

3100186

Interlisp Reference Manual

October, 1983

Copyright © 1983 Xerox Corporation
All rights reserved.

Portions from “Interlisp Reference Manual" Copyright ©® 1974,
1975, 1978 Bolt, Beranek & Newman and Xerox Corporation

This phblication may not be reproduced or. transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

~

BACKGROUND AND ACKNOWLEDGEMENTS

1 - A BRIEF HISTORY OF INTERLISP

Interlisp began with an implementation of the Lisp programming language for the PDP-1 at Bolt, Beranek
and Newman in 1966. It was followed in 1967 by 940 Lisp, an upward compatible implementation for
the SDS-540 computer. 940 Lisp was the first Lisp system to demonstrate the feasibility of using software
paging techniques and a large virtual memory in conjunction with a list-processing system [Bobrow & ,

—
\

Murphy, 1967). 940 Lisp was patterned after the Lisp 1.5 implementation for CTSS at MIT, with several \ J

aew facilities added to take advantage of its timeshared, on-line environment. DWIM, the Do-What-I-
Mean error correction facility, was introduced into this system in 1968 by Warren Teitelman [Teitelman,
1963].

The SDS-540 computer was soon outgrown, and in 1570 BBN-Lisp, an upward compatible Lisp system
for the PDP-10, was implemented under the Tenex operating system. With the hardware paging and
256K of virtual memory provided by Tenex, it was practical to provide more extensive and sophisticated
user support facilities, and a library of such facilities began to evolve. In 1972, the name of the system was
changed to Interlisp, and its development became a joint effort of the Xerox Palo Alto Research Center
and Bolt, Beranek and Newman. The next few years saw a period of rapid growth and development of
the language, the system and the user support facilities, including the record package, the file package,
and Masterscope. This growth was paralleled by a corresponding increase in the size and diversity of the
Interlisp user community.

In 1974, an implementation of Interlisp was begun for the Xerox Alto, an experimental microprogrammed
personal computer [Thacker et al, 1979]. AltoLisp [Deutsch, 1973] introduced the idea of providing a
specialized, microcoded instruction set that modelled the basic operations of Lisp more closely than a

general-purpose instruction set could - and as such was the first ttue “Lisp machine”. AltoLisp also

single-user computers, which was begun in 1979 [Sheil & Masinter, 1983].

In 1976, pardally as a result of the AltoLisp effort, a specification for the Interlisp “‘virtual machine™
was published {Moore, 1976]. This attempted to specify a small set of “primitive” operations which
would support all of the higher level user facilities, which were nearly all written in Lisp. Although
incomplete and written at a level which preserved too many of the details of the Tenex operatng system.
this document proved to be a watershed in the development of Interlisp, since it gave a clear definition
of a (relatively) small kernel whose implementation would suffice 1o port Interlisp to a new environment
This was decisive in enabling the subsequent implementations and preserving the considerable invesunent
that had been made in developing Interlisp's sophisticated user programming tools.

Most recently, the implementation of Interlisp on personal workstations (such as Interlisp-D) has extended

.Interlisp in major ways. Most striking has been the incorporation of interactive graphics and local area

network faciiities. Not only have these extensions expanded the range of applications for which Interlisp is
being used (10 include interactive interface design. network protocol experimentation and the development
of specialized workstations, among others) but the personal machine capabilities have had a major impact
on the Interlisp programming system itself. Whereas the original Interlisp user interface assumed a very

limited (teletype) channel to the user, the use of interactive graphics and the “mouse™ pointing device has q

\

iii

3} served as a departure point for Interlisp-D, the implementation of Interlisp for the Xerox 1100 Series of \ /

O

Interlisp Implementations C :

radically expanded the bandwidth of communication between the user and the machine. This has enabled
completely new styles of interaction with the user (e.g., the use of multple windows to provide several
different interaction channels with the user) and these have provided both new programming tools and
new ways of viewing and using the existing ones. In addition, the increased use of local area networks
(such as the Ethernet) has expanded the horizon of the Interlisp user beyond the local machine to a
whole community of machines, processes and services. Large pordons of this manual are devoted to
documeanring the enhanced environment that has resulted from these developments.

2 INTERLISP IMPLEMENTATIONS .

Development of Interlisp-10 was, until approximately 1978, funded by the Advanced Research Projects
.dministration of the Department of Defence (DARPA). Subsequent developments, which have -
~ emphasized the personal workstation facilities, have been sponsored by the Xerox Corporation, with (=
some contributions from members of the Interlisp user community.

Interlisp is currently implemented on a number of different machines. Each distinct Interlisp
implementation is denoted by a suffix: Interlisp-10 is the implementation for the DEC PDP-10 family of
machines ruaning either the TENEX or TOPS-20 operating systems. Interlisp-D is the impiementation
for the Xerox 1100 series of machines (1100, 1108, 1132). Interlisp-VAX is the implementation for
the DEC VAX family, under either the VMS or UNIX operating systems. Interlisp-Jericho is the
implementadon for the BBN Jericho, a internal research computer built by Bolt. Beranek and Newman.
Other implementadons of Interlisp have been reported (e.g. Interlisp-370, Interlisp-B5700), but are not
widely used or actively maintained.

This manual is a reference manual for all Interlisp implementations. Where necessary, notes indicate
when feamures are only available in certain implementations. For some implementadons, there is also a
companion “Users Guide™ which documents features which are completely unique to that machine; for
example, how 10 turn on the system, logging on, and unique facilities which link Interlisp to the host
environment or operatng system.

-

3 ACKNOWLEDGEMENTS

The Interlisp system is the work of many people - after nearly twenty years, too many even to list, much
less detail their contributions. Nevertheless, some individuals cannot go unacknowiedged:

Warren Teitelman, more than anyone else, made Interlisp “happen”. Warren designed and
implemented large parts of several generations of Interlisp. including the initial versions of most
of the user facilities, coordinated the system deveiopment and assembled and edited the first
four editions of the Interlisp reference manual.

Dan Bobrow was a principal designer of Interlisp's predecessors, has contributed to the
implementation of several generations of Interlisp, and {in collaboration with others) made
major advances in the underlying architecture, including the spaghetr stack. the transaction
garbage collector, and the block compiler.

4

U}

BACKGROUND AND ACKNOWLEDGEMENTS

Larry Masinter is the principal architect of the current Interlisp system, has contributed
extensively to several implementations, and has designed and developed major extensions to
both the Interlisp language and the programming environment

Ron Kaplan has decisively shaped many of the programming language extensions and user
facilides of Interlisp, has played a key role in two implementations and has conuibuted
extensively to the design and content of the Interlisp reference manual

Peter Deutsch designed the AltoLisp implementation of Interlisp which developed several key
design insights on which the current generation of personal machine implementations depend.

Alice Hartley and Daryle Lewis were key contributors to implementations of Interlisp at Bolt,
Beranek and Newmann.

 No marter where one ends this list, one is tempted to continue. Many others who contributed to particular

mplementadons or revisions are acknowledged in the documentatioen for those systems. Following that
traditon. this manual, which was prepared primarily to document the extensions implemented by the
Interlisp-D group at Xerox, Palo Alto, acknowledges, in addition to those listed above, the work of

Dick Burton who designed and implemented most of the interactive display facilities '

Bill van Melle who designed and implemented the Jocal area network facilities and multiple
process extensxons

and the contnbuuons of Beau Sheil, Alan Bell, Steve Purcell, Steve Gadol, Jonl White, Don Charniey,
Willie Sue Haugeland and the many others who have helped and contributed to the development of

Interlisp-D.

Like Interlisp itself, the Interlisp Reference Manual is the work of many people, some of whom are
acknowledged above. This edition was designed, edited and produced by Michael Sannella of the
Interlisp-D group at Xerox, Palo Alto. It is a substantial revision of the previous edition [Teitelman et
al., 1978] — it has been completely reorganized, updated in most sections, and extended with a large
amount of new material. In addition to material taken from the previous edition, this edition contains
Tajor extensions contributed by members of the Interlisp-D group and contributions from other Interlisp
developers at the Information Sciences Institute of the University of Southern California and Bolt Beranek
and Newman.

Interlisp is not designed by a formal committee. It grows and changes in response to the needs of those
who use it. Contributions and discussion from the user community remain, as they have always been,
warmly welcome.

References

4 REFERENCES

[Bobrow & Murphy, 1967] s .
Bobrow, D.G., and Murphy, D.L., “The Structure of a LISP System Using Two

Level Stqrage" — Communications of the ACM, Vol. 10, 3, March, 1967).

[Bobrow & Wegbreit, 1973]
‘ Bobrow, D.G., and Wegbreit, B., “A Model and Stack Implementatior. for Multiple

Environments” — Communications of the ACM, Vol. 16, 10, (Cctober 1973).

[Deutsch, 1973] Deutsch, L.P.. “A Lisp machine with very compact programs” — Proceedings of

the Third International Joint Conference on Artificial Intelligence, Stanford, (1973).

,/inoore, 1976] Moore, J.S., “The Interlisp Virtual Machine Specification” - Xerox PARC, CSL-
\ 76-5, (1976). . C :

[Sheil & Masinter, 1983]
Sheil, B., and Masinter, L.M. (eds.), “Papers on Interlisp-D" — Xerox PARC,

CIS-5 (Revised), (1983).

[Teiteiman, 1969] Teitelman, W., “Toward a Programming Laboratory” — Proceedings of the
International Joint Conference on Artificial Intelligence, Washington, (1969).

[Teitelman, et al, 1972] :
Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L., BBN-LISP TENEX

Reference Manual — Bolt Beranek and Newman, (July 1971, first revision February
1972, second revision August 1972).

[Teitelman, et al., 1978] .
Teitelman, W., et al, The Interiisp Reference Manual — Xerox PARC, (October

1978).
MThacker, et al., 1979]

Q Thacker, C., Lampson. B., and Sproull. R., “Alto: A personal computer” — Xerox _
PARC,CSL-79-11, (August, 1979). Er

vi

s

‘\

Chapter 1

Chapter 2

Chapter 3

11
12
13
1.4
15

2.1
22

24

2.5

2.6
2.7

2.8
2.9

TABLE OF CONTENTS

INTRODUCTION

Interlisp as a Programming Language 1.1
Interlisp as an Interactive Environment 1.2
Interiisp Philosophy 14

How to Use this Manual 1.6

References 1.7

DATA TYPES

Data Type Predicates yR

Data Type Equality 2.2

"Fast” and "Destructive” Functions 23
Litatoms 24

2.4.1 Using Litatoms as Variables 24
2.42 Functon Definition Cells 2.6
2.43 Property Lists 2.6

2.4.4 Print Names 2.8

2.4.5 Character Code Functions 2.12
Lists 214 .

2.5.1 Creating Lists 2.16

2.5.2 Building Lists From Left 1o Right 2.17
2.5.3 Copying Lists 2.19

2.5.4 Extracdng Tails of Lists 219
2.5.5 Countng List Cells 221

2.5.6 Logical Operations 222

2.5.7 Searching Lists 223

2.5.8 Substitution Functions 2.23

2.5.9 Association Lists and Property Lists 2.25

2.5.10 Other List Functions 2.27
Strings .27

Arrays 232

2.7.1 Interlisp-10 Arrays 233

Hash Arrays . 235

2.8.1 Hash Overlow. 236

Numbers and Arithmetic Functions 2.36
2.9.1 Integer Arithmetic 2.38

2.9.2 Logical Arithmetic Functons 2.40
2.9.3 Floating Point Arithmetic 242
294 Mixed Arithmetic 2.44

2.9.5 Special Functions 245

THE RECORD PACKAGE
FETCH and REPLACE 3.1
CREATE 33

vii

O

Chapter 4

L

O

Chapter 5

Chapter 6

5.1

3.2

5.3

5.4
3.5

6.1

TYPE? 34
WITH 34
Record Declarations 35

Defining New Record Types 3.10
Record Manipulation Functions 3.11
Changetran 3.11

