) 4.3

programm~r·s assistant and che edit0r 8.35

programmer's assistant commands applied
to p.a. commands 8.17

programmer's assistant commands tb.at
fail 8.17

prompt character 8.4.18.31; 9.1; 17.1

prompt window 19.19

PROMPT#FLG (Variable) 8.18: 8.31

(PROMPT CHAR ID FLG B7STORY) 8.31;
8.18.35

PROMPTCHARFORMS (Variable) 8.18: 8.31

PROMPTCONFIRMFLG (ASKUSER option)
6.62

{ PROMPTFORWORD PROMPT.STR
CANDID.ATE.STR GENERA.TEJ'UST .FN
ECHO.CHANNEL DO:-n-ECHOTYP'EIN..FLG
TIMELIMIT.aecs TERMINcaARS.LST
KEYBD.CHAN1'"'EL OI.DSTRING)
18.3i·38

PROMPTON (AS KUSER option) 6.63

(PROMPTPRINT EXP) 19.19

PROMPTSTR (Variable} 8.18

PROMPTWINDOW (Variable) 19.19; 18.34

{ PROP PROPN.AME LITATOM1 • ••
LIT.ATOMN} (File Package Command)
11.23: 11.30

PROP (in Masterscope template} 13.16

PROP (Litatom) 5.9

PROP (Primed by Editor) 17.54

PROPCOMMAHDFN (Property Name} 20.17

proper tail 2.19

PROPERTIES· (Property Name) 20.17

property lists 2.6

property name 2.6: 2.7

property value 2.6: 2.7

lndex.41

{PROPNAMES ATI~) ~7

PRO?PRINTFN (Property Name) 20.17

PROPRECORD (Record Type) 3.6

{ PROPS (LITA.TCM1 PROPNAME1)

(Ll7ATOUN PROPNAMEN))
(File Package Co:nmand) 11.24

PROPS (File Package Type) 11.15

?ROPTYPE (Property Name) 11.15; 1Ll2

PROTECTIOfJ VIOLATION (Error Message)
~-25

.. · PRXFLG (Variable) 6.20

pseudo-carriage return 8.26

p·srE P (Function) 22.14

PSTEPN (Function) 22.19

PUP IGNORETYPES (Variable) 21.18

(PUPNET. DISTANCE NET#) 21.17

PU?m:LYTYPES (Variable) 21.18

FUPPRINTMACROS (Variable) .. 21.19

(PUP SOCKET EVENT PtTPSOC) 21.16

(PUPSOCKETNUMSER PUPSOC) 21.16

{ PUPTRACE FLG REGION) 21.19

PUPTRACEF ILE (Variable) 21.18

PU?TRACEFLG {Variable) 21.18

\ ____ PU?TRACETIME (Variable) 21.19

(PUSH DATt"M ITEM1 ITEM:z · · ·)
(Change Word) 3.13

pushdown iist 7 .10: 5.4: 7 .1

(PUSHLISi DATLTM ITEM1 ITEM2 • • ·)
(Change Word} 3.13

{ ?USHfJEW DATUM ITEM). {Change. Word)
3.13

(PUT ASSOC KEY VAL ALST) 2.25

(PUTCHARBITMAP CHAR.CODE FONT
NEW~r.AREITM.AP) 19.10

(PUTD TN DEF -) 5.8: 22.J

(PUTOEF NAME TYPE DEFINITION) 11.17

INDEX

{ PUTOQ FN DEF) 5.8

{ PUTDQ? FN DEF} 5.8

{ PU~HASH KEY VAL HARP.AY) 2.35

(PUTHASHFILE KEY VALt"'E HAS.:iFILE)
23.42

{ PUTPROP ATM PROP VAL} 1..1

(PUTPROPS ATM PR.OP1 VAL1 • • • PROPN

VALN) 11.33

(PUT PUP BYTE PUP BYTE# VALt,Z:) 21.18

(PUTPUPSTRING PUP STR) 21.18

(PUTPUPWORO PtlP WORD# VALUZ)
21.17

Q (Editor Command) 17.44

Q {jollowing a number) 6.13; 2.38; 6.17,19

QU (Exec Command) 23.59

QUIT (TENEX Co'!7mand) 22.21: 22.22

(QUOTE X) 5.11

{QUOTIENT x Y) ~4S

(R x Y} (Editor Command) 17.35: 17.S

(Rl x Y) (Editor Command) 17.36

(RADIX N) 6.19: 6.13.17

RAID (lilalom) 9.17

RAISE (Editor Command) 17.41

(RAISE x) (Edilor Command) 17.41 ·

{ RAISE FLG TT.BL) 6.44

RAISE (TENEX Command) 6.44

(RAND LO'WE'R v"PPER) ~46

(RANOACCESSP FILE} 6.9

random numbers 2.46

randomly accessible files 6.8

(RANOSET x) 2.-t6

RASTEROP (Function) 19.4

(RATEST FLG) 6.14

[ndex.42

0

n

()

.Q

(RA TOM FILE RDTBL) 6.14; 6.34,46

(RATOMS ~ FILE RDTBL) 6.14

(RC x ~) (Editor Command) 17.36

RC (M A.KEFILE option) 11.7

(RCl X Y) (Editor Command) 17.36

(READ FILE R.DTBL FLG) 6.13; 6.46

read-macro characters 6.34 .
READ-MACRO CONTEXT ERROR

(Error Message) 9.25; 6.38

0 .. . read-macro options 6.37

· read-macros 6.36

<J

0

(READBITMAP) 19.6

RE.A.DSUF (Variable} 8.29; 8.31

(READC FII.B RDTBL) 6.15: 6.46

{ READCOMMENT FL RDTBL LST) 6.51

(READFILE FILE} 6.24

reading from strings 6.12

(READL!NE RDTBL - -) 8.30;
8.17.20,26,28.31.35: 17.52

{REAOMACROS FLC RDTBL) 6.39

{ READP FIZ.E FLG) 6.15

(READTABLEP RDTBL) 6.32

read.ables 6.32; 6.12.16

READVICE (Propeny Name) 10.10-ll.

(READVISE x) 10.10: 10.11; 11.24

(REALFRAMEP FOS lNTZRPFLG) 7.5

(REALSTKNTH N POS INTERPFLG
OLDPOS) i.5

REANALYZE SET (Masterscope Command)
13.5

(RES REAK X) 10.6: 10.3

{ RE::..A!M) 18.2

!!.9:

{ REC LAI MM IN N) 18.2

RECLAIMWAIT (Variable) 18.2

INDEX

(RECLOOK RECORDNAME - - -
-) 3.11

(RECOMPILE PFU..E CFILE FNS) ll.11;
. 11.8; 12.16

RECOMPILEDEFAULT (Variable) 12.12.18

reconstruction (in Pattern Match Compiler)
23.6

RECORD (in Masterscope lemplate) 13.17

RECORD (Record Type} 3.5

record declarations 3.5

record declarations in CUSP- 16.11

record package 3.1

record-type (Record Package) 3.5

(RECOROACCESS FIELD DA.TTJM DEC Tl'PE
NEWVALUE} 3.11

(RECOROFIELONAMES RECOP.DNA.ME)
3.11

(RECORDS RE01 • • • RECN)
(File Package Command) 11.25;
3.1.7

RECORDS (File Package Type) 11.16

REDEFINE? (Compiler Question) 12.l

(FN REDEFINED) (printed by system)
S.9

REDISPLAY (Window Menu Command)
19.20

{ RED IS PLA YW WlNDOW REGION
ALWA'YSFLG) 19.27

REDO Ew.atSpee (Prag. A.ssL Command)
8.7

REDO EvCZJtSpec N TIMES
' (Prag. Asst. Command) 8.7

REDO EventSpec "UNTIL FORM
(Prog. Asst. Command) 8.7

REUO EventSpec WHILE FORM
(Prog. AssL Commar.::i) 8.7; 8.27

REDOCNT (Var.able) 8.7

REFERENCE (Maszerscope Relation) 13.8

REFLST (Variable) 23.11

lndex.43

REGION (Wir.dow Property) 19.33: 19.23

(REGIONSINTERSECTP REGION~

R..EGION2) 19.3

(REHASH OL1'E:.4..RR.AY NEWF'..ARR.A.Y) 2.35

(REHASHF ILE HAS.!u'ZZ.E) 23.43

SET rtELATION SET
(.\{ asterscope Command) 13.5

Rela:ions {in Mastersccpe) 13.7

(RELSLK ADDRESS N) 22.20; 9.24; 18.6

(REL O RAWT O DX DY WIDTH OPERATION
DISPI...AYSTP..E.AM COLOR) 19.13

(RELEASE.MONITORLOCK LOCK) 18.32

(RELEASE. PUP PUP) 21.15

(RELEASE. XIP XlP) 21.21

releasi:lg stack pointers i .lO

(RELINK FN) 1~19

relinking 1219-20

(RELMOVETO DX DY DISPLA.YSTREAM)

19.12

(RELMOVEW wmDOW POSITION) 19.27

relocation information (in Interlisp-10
arrays} 2.33

(REL PROCESS? PROCHANDLE) 18.28

(RELSTK POS) 7.7; i.10

(RELSTK? X) 7.7

(REMArnDER X Y) 2.45

REMAKE (MAKEFILE option) 11.7

re:r1aking a file 11.10

REMARK (Transor Command) 23 . .37

REM£MBER EvelltSpec (Prog. AssL Command).
8.13

(REMOVE XL) 227

(REMPROP ATM PROP) 2.7

(REMPROPLIST AT:"'.(PROPS) ~1

(RENAME OLD NEW TYPES F'lI..ES

1\!ETHOD) 11.19

INDEX

(RENAMEFILE OLDFII.Z NEWTZI.E) 6~

REPACK (Editor Co,r,.mand) li.41

(RE.PACK ©) (Editor Command) 17.41

REPAINTFN (Window Property) 19.32

REPEAT Eva:JtSpec (Prog,, AssL Commar..d)
8.7

REPEAT Event.spec UNTIL FOR.\!