User Defined Data Types 3.14

CONDITIONALS AND ITERATIVE STATEMENTS
The [F Statement 4.4

The [teratve Statement 45

421 ILstypes 4.6

422 [Iteraton Variable Is.oprs 4.7

4.2.3 Conditon Ls.oprs 4.10

424 Other Ls.oprs 4.10

42.5 Miscellaneous 411

42.6 Errors in Iterative Statements 4.13

42.7 Defining New [teradve Statement Operators 4,13

FUNCTION DEFINITION, MANIPULATION AND EVALUATION
Funcdon Types 5.2

5.1.1 Lambda-Spread Functions 52
5.1.2 Nlambda-Spread Functions 53
5.1.3 Lambda-Nosprzad Functions 54
5.1.4 Nlambda-Nospread Functions 8.5
5.1.5 Compiled Functions 5.5

5.1.6 SUBRs 5.5

5.1.7 Functon Type Functions 5.6
Function Definition 5.8

Function Evaluation 5.10

Functional Arguments 315

Macros 5.17

55.1 MACROTRAN 5.19

INPUT/OUTPUT

Files 6.1 :

6.1.1 File Naming and Recognition 6.3
6.1.2 Manipulating File Names 6.5
6.1.3 File Auributes 6.6

6.1.4 Randomly Accessible Files 6.8
6.1.5 Closing and Reopening Files 6.11
6.1.6 Dribble Files 6.12

[nput Functuons 6.12

Cutput Functions 6.16

6.3.1 Printlevel 6.18

6.3.2. Printing numbers 6.19

6.3.3 User Defined Printing 6.23

6.3.4 Dumping Unusual Data Structures 6.23
READFILE and WRITEFILE 6.24

Vil

@

-

Chapter 7

Chapter 8

6:5

6.6

6.7

6.3

6.9

7.1
72
7.3
7.4
7.5

8.1

PRINTOUT 6.25
6.5.1 Horizontal Spacing Commands 6.26
6.5.2 Vertical Spacing Commands 6.27
6.5.3 Special Formatting Controls 6.27
6.5.4 Printing Specifications 6.28
6.5.4.1 Paragraph Format 6.28
6.5.4.2 Right-Flushing 6.29
6.5.4.3 Centering 6.29
6.5.4.4 Numbering 6.29
6.5.5 Escaping to LISP 6.30)
6.5.6 User-Defined Commands 6.30
6.5.7 Special Printing Functions 6.31
Readtables 6.32
6.6.1 Readtable Functions 632
6.6.2 Syntax Classes 6.33
6.6.3 Read-Macros 6.36
Terminal Tables 6.40
6.7.1 Terminal Table Functions 6.41
6.7.2 Terminal Syntax Classes 6.41
6.7.3 Terminal Control Functions 6.42
6.7.4 Line-Buffering 6.45
Prettyprint 6.47
6.8.1 Comment Fearture 6.49
6.8.2 Comment Pointers 6.51
6.8.3 - Converting Comments to Lower Case
6.8.4 Special Prettyprint Controls 6.53
6.8.5 Font Package 6.55
ASKUSER 6.57
6.9.1 Starmup Protocol 6.57
6.9.2 Operation 6.59
6.9.3 Formart of KEYLST 6.39
6.9.4 Completing a Key 6.61
6.9.5 Options 6.62
6.9.6 Special Keys 6.64

YARIABLE BINDINGS AND THE INTERLISP STACK

The Spaghetti Stack 72
Stack Functons 73

Releasing and Reusing Stack Pointers 7.10
The Push-Down List and the [nterpreter 7.10

Generators and Coroutines - 7.13
7.5.1 Generators 7.13

7.5.2 Coroutines 7.14

7.5.3 Possibilites Lists 7.16

THE PROGRAMMER'S ASSISTANT
[ntroduction 8.1

8.1.1 Input Formarts 8.1

3.1.2 Examples 8.2

n

O

)

)

O\hapter 9

banglit

Chapter 10

@’Thap ter 11

8.2 Programmer’s Assistant Commands 85
8.2.1 Event Specificadon 8.5
8.2.2 Commands 8.7
8.2.3 P.A. Commands Applied to P.A. Commands 8.17
8.3 Changing The Programmer’s Assistant 8.18
8.4 Statistics 8.21
8.5 Undoing 8.22
8.5.1 Undoing Out of Order 8.23
8.52 SAVESET 823
8.5.3 UNDONLSETQ and RESETUNDO 8.24
8.6 Format and Use of the History List 8.25
8.7 Programmer’s Assistant Functons 8.28
8.8 The Editor and the Programmer’s Assistant 8.35

ERRORS AND BREAK HANDLING
9.1 Breaks 9.1
9.2 When 1o Break 9.10
9.3 BREAK1 9.11
9.4 Error Functions 9.13
9.5 Error Handling by Error Type 9.16
9.6 Interrupt Characters 9.17
9.7 Changing and Restoring System State 9.18
9.8 Error List 921 .

BREAKING. TRACING. AND ADVISING
10.1 Breaking Functions and Debugging 10.1
10.2 Advising 10.7
10.2.1 Implementation of Advising 10.8
10.22 Advise Functons 10.9

FILE PACKAGE

11.1 Loading Files 114
11.2 Storing Files = 11.6 -

11.2.1 Remaking a Symbolic File 11.10
11.3 Marking Changes 11.11
11.4 Noticing Files 11.12
11.5 Disuibutng Change Information 11.14
11.6 File Package Types 11.14

11.6.1 Functions for Manipulating Typed Definitions 11.16

11.6.2 Defining New File Package Types 11.19 ’
11.7 File Package Commands 11.21

11.7.1 Exportng Definitions 11.28

11.7.2 FileVars 11.30

11.7.3 Defining New File Package Commands 11.30
11.8 Functions for Manipulating File Command Lists 11.32°
11.9 Symbolic File Format 11.34

119.1 Copyright Notdces 11.36

11.9.2 Functons Used Within Source Files 11.37

11.9.3 File Maps 11.38

g

Chapter 12

Chapter 13 -

Chapter 14

THE COMPILER

12.1 Compiler Printout 12.2
12.2 Global Variables 12.3
12.3 LOCALVARS and SPECVARS 124
12.4 Constants 125
12.5 Compiling Function Calls 12.6
12.6 FUNCTION and Functional Arguments 12.83
12.7 Open Functions 12.8
128 COMPILETYPELST 12.8
12.9 Compiling CLISP 12.9
12.10 Compiler Functions 12.10
12.11 Biock Compiling 12.13

12.11.1 RETFNS 12.13

12.11.2 BLKAPPLYFNS '12.14

12.11.3 BLKLIBRARY 12.14

12.11.4 Block Declarations 12.14

12.11.5 Block Compiling Functions 12.16
12.12 Linked Function Calls 12.18

12.12.1 Relinking 12.19
12.13 Compiler Error Messages 12.20

MASTERSCOPE
13.1 Command Language 13.4
13.1.1 Commands 134 -
13.12 Relations 13.7
13.1.3 Sets 13.10
13.1.3.1 Set Specifications 13.10
13.1.3.2 Set Determiners 13.12
13.1.3.3 Set Types 13.12
13.1.4 Conjunctions 13.13
13.2 Paths 13.13
13.2.1 Path Options 13.14
13.3 Error Messages 13.15
13.4 Macro Expansion 13.15
13.5 Affecting Masterscope Analysis 13.16
13.6 Darta Base Updating 13.19
13.7 Masterscope Entries 13.19
13.8 Noticing Changes that Require Recompiling 13.21
13.9 Implementation Notes 13.22

MISCELLANEQUS
14.1 Saving Interlisp State 14.2
14.2 Greeting and User Profiles 14.5
14.3 Manipulating File Directories 14.6
144 Soning Lists 14.8
14.5 Darte/Time Functions 14.9
146 Timers and Duration Functions 14.10
14.7 GAINSPACE 14.13
14.8 Performance Measuring Functions 14.14

xi

O

O

Chapter 15

O

Chapter 16

14.8.1 BREAKDOWN 14.15
14.9 Page Mapped Files 14.17

DWIM
15.1 Spelling Correction Protocol 153
15.2 Parentheses Errors Protocol 155
15.3 U.D.F. T Errors Protocol 15.5
15.4 DWIM Operation 15.6
15.4.1 DWIM Correction: Unbound Aroms 15.7
1542 Undefined CAR of Form 15.3
15.4.3 Undefined Function in APPLY 15.9
15.5 DWIMUSERFORMS 15.10
15.6 DWIM Functions and Variables 15.11
15.7 Spelling Correction 15.13
15.7.1 Syuonyms 15.13
15.7.2 Spelling Lists 15.14
15.7.3 Generators for Spelling Correction 15.15
15.74 Spelling Corrector Algorithm 15.16
15.7.5 Spelling Corrector Functions and Variables 15.17

CLISP
16.1 CLISP Interacdon with User 164
16.2 CLISP Character Operators 165

16.3 Declarations 16.9

Chapter 17

16.3.1 Local Declarations 16.10
16.4 CLISP Operation 16.11
16.5 CLISP Translations 16.13
16.6 DWIMIFY 16.14
16.7 CLISPIFY 16.17
16.8 Miscellaneous Functions and Variables 16.19
16.9 CLISP Internal Conventions 16.21

THE TELETYPE EDITOR
17.1 Introduction 17.1
17.2 Commands for the New User 17.7
17.3 Local Attendon-Changing Commands 17.9
17.4 Commands That Search 17.13
17.4.1 Search Algorithm 17.15
17.42 Search Commands 17.15
17.4.3 Location Specification 17.17
17.5 Commands That Save and Restore the Edit Chain 17.20
17.6 Commands That Modify Structure 17.22
17.6.1 Implementadon of Structure Modification Commands
17.6.2 The A. B. and : Commands 17.24 .
17.6.3 Form Oriented Ediung and the Role of UP 17.26
17.6.4 Extract and Embed 17.27
17.6.5 The MOVE Command 17.29
17.6.6 Commands That Move Parentheses 17.31
17.6.7 TO and THRU 17.32

Xil

17.23

C 5Y

Chapter 18

17.6.8 The R Command 17.35

17.7

17.8

17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20

13.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16

Commands That Print 1737
Commands for Leaving the Editor 1738
Nested Calls to Editor 17.40
Manipulating the Characters of an Atom or String
Manipulating Predicates and Conditional Expressions
History commands in the editor 17.42
Miscellaneous Commands 17.43
Commands That Evaluate 1745
Commands That Test 17.46
Edit Macros 17.48
Undo 17.50
EDITDEFAULT 1751
Editor Functions 17.53
Time Stamps 17.60

INTERLISP-D SPECIFICS
Interlisp-D Interrupt Characters 18.1
Garbage Collection 18.2
Variable Bindings 18.3
Stack Format 18.3
Saving Virmual Memory State 18.3
Error Types 184
Compiler 185
Linked Function Calls 18.5
HELPSYS 18.5
Operating System Dependent Functdons 18.6
IDATE Format 18.6
Character Set 18.7
Read Tables 18.7
Keyboard Interpretation 18.8
Lispusers Packages 18.9
File System - 18.10