(Prog. Asst. Command) 8. 7

REPEAT Enne.Spac WHILE FORM
. (Prog. Asst. Command) 8.7

RE PEA TUNT IL FORM (l.S. Operator) 4.10

REPEATUNTIL N (Na number)
(l.S. Operator) 4.10

REPEATWHILE FOP.M (l.S. Operator) 4.10

Rep 1 ace (DEdit Command) 20.4

(REPLACE @ BY E1 • • • EM)
{Editor Command) 17.25

(REPLACE @ WITH E1 • • • Ey)
(Editor Command) 17.25

REPLACE (in Masterscope template) 13.17

REPLACE (in record package) 16.7

REPLACE (Masterscope Relation) 13.9

REPLACE (Record Operator) 3.1

REPLACE UNDEFINED FOR FIELD
(Error Message) 3.8

(REPLACEFIELO DESCRIPTOR DATL~
NE'WVALUE) 3.15

replacements (in Pattern Match Compzler)
• 23.6

Reprint {DEdit Command) 20.S

REREAOFLG (Variable) 8.31-32

(VARIABLE RESET) (Printed by System)
8.23

(RESET) 9.14: 9.20

RESET (Litatom) 9.17

(RESET.INTERRUPTS FERMITTEDINTERRUPTS

SAVECURRENT?) 9.18

[ndex.44

(~
\ J

(-----..
\

_)

n

0

(RESETBUFS FORM1 FORM2 · ·· FORMN)
6.47

{RESETDEDIT) 20.2
{ RESETFORM RESETFORM FORM:z. FORM2

•• · FOaMN) 9.20

RESETFORMS (Variable) 8.19; 6.8

(RESETLST FORM1 • • • FORMN) 9.19

(RESETREADTABLE RDT.SL FROM) 633

(RESETSAVE X Y) 9.19

RESETSTA iE (Variable) 9.20: 18.33

0'- (RESETTERMTABLE TTBL FROM) 6.41

{RESETUNDO X STOPFLC) 8.25; 9.21

(RESETVAR VAR NEWVALVE FORM)
9.20; 12.4

·O

0

(RESETVARS VA.RS.t.ST E1 E2 • • •
EN) 9.20

RESETVARSLST (Variable) 183

{ RESHAPESYREPAHJTFN 'W!NDOW
OLDDw!A.GE OLDREGION) 1933

RESHAPEFM (Window Property) 1931

resourcerlame RESOURCE (l.S. Operator)
14.12

RESPONSE (Variable) 14.13

(RESTART. ETHER) 21.15

(RESTART.PROCESS PROC) 18.28

REST ART ABLE (Process Property) 18.26

(RESU~E FROMPTR TOFTR vi\L) 7.15

(RETAPPLY POS FN ARCS F'LG -) 7.6

{ RETEVAL POS FORM FLG -) 7.6: 15.6

RETFHS · (in Masterscope Set Specification)
13.11

RETFNS (Variable) 12.i3; U.15-16

(RETFROM POS VAL FLG) 7.6

RETRIEVE LITATOM
(Prog. Asst. Command) 8.12: 8.20.27

RETRY Even:Spec: (Prog. Asst. Command)
8.8: 8.27

INDEX

(RETTO POS VAL F'LC) 7.7

RETURN (ASKUSER option) 6.62

RETURN FORM (Break Command) 93

(RETURN X} 4.4

RETURN (in iterative statement) 4.11

RETURI~ (in Masierscope template) 13.17

recqrn link 7.2

RETURNS (in Deel package) 23.21:
23.19.23

RETYPE (syntax class) .6.41

REUSING (Record Package) 33

reusing sr.ack pointers 7 .10

(REVERSE L) 2..."7

REVERT (Break Command) 9.6

revert (display break command) 20.10

(RGB P X) 19.45

(RI N M) (Editor Command) 1732

RIGHT (key indicator) 19.17

RIGHTBRACKET (Syntax Class) 633

RIGHTBUTTONFN (W'indow Property) 19.30

RIGHTKEY (key indicator) 19.17

RIGHTMIDDLEKEY (key indicator) 19.17

RIGHTPAREN (Syntax Class) 633

(RINGBELLS) 18.6 •

{ RLJ FN JFN) 22.23; 18.6

(RLPR!Nl LIST} 23.10

(RLPRIN2 LIST) 23.10

(RLRESTORE LIST) 23.11

(RO N} (Edi1or Command) 1732

root name of a file 11.3

ROOTFILENAME (Function) 11.3.13

(ROT X N FIELDSIZE) 2.42

(ROTATECOLORMAP COLOR.MAP
STARTCOLOR TimUCOLOR) 19.46

Index.45

(

(ROTA TE IT BEGINCOLOR EN1'COLOR
WAIT) I.:'.50

(RFAQ VAR VALt,"E)

(RPAQ? VAR VALU:::)

(RPAQQ VA.R VALt~)

11.37; 8.23: 11.4

11.38; 11.4

11.37; 8.23: 11.4.35

RPARKEY (Variable) 15.12; 15.5

{ RPLACA X Y) 2.15

(RPLACO X Y) 2.14

(RPLCHARCOOE X N CRARCODE} 2.30

- (RPLNOOE X AD) 2.15

{ RPU.iOOE2 X Y) 2.15

(RPLSTRING X NY) 2.30

(RPT N FORM) 5.12

(RPTQ N FO&.\Cz FORM:z • • • FORMN)
5.12

(RSH X N) 2.40

(RSTR ING ra.z RDTBL) 6.14

RUBOUT (Lizazom) 9.17

run-en spelling corrections 15.3.18-19

run:ti!:g ether subsystems from within
Interlisp ~-21

RUHONFLG (Variable) 15.12: 15.18

'--· · S LIT.ATOM I (Edilor Command) 17.22

S (Response to Compiler Question) 12.2

(SASSOC KEY AL-ST) 2.25

(TYPE (SATISFIES FORM1 ·•· FOR.MN))
(Deel Type Expression) 23.27

: SATISFIES (in Deel package) 23.19 -

SA\' /iNG cursor 18.4

SAVE (Editor Command) 17.38:
l i .40.56-57

SAVE EXPRS? (Compiler Question) U.l

SAVEDBFLG (Variable) 23.16

(SAVE DEF FN} 5.9

INDEX

(SAVEOEF NAME TYPP: DEF1NZTION)
11.18; 5.10

(SAVE PUT ATM PROP VAL) 11.38

(SAVESET NA.VE VALC"B TOPFLG FLG)
8.24; 8.23

SAVESETQ (Function) 8.23

SAV'ESETQQ (Function) 8.23

(SAVEVM -) 18.4

SAVEVM (Window Menu Command) 19.21

SAVEVMMAX (Variable) 18.4

SAVEVMWAIT (Variab{e) . 18.4

(SCOOEP x) 22.26-

SCRATCHCOLLECT (I.S. Operaiorj 23.54

(SCRATCHLIST LST X1 X2 ·• · XN) 14.2

(SCREENBITMAP) 19.4; 19.18·19

(SCREENCOLORMAP NEWCOLORMAP)
19.46

SCREj:NWIOTH (Variable) 19.12

(SCROLL. HANDLER mNDOW) 19.24

SCROLLBARWIOTH (Variable) 19.23-24

(SCROLLBYREPAiNTFN 'NlNDOW DEZ.TAX
DELTAY CON'TrmjOtJSFZ.G) 19.24

SCROLLFN (Window Propeny) 19.31:
19.23-24

(SCROLLW mNDOW DELTAX DEL'Z'.A.Y
CONTINrJOiJSF!.G) 19.23

SCROLLWAITTIME (Variable) 19.23-24 ·

search algorithm (in Editor) 17.15

searching files 6.9 ·

searching strings 2.Jl

SEARCHING ••• • (Printed. by BREAK/NJ
10.5

(SEARCHPOL SRCHFN SRCHPOS) 7.8

second pass {of the compiler) 22.11

SECONDS (Timer Unit) 14.11

5 EE FILE OUTFII..E BYTESIZE
(Exec Command) 23.60

Ind.ex.46

n.
\)

n

() __

()

0

segment patterns
(in Pauem Match Compiler) 23.3

(SELCHAP.Q E CLAUSE1 • • • CLAUSEN
DEFAu"LT) 2.13

SELECTASLEITEMS (Property Name)
20.17

(SELECTC X CLAUSE1 C"'...AUSE2
C"'...AUSEK DEFAu"LT) 4.3

SELECT!OllFH (Property Name) 20.17

(SELECTQ X CLAUSE1 CLAUSE2
CLAUSEK DEF.Au"LT) 4.2

O'· {SEHOPUP PUPSOC PUP) 21.16

(SENDXIP NSOC X!?) 21.22

SEPARATE SET (Masterscope Path Option)
13.15

separator characters 6.34; 6.14.46

(SEPRCASE C"'.JLG) 6.10

SEPRCHAR (Syntax Class) 6.33

{ SET vAR VALUE) 2.5

SET (in Masterscope template) 13.16

S~T (1\{ aszerscope Relation) 13.8

Set Speciii~tions (in Masterscope) 13.10

(SET. TTYrnEDIT .WINDOW wmDOW}
20.40

,,.---..., u (SETA A N V} 2.33-34

0

·(SETARG VAR M X) 5.4

(SETATOMVAL ATM VALUE) 2.6

(SETSLI?VAL BI.'IPTYP IPOS N VAL)

7.12

(SETBRK LST FLG RDTBL) 6.35

{SETCASEARRAY CASEARRAY FROMCODE
TOCOC'E) 6.10

(SETCOLORINTENSITY COLORM:AP
COI.ORWJMBER COLORSPEC) 19.46 .

(SET CURSOR NZWCu"RSOR -) 19.16

(SETO A N v) 2.34

SETDECL TYPE PROP (Function) 23.29

, INDEX

(SETDISPLAYHEIGHT NSCANLINES)

18.22

{ SETERRORN NTJM i.mss} 9.14
,.

{ SETFILEINFO FILE ATTP.IB· v~m:) 6.7

(SETFILEPTR FII.B A.DR) 6.9

SETFN (Property Name) 16.22

{SETFONTOESCRIPTOR FAMZ:.Y SIZE FACE

ROTATION DEVICE FONT) 19.9

SETINITIALS (Variable) li.60

{SETLINELENGTH N)_ 6~

{ SETN VAR X) 125; 22.3

{SETPROPLIST ATM' I.ST) 2.8

(SETQ VAR VALVE) 2.5

SETQ (in an ASSEMBLE statement)
22.14

(SETQQ VAR VALVE) 2.5

SETREADFN (Function) 20.37

{SETREADMACROFLG FLG) 6.38

{SETREAOTABLE RDTBL FLG) 6.32

Sets {in Masterscope} 13.10

{ SETSBS IZE N) 22.25: 9.25

(SETSEPR L.ST FLG RDTBL) .6.35

{SETSTKARG N POS VAL~'E) 7.5

(SfTSTKARGNAME N POS NAME) 7.5

(SETSTKHAME POS NAME) 7.4

{ SETSYHOflYM PHRASE MEANING -)
13.20

{SETSYNTAX C'RA.R CLASS T.ABLE) 6.34

(SETTEMPLATE FN TEMPLATE} 13.19

(SETTE RMCHARS ;.;EXTCHAR BKC!Y.R

LASTCHAR UNQUOTECilAR. 2CHAR.
PPC'HAR) li.59: 14.4: 17.13

(SETTERMTABLE TTBL) 6.41

(SETTIME DATE&TIME) 18.i

{ SETTOPVAL VAR VALUE) 2.5

Index.47

(SETTYPEDESCRIPTION TYPE STRING)
22.2

(SETUPPUP PUP DES'TI:OST DESTSOCICET
TYPZ ID SOC R.EQr..St"E) 21.17

(SETU?TIMER INTERVAL OLDTIMER?
TIMERU!>tTTS INTERVAL'ClN'ITS) 14.11

(SETUPTIMER.DATE DTS OZ.DTIMER?)

14.11

{ SETWORDCOrnENTS PTR N) 14.19

(SHADEGR IDB OX X Y SHADE

OPERATION GRIDSPEC GRIDBORDER

D!SPLAYST.?..EA.M) 19.42

(SHAOEITEM ITEM MENU SHADE DSORW)
19.41

SHALL I LOAD {printed by D WIM) 15.8

shallow binding 7.1: 2.6; 12.4

SHAPE {Window Menu Command) 19.20

(SHA PEW Vv!NDOW NE'WREGION) 19 .26

(SH.°'RED TY.?E) (Deel Type Expression)
23.27

shared pages 14.4

SHH FOR!-.! (Prog. Asst. Command) 8.14

SHOULD BE A SPECVAR {Error Afessag~
12.ZO

SHOULDCOM? ILEMACROATOMS (Variable)
5.19

Shou 1 dn' t happen! (Error Message)
9.14

(SHOULD NT MESS) 9.14

(SHOW x) (Editor Command) 17.47

SHOW PATHS PATFIOPTIONS

(Ma_srerscope Command) 13.5

SHO'.il WHERE SET Fl.ELATION SET

(,\fllsta-scvpe Comm,md) 13.6

SHOW (Transorset Command) 23.36

SHOW PATHS (Master-scope Command)
13.13

(SHOW. CLEARINGHOUSE) 21.12

INDEX

(SHOW.ENTIRE.CLEARINGHOUSE) 21.12

(SHOWCOLORTESTPATTERN &as~E)
19.50

(SHOWOE F NAME T:"PE FZI:E) 11.18

SHOWPARENFLG (Variable) 20.43

(SHOWPRIN2 X FILE R.DTBL) 6.17;
8.11.35

(SHO\:JPRINT X FILE .RDTBL) 6.17;
7.8: 9.5-6

SHRINK (Window Menu Command) 19.21

SHRHJKFN (Window Property) 19.30

(SHRINK'W WINDOW TOWHAT

ICONPOSITION E::a'~"lDFN) 19.27

SIDE (History List Property} 8.21; 8.33-35

SIDE (Property Name) 8.28

(SIN X R.ADIANSFLG) 2.46

single-stepping a progr-~ 17.45

(SINGLEFILEINDEX FILE OLTPUTFILE

NE'WPAGEFLG) 23.13

SKOR (Function) 15.16

(SKREAD FILE R.E'READSTRLVG) 6.16

small integers ~.L36

SM,-'\LLEST FOR..\! (l.S. Operator) 4.7

(SMALLP X) 2.1,37

(SMARTARGLIST FN EXPLAINFLG 'LUI.)
5.7

SMASH (in Masterscope template) 13.16

SMASH (A,f asterscope Relation) 13.8

(SMASHFILECOMS FILE) 11.34

SMASH ING (Record Package) 3.3

SM/\SHPROPS (Varwble) 14.14

SMASHPROPSLST (Vanabfe) 14.14

SMASHPROPSMENU (Variable) 14.13

SNAP OVindow .\I enu Command) 19.21

(SOME SOMEX SOME:FN1 SOMEFN2) 5.14

Index.48

(J

()

()

~
\)

0

CJ

0

SORRY. I CAN'T PARSE THAT
(En-or Message) 13.15

SORRY, NO FUNCTIONS HAVE BEEN
ANALYZE:O (Error Message) 13.15

SORRY, THAT !SN'T IMPLEMENTED
(Error Message) 13.15

{ SORT DATA COY.PA.REFN) 14.8

(SORi.PUPHOSTS.BY.DISTANCE BOSTIJST)
21.17

SOURCETYPE (BITBLT argument) 19.5

S? (in an ASSEMBLE statement) 22.14

{ SPACES N FlI.E) 6.17

spaghetti stacks 7 .2

(SPAWN.MOUSE-) 18.36

SPECIAL (in Deel package) 23.21

(SPECVARS VAR1 • • • VARN)
(File Package Command) 11.25

SPECVARS (in Maszerscope Set Specification)
13.11

SP!CVARS (Variable) 12.4; 9.20; 12.15-16

(SPELLFILE FILE NOPRINTFLG NSFLG
. DlRLST) 15.20; 6.5; 9.17.24

spelli:::ig completion 15.13

speliicg correction 15.13: 8.7.29: 9.12:
ll.2:?.27; 16.6.19: 17.52-53,55

spelling correction on file names 15.20

spelling correction on hash files 23.44

spelling co:.-.ection protoeol 15.3

spelling corrector 15.13; 15.1.16

spelling lists 15.14: 4.5; 8.7.29:
9.12: 11.4,22.27: 14.7: 15.8-9;
16.6.19; 17 .52-53.55