18.16.1 File Names 18.10

18.16.2 Renaming Files 18.10

18.16.3 End Of Line Convention 18.10
18.16.4 Using Files with Processes 18.11
18.16.5 Miscellaneous File Manipulation 18.11
18.16.6 Connecting to Directories 18.11
18.16.7 Binary [/O 18.12

18.16.8 Temporary Files and the CORE Device 18.12

18.16.9 Floppy Disks on the Xerox 1108 18.13
18.16.10 Page Mapping 18.13

18.17

File Servers 18.13

18.17.1 File Server File Narnes 18.14
18.17.2 Logging In 18.14

18.17.3 Abmnormal Conditions 18.13
18.17.4 Caveals 18.15

18.17.5 New Functionality 18.16

18.18

HardCopy Facilities 18.16

xiii

17.41

17.42

N
./

()

.
9

Chapter 19

O

18.19 Performance Considerations 18.18
18.19.1 Variable Bindings 18.19
18.19.2 Garbage Collection 18.20
18.19.3 Datarypes 18.21
18.19.4 Incompiete Filenames 1821
18.19.5 Turning Off the Display 18.22
18.19.6 Gathering Statistics 1822
18.20 The Interlisp-D Process Mechanism .18.25
18.20.1 Creadng and Destroying Processes 18.26
18.20.2 Process Control Constructs 18.28
18.20.3 Events 18.29
18.20.4 Monitors 18.30
18.20.5 Global Resources 18.32
18.20.6 Typein and the TTY Process 1833
18.20.6.1 Switching the TTY Process 18.33
18.20.6.2 Handling of Interrupts 1835
18.20.7 Keeping the Mouse Alive 18.35
18.20.8 Debugging Processes 1836
18.20.9 Non-Process Compatibility 18.37
18.21 PROMPTFORWORD 18.37

INTERLISP-D DISPLAY FACILITIES
19.1 POSITION 192
19.2 REGION 19.2
19.3 BITMAP 19.3
19.4 BITBLT 19.4
19.5 TEXTURE 19.6
19.6 Saving BITMAPs 19.6
19.7 Screen Operation 19.6
19.8 Characters and Fonts 19.7
19.9 Display Streams 19.10
19.9.1 Manipulating Display Streams 19.10
19.9.2 Drawing on Windows and Display Streams 19.12
19.9.3 Drawing Lines and Curves 19.13
19.10 Typescript Facilides: The "T" File 19.14
19.11 Cursor and Mouse 19.15
19.11.1 Mouse Button Testing 19.16
19.11.2 Low Level Access to Mouse 19.17
19.12 Windows 19.18
19.12.1 What are Windows? 19.19
19.12.2 Interactive Window Operations 19.20
19.12.3 Changing Entries on the Window Command Menus
19.12.4 Coordinate Systems 19.23
19.12.5 Scrolling 19.23
19.12.6 Programmatic Window Operations 19.25
19.12.7 Window Properties 19.28
15.12.7.1 Mouse Function Window Properues 19.29
19.12.7.2 Event Window Properties 19.30
19.12.7.3 Miscellaneous Properties 19.32
19.12.8 Auxiliary Funcuons 1933 '

Xiv

19.22

?

19.12.9 Example: A Scrollable Window 19.34

19.13 Interactive Display Functions 19.36

19.14 Menus 1938
19.14.1 Menu Fields 19.39
19.14.2 Miscellaneous Menu Functions 19.41
19.14.3 Examples of Menu Use 19.41

19.15 Grid Functons 19.42

19.16 Color Graphics 19.43
19.16.1 Color Bitmaps 19.43
19.16.2 Color Specifications 19.44
19.16.3 Color Maps 19.45
19.16.4 Turning the Color Display On and Off 19.47
19.16.5 Printing and Drawing in Color 19.48
19.16.6 Using the Cursor on the Color Screen 19.49
19.16.7 Miscellaneous Color Functions 19.49
19.16.8 Demonstration programs 19.49

Chapter 20 INTERLISP-D DISPLAY-ORIENTED TOOLS
20.1 DEdit 20.1
20.1.1 General Comments 20.1
20.1.2 Operation 20.1
20.1.3 Interactive Operation 20.2
20.1.3.1 Selection 26.2
© 20.1.3.2 Typein 203
20.1.3.3 Shift-Selection 203
20.13.4 Commands 203
20.1.3.5 Multple Commands 20.6
20.1.3.6 Idioms 20.7
20.1.4 DEdit Parameters 20.8
20.2 Interactive Bitmap Editing 20.8
20.3 Display Break Package 20.10
20.4 The Inspector 20.12
20.4.1 Inspect Windows 20.12
20.4.2 Calling the Inspector 20.13
20.4.3 Choices Before Inspection 20.14
2044 Redisplaying an Inspect Window 20.14 ,
20.4.5 Interaction With the Display Break Package 20.14
20.4.6 Controlling the Amount Displaved During Inspection
20.4.7 Inspect Macros 20.15
20.4.8 [NSPECTWs 20.15
20.5 CHAT 20.17
20.6 The TEdit Text Editor 20.19
20.6.1 Selecting Text 20.21
20.6.2 Editing Operations 20.22
20.6.3 TEdit Functional Interface 20.23
20.6.3.1 TEdir Interface Functons 20.24
20.6.3.2 User-functon "Hooks" in TEdit 20.27
20.6.3.3 Changing the TEdit Command Menu 20.28
20.6.3.4 Variables Which Control TEdit 20.28
20.6.4 TEdit's Terminal Table and Readtables 20.29

Xv

20.14

)

O

Chapter 21

20.6.5 The TEdit Abbreviaton Facility 2031

20.7 The TTYIN Display Typein Editor 2031

20.7.1 Entering Input With TTYIN 2031
20.7.2 Mouse Commands [Interlisp-D Only] 20.33
20.7.3 Display Editing Commands 2033
20.7.4 Using TTYIN for Lisp Input 2037
20.7.5 Useful Macros 2037 '
20.7.6 Programming With TTYIN 20.38
20.7.7 EE Interface 20.40

20.7.8 7= Handler 20.41

20.7.% Read Macros 20.41

20.7.10 Assorted Flags 20.43

20.7.11 Special Responses 20.44

20.7.12 Display Types 20.45

ETHERNET

21.1 Ethernet Protocols 21.1

21.1.1 Protocol Layering 21.1

21.1.2 Level Zero Protocols 212

21.1.3 Level One Protocols 21.3

21.1.4 Higher Level Protocols 213

21.1.5 Connecting Networks: Routers and Gateways
21.1.6 Addressing Conflicts with Level Zero Mediums
21.1.7 References 214

21.2 Higher-level PUP Protocol Functions 21.4
21.3 Higher-level NS Protocol Functions 21.6

21.3.1 SPP Steam Interface 21.6

21.3.2 Courier Remote Procedure Call Protocol 21.7

21.3.2.1 Courer Template Language 21.8
21.3.2.2 Manipulating Courier Representations
21.3.2.3 Using Bulk Data Transfer with Courier
21.3.3 NS Prindng 21.10
21.3.4 Clearinghouse 21.12
21.3.5 NS Filing 21.13
21.3.5.1 Pathnames and NS Fileservers 21.13

21.4 Level One Ether Packet Format 21.14
21.5 PUP Level One Functions 21.15

21.5.1 Creatng and Managing Pups 21.15
21.5.2 Sockets 21.15

21.5.3 Sending and Receiving Pups 21.16
21.5.4 Pup Routing [nformation 21.17
21.5.5 Miscellanegus PUP Utilities 2117
21.5.6 PUP Debugging Aids 21.18

21.6 NS Level One Functions 21.21

21.6.1 Creating and Managing XIPs 21.21
21.6.2 NS Sockets 21.22

21.6.3 Sending and Receiving XIPs 21.22
21.6.4 NS Debugging Aids 21.23

21.7 Support for Other Level One Protocols 21.23
21.83 The SYSQUEUE mechanism- 21.25

Xvi

213
214

21.10

21.10

Chapter 22 INTERLISP-10 SPECIFICS

22.1 Interlisp-10 Interrupt Characters 22.1
22.2 Type Number Functions 222
22.3 Validity of Definitions in Interlisp-10 223
22.4 Reusing Boxed Numbers in Interlisp-10 - SETN 22.3
22.4.1 Caveats concerning use of SETN 224
22.5 Box and Unbox in Interiisp-10 225
22.6 Miscellaneous Operating Systemn Functions 225
22.7 Storage Allocation and Garbage Collection 22.7
22.8 The Assembler and LAP 2211 '
22.8.1 Assemble 22.12
22.8.1.1 Assemble Statements 2212
22.8.1.2 COREVALs 22.14
22.8.2 LAP 22.15
22.8.2.1 LAP Statements 22.15
22.83.3 Using Assemble - 22.18
22.9 Interfork Communication in Interlisp-10 22.20
22.10 SUBSYS 2221
22.11 JFN Functions in Interlisp-10 22.22
22.12 Display Terminals 22.23
-22.13 The Interlisp-10 Swapper 22.24
22.13.1 Overlays 22.24
22.13.2 Efficiency 22.25
22.13.3 Specificarions 22.25

Chapter 23 LISPUSERS PACKAGES

23.1 Parttern Match Compiler 23.1
23.1.1 Pattern Elements 23.2
23.1.2 Element Patterns 23.2
23.1.3 Segment Pauerns 233
23.1.4 Assignments 235
23.1.5 Place-Markers 23.5
23.1.6 Replacements 23.6
23.1.7 Reconstruction 23.6
23.1.8 Examples 23.7
23.2 Printing Reentrant and Circular List Structures 23.8
23.2.1 CIRCLPRINT 23.8
2322 PRINTL 23.11
23.3 Indexing and Cross Referencing Files 23.12
23.3.1 SINGLEFILEINDEX 23.12
23.3.2 MULTIFILEINDEX 23.13
23.4 Databasefns 23.15
23.5 Lambdatran 23.16
23.6 Permstatus 23.17
23.7 The Decl Package 23.18
23.7.1 Using Declarations in Programs 23.18
23.7.2 DLAMBDAS 23.20
23.7.3 DPROG 23.21
23.7.4 Declarauons in lterative Statements 23.22
23.7.5 Declaring a Variable for a Restricted Lexical Scope 23.23

xvii

®

)

23.7.6 Declaring the Values of Expressions 23.23
23.7.7 Assertons 23.24
23.7.8 Using Type Expressions as Predicates 23.24
23.7.9 Enforcement 23.24
23.7.10 Declitypes 23.25
23.7.11 Predefined Types 23.25
23.7.12 Type Expressions 23.26
23.7.13 Named Types 23.28
23.7.13.1 Manipulatng Named Types 23.29
23.7.14 Relations Between Types 23.29
23.7.15 The Declaration Database 23.30
23.716 Declarations and Masterscope 2331
23.3 TRANSOR 2331 :
23.8.1 Using TRANSOR 2332
23.8.2 Translating 2332
23.8.3 The Transiation Notes 2333
23.8.4 Errors and Messages 2334
23.8.5 TRANSORSET 23.35
23.8.6 TRANSORSET Commands 23.36
23.8.7 The REMARK Feature 23.37
23.8.8 Controlling the Sweep 23.39
23.9 WHEREIS Package 23.40
23.10 Hash Files 2341
23.10.1 Unstructured Pages and Symbol Tables 23.45
23.10.2 The Printing Region 23.46
23.11 EDITA 23.46
23.11.1 Overview 23.47
23.11.2 Input Protocol 23.48
23.11.3 EDITA Commands and Variables 23.49
23.11.4 Editing Arrays 23.52
23.12 Cisys 23.53
23.13 Nobox 5S4
23.13.1 CONS Cells 24
23.13.2 Number Boxes 23.55
23.13.3 Cautons 23.56
23.14 Dateformat 23.57
23.15 Exec 23.59
23.15.1 Exec Commands 13.59
23.15.2 EXEC Functions 23.60
23.16 Passwords 23.62
23.17 Telnet 23.62
23.18 Fep 23.62
23.19 Net 23.64

xviil

{oMYLUM}CLISPUSERS) GRAPHER. OCON: 29
comptied on 12-CE3-32 89-26:96
FILE OREATED 12-SEP-82 @9:34:15
GRAPHERCONS
{PHYLUNICLISPUSERSIBROWSER .JCON; LS
18- 3MOw ALL PATHS T0 DisplayCel)

NIL
13« ANALY2ZE FUKCTIONS ON INTERCALC

a1t -:1 {'n Ecithams)} treat o¢s clizp ?