SPELLINGSl (Variable) 15.14: 15.10.15.17

SPELL!NGS2 (Variable) 15.14:
15.9-10.15.17

SPELL!NGS3 (Variable) 15.14: 8.24:
15.8.17

SPLICE (type of read-macro) 6.36

INDEX

(SPLITC x) (Editor Command) 17.42

(SPP. CLOSE STPJ::AM ABO.R~) 21.6

(,?PP .DSTYPE STR.EAM DSTl?E) 21.7

(SPP. EOFP STREAM) 21.7

(SPP. EOMP STP..EAM) 21.7

(SPP. FLUSH STREAM) 21.6

(SPP.OPEN HOST SOCKET PROSEP
, NAME} 21.6

(SPP. READP. STREA.M) ~1.7

(SPP. SENDEOM STREAM) 21.6

SPP. USER.TIMEOUT (Variable) 21.6

spread functions 5.2

spreading arguments 5.2

(SQRT N) 2.45

SQRT OF NEGATIVE VALUE
(Error Message) 2.45

square bracketS inserted by PRETTYPRINT
6.53

ST (Response 10 Compiler Question) 12.2

stack descriptor 7.3

suck functions 7 .3

STACK OVERFLOW (Error Message) 9.ll:
7.10: 18.35

STACK OVERFLOW IN GC -
COMPUTATION LOST (Error Message)
9.22

stack pointer 7 .3
STACK POINTER HAS BEEN RELEASED

· (Error Message) 1.4

STACK PTR HAS BEEN RELEASED
(Error Message} 9 .24

(ST ACKP x} 7.7

(START.CLEARINGHOUSE .RZSTARTFLG)

21.12

statistics 8.21

STF (Response 10 Compiler Question) 12.1

(STKAPPL Y POS FN ARGS FLG -) 7.6

Index.49

(STKARG N POS -) 7.S: 9.5

(STKARGNAME N POS) 1.S

{ STKARGS POS -) 7.6

(STX.EVAL ?OS FORM FLG -) 7.6; 9.5

(STK?{P.ME POS) 7.4

(STKNARGS ;,os -) 7.5

(STKMTH N PCS OLDPOS) 7.4

(STKNTHNAME N POS) 7.4

(STKPOS NAME N POS OI..DPOS) 7.4

(STKSCAN VAR IPOS OPOS) 7.5

STOP (at the er.d of a file) 6.25; 11.4

Stop (DEdit Command) 20.6

STOP (Editor Corr.mand) 17.38; 10.S;
li.41.56-57

(STORAGE FLG GCFLG) 14.l

STORAGE (Litatom) 9.17

storage allocation 22. 7

STORAGE FULL (Error Message) 9.24;
18.35

STOREFN (Property Name) 20.17

STREAM (datatype) 18.12

{STREQUAL X Y) 2.28

STRF (Van'able) 12.1: 12.11

string functions 2.28

s~.u1g pointer 2.28

string poimers 2.29

STRINGDELIM (Syntax Class) 6.33

{ STR INGP X) 2.2

(STRING REG ION STR W!NDOW PRIN2FLG

RD'fBL) 19.9

strings 2.27: 2.2: 6.13

(STR INGWIOTH STR FONT PRIN2FLG
RDTBL) 19.9

(STRPOS PAT STRING START SKIP

ANCI-:OP.. TAIL) 2.31: 6.9

INDEX

(STRPOSL A STR START NEG) 2.31

structure modification (in Changetran) 3.12

stru~re modification commands (in
Editor) li.22

(SUBl x) 2.39

(SUBATOM X NM) ~9

subdeclarations (Record Package) 3.10

(SUB LIS AL.ST EX?R FLG) 2.24

(SUB PAIR OLD NEW EXPR FLG) 2.24

SUBR (Litatom). 5.6

SUBR (Property Name) 5.10

SUBR• (Litatom) 5.6; 5.7

(SUBREG!ONP L.ARGEREGION

SM.ALLREGION} 19.3

(SUB RP FN) 5.6: 22.3

SUBRs 5.5

(SUBSET MAPX MAP'F'Nl MA.PF~7} 5.14

(SUB ST NEW OLD EXPR) 2.23

(SUBSTRING X NM OLDPTR) 2.29

(SUB SYS FILE/FORK INCOMFrr-E

OUTCOMF'ILE ENTRYPOINTFLG)
22.21: 18.6

(SUBTYPES TYPE) 23.30

subtypes (in Deel package) 23.25

SUCHTHA T (LS. Operator) . 4.15

SUCHTHAT (in event address) 8.6

SUM FORM (l.S. Operator) 4.6

{SUPERTYPES TYPE) 23-10

• supertypes (in Deel package) 23.25

SURROUND (Editor Command) 17.28

SUSPEND (Process Property) 18.26

(SUSPEND. PROCESS PROC) 18.19

SUSPICIOUS PROG LABEL
(Error Message) 16.15

SVFLG (Variable) 12.1·2

Index.SO

().
. /

(~--
\ I. \

·"---/

n··

0

,--.....,

L ... J
·-

(SW N M) (Editor Command) 17.36

{ S'ilAP DATTlM1 DATUM,2) (Change Word)
3.13

S';1/o.~ (DEdit Command) 20.5

(SWAP @1 ©z) (Editor Command) 17.36

SWAPBLOCK TOO BIG FOR BUFFER
(Erro ... Message) 9.25

S'WAPC (Editor Command) 17.42

swappable array 22.24

swapping buffer 22.24

(SWAPPUPPORTS PUP) 21.17

Switch (DEdil Command) 20.4

SWPARrtAYP (datatype} 22.25

(SWPARRAYP X) 22.25

SY (Exec Command) 23.59

symbols 2.4

SYMLST (Var~bl_e) 23.51

synonyms 15.13

synw: classes 6.33

. { SYNTAXP co::,:e C'...ASS TABLE) 6.34

(SYSBUF FLG) 6.46; 6.47

SYSrILES (Variable) 11.4

0 SYSHASHARRAY (Variable) 2.35-36

0

SYSHASHF ILE (Variable) 23.42

(SY SIN F!I.E) 14.4

SYSLifJKEDF!lS (Variable) 12.19

SYSLOAD (LOAD option) 11.4: 15.8

• (SYSOUT FILE) 14.3

sysout fiie 14.2

SYSOUT. EXT (Variable) 14.3

SY SOUTO A TE (Variable) 14.3

SY SOUT FI LE (Variabie) 14.3

SYSOUTGAG (Variable) 14.4

(SYSOUT? FILE) 14.4

Il'iT>EX

SYSPRETTYFLG (Variable) 6.17: 7.8;
8.11.35; 9.5-6

S!SPROPS (Variable) 2.6; 11.23

system buffer 6.45; 6.46

SYSTEM ERROR (Error Message) 9.22

SYSTEMFONT (font class) 6.55

(SYSTEMTYPE) 14.1

T (Litatom) 2.5

T (PRINTOUT command) 6.21

T FIXED (Printed by DWIM) 15.6

tab (EDIT A command) 23.49

(TAB POS MINSPACES FILE)~ 6.li

TA IL (Variable) 15.11

tail of a list 2.19

(TAILP X Y) 2.19

TALK USER {Exec Command/ 23.59

(TAN X RADIA.N'SFLG) 2.46

(TCOMPL FILES) 12.11; 12.12.16-17

(TCONC PTR X) 2.17; 2.18

(TEDIT TEXT WINDOW DONTSPAWN

PROPS) 20.20

TED IT. ABB REVS (Variable} 20.31

(TED IT. ADD. M.ENU ITEM MENU ITEM")
20.26

TED IT. AFTERQUITFN (Window Property)_
20.27

TED IT. BLUE. PENDrnG .DELETE (Variable)
20.29 .

• TEO IT. CMD. CHARFN (Window Property)
20.27

TED IT. CMD. LOOPFN (Window Property)
20.27 .

TEDIT .CMD.SELFN (Window Property)
20.27

TEOIT.DEFAULT.FMTSPEC (Variable)
20.29

Index.51

. .