14+-RETRY
uao e,

Lo REAMSEL
BEF s==or
{STPEAmiss

RE-27L SaouT)
NIl

I-FIx 22

srecrassseraa00NS

JBleldd
% LAFITEMAILWATCH asorted.
N of LG

RIL

o1 WaRDCOPY® (GETRESION)} '{OSK}32 PRESS)
{CsK}32.PRESS 2

| TuaRDCOPYY rSCREENR!
{0SX}52 PRESS) WIL @

{Qcskstat

15828 ceges uses out of SEB2 1n directory
308 .

4388798 peges used, BlB@ left in tha systed
Qoelete (fiies) -,

A3umep {# of versions) 2

11

;3 COMRusze 11>

2 fi.oress:1 [Confire] ves.

X intre.brave‘3 [Confirs] ves.
,4¢(OmRysse11d L 1s0c0Urse)
exercisel.bravoil (Confire] yes.
exercise? bravall [Confirm] yes.
FICOMRyTSE YT

yes

ARETTYZ ,PRESS!) [Confirm] yes.
SIMPLEGIIA {Confirm] ves.
SINPLEG!1S {[Confrru} ves.

SIn.TIMEQUT
51614

Prensteiiy
h(ol)—fvw:g E::”E::I
o T
./;hn.-nnue\nhm o tecivamn
TRaP) (QUOTE :,»"?:s.:.‘?:‘.” tm
5 /A A neaTe st

74 5o ecriad
A PONEE 1L StacE =GO }-——-—M -~ TR L)

ettt ol St

; piect 19 e P OSRETL
Browse Message rorm Juit - i/
0 T > " P L ,. i .
. r
Cesptav Qelete Unoeiete Answer Farward Hardcopv Mave To Uoas I }IE_Y('
- = : -~ P n! --uv’;_n4f_w‘. . P
— — = - - Prov— alad .
= E oy Aglrlgs:L
" R - . — - \ : ~—r
» s Thy, 2 DRutherford ES e+ wrang Slsment \

St S - \ . SETrEETy
- Cs 03 - R AT N YTV
TN Hax, IMALL. INTESER | Y TR L g X T T L LT

M 3 The. 2 49003= Pe: wrong Element . ""vc > T R RALL |

- - S s . e . - £41*Rame T o TII T on
A - s S LB top) e E T T T
12 I8 lwr ruyers 23 ~egneminG Trowser 217 chars {£411Enores s10m Tz
. H . P - iy R s siran o]
18 rPu. 2 mgrter 32 . . ——— == =
CEE T S R Sonee 3 A * wingow {239 cnars} o
AR I S Vareria) £2 érnnn lement. meal TRuea f 1792 chare]

R et e ST T
R e F ST LG 35Tt

e

)

CHAPTER 1

. INTRODUCTION

Interlisp is a progremming system. A programuming system consists of a programming /anguage, a large
number of predefined programs (or functions, to use the Lisp terminology) that can be used either
as direct user comumands or as subroutines in user programs. and an environment that supports the
programmer by providing a variety of specialized programming tools. The language and predefined
funcdons of Interlisp are rich, but similar to those of other modern programming languages. The [nterlisp
~—-rogramming environment, on the other hand, is very distncdve. Its most salient characteristic is an

u egrated set of programming tools which know enough about Interlisp programming so that they can act
-as semi-autonomous, intelligent “assistants” to the programmer. [n addidon, the environment provides a
completely seif-contained world for creatng, debugging and maintaining Interlisp programs.

This manual describes all three components of the Interlisp system. There are discussions about the
content and structure of the language, about the pieces of the system that can be incorporated into user
programs, and about the environment. The line between user code and the environment is thin and
changing. Most users extend the environment with some special features of their own. Because Interlisp
is so easily extended. the system has grown over time to incorporate many different ideas about effective
and useful ways to program. This gradual accumulation over many years has resulted in a rich and diverse
sysiem. That is the reason this manual is so large.

Whereas the rest of this manual describes the individual pieces of the Interlisp system, this chapter attempts
to describe the whole system—language, environment, tools, and the otherwise unstated philosophies that
te it all together. It is intended to give a global view of Interlisp to readers approaching it for the first
time.

Q.l INTERLISP AS A PROGRAMMING LANGUAGE

This manual does not contain an introduction to programming in Lisp. Sadly, primers and teaching
materials for Lisp are few and quickly become dated. [Winston & Horn, 1981] discuss Lisp and its
applicadons. but focus on MacLisp, with only a limited section on Interlisp in an appendix. [Siklossy.
19/6] and {Weissman, 1967] are both sound. but a littde dated. In this section. we simply highlight a few
key points about Lisp on which much of Lhe 1ater material depends.

The Lisp family of languages (e.g., I[nterlisp, UCI Lisp [Meehan. 1979], Franzlisp [Foderaro, 1979,
MacLisp [Moon, 1974], Lisp Machine Lisp [Weinreb & Moon, 1979, etc.) shares a common structure
in which large programs (or functions) are built up by composing the resuits of smaller ones. Although
[nteriisp, like most modern Lisps. allows programming in almost any style one can imagine. the natural
style of Lisp is functional and recursive. in that each function computes its result by selecting from or
buiiding upon the values given to it and then passing that result back o its caller (rather than by producing
“side-effects” on external data strucrures, for example). A great many applications can be written in Lisp
in this purely functional style, which is encouraged by the simplicity with which Lisp functions can be
composed together.
O

L1

Interlisp as an Interactive Environment

Lisp is also a list-manipulation language. The essential primitive data objects of any Lisp are “atoms”
(symbols or identifiers) and “lists” (sequences of atoms or lists), rather than the “characters” or “numbers”
of more conventional programming languages (although these are also present in all modern Lisps). Each
Lisp dialect has a set of operations that act on atoms and lists, and these operations comprise the core of

the language.

Invisible in the programs, but essential to the Lisp style of programming, is an automatic memory

®

management system (an “allocator” and a “garbage collector”). Allocation of new storage occurs .

automatically whenever a new data object is created. Conversely, that storage is automatically reclaimed

" for reuse when no other object makes reference to it. Automatic allocation and deallocation of memory

is essential for rapid, large scale program development because it frees the programmer from the task
of maintzining the details of memory administration, which change constantly during rapid program
evolution.

A key property of Lisp is that it can represent Lisp function definitions as pieces of Lisp list data.
Each subfunction “call” (or function application) is written as a list in which the function is written first,
followed by its arguments. Thus, (PLUS 1 2) is a list structure representation of the expression 1 +
2. Each program can be written as a list of such function applications. This representation of program as
data allows one to appiy the same operations to programs that one uses to manipulate data, which makes
it very straightforward to write Lisp programs which look at and change other Lisp programs. This, in
turn, makes it easy to develop programming tools and transiators, which was essential in enabling the
development of the Interlisp environment

One result of this ability to have one program examine another is that one can extend the Lisp programming
language itself, If some desired programming idiom is not supported, it can be added simply by defining

a function that transiates the desired expression into simpler Lisp. Interlisp provides extensive facilities '

for users to make this type of language extension. .In addition. the CLISP (Conversational LISP) package
provides definitions for several commonly used programming constructs (if ... then ... else, for and
do loops, ew.) that make many programs easier to express. Using this ability to extend itself. Interlisp has
incorporated many of the constructs that have been developed in other modern programming languages.

1.2 INTERLISP AS AN INTERACTIVE ENVIRONMENT

Interlisp programs should not be thought of as autonomous, external files of source code. All Interlisp
programming takes place within the Interlisp environment, which is a completely self-sufficient environment
for developing and using Interlisp programs. Not only does the environment contain the obvious
programming facilities (e.g., program editors. compilers. debuggers, etc.), but it also contains a variety of
tools which assist the user by “keeping track™ of what happens. so the user doesn't have to. For example.
the Interlisp file package notices when programs or data have been changed, so that the system will
know what needs to be saved at the end of the session. The “residential” style, where one stays within
the environment throughout the development from inital program definition through final debugging, is
essential for these tools to operate. Furthermore. this same environment is available to support the final
producton version, some parts providing run time support and other parts ignored until the need arises
for further debugging or development.

For terminal interaction with the user. Interlisp provides a "Read-Eval-Print” loop. That is. whatever the
user types in is READ by the sysiem. executed {or “"EVAL™-uarted) and the result is PRINT-ed onto the
terminal. (This interaction is also recorded by the programmer’s assistant. described below. so the user

1.2

O

INTRODUCTION

can ask to do an acton again, or even to undo the effects of a previous action.) Although each interactive
terminal listener (or “execuuve™) defines a few specialized commands, most of the interaction will consist
of simple evaluations of ordinary Lisp expressions. Thus, instead of specialized terminal commands for
operadons like manipulating the user’s files, actions like this are carried out simply by typing the same
expressions that one would use to ac..omplish them inside a Lisp program. This creates a very rich. simple
and uniform set of interactive commands, since any Lisp expression can be typed at a command executive
and evaluated immediately.

In normal use, one writes a program (or rather, “defines a function™) simply by typing in an expression
that invokes the “funcdon defining” functdon (DEF INEQ), giving it the name of the functdon being defined
and its new definidon. The newly defined functon can be executed immediately, simply by using it in
a Lisp expression. Although most Interlisp code is normally run compiled (for reasons of efficiency),
the initial versions of most programs, and all of the user’s terminal interactions, will be run interpreted.
Evenwally, as a function gets larger or is used in many places, it becomes more effective to compile it
'sually, by that stage, the function has been stored on a file'and the whole file (which may contain many
> tunctions) is compiled at once. DEFINEQ, the compiler (COMPILE), and the interpreter (EVAL), are all
themselves Lisp functions that use the ability to treat other Lisp expressions and programs as data.

In addition to these basic programming tools, Interlisp also provides a wide .variety of programming
‘support mechanisms: .

Stucture editor Since Interlisp programs are represented as list scructure, Interiisp provides an editor
which allows one to change the list structure of a funcdon's definition directly.

Pretty-printer The prewty printer-is a function that prints Lisp functon definitions so that their
syntactc stoucture is displayed by the indentation and fonts used.

Break Package When errors occur, the break package is called, allowing the user to examine and
modify the context at the point of the error. Often. this enables execudon to
condnue without starung over from the beginning. Within a break, the full power
of Interlisp is available to the user. Thus, the breken function can be edited. data
strucrures can be inspected and changed. other computatons carried out, and so
on. All of this occurs in the context of the suspended compuraton, which will

Q " remain available to be resumed.

DWIM The “Do What [Mean™ package automadcally fixes the user’s misspellings and
errors in typing.

P‘ogram.mer s Assistant
Interlisp keeps track of the user’s actions during a session and allows each one to
be replayed. undone, or altered.

Masterscope Masterscope is a program analysis and management tool which can analyze users’
functions and build (and automatically maintain) a data base of the results.
This allows the user to ask questions like “WHO CALLS ARCTAN" or “WHO
USES COEF1 FREELY" or to request systematic changes like “EDIT WHERE ANY
(funcrion) FETCHES ANY FIELD OF (the data structure) FQOQ”.

Record/Datatype Package

Interlisp allows a programmer 0 define new data structures. This enables one 0
separate the issues of data access from the details of how the data is actually stored.

O | | L3

8
o
Ry

Interlisp Philosophy

File Package Files in Interlisp are managed by the system, removing the problem of ensuring
: timely file updates from the user. The file package can be modified and extended
to accomodate new types of data.

Performance Analysis ,
These tools allow statistics on program operation to be collected and analyzed.

.. These facilities are tightly integrated, so they know about and use each other, just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes. By
combining the program analysis features of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For example, when the lowest-level interface
of the Interlisp-D I/0 system was changed to a new format, the entire edit was made by a single call
to Masterscope of the form EDIT WHERE ANY CALLS '(BIN BOUT --.). [Burton et al, 1980] This
 caused Masterscope to invoke the editor at each point in the system where any of the functions in the list
"~ '(BIN BOUT ---) were called. This ensured that no functions used in input or output were overlooked
during the gnodiﬁcat.ion. -

The new. personal machine implementations of Interlisp, such as Interlisp-D, also provide some new user
facilities, and some new, interactive graphic interfaces to some of the alder Interlisp programming tools:

Multiple Processes ~ The multiple and independent processes allowed in Interlisp-D simplify problems
which require logically separate pieces of code t0 operate in parrallel.

Windows The ability to have multiple, independent windows on the display allows many
different processes or activities to be active on the screen at once.

Inspector The inspector is a display tool for examining complex data structures encountersd
during debugging.

The figure found at the beginning of this chapter shows a standard user display within Interlisp-D. One
window displays a list of messages available for browsing, using an experimental mail reading system.
This operates in parallel with the user’s other activides, continually monitoring the remote mail server
and warching for any new messages. The “DEdit” window is editing an Interlisp function. The “Chat”
window offers a direct connection to a remote machine (this one is a remote file server). There are two
nested break windows showing the environment of an interrupted evaluation. And in the lower right,
there is a Masterscope display showing all the possible execution paths to some function.

Some of the newer implementations of Interiisp have embedded within them an entire operating system
written in Interlisp. For the most part. that is of no concern to the user (although it is nice to know that one
can write programs of this complexity and performance within Interlisp!). However. some of the facilities
provided by this low level code allow the use of [nterlisp for applications that would previously have
been forced into a relatively impoverished system programming environment. In particular, Interlisp-D
provides complete facilities for experimenting with distributed machines and services on a local area
network. plus access to all the services that such networks provide (e.g., mail. printing, filing, etc.).

1.3 INTERLISP PHILOSOPHY

‘The extensive environmental support that the Interlisp system provides has developed over the years
in order 0 support a partcular style of programming called “exploratory programming™ [Sheil. 1983].

1.4

)

®

()

O

-

—

@) | ,

INTRODUCTION

For many complex programming probiems, the task of program creation is not simply one of writng a
program to fulfill pre-identified specificatons. Instead, it is a matter of exploring the problem (Tying
out various soiudons expressed as partial programs) until one finds a good solution (or sometimes, any
soludon at all!). Such programs are by their very nature evolutiopary; they are transformed over time
from one realization into another in response to a growing understanding of the problem. This point of
view has lead to0 an emphasis on having the tools available to analyze, alter, and test programs easily.
One important aspect of this is that the tools be designed to work together in an integrated fashion, so
that knowledge about the user’s programs, once gained, is available throughout the environment

The development of programming tools to support exploratory programming is itself an exploration.
Noone knows all the tools that will eventually be found useful, and not all programmers want all of the
tools to behave the same way. In response to this diversity, Interlisp has been shaped, by its implementors
and by its users, to be easily extensibie in several different ways. First, there are many places in the system
where its behavior can be adjusted by the user. One way that this can be done is by changing the value
f various “flags” or variables whose values are examined by system code to epable or suppress certain
behavior. The other is where the user can provide functdons or other behavioral specifications of what is to
happen in certain contexts. For example, the format used for each type of list structure when it is printed
by the pretty-printer is determined by specifications that are found on the list PRETTYPRINTMACROS.
Thus, this format can be changed for a given type simply by putting a printing specification for it on that
list.

Another way in which users can effect Interlisp’s behavior is by redefining or changing system functions.
The “Advise” capability, for instance, permits the user to modify the operation of virtually any function
in the system by wrapping user code “around” the selected function. (This same philosophy extends
to the break package and tracing, so almost any function in the system can be brokem or wtaced.)
Experimentation is thus encouraged and actuvely faciiitated, which allows the user to find useful pieces of
the Interlisp system which can be configured to assist with application development. This is even easier
in systems like Interlisp-D, where the entire system is implemented in Interiisp. since there are extremely
few places where the system's behavior depends on anything outside of Interlisp (such as a low level
system implementation language).

While these techniques provide a fair amount of tailorability, the price paid is that [nterlisp presents an
overall appearance of complexity. There are many flags, parameters and controls that affect the behavior
sne sees. Because of this complexity, Interlisp tends to be more comfortable for expers. rather than
casual users. Beginning users of I[nterlisp should depend on the default settings of parameters until they
learn what dimensions of flexibility are available. At that point, they can begin to “tune” the system to
their preferences. ~ ‘

The various implementations of Interlisp share not only this general philosophy, but a philosophy about
each other also. Interlisp is available in highly compatible versions across several machines. The
community of [nterlisp implementors is committed to maintain this level of compatibility. One testimony
to this is the existence of pieces of very old code in modern versions of [nterlisp that have been inherited
from the original BBN-Lisp system nearly 15 years ago. Many of the function definitions in the core of
the system have not changed since 1977, over many different versions of Interlisp.

Appropriately enough. even Interlisp’s underiying philosophy was itself discovered during Interlisp's
deveiopment, rather than laid out beforehand. The Interlisp environment and its interactive style were
first analyzed in Sandewall’s exceilent paper [Sandewall. 1978]. The notion of “exploratory programming”
and the genesis of the Interlisp programming toois in terms of the characteristic demands of this style of
programming was developed in [Sheil, 1983]. The evolution and structure of the Interlisp programming
environment are discussed in greater depth in [Teitelman & Masinter, 1981].

.5

.3

How to Use this Manual

14 HOW TO USE THIS MANUAL

This document is a reference manual, not a primer. We have tried to provide a2 manual that is complete,
and that allows Interlisp users to find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arzuments
that are rarely used. In the interest of providing a complete reference, these arguments are fully explained,
even though they would normally be defaulted. There is a lot of information in this manual that is only
of interest to experts.

Users should not try to read straight through this manual, like a novel. In general, the chapters are
organized with overview explanations and the most useful functions at the beginning of the chapter, and
implementadon details towards the end. If you are interested in becoming acquainted with Interlisp using
this manual, the best way would be to skim through the whole book, reading the beginning of each
chapter. S -

A few notes about the notadonal conventions used in this manual:

Lisp object notation: All Imterlisp objécts in this manual are printed in the same font: Functions
(AND, PLUS, DEFINEQ, LOAD); Variables (MAX.INTEGER, FILELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG ((A 1)) -..), et

Case is significant: An important piece of information, often missed by newcomers to [nterlisp, is that
upper and lower case is significant. The variable FOO is not the same as the variable f o9, which is not the

. same as the variable Foo. By convention, most Interlisp system functions and variables are all-uppercase,

but users are free to use upper and lower case for their own functions and variables as they wish.!

This manual contains a large number of descriptions of functions, variables. commands, etc, which are
printed in the following standard format:

(FOO BAR BAZ —)™ [Function]
This is a description for the function named FOO. FOO has two arguments. BAR and
BAz, Some system functions have extra optional arguments that are not documented
and should not be used. These extra arguments are indicated by “~".

The descriptor [Function] indicates that this is a function, rather than a [Variable],
[Prog. Asst. Command)}, etc.. For function definitions only, this can also indicate
the function “type™: [NLambda Function], [NoSpread Function], or [NLambda
NoSpread Function], which describes whether the function takes a fixed or variable
number of arguments. and whether the arguments are evaluated or not.

'One exception to the case-significance rule is provided by the Interlisp CLISP facility, which allows
iterauve statement operators and record operations to be typed in either all-uppercase or all-lowercase
letters: (for X from 1 to 5 -.-) is the same as (FOR X FROM 1 TO 5 -..). The few situations
where this is the case are explicitly mentioned in the manual. Generally, one should assume that case is
significant. ,

1.6

ﬂ

& e

INTRODUCTION

L5 REFERENCES

[Burton, et al., 1980] Burton, R. R., L. M. Masinter, A. Bell, D. G. Bobrow, W. S. Haugeland, R.M.
Kaplan and B.A. Sheil, “Interlisp-D: Overview and Status” — in [Sheil & Masinter,

1983].
[Foderaro, 1979} Foderaro, John K., The FRANZ LISP Manual — University of California, Bekeley,
' California (1979). :
[Meehan, 1979] Meehan, J. R., The New UCI Lisp Manual — Lawrence Erlbaum Associates,
Hillsdale, New Jersey (1979).
Moon, 1974] Moon, David, MACLISP Reference Manual — Version 0, Laboratory for Computer

Science, MIT, Cambridge, Massachusetus, (1974)

O
4

endewall, 1978] Sandewall, Erik, “Programming in the Ineractive Environmnet: The LISP (
’ Experience” — ACM Computing Surveys, vol 10, no 1, pp 35-72, (March 1578).

[Sheil, 1983] Sheil, B.A., “Environments for Exploratory Programming” — Datamation, (February,
1983) ~— also in [Sheil & Masinter, 1983},

[Sheil & Masinter, 1983]
Sheil. B.A. and L. M. Masinter, *“Papers on Interlisp-D”, Xerox PARC Technical

Report CIS-5 (Revised), (January, 1983).
[Siklossy, 1976] Siklossy, L., Let’s Talk Lisp — Prentic;‘Hall. Englewood Cliffs, New Jersey (1976).

3

(Teitelman & Masinter, 1981}
Teiteiman, W. and L. M. Masinter, *“The Interlisp Programming Environment” —
Computer, vol 14, no 4, pp 25-34, (April 1981) — also in (Sheil & Masinter, 1983).

[Weinreb & Moon, 1979]
' Weinreb, D. and D. Moon, Lisp Machine Manual — Arxificial Intelligence

(W Laboratory, MIT, Cambridge. Massachuseus, (January 1579).

N ’

[Weissman, 1967} Weissman, C., LISP .5 Primer — Dickenson Publishing Company, Belmont,
California (1967).

[Winston & Horn, 1981]
Winston. P. H., and B.K.P. Hom, L/SP — Addison-Wesley, Reading, Massachusetts

(1981).

References

1.8

CHAPTER 2

DATA TYPES

Interlisp is a system for the manipulation of various kinds of data; it provides a large set of built-in data

" types, which may be used to represent a variety of abstract objects, and the user can also define new data

types which can be used exactly like built-in data types.