TEOIT.DEFAULT.FONT (Variable) 20.29

TE0IT .DEFAULT .MENU {Variable) 20.28

TEDIT .DEFAULT .MENUFN (Function)
20.28

(TEO IT. DELETE s~ CH#orSZL LEN)
20.25

{TEOIT. FINO STXE.Ul TEXT CB#)
20.25

(TEO!T.GETSEL STP..EA.V) 20.25

(TEOIT.GETSYNTAX CXARCODE T.AS.U:)
20.30

(TEOIT.HAROCOPY STREAM FILB
DO.","TSE1'-4""D .aREAKP'AGETlTI.E) 20.25

(TEnIT. INSERT STREAM TEXT
CH#orSEL) 20.25

(TEO IT. LOOKS STREAM NEWLOOKS
SZI..OP.CH# LBN) 20.25

TEOIT_.MENU (Window Propeny) 20.28

TEDIT .MEHU.COMMAHDS (Window Property}
20.28

iEDIT .MOVESELECTION (Variable) 20.29

TED IT. OVERFLOWFN (Window Property)
20.27

TED!T. PCSTSCROLLFN (Window Propeny)
20.27

TED IT. PRESCROLLFN (Window Property}
'--- 20.27

(TEOIT.QUIT STREAM VALUE) 20.26

TED IT. QUITFN (Window Properry) 20.27

TED IT. REACT ABLE (Variable) 20.29

(TEOIT.REMOVE.MENUITEM MENU ITEM)
20.27 .

TED IT. SELECTION (Variable) 20.29

{TEOIT.SETFUNCTION CHAR.CODE FN
TABLE) 20.30

{TED IT . SETS EL STREAM CH#orS'EL LEN
?OINT) 20.25

{TEOIT.SETSYNTAX CHAR.CODE CLASS
TABLE) 20.29 .

TEDIT.SHIFTEDSELECTION (Variable)
20.29

(TEDIT.SHOWSEL STP..EAM ONF'LG sn)
~ 20.25

TEDIT.TITLEMENUFN (Window Propeny)
20.28

TEDIT.WORDBOUUD.REAOTABLE (Variable)
20.29: 20.30

(TED IT. WOROGET CRAP. T.A.BLE) 20.30

(TEDIT.WORDSET CHAR CLASS TABLB)
20.30

(TELNET CONNECTION Tl?B SKT -)
23.62

telnet package 23.62

{TEMPLATES LlTATOM'1 ••• LIT.ATOM'N)
(File Package Command} 11.25

TEMPLATES (File Package Type) 11.16

Templates (in Mas~rscope} 13.16

{TENEX STR FILEFLG) 22.6 ..
terminal 6.2.13.50; 8.30; 17.38

terminal syncax classes 6.41

terminal tables 6.40

(TERMTABLEP TTBL) 6.41

(TERPRI FILE) 6.17

TEST (Editor Command) 17.51

TEST (in Masterscope template) 13.16

TEST (,~f asterscope Rela1ion) 13.8

TEST (Transorser Command) 23.36

TESTFORM (Variable) 23.37

(TESTRELATION ITEM RELATION 1TEM2
INVERTED}° 13.20

TEST RE TURN (in Mczsterscope tempiate)
lJ.17

TEXTOBJ (Window Property) 20.28

TEXTSTREAM (Window Property) 20.18

(TEXTUREP OBJECT) 19.6

Textures 19.6

Ind~x.52

(}-

()

()

(\
\)"

0

(_)

0

0

THE (in Deel package) 2323

_THEN (in Deel package) 2322

TH::REIS FCP..M (l.S. Operator) 4.6

(THIS.PROCESS) 18.27

THOSE (M aszersccpe Set Specification)
13.11

(@i THRU) (Editor Command} 17.34

(©i THRU ©z) (Editor Commantl) 17.32

THRU (l.S. Operator) 4.15

THRU (in ever.I specification) 8.6

TICKS (Timer Unit) 14.11

(TIME TIMEX TIMEN TIMETYPE) 14.14;
14.l:5

time S""...amps 17 .60: 5 .9

time-slice of history list 8.25: 8.lS

{ TIMEALL TTMEFOP.M #=TIMES TIMEWRAT
INTEP..?FLG -) 18.22

(TIME REX PI RED?' TIMER 14_11
CI.OC-AVA!.VE.OR. TIMER UNITS)

timers 14.11

t; r.ie run; ts UNITS (LS. Operator) 14.12

(TIMES x1 x2 • • • XN) 2.45

T:MES (use wilh REDO) . 8.7

TITLE (Menu Field) 19.40

TITLE (J-Vindow Property) 19.32

(@i TO) {Editor Command) 17.34

(@i TO ©z) (Editor Command) 17.32

TO FORM' (l.S. Operator) 4.8: 4.9

TO (in event specificazion) 8.6

TO SET {Masrerscope f!aih Oprion)' 13.14

too few arguments 5.3

too man:, argu:nents 5.3

TOO MANY ARGUMENTS (Error Message)
9.26

TOQ MANY FILES OPEN (Error Message)
9.23

INDEX

TOO MANY USER INTERRUPT
CHARACTERS (Error Message) 9.25

TOP (Argument to AD VISE) 10.9 ..
top level binding 11.37

TOTOPFN (Window Property} 19.30

(TOTO PW vmmow NOCALLTO?WFN)

19.26

(TRACE x} lOA: 9.2.12; 10.1.5-t>

TRACEREGION (Variable) 20.11

TRACEWINDOW {Variable) 20.11

translation notes (in TRANSOR) 23.32-33

translations in CUSP 16.13

(TRAtlSMIT. ETHERPACKET NDB PAC'K:7:;T)
21.24

(TRANSOR FILE} 23.33: 23.31

TRANSOR sweep 23.39 ~

(TRANSORFNS FNLST} 23.33

) 23 -::3 (TRANSORFORM FORM -

TRANSORSET (Function} 13.35; 23.32

TRAP AT LOCATION (Error Message)
9.22: 22.6

TREAT AS CLISP ? {Printed by, DWJM)
16.12

TREATASCLISPFLG (Variable) 16.12

TREATED AS CUSP (Printed by DWIM)
16.12

(TRUE) 5.11

TRUST ING (D WJM mode) 15.3: 152;
16.3-4.12

(TRYNEXT PLST## ENDFORM##

VAL##) 7.16

(TTY#) 23.60

(TTY.PROCESS PROC} 18.33

(TTY.PROCESS? PROC) 18.33

TTY: (EdiIOr Command) 17.40: 10.5:
17.38.48

TTY: (Printed by Editor) li.40

lndex.53

(rTYDISPLAYSTREAM DISPL.AYSTP..E.AM)

.19.15

TTYENTRYFN (Process Property) 18.34;
18.27

TTYEXIiFN (Process Property} 18.34;
18.27

{ TTY IN PROMPT SPLST HELP OPTIONS

ECROTOFILZ TABS UNREADBUF

R.DTBI..) 20.38: 20.31

(TTYIN.PRIHTARGS FN ARGS ACTUALS
ARGTYPE') 20.41

TTYIN. REAO?=ARGS (Func1ion) 20.41

(TTYI!LSCRATCHFILE) 20.41

TTY IN?= F N (Variable) 20.41

TTYINAUTOCLOSEFLG (Van'able) 20.40

TTY!NBSFLG (Variable) 20.43

TTYINCOMPLETEFLG (Variable) 20.44

{TTYINEDIT EXPRS WINDOW PRINTFN)
20.40

TTY IN ED ITWINOOW (Variable) 20.40

TTYINERRORSETFLG (Variable) 20.43

TTY!NMA!LFLG (Variable) 20.43

iTYrnMETA (Function) 20.33

TTYINPRINTFN {Variable) 20.40

TTY! N READ {Function} 20.37

'-_ -- TTYINREADMACROS (Variable) 20.42

TTYINRESPONSES (Van·able) 20.43-44

TTY JUSTLENGTH (Variable) 20.36

TTYL!NELrnGTH (Van·able) 6.8

(TUNNEL SPEED) 19~0

TV (Prog. Asst. Command) 20.37

TY FfLE OUTFlLE BYTESI=E
(Exec C ummand) 23.60

TYPE (Alaster-scope relation) 23.31

type declarations 23.18

type descripuon 22.2

type names 2.1

INDEX

type numbers 22.2

TYPE-AHEAD (Prog. AssL Command) 8.15

TYP~-IN? (Variable) 15.11

TYPE? (in record declaratior.s) 3.9

· TYPE? (Record Operator) 3.4

TYPE? (Record Package) 3.5; 23.24

TYPE? NOT IMPLEMENTED FOR THIS
RECORD (Error Message) 3.4

TYPEAHEAOFLG (Variabie) 20.43: 20.40

{TYPENAME DATUM) ~l

(TYPENAMEFROMNUMBER N) 22.l

(TYPENAMEP DA.TUM Tn'SNAME) 2.1

(TYPENUMBERFROMNAME NAME) 22.2

{ TYPEP DATUM N) 22.2

TYPERECORD (Record Type} 3.5

types (in Masterscope) 13.12

{ TYPESOF NAME POSS'IBLETYPES

IMPOSSIBLETYPES SOURCE) 11.li

U (value of ARGLIST) 5.1

{ U-CASE X) ~11; 17.41

(U-CASEP X) 2.11

U. D. F. T (Printed by D WIM) 15.5

US (Break Command) 9.3

UCASELST (Variable) 6.53

(UGLYVARS VAR 1 ··• VARN)