Each data type in Interlisp has an associated “type name,” a litatom.! Some of the type names of built-in
data types are: LITATOM, LISTP, STRINGP, ARRAYP, STACKP, SMALLP, FIXP, and FLOATP. For user
data types (page 3.14), the type name is spec1ﬁed when the data type is created.

(DATATYPES. —) [Function]
Returns a list of all type names currently defined.
(TYPENAME DATUM) ‘ [Function]
Returns the type name for the data type of paTUM.
(TYPENAMEP DATUM TYPENAME) [Function]
Returns T if bATUM is an object with type name equal to TYPENAME, otherwise
NIL.

2

Note: TYPENAME and TYPENAMEP distinguish the logical data types ARRAYP, CCODEP and HARRAYP,

~ even though they may be implemented as ARRAYPs in some Interlisp implementations.

21 DATA TYPE PREDICATES

Interlisp provides seperate functions for testing whether objects are of certain commonly-used types:

(LITATOM x) [Function]
Returns T if x is a litatom, NIL otherwise. Note that a number is not a litatom.

(SMALLP x) ' ' [Function]
Returns x if x is a small integer; NIL otherwise. (Note that the range of small
integers is implementadon-dependent. See page 2.36.)

(FIXP x) [Function]
Returns x if x is a small or large integer (between MIN.FIXP and MAX.FIXP):
NIL otherwise. :

(FLOATP x) ') [Function]
Returns x if x is a floating point number; NIL otherwise.

'In Interlisp-10. each data type also has an associated “type number.” See page 22.2.

21

Data Type Equality

(NUMBERP Xx) [Function]
Returns x if x is a number of any type (FIXP or FLOATP), NIL otherwise.

(ATOM Xx) _ [Function]
Rewtumns T if x is an atom (i.e. a litatom or a number); HIL otherwise.

Warning: (ATOM Xx) is NIL if x is an array, string, etc. In many dialects of Lisp,
the funcdon ATOM is defined equivalent to the Interlisp function NLISTP.

(LISTP Xx) [Functon]
‘ Returns x if x is a list cell, e.g., something created by CONS; NIL otherwise.

(NLISTP x) [Function]
(NOT (LISTP X)). Returns T if x is not a list cell, NIL otherwise.

{_ STRINGP x)° - [Funcdon]

Returns x if X is a string, NIL otherwise.

(ARRAYP x) [Function]
Returns x if X is an array, NIL otherwise.

Note: In some implementadons of Interlisp, ARRAYP may also rerurn X if it is of
type CCODEP or HARRAYP.

(HARRAYP x) A ' [Function]
Returns x if x is a hash array, NIL otherwise.

Note: The empty list, () or NIL, is considered to be a litatom, rather than a list. Therefore, (LITATOM
NIL) = (ATOM NIL) = T and (LISTP NIL) = NIL. Care should be taken when using these functons
if the object may be the empty list NIL.

2 DATA TYPE EQUALITY

A common operation when dealing with data objects is to test whether two objects are equal. In some
cases, such as when comparing two small integers, equality can be easily determined. However, sometimes
there is more than one type of equality. For instance, given two lists, one can ask whether they are
exacty the same object, or whether they are two distinct lists which contain the same elements. Confusion
berween these two types of equality is often the source of program errors. [nterlisp supplies an extensive
set of functons for testng equalicy:

(EQ x 1) {Function]
Returns T if x and v are identical pointers; NIL otherwise. EQ should not be used
to compare two numbers, unless they are small integers; use EQP instead.

(NEQ x Y1) ‘ » [Function]
(NOT (EQ x 1)) :

DATA TYPES
%:glfl- J)() [[;unct@on%
x : - unction
: (EQ x NIL)
(EQP x Y) [Function]

Rewumns T if x and vy are EQ, or if X and Y are numbers and are equal in value;
NIL otherwise. For more discussion of EQP and other number functions, see page
2.36.

Note: EQP also can be used to compare stack pointers (page 7.3) and compiled
code (page 5.8).

(EQUAL x Y) [Function]
EQUAL returns T if X and v are (1) EQ; or (2) EQP, i.e., numbers with equal value;

.- or (3) STREQUAL, ie., strings containing the same sequence of characters: or (4)

lists and CAR of x is EQUAL to CAR of v, and CDR of x is EQUAL to CDR of v.

.- EQUAL remurns NIL otherwise. Note that EQUAL can be significantly slower than

EQ.

A loose description of EQUAL might be to say that x and Y are EQUAL if they
print out the same way.

(EQUALALL x Y) [Function]
Like EQUAL, except it descends into the contents of arrays, hash arrays, user data
types, etc. Two non-EQ arrays may be EQUALALL if their respective componants
are EQUALALL. A s

23 “FAST” AND “DESTRUCTIVE” FUNCTIONS

Among the functions used for manipulating objects of various data types, there are a number of functions
which have “fast” and “destructive” versions. The user should be aware of what these functions do, and
when they should be used

“Fast” functions: By convention. a function named by prefixing an existing function name with F indicates
that the new functon is a “fast” version of the old. These usuaily have the same definitions as the slower
versions, but they compile open and run without any “safety” error checks. For example, FNTH runs
faster than NTH, however, it does not make as many checks (for lists ending with anything but NIL.
etc). If these functions are given arguments that are not in the form that they expect, their behavior is
unpredictable; they may run forever, or cause a system error. In general, the user should only use “fast”
functions in code that has already been completely debugged, 10 speed it up.

“Destructive” functions: By convention, a function named by prefixing an existing function with-D
indicates the new function is a “destructive™ version of the old one, which does not make any new
structure but cannibalizes its argumenus). For example. REMOVE returns a copy of a list with a partcular
element removed, but DREMOVE actually changes the list structure of the lis. (Unfortunately, not all
destructive functions follow this naming convention: the destructive version of APPEND is NCONC.) The
user should be careful when using destructive functions that they do not inadvertanty change data
structures. '

!-J
(V9]

(Y

Litatoms

24 LITATOMS

A “litatom” (for “literal atom™) is an object which conceptually consists of a print name, a value, a

function definition, and a property list. [n some Lisp dialects, litatoms are also known as “symbols.”

A litatom is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntatic characters that delimit litatoms are called separator or break characters (see page 6.32) and
normally are space, end-of-line, line-feed, ((left paren),) (right paren), " (double quote), [(left bracket),
and] (right bracket). However, any character may be included in a litatom by preceding it with the
escape character %. Here are some examples of litatoms:

A wxyz 23SKIDDOO %] 3.1415+17

" “.ong% Litatom% With% Embedded% Spaces

o Litatoms are printed by PRINT and PRIN2 as a sequence of characters with %'s imserted before all

delimiring characters (so that the litatom will read back in properly). Litatoms are printed by PRIN1 as a
sequence of characters without these exma %'s. For example, the litatom consisting of the five characters
A, B, C, (, and D will be printed as ABC%(D by PRINT and ABC(D by PRIN1.

Litatoms can also be constructed by PACKX, PACK®, SUBATOM, MKATOM, and GENSYM (which uses
MKATOM).

Litatoms are unique. In other words, if two litatoms print the same, they will aiways be EQ. Note that

this is nor true for strings, large integers, floating point numbers, and lists; they all can print the same -

without being EQ. Thus if PACK or MKATOM is given a list of characters corresponding to a litatom that
already exists, they return a pointer to that litatom, and do nof make a new litatom. Similarly, if the read
program is given as input a sequence of characters for which a litatom already exists, it returns a pointer

- to that litatom. Note: Interlisp is different from other Lisp dialects which allow “uninterned” litatoms.

Note: Litatoms are limited to 255 characters in Interiisp-D: 127 characters in Interlisp-10. Attempting to
create a larger litatom either via PACK or by typing one in {or reading from a file) will cause an error,

~ ATOM TOO LONG.

2.4.1 Using Litatoms as Variables

Litatoms are commonly used as variables. Each litatom has a “top level” variable binding, which can
be an arbitrary [nterlisp object Litatoms may also be given special variable bindings within PROGs or
function calls, which only exist for the duration of the function. When a litatom is evaluated, the “current”
variable binding is returned. This is the most recent special variable binding, or the top level binding if
the litatom has not been rebound. SETQ is used to change the current binding. For more information
on variable bindings in Interlisp, see page 7.1. '

-

Note: The compiler (page 12.1) treats variables somewhar differenty than the interpreter. and the user
has to be aware of these differences when writing functions that will be compiled. For example, variable
references in compiled code are not checked for NOBIND. so compiled code will not generate unbound
atom errors. [n general, it is better to debug interpreted code, before compiling it for speed. The compiier
offers some facilities to increase the efficiency of variable use in compiled functions. Global variables
(page 12.3) can be defined so that the entire stack is not searched at each variable reference. Local
variables (page 12.4) allow compiled functions to access variable bindings which are not on the stack,

2.4

-

e
B
uy

)

\
\

it

Q

O

DATA TYPES

which reduces variable conflicts, and also makes variable lookup faster.

By convention, a litatom whose top level binding is to the litatom NOBIMD is considered to have no top
level binding. If a2 litatom has no local variable bindings, and its top level value is NOBIND, attempting
to evaluate it will cause an unbound atom error.

The two litatoms T and NIL always evaluate to themselves. Attempting to change the binding of T or
NIL with the functions below will generate the error ATTEMPT TO SET T or ATTEMPT TO SET NIL.

The foliowing funcdons (except BOUNDP) will also generate the error ARG NOT LITATOM, if not given
a litatom.

(BOUNDP vAR)) [Function]
Returns T if vAR has a special variable binding (even if bound to NOBIND), or
if vAr has a top level value other than NOBIND; otherwise NIL. In other words,
if x is a litatom, (EVAL X) will cause an UNBOUND ATOM error if and only if
.. (BOUNDP x) returns NIL. '

(SET VAR VALUE) [Function]
' Sets the “current” variable binding of VAR to VALUE, and returns VALUE.

Note that SET is a normal lambda spread functdon, so both VAR and VALUE are
evaluated before it is called. Thus, if the value of X is B, and the value of Y is C,
then (SET X Y) would result in B being set to C, and C being returned as the
value of SET.

(SETQ vAR VALUE) [NLambda NoSpread Function]
Nlambda version of SET; var is not evaluated, VALUE is.? Thus if the value of X
is B and the value of Y is C, (SETQ X Y) would result in X (not B) being set to
C. and C being returned.

(SETQQ VAR VALUE) [NLambda Functon]
' Like SETQ except that neither argument is evaluated, e.g., (SETQQ X (A B C))
sets Xto (A B C). -

(GETTOPVAL VAR) [Function]
Rerurns the top level value of vARr (even if NOBIND), regardless of any intervening
local bindings.

(SETTOPVAL VAR VALUE) [Function]

Sets the top level value of VAR t0 VALUE, regardless of any intervening bindings,
and returns VALUE.

A major difference between various Interlisp implementations is the way that variable bindings are
implemented. Interlisp-10 and Interlisp-Jerico use what is called ‘‘shallow” binding. Interlisp-D and
Interlisp-VAX use what is called “deep” binding. :

2Since SETQ is an nlambda. neither argument is evaluated during the calling process. However. SETQ itself
calls EVAL on its second argument. Note that as a result, typing (SETQ VAR FORM) and SETQ(VAR
FORM) to the Interlisp executive is equivalent: in both cases VAR is not evaluated, and FORM is.