(File Package Command) 11.25: 6.24

UNABLE TO ALLOCATE PMAP BUFFER
(Error Message) 14.18

UNABLE TO OWIMIFY (Error Message)
l2.9

(UNADV I SE x) 10.10: 10.9.11

UNADVISED (Primed by System) 10.i

UNARYOP (Property ,Vame) 16.21

UNBLOCK (Ediior Command) 17.51

lndex.54

Cl

(\
\)

0

0

0

0

unbound atam 2.5; 15.6

UNBOUND ATOM (Error Message) 9.25; 2.5

unboxed numbers 22.S

u~boxed numbers (in Interlisp-10 arrays)
2.33

unboxing 2.37; 22.S

(UNSREAK x) 10.6; 10.4; 14.15

(UNBREAKO FN -) 10.6

(FN UNBREAKABLE) {value of BREAK/NJ
10.S

(UNSREAKIN FN) 10.6

UNBROKEN (Prin1ed by ADVISE} 10.9

UNBROKEN (Printed by Compiler) U.10

UNBROKEN (Printed by System) 10.7

Utm FILEGROUP (Exec Command) 23.60

UNDEFINED CAR OF FORM
(Error Message) 9.25

u~defined function 15.6

. undefined function (Error Message)
9.25; 1s.1 ·

UNDEFINED OR ILLEGAL GO
(Error Message) 9.23: 4.4

UNDEFINED TAG (Error Message) 12.21:
5.20 ·

UNDEFINED TAG. ASSEMBLE
(Error Me~sage) 12.21

UHDEFINED TAG. LAP (Error Message)
12.21

UNOEFHlEO USER IfffERRUPT
(Error Message) 9.17

Undo (DEdit Command) 20.5

UNDO (Editor Command) 17.7

(UNDO .E:ventSpec) {Editor Command)
17.50·51; 8.35

UUDO EvencSpec (frog. AssL Command)
8.11

INDEX

UNDO E-,ucSpec : X1 · • •

.
XN (Prog. Asst. Commar.d) 8.11:
8.6.23.27.34-35: 15.3

undoing 8.22: 8.36

undoing (in Editor) 17.50: 8.36: 17.7.22

undoing DWIM corrections 8.11; 16.15

undoing out of order 8.23: 8.11

(UNOOLISPX LlNE) 8.34_

(UNDOLISPXl EVENT FLG -} 8.34

UNDOLST (Variable) 17.50: 8.36;
17 .38-39 .Sl.57

UNDONE (Primed by Editor) 17.50

UNDONE (Printed by System) 8.11.34

(UNOCNLSETQ iJNDOFORM --) 8.24

(UNOOSAVE rJNDOFORM BISTENTRY)
8.33: 8.28

UNFHm (Variable) 17.21:
17.15.25.27-31.38-39,44.57

(UNION X Y) ., "3

(UNIONREGIONS REGION1 REGION:: ...

REGION D) 19 .3

UNLESS FORM (LS. Operator) 4.10

(UNLOCKMAP PTR) 14.20

(UHMARKASCHANGEO NAME TYPE) 11.12

{UNPACK X FLG .RJ;TBL) ~10

(U~PACKFILEHAME FILENAME -) 6.5

unreading 8.4.31

UNSAFEMACROATOMS (Variable) 5.19
•

UNSAVED (Printed by DWIM) 15.8-9

(UNSAVEOEF fN PROP) 5.10

(UNSAVEOEF NAME TYPE -) 11.18:
15.8·9

(UNSAVEFNS -) 13.21

(UNSET NAME) 8.24: 8.23

UNTIL FORM (l.S. Operator) 4.10

UNTIL N (N a number) (I.S. Operalor)
4.10

Index.55

I •

UNTIL (use with REDO) 8.7

unt i 1 Date DTS (LS. Operator) 14.12

(UHT!LMCUSESTATE BUTTONFORM
T.\"TER'f.-\.L) (Macro) 19.17

UfcUSUAi. COR ARG LIST (Error Message)
9.U

UP (Editor Command) 17.8·9; 17.10.15,26

(UPOAiECHANGED) 13.21

{UPOATEFILES - -:-) 11.14

(U?OATEFN FN EVENU'VALID -) 13.21

updating files . 11.14

UPFINOFLG (Variable) 1727; 17.15.17

USE (Maszerscope Relation) 13.S

USE AS A FIELD (Masterscope Relation)
13.9

USE AS A RECORp (Masterscope Relation)
13.9

USE AS- A CLISP WORD
(A-fasrerscope Relation) 13.9

USE AS A PROPERTY NAME
(.''If asterscope Reiazion) 13.9

USE EXP?..S IN EvezitSpec

(Prog. AssL Command) 8.8

USE EXPP.S FOR AP.GS IN EveatSJ*:

(Prog. Asst. Command) S.8

USE EXPRS1 FOR ARGS1 ANO
• • · ANO E:x:PRSN FOR ARGSN
IN Eve:atSpec (Prog. Asst. Command}
8.8-9: 8.26-27

·_uSE-ARGS (History List Property) 8.27

USED AS ARG TO NUMBER FN?
(ETTOr Message)· 12.21

USED BLKAPPLY WHEN NOT APPLICABtE
(ETTOr .\lessage) 12.20

USEDFRH (Cl/SP declaration) 12.10:
16.15

USED rn (in Deel package) 23.21.23

USEMAPFLG (Variable) 11.39

INDEX

USER BREAK (Error Message) 9.25

user defined printing 6.23

user. interrupt char2Cters 9.17

(USEROATATYPES) 3~5

(USEREXEC USPXID I..1SPXXl4A.CB.OS
LJSPXXUSERFN) 8.29

USERFONT (fonc ciass) 6.55

USERINTERRUPTS (Variabk) 9i1

{USERLISPXPRINT X FILB Z NODOFLG)
8.21

(USERMACROS LlTATOM1 ••• I.ZT.ATOMN)
(File Pack.age Command} 11..24:
17.50.52

USERMACROS (File Packuge Type) 11.15

USERMACROS (Variable) 17.50: 11.24

{ USERfMME A FLG) 14.1

USERNOTES (Variable) 23.39

(USERNUMBER A FLG) 22.6: 18.6

USERRECOROTYPE (Property Name) 3.10

USERSYMS (Variable) 23..Sl

USERWOROS "(Variable) 15.lS: 1Si7.1~20:
17.55-56

US ING (Record Package) 3.3

usingTimer TIMER (LS. Operator) 14.12

(VAG X) 22.5

VALUE (Property Name) 8.23-24

VALUE (Variable) 23.20

value cell 7.1; 2.6

value of a break 9:2

VALUE OUT OF RANGE EXPT
(£"or Message) 2.45

VALUECOMMANDFN (Property Name) 20.17

(VALUE OF LINE) 8.16: 8.1S: 2:!.22

vanable bmdings 7.1: 5.15

variable number of arguments -5.2

Index.56

o·

(} __ ·

()

0

0

(VARIABLES POS) 7.5; 9.6

(VARS VAR1 ••• VARN)
(File Package Command) 11.22

VARS (File Package Type) 11.15

VARTYPE (Property Name) 11.15; 11.12

VAX;-.iACRO (Property Name) 5.17

version numbers 6.3

(VIOEOCOLOR BI.ACKFLC1) 19.7

(VIDEORATE TYPE) 19.7

{VIRGIHFH FN FLG) 10.7

(VMEJ'.SIZE) 18.3 ·

(WAIT.FOR.TTY) 18.33

1"'AITBEFORESCROLLT!ME (Variable)
19.24

\IAITBET\rlEENSCROLL TIME (Variable)
19.24

(WAITFORIHPUT FILE) 6.15

WA IT Ir!GCURSOR (Variable) 19.16

(\'/AKE. PROCESS P.ROC STATUS) 18.29

'dBorder (Variable) 19.25-26,32

{ WSR~A!{ O.NFLG): 20.10

(WELL N) 19.50

{WFROMOS D!SPLA.YSTREA.M) 19.10

{WFROMMENU MENU) 19.41

wHE (Exec Command) 23.59

WHEH FORM (l.S. Operator) 4.10

~ • (WHE NCLOSE FILE PROP1 VAL1 • • • PROPN
VALN) 6.11; 23.17,42

0

WHENHELDFN (:\f enu Field) 19.39

"JIHEl~SELECTEDFN (Menu Field) 19.39

WHENUNHELDFN (Menu Fiefdl 19.39

WHERE (l.S. Operaror) 4.15

(W:-iEREIS NA.ME TYPE FILES FN)