2.5

" Function Definition Cells

In a deep binding system, a variable is bound by saving on the stack the variable’s new value. When a
variable is accessed, its value is found by searching the stack for the most recent binding. If the variable is
not found on the stack, the top level binding is retrieved from a *“value cell” associated with the variable.

In a “shallow” binding system, a variable is bound by saving on the stack the variable name and the
variable’s old value and putting the new value in the variable’s value cell. When a variable is accessed,

its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow binding system, because they have to search
the stack for rebindings; it is more economical to simply rebind variables. In a deep binding system,
GETTOPVAL and SETTOPVAL are very efficient since they do not have to search the stack, but can simply
access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a variable’s value cell, in either a shallow or deep
< 1ding system.

(GETATOMVAL VAR) [Function]
Returns the valie in the value cell of vAR. In a shallow binding system, this is the

same as (EVAL ATM), or simply VAR. In a deep binding system, this is the same
as (GETTOPVAL var).

(SETATOMVAL ATM VALUE) ’ ’ [Function]
Sets the value cell of VAR to VALUE. In a shallow binding system, this is the same

as SET; in a deep binding system, this is the same as SETTOPVAL.
2.4.2 Function Definition Cells

Each litatom has a function definition cell, which is accessed when a litatom is used as a function. The
mechanism for accessing and setting the function definition cell of a litatom is described on page 5.8.

743 Property Lists '

Each litatom has a property list, which allows a set of named objects to be associated with the litatom. A
property list associates a name, known as a “property name” or “property”, with an abitrary object, the
“property value” or simply ‘value”. Sometimes the phrase “to store on the property X" is used. meaning
to place the indicated information on a property list under the property name Xx.

Property names are usually litatoms or numbers, although no checks are made. However, the standard
property list functions all use £Q to search for property names, so they may not work with non-atomic
property names. Note that the same object can be used as both a property name and a property value.

Note: Many litatoms in the system aiready have property lists, with propertes used by the compiler, the
break package. DWIM, etc. Be careful not to clobber such system prooemﬂs The variable SYSPROPS is
a list of property names used by the system.

The functions below are used to manipulate the propert lisis of litatoms. Except when mdxcated. they
generate the error ARG NOT LITATOM, if given an object that is not a litatom.

2.6

o

O

DATA TYPES

(GETPROP ATM PROP) [Function]
Returns the property value for PROP from the property list of AT™. Returns NIL if
ATM is not a litatom, or PROP is not found. Note that GETPROP aiso returns NIL
if there is an occurrence of PROP but the corresponding property value is NIL;
this can be a source of program errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PROP VAL) [Function]
Puts the property PROP with value VAL on the property list of ATM. VAL replaces
any previous value for the property PROP on this property list. Returns VAL.

(ADDPROP ATM PROP NEW FLG) {Function]
Adds the value NEW to the list which is the value of property PROP on the property

- list of ATM. If FLG is T, NEW is CONSed onto the front of the property value of
PrOP, otherwise it is NCONCed on the end (using NCONC1). If aT™ does not

.- have a property PROP, or the value is not a list, then the effect is the same as
(PUTPROP ATM PrROP (LIST NEW)). ADDPROP returns the (new) property

value, Example:

+« (PUTPROP 'POCKET 'CONTENTS NIL)
NIL

<« (ADDPROP 'POCKET 'CONTENTS 'COMB)
(COMB)

« (ADDPROP 'POCKET 'CONTENTS 'WALLET)
(COMB WALLET)

(REMPROP ATM PROP) ' [Function]
: Removes all occurrences of the property PROP (and its value) from the property
list of AT™. Returns ProOP if any were found, otherwise NIL.
=l

(REMPROPLIST ATM PROPS) [Function]
Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM. Returns NIL.

(CHANGEPROP X PROP1 PROP2) [Function]
Changes the property name of property PROPI to PROP2 on the property list of
X, (but does not affect the value of the property). Returns x, unless PROPI is not
found, in which case it returns NIL.

(PROPNAMES ATM)’ [Function]
- Returns a list of the property names on the property list of ATM.

(DEFLIST L PROP) {Function]
Used to put values under the same property name on the properny lists of several
litatoms. L is a list of two-element lists. The first element of each is a litatom. and
the second element is the property value for the property PROP. Returns NIL. For
example,

(DEFLIST '((FOO MA) (BAR CA) (BAZ RI)) 'STATE)

puts MA on FOO’s STATE property, CA on BAR's STATE property, and RI on BAZ's

2.7

Print Names

STATE property.
Property lists are conventionally implemented as lists of the form
(NAME; VALUE; NAME, VALUE; ---)

although the user can store anything as the property list of a litatom. However, the functons which
manipulate property lists observe this convention by searching down the property lists two CDRs at a time.
Most of these functions also generate an error, ARG HOT LITATOM, if given an argument which is not a
litatom, so they cannot be used directly on lists. (LISTPUT, LISTPUT1, LISTGET, and LISTGET1 are
functions similar to PUTPROP and GETPROP that work directly on lists. See page 2.26.) The property
lists of litatoms can be directly accessed with the following functions:

(GETPROPLIST ATM™) [Function]
Returns the property list of ATM.

(SETI PROPLI ST ATM LST) [Function]
If ATM is a non-NIL litatom, sets the property list of ATM to be LST, and returns LST
as its value. If ATM is NIL, generates the error, ATTEMPT TO RPLAC NIL (unless
LST is also NIL).

(GETLIS x PRrROPS) [Function]
: Searches the property list of x, and returns the properry list as of the first property
on PROPS that it finds. For example ,

« (GETPROPLIST 'X)

(PROP1 A PROP3 B A C)

« (GETLIS 'X '(PROP2 PROP3))
(PROP3 B A C)

Returns NIL if no element on ProPs is found. X can also be a list itself, in which
case it is searched as described above. If x is not a litatom or a list, recurns NIL.

L 44 Print Names

Each litatom has a print name, a string of characters that uniquely identifies that litatom. The term
“print name” has been extended, however, to refer to the characters that are output when any object is
printed. In Interlisp, all objects have print names, although only litatoms and strings have their print name
explicidy stored. This section describes a set of functions which can be used to access and manipulate the
print names of any object. though they are primarily used with the print names of litatoms.

The print name of an object is those characters that are output when :hé object is printed using PRINI,
e.g., the print name of the litatom ABC%(D consists of the five characters ABC (D. The print name of the
list (A B C) consists of the seven characters (A B C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a “PRIN2-name.” The PRIN2-name of an object is those
characters output when the object is printed using PRIN2. Thus the PRIN2-name of the litatom ABC%(D
is the six characters ABC%{D. Note that the PRIN2-name depends on what readtable is being used (ses
page 6.32), since this determines where %'s will be inserted. Many of the functons below allow either
print names or PRIN2-names to be used. as specified by FLG and RDTBL arguments. If FLG is NIL. print
names are used. Otherwise, PRIN2-names are used, computed with respect to the readtable RDTBL (or

2.8

O

DATA TYPES

the current readtable, if RDTBL = NIL).

Note: The print name of an integer depends on the setting of RADIX (page 6.19). The functions described
in this section (UNPACK, NCHARS, etc.) define the print name of an integer as though the radix was 10,
so that (PACK (UNPACK 'X9)) will always be X9 (and not sometimes X11) regardless of the setting
of RADIX. However, integers will still be printed by PRIN1 using the current radix. The user can force
these functions to use print names in the current radix by changing the setting of the variable PRXFLG
(see page 6.20).

(MKATOM x) : ’ {Function]
Creates and returns an atom whose print name is the same as that of the sting X
or, if X isn’t a string, the same as that of (MKSTRING x). Examples:

(MKATOM '(A B C)) => %(A% B% C%)
<:> o (MKATOM "1.5") => 1.5

Note that the last example returns a number, not a litatom. It is a deeply-ingrained
feature of Interlisp that no litatom can have the print name of a number.

(SUBATOM x N M) {Funcdon]
Equivalent to (MKATOM (SUBSTRING X N M)), but does not make a string
pointer (see page 2.29). Rewurns an atom made from the nth through mth characters
of the print name of x. If N or M are negative, they specify positions counting
backwards from the end of the print name. Examples:

(SUBATOM "FOO1.5BAR"™ 4 6) => 1.5
(SUBATOM '(A B C) 2 -2) => A% B% C

(PACK Xx) {Functon]
If x is a list of atoms, PACK returns a single atom whose print name is the
concatenation of the print names of the atoms in x. If the concatenated print name

. is the same as that of a number, PACK will rerurn that number. For example,

/ R
<:> (PACK '(A BC DEF G)) => ABCDEFG
(PACK '(1 3.4)) => 13.4
(PACK '(1 E -2)) => .01

Although x is usually a list of atoms, it can be a list of arbitrary Interlisp objects.
The value of PACK is still a single atom whose print name is the concatenation of
the print names of all the elements of X, e.g.,)

(PACK "((A B) "CD")) => %(A% B%)CD
If x is not a list or NIL, PACK generates an error, ILLEGAL ARG.

(PACK®* X, X; --- Xp) [NoSpread Function]
Nospread version of PACK that takes an arbitrary number of arguments, instead of
a list Examples:,

Print Names

(PACK® 'A 'BC 'DEF 'G) => ABCDEFG
(PACK* 1 3.4) => 13.4

(UNPACK x FLG RDTEL) [Function]

Returns the print name of x as a list of single-characters atoms, e.g.,

(UNPACK 'ABC5D) => (A B C 5§ D)

(UNPACK "ABC(D") => (A B C %(D)

If FLe=T, the PRINZ2-name of X is used (computed with respect to RDTEL), e.g.,
(UNPACK "ABC(D" T) => (%" A B C %{ D %")

(UNPACK 'ABC%(D" T) => (A B C %% %(D)

Note: (UNPACK x) performs N CONSes, where N is the number of characters in
the print name of x.

(DUNPACK X SCRATCHLIST FLG RDTBL) [Function]

(NCHARS x FLG RDTBL)

A destructve version of UNPACK that does not perform any CONSes but instead
reuses the list scraTCcaLIST. If the print name is too long to fit in SCRATCHLIST,
DUNPACK will extend it. If SCRATCHLIST is not a list, DUNPACK returns (UNPACK
X FLG RDTBL). .

: [Function]
Returns the number of characters in the print name of x. If FLG=T, the PRIN2-
name is used. For example,

(NCHARS "ABC") => 3
(NCHARS "ABC" T) => §

-~ (NTHCHAR X N FLG RDTBL) [Function]

Returns the nth character of the print name of X as an atom. N can be negative,
in which case it counts from the end of the print name, e.g.. -1 refers to the last
character, -2 next to last, ewc. [f ~ is greater than the number of characters in
the print name, or less than minus that number, or 0, NTHCHAR returns NIL.
Examples: ‘

(NTHCHAR 'ABC 2) => B
(NTHCHAR 15.6 2) => 5
(NTHCHAR 'ABC%(D -3 T) => %%
(NTHCHAR "ABC" 2) => B

{(NTHCHAR "ABC” 2 T) => A

Note: NTHCHAR and NCHARS work much faster on objects that actually have an internal representation
of their print name, i.e., litatoms and strings, than they do on numbers and lists, as they do not have (o0

simulate printing.