11.10: 23.40

INDEX

WHEREIS package 23.40

WHERE IS. HASH (Variable) · 23.40

(.WHEREISHOTICE FILEGRO'CJP m:wTZ.G)
23.40

(WHICHW X Y) 19.25

WHILE FORM (l.S. Operator) 4.10

WHILE (use with REDO) 8.7

WHITESHAOE (Variable) 19.6

WHOLECOLOROISPLAY (Variable) 19.44

{WIOEPAPER FLG) 6.54

WIDTH (Window Property) 19.33

(WIDTHIFWINOOW !NTEIUORWIDTII
BORDER) 19.25

WINDOW (Process Property} 18.27

• window package 19.l

window properties 19 .28

(WINOOWAOOPROP Wl?\'DOW PROP
.lTEMTOADD) 19.29

wrrmowsACKGROUNOSHADE (Varicble)
19.6

(WitmOWOELPROP WINDOW PROP
ITEMTODEI.ETE) 19.29

WINOOWENTRYFN {Window Property)
19.29: 18.34

Wi ndowMenu (Variable) 19.22

Wi ndowMenuCommands (Variable) 19..2.2

{WINOOWP X) 19.25

(WI~DOWPROP W71VDOW PROP m:wvALv"Z)
19.29

WindowTit 1 eOi sp 1 ayStream (Variable)
19.25

(WINOOWWORLO FLAG) 19.19

WITH (Record Operator} 3.4

WITH (in REPLACE command)
(in Editor) 17.::?5

WITH (; n SURRourm command)
(in Editor) 17.28

Index.57

\

(WITH.FAST.MONITOR LOCK. FORMS)
(M aero) 18.31

(WITH.MO~ITOR LOCK. FORMS)
Ofacro) 18.31

(WOROCONTEilTS PTR) 14.19

WOrl!jOELETE (syntax class) 6.41

(WORiJCFFSET P'!'R N) 14.19

WORLD (Litatom) 12.19

(WRITEFILE X n:tB) 6.25

XIPIGNORETYPES (Variable) 21.23

XIPONLYTYPES (Variable) 21.23

XIPPRINTMACROS (Variabie) 21.23

XIPTRACE (Function) 21.23

XIPTRACEFILE (Variable) 21.23

XIPTRACEFLG (Variable) 21.23

(XTR • @) (Editor Command) 17.27

(XWD N1 N2) 23.53

(ZERO) 5.11

(ZEROP X) 2.39

0 (Editor Commar.d) 17.10: 17.3

l0MACRO (Property Name) 5.17

(2ND • @) (Editor Command) 17.18

(31'10 • @) (Edilor Command) 17.18

7 (instead of i 15.7

8 (instead of left parenthesis) 15.5:
15.1.7.9: 17.52

. .

INDEX

9 (instead of right parenthesis) 15.S:
15.1.7,9

L] insened by PRE"ITYPR.INT 6.53

\ (Editor Command) 17.7

(\ UT.A.TOM) (Editor Corr.rrumd) 17.21;
17.25

\ (in event address) 8.6

\ {Printed by System) 6.13.43

(\ADD.PACKET.FILTER FILTER) 21.24

(\ALLOCATE.ETHERPACKET) 21.23

{\CHECKSUM BASE N"NORDS IMTstTM)
21.24

\DEFAULTSBITCOLORINTENSITIES (Variable)
19.46

\OEFAULTCOLORINTENSITIES (Variable)
19.46

(\DEL.PACKET.FILTER FILTER) 21.24

(\DEQUEUE Q) 21.25

(\ENQUEUE Q ITEM) 21.25

\ETHERTIMEOUT (Variable) 2Ll6.22

\FTPAVAILABLE (Variable) 18.16

\LOCALNOBS (Variabie) 21.23

\MAXETHERTRIES (Variable) 21.7

(\ONQUEUE ITEM Q) 21.25

\P (Editor Command) 17.7 • .:?l: 17.38

\PACKET. PRINTERS (Variable) 21.24

(\QUEUELENGTH Q) · 21.25

•

(\RELEASE.ETHERPACKET EPKT) 21.23

\ T imeZoneComp (Variable) 18.7

(\UNQUEUE Q ITEM NOERR.ORFLG)
21.15

\ \ (Primed by System) 6.14

Index.58

0

()

-
O···

0

0

0

] (use in input) 8.30

.,. (Break Command) 9.3; 9.12

.,. (CL/SP Operator} 165

.,. (display break command) 20.10

.,. (EDITA command) 23.50

1' (Edi:or Command) 17.11; 17.3

,. (use in ccmments) 6.52

.. (C LISP Operator) 16.7

.. (Edilor Command) 17.21

(4- PATTERN) (Editor Command) p.18

.. (in event address) 8.5

.. (in Pattern Match Compiler) 23.5

.. (in record declaralions) 3.9

· .. (Primed by Syslem) 9.1

- (Editor Command) 17.21

· (back-quote) 6.39

(ci-.ange character) 6.55; 17.22

(vertical bar) 6.40

- (C LISP Operator) 16.9

- (in Pactern Match Compiler) 23.3

(in Masterscope template) 13.17

(in P ..(commands) 8.8

(in Pattern Match Compiler} 23.4-5

(use with <.> in CL/SP) 16.8

! ! (use with <.> in CLISP) 16.8

! 0 (Edi1or Command} 17.11

! E (Editor Command) 17.43: 8.35

INDEX

! EVAL (Break Command) 9.3

l F (Edi1or Comm.and} 17.43; 8.35

! GO (Break Command) 9.3

! N (Editor Command) 17.43; 8.35

! NX (Editor Command) 17.12

! OK (Break Command) 9.3

!Undo (DEdit Command) 20.5

l UNDO (Editor Command) 17.50

I VALUE (Variable} 9.3; 9.U; 10.8

"
"" (use in ASKUSER} 6.64

"< c . r. > " (in history commands) 8.26

#N (N a number}
(in Pattern Match Compiler) 23.5

ii (followed by a number) 2.32· 33

(PRINTOUT command) 6.30

(## COM1 COM2 • • • COMN) 17.46; 17.18

(in INSERT. REPLACE. and CHANGE ccrnma:nds)
17.26

(Prinled by System) 6.13.43-44.46

#CAREFULCOLUMNS. (Variabl~ 6.53

#RPARS (Variable) 6.53

#SPELLINGSl (Variable) 15.15

#SPELLIHGS2 (Variable} 15.15

#SPELLINGS3 (Variable} 15.15

#UNDOSAVES (Variable) 8.33: 8.25

#USERWOROS (Variable) 15.15

S (< esc>) 6.3

$ (<esc>. use in ASKUSER) 6.64

$ Y x IN EventSpec (Prog. Asst. Command)
8.9

lndex.59

'

S Y = X IN ET'e:ltSpec

(Prog. Asst. Command) 8.9

S Y - > X IN EveZJtS;,ec
(Prog. Asst. Command) 8.9

S Y TO X IN Evea:Spec
(Prog. Asst. Command) 8.9

S X FOR Y IN EnDtSpec
(Prcg. Asst. C ommar.d} 8.9

S (<esc>) (in CLISP) 16.7,9

S (<esc>) (in Edit Pattern) 17.8; 17.13

--, $ (<esc>) (in spelling correction) 15.13;
/ 15.18

S (<esc>) (Prog. Asst. Command) 8.9

$ (<esc>) (in R command) (in Editor)
li.35

S (do 11 a r) (in Pattern Match Compiler)
23.3

$ (do 11 a r) (Variable) 23.50

SS (two <esc>s) (in Edit Pattern)
17.13

SSEXTREME (Variable) 4.7

SSVAL (Variable) 4.7.13

S 1 (in Pattern Match Compiler) 23.2

SC (<esc>C) (EDITA command) 23.52

SG O (<esc>GO) (TY P £-AHEAD Command)
8.15

$n (ir. Pattern Match Compiler) 23.4

SQ (<esc>Q) (TYPE·AHEAD Command)
8.15

SQ (<esc>Q) (EDITA command) 23.50

SW (<esc>W) (EDITA command) 23.51;
~3.53

% (escape character) 6.13: 2.4.27:
6.14-15.17.36.46

i. (use in comments) 6.52

%% (use in comments} 6:52

Il'IDEX

& (in Edit Pattern) 17.7; 17.13

& (in MED command) 17.28

& (in Pattern Match Compiler) 23.2

& (Printed by Editor) 17.2

& (Printed by System) 6.18

& (use in ASKUSER) 6.64

&Undo (DEdit Command) 20.S

15.7

' (CLISP Operazor) 16.8

'·(EDITA command) 23.50; 23.48

' (in a LAP slatement} 22.16

' (in Pattern Match Compiler} 23.2

'LIST (Masterscope Set Specification) 13.10

'ATOM (Masterscope Set Specification)
13.10

{ in (DEdit Command) 20.4

(out (DEdit Command) 20.S

() (D Edit Command) 20.4

() out (DEdit Command) 20.5

) i n (D Edit Command) 20.4

) out (DEdi1 Command) 20.5

• (as a preuyprint macro) 6.51

• (as a read-macro) 6.51

• (C LISP Operator) 16.5

(• . x) (Editor Command) 17.43

(• • TEXT) (File Package Command) .
11.24

• (in a LAP statement) 22.16

• (in an ASS EM BL£ statement) :!:!.14

• (in file package command) 11.30

[ndex.60

n

n

0

-

0

0

• (in Pattern ·Match Compiler) 23.3

• (Printed by Editor) 17.1

• (use in commentsj 6.49; 6.50

••••• (in Compiler Error Messages)
12.20

••••can't find
(;,rinted by EDITLOADFNS?) 17.58

••••Note: FN is not
the newest version
(printed by EDITLOADFNS?) 17.58

••BREAK•• (in backtrace) 9.6

••COMMENT•• (Printed by Editor) 17.37

••co~MENT•• (Printed by System) 6.50

••COMMENT 0 °FLG (Variable) 6.50; 17.37

08 EDITOR 0 • (in backtrace) 9.6

••rep•• (in backtrace) 9.6

•Alf:"• (in Edit Pattern) .17.13

•ARCHIVE• (History List Property) 8.Z7.

•ARCHIVE• (Property Name) 8.13

0 ARG1 (as a blip on the stack) 7.12

•ARGVAL c (as a blip on the stack) 7.12

•CONTEXT• (Hiszory List Property} 8.27

•ERROR• (History List Property} 8.27

°FN° (as a blip on the stack) 1.U

•FORM• (as a blip on the stack) 7.12

•GROUP• (History Lisi Property} 8.27

•GROUP• (Property Name) 8.28

•HISTORY• (History List Property) 8.27.

•LISPXPRINT• (History List Property}
8.27

•LISPXPRINT• (Property Name) 8.20

•PRINT• (History list Property) 8.27

•TAIL· (as a blip on the"stack) 7.12

+ (C LISP Opera1or) 16.5

INDEX

, (EDITA command) 23.48

, (PRINTOUT commar.d) 6.27

"
- (CLISP Operator) 16.S

(in Edit Pallern) 17.7; 17.14

(in Pattern Match Compiler) 23.3

(Printed by Editor) 17.2

(Printed by System) 6.18

-> EXPR (Break Command) 9.7

-> (in Paztern Match Compiler) 23.6

-> (Printed by DWIM) 15.4; 15.2.5

-> (Printed by Editor) 17.35

• (in a floating point number) 2.43

(in a list) 2.15

• (in Mastersc':)pe) 13.2

• (in Pattern Match Compiler) 23.4

• (printed by Masterscope) 13.2

(Variable) 23.50

PATTER...."/ •• @ (Editor Command) 17.20

(in Edit Pattern) 17.14

TEMPLATE (in Maszerscope zemplate)
13.1S

(in Edit Paztern) 17.14-15

(Prinzed by DWIM) 15.2.4

(Printed by Editor) 17.8-9

(printed following a carnage-return)
8.30

VARS (Prog. AssL Command) 8.9:
8.27

••• ARGS (History List Property) 8.27

• BASE (PRINTOUT command) 6.28

• CENTER (PRINTOUT command) 6.29

• CENTER2 (PRINTOUT command) 6.29

• F (PRINTOUT command) 6.30

Index.61

• FONT (PRINTOuT command) 621

• FR (PRINTOUT command) 629

• FRZ (PRllvTOUT command) 6.29

. I (PRINTOVT command) 629

• N (PRINTOUT command) 6.30

• PZ (PRINTOUT command} 6.28

• PAGE (PRl.VTOlJT command) 6.21

• PARA (PRINTOUT command) 6.28

• PARAZ (PRINTOUT command) 6.29

• PP F (PRINTOUT command) 6.28

• FPFTL {PRINTOUT command) 6.28

• P?V (PRINTO!.J7 commund) 6.28

• PPvTL (PRINTOUT command) 6.28

• RESET (PRINTOUT command) 621

• SKIP (PRINTOuT command} 6.21

. SP (PRINTOUT command) 6.27

• SUB (PRINTOUT command) 6.28

.SU? {PRINTOUT command) 6.27

• TAB (PRINTOl.lT command) 6.27

• TABO (PRINTOUT command) 6.21

I (CLISP Operator) 16.5

I (ED IT A command) 23.49; 23.48

I (use with @ break command) 9.4

/ functions 8.22: 8.34

, (/CNOIR HOST/DIR) 18.12

(/DELFI LE FlZ.E) 23.61

/FNS (Variable) 8.22

/MAPCON (Function) 16.10

/MAPCONC (Function} 16.10

INCONC (Function) 16.10

/?.E~L..:.:E (Reccrd Package) 3.2

/RPLACA (Fu.nctzon) 16.10

INDEX

/RPLACO (Function) 16.10

/RPLNODE (Function) 8.33

/RPLHODE2 (Function) 8.33

(/UNDELFILE FILE) 23.61

: (CL/SP Operator) 16.1

: (EDITA command) 23.50

(:) (Editor Command) 17.24

(: E 1 • • • EM) {Editor Command) 17.9

: (Printed by System) 9.1

: : (CL/SP Operator) 16.7

(ED IT A command) 23.52

FORM (Prog. AssL Command) 8.14

< (CL/SP Operator) 16.8

<. > (use in CLISP) 16.8

= FORM (Break Command) 9.7

= (CLISP .Operator) 16.6

= (ED IT A command) 23.50

= (in a LAP statement) 22.16

= (in ~:ent address) 8.6

= (in Pattern Match Compiler) 23.2

= (Prinied by DWI.t[) 15.4-5

= (Pn"nted by Editor) 17 .8

= (use· with @ break command) 9.4

-- (in Edit Paltem) 17.14

== (in Patt em Match Compiler) 23.2

=> (in Pattern Match Compiler) 23.6

=E { Printd by £:iitor) 17.53

=EDITF (Pnnted by Editor) li.55

=ED"ITP (Pn·n1ed by Editor) 17.54

Index.62

(J

= ED ITV (Printed by Editor) 17.54

> (CLISP Operator) 16.8

? (EDIT A command) 23.50

? (Editor Command) li.37: 17.2

? (Litatom) .., ..,.,
? (Printed by DWIM) 15.4

? (pnnred by Master:cope) 13.16

.:'.~) 7 (Read Macro) 6.40; 9.5

?= (Break Command) 9.5

·O

0

? = (display break command) 20.10.

? = (Editor Command) 17.37

?= (Prog. Asst. Command) 9.5

?? EveD.:Spec (Prog. Asst. Command) 8.11;
8.27

?ACTIVATEFLG (Variable) 20.43

?Undo (DEdil Commar.d) 20.5

@ (Break Command) 9.3: 9.8

@ (EDITA command) 23.48

@ (in a LAP statement) 22.16
@ (in .event spec~"U:ation) 8.32

(@ EXP?.FOP..\! TEMPL.ATZFORM)

(in Masterscope template) 13.18

@ (in Pcaem .Match Compiler) 23.3.5

@ PR.EDI CATE

(Jf asterscope Set Specification) 13.10

@ (use with @ break command) 9.4

@ (location specification)
(in Edi1or) 17.18

@@ (in event specification) 8.7; 8.13.32

INDEX

"'

lndex.63

(J

r~)
\ ,

()

n

	Background and Acknowledgements
	References
	Table of Contents
	1 Introduction

	2 Data Types

	3 The Record Package

	4 Conditionals and Iterative Statements

	5 Function Definition, Manipulation, and Evaluation
	6 Input/Output

	7 Variable Bindings and the Interlisp Stack

	8 The Programmer's Assistant

	9 Errors and Break Handling

	10 Breaking, Tracing, and Advising

	11 File Package
	12 The Compiler

	13 Masterscope

	14 Miscellaneous

	15 DWIM

	16 CLISP

	17 The Teletype Editor

	18 Interlisp-D Specifics

	19 Interlisp-D Display Facilities

	20 Interlisp-D Display-Oriented Tools

	21 Ethernet

	22 Interlisp-10 Specifics
	23 LISPUSERS Packages

	Index