2.10

)

O

{L~CASE X FLG)

Y
Lt).Ass x)

(U-CASEP x)

(GENSYM CEAR)

GENNUM

DATA TYPES

{Function]
Returns a lower case version of x. If FL¢ is T, the first letter is capitalized. If x is
a string, the value of L~CASE is also a string. If x is a list, L-CASE returns a new
list in which L-CASE is computed for each corresponding elernent and non-NIL
tail of the original list. Examples: ’ '

(L=-CASE 'F00) => foo
(L-CASE 'FO0 T) => Foo
(L-CASE "FILE NOT FOUND" T) => "File not found”

(L-CASE '(JANUARY FEBRUARY (MARCH "APRIL")) T)
=> '(January February (March "April™))

{Function]
Similar to L-CASE, except remurns the upper case version of x.
, [Function}
Returns T if x contains no lower case letters; NIL otherwise.
[Function]}

Rerurns a litatom of the form Xnann, where X=¢cEAR (or A if cgAR is NIL) and
nnnn is an integer. Thus, the first one generated is AQ001, the second A0002, etc.
GENSYM provides a way of generating litatoms for various uses within the system.

i [Variable]
The value of GENNUM. initially 10000, determines the next GENSYM, e.g., if
GENNUM is set to 10023, (GENSYM) =A0024.

The term “gensym” is used to indicate a litatom that was produced by the funcdon GENSYM. Litatoms
generated by GENSYM are the same as any other litatoms: they have property lists, and can be given
- function definizions. Note that the litatoms are not guaranteed to be new. For example, if the user has
~r=viously created A0012, either by typing it in. or via PACK or GENSYM itself, when GENNUM ge:s to

3) J11, the next litatom returned by GENSYM will be the AG012 already in existence.

(MAPATOMS FN)

O

: [Function]
Applies FN (2 function or lambda expression) to every litatom in the system.
Returns NIL

For example,

(MAPATOMS (FUNCTION (LAMBDA(X)
(if (GETD X) then (PRINT X)]

will print every litatom with a functon definition.

Note: In some implementations of Interlisp, unused litatoms may be garbage
collected. which can effect the action of MAPATOMS.

t2
bt
st

Character Code Functions

2.45 Character Code Functions

Characters may be represented in two ways: as single-character atoms, or as integer character codes.? In
many situations, it is more efficient to use character codes, so Interlisp provides parallel functions for both
representations.

(PACKC x) h {Function]
Similar to PACK except x is a list of character codes. For example, '

(PACKC- ' (70 79 78)) => FOO

(CHCON x FLG RDTBL) . [Funcdon]
Like UNPACK, except returns the print name of X as a list of character codes. If
FLG=T, the PRIN2-name is used. For example,

(CHCON 'FOO) => (70 79 79)

(DCHCON X SCRATCHLIST FLG RDTEL) , [Function]
Similar to DUNPACK.

(NTHCHARCODE X N FLG RDTBL) [Functon]
Similar to NTHCHAR, except retumns the character code of the Nth character of the
print name of x. If ~ is negartive, it is interpreted as a count backwards from the
end of x. If the absolute value of N is greater than the number of characters in X,
or O, then the value of NTHCHARCODE is NIL.

If FLG is T, then the PRIN2-name of x is used, computed with respect to the
readtable RDTEL

(CHCON1 x)) ' [Function]
Returns the character code of the first character of the print name of X, equal to
(NTHCHARCODE x 1).

"CHARACTER W) [Function]
' N is a character code. Returns the atom having the corresponding single character
as its print name.

(CHARACTER 70) => F

(FCHARACTER N) [Function]
Fast version of CHARACTER that compiles open.

The following functdon makes it possible 13 gain the efficiency that comes from dealing with character
codes without losing the symbolic advantages of character atoms:

(CHARCODE c¢) . [NLambda Function]
Rerurns the character code structure specified. by ¢ (unevaluated). [If ¢ is a
l-character atom or string, the corresponding character code is simply returned.

3Inter1isp-_D uses an 8-bit character set. so the legal character codes range from 0 to 255. Interlisp-10 uses
standard 7-bit ASCII, so the range is 0-127.

[V
Yot
~

2

SO

v1.

(.
G

-1
3

O

&

DATA TYPES

Thus, (CHARCODE A) is A5, (CHARCODE 0) is 48. If ¢ is a list structure, the
value is a copy of. ¢ with all the leaves replaced by the corresponding character
codes. For instance, (CHARCODE (A (B C))) => (65 (66 67))

CHARCODE permits easy specification of non-printable ASCII character codes: A
multi-character litatom or string whose first character is + is interpreted as the
conuol-character corresponding to its second character. Thus, (CHARCODE tA) is
1, the code for control-A. .o

Also, if a multi-character litatom or string begins with #, this signifies a “meta-
character”, with a code between 128 to 255. # and + may be combined, so
(CHARCODE #+A) is 129. (Note: Interlisp-10 cannot directly represent meta-
characters as character litatoms, because it only supports 7-bit characters.)

The following key litatoms are mapped into the indicated codes: CR (13), LF (10),
SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB (9), NULL (D), and
DEL (127). The litatom EOL maps into the appropriate End-Of-Line character code
in the different Interiisp implementations (31 in Interlisp-10, 13 in Interlisp-D, 10
in Interlisp-VAX).

Finally, CHARCODE maps NIL into NIL. This is included because some character-
code producing functions sometimes return NIL (e.g. NTHCHARCODE); a test for
that value can be included in a CHARCODE list alopg with true character-code
values.) '

Charcode of litatomic arguments can be used wherever 2 soucwre of character
codes would be appropriate. For example:

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE)))
(EQ (BIN FOO) (CHARCODE +C))

There is a macro for CHARCODE which causes the character-code structure to be
constructed at compile-time. Thus, the compiled code for these examples is exactly
as efficient as the less readable:

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 106 32)))
(EQ (BIN FOO) 3)

(SELCHARQ E CLAUSE; --- CLAUSEN DEFAULT) [NLambda NoSpread Function]

Similar to SELECTQ (page 4.2), except that the selection keys are determined by
applying CHARCODE (instead of QUOTE) to the key-expressions. If the value of E is
a character code or NIL and it is EQ or MEMB to the result of appiying CHARCODE
1o the first element of a clause, the remaining forms of that clause are evaluated.
Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN FOO)
((SPACE TAB) (FUM))
((t0 NIL) (BAR))

(2 (BAZ))
(ZIP)) :

Lists

is exactly equivalent to

(SELECTQ (BIN FOO)
((32 9) (FUM))
((4 NIL) (BAR))
(97 (BAZ))
(ZIP))

Furthermore, SELCHARQ has a macro such that it always compiles as an equivalent
SELECTQ.

5 LISTS

One of the most useful datatypes in Interlisp is the list cell, a data structure which contains pointers to
two other objects. known as the CAR and the CDR of the list cell (after the accessing functions). Very
complicated swuctures can be built out of list cells, including lattices and trees, but list cells are most
frequently used for representing simple linear lists of objects.

The following functions are used to manipulate list cells:

(CONS x Y) [Function]
. CONS is the primary.list construction function. It creates and returns a new list
cell containing pointers t0 x and Y. If v is a list, this retums a lisz with x added

at the beginning of v.

(CAR x) {Function]
Returns the first element of the list x. CAR of NIL is always NIL. For all other
nonlists (e.g., litatoms, numbers, strings, arrays), the value is undefined (and in
some implementadons may generate an erTor). .

CDR Xx) {Function]

Returns all but the first element of the list x. CDR of NIL is always NIL. The value

of CDR is undefined for other nonlists.

Often, combinadons of the CAR and CDR functions are used to extract various components of complex
list structures. Functions of the form C---R may be used for some of these combinations:

(CAAR X) ==> (CAR (CAR X))

(CADR X) ==> (CAR (CDR X))

(CDDDDR X) ==> (CDR (CDR (CDR (CDR X))))

All 30 combinations of nested CARs and CDRs up to 4 deep are included in the system.

(RPLACD x Y) [Funciion]
Replaces the CDR of the list cell x with v. This physically changes the internal
structure of x. as opposed to CONS, which creates a new list cell, It is possibie ©

construct a circular list by using RPLACD (0 place a pointer to the beginning of &
list in a spot at the end of the list.

2.14

x’\/
NS

o

e
i

—

DATA TYPES

The value of RPLACD is x. An attempt to RPLACD NIL will cause an error,
ATTEMPT TO RPLAC NIL (except for (RPLACD NIL NIL)). An attempt to
RPLACD any other non-list will cause an error, ARG NOT LIST.

(RPLACA X Y) [Funcuon]
Similar to RPLACD, but repiaces the CAR of x with Y. The value of RPLACA is x. An

attempt t0 RPLACA NIL will cause an error, ATTEMPT TO RPLAC NIL, (except
for (RPLACA NIL NIL)). An attemnpt to RPLACA any other non-list will cause
an error, ARG NOT LIST.

(RPLNODE x A D) [Function]
Performs (RPLACA x A), (RPLACD x D), and returns x.

(RPLNODE2 x Y) [Function]
Performs (RPLACA x (CAR Y)), (RPLACD x (CDR 7)) and returns x.

(FRPLACD X Y) [Funcdon]

(FRPLACA x Y) [Funcdon] .

(FRPLNODE x A D) [Function]

(FRPLNODE2 x Y) [Functon]

Faster versions of RPLACD, etc.

Warning: In Interlisp-10 and Interlisp-VAX, these functions compile open with no
error checks on the type of X, so a compiled FRPLACD can produce unpredictable
effects.

Usually, single list cells are not manipulated in isolation, but in structures known as “lists”. By convention,
a list is represented by a list cell whose CAR is the first element of the list, and whose CDR is the rest of
the list (usually another list cell or the “empty list,” NIL). List elements may be any Interlisp objects,
including other lists.

The inpurt syntax for a list is 'a sequence of Interlisp data objects (litatoms, numbers, other lists, etc.)
enclosed in parentheses or brackets. Note that () is read as the litatom NIL. A right bracket can be used
to maich all left parenthesis back to the last left bracket, or terminate the lists, e.g. (A (8 (C].

If there are two or more elements in a list, the final element can be preceded by a period delimited on
both sides, indicadng that CDR of the final list cell in the list is to be the element immediately following
the period, eg. (A . B) or (A B C . D), otherwise CDR of the last list cell in a list will be NIL.
Note that a list does not have to end in NIL. It is simply a structure composed of one or more list cells.
The input sequence (A B C . NIL) is equivalentto (A B C),and (A B . (C D)) is equivalent to
(A B C D). Note however that (A B . C D) will create a list containing the five litatoms A, B, %..
C, and 0. .

Lists are printed by printing a left parenthesis, and then printing the first element of the list, then printing
a space, then printing the second element. etc. undl the final list cell is reached. The individual elements
of a list are printed by PRIN1 if the list is being printed by PRIN1, and by PRIN2 if the list is being
printed by PRINT or PRIN2. Lists are considered to terminate when CDR of some node is not a list. If
CDR of this terminal node is NIL (the usual case), CAR of the terminal node is printed followed by a
right parenthesis. If CDR of the terminal node is nor NIL. CAR of the terminal node is printed. followed
by a space, a period. another space, CDR of the terminal node. and then the right parenthesis. Note that
a list input as (A B C . NIL) will print as (A B C), and a list input as (A B . (C D)) will print
as (A B C D). Note also that PRINTLEVEL affects the printing of lists (page 6.18). and that carriage

2.15

Creaﬁng Lists

returns may be inserted where dictated by LINELENGTH (page 6.3).

Note: One must be careful when testing the equality of list smuctures. EQ will be true only when the two
lists are the exac: same list. For example, .

~ (SETQ A '(1 2))
(12)

~ (SETQ B A)
(12)

+ (EQ A B)

T

« (SETQ C '(1 2))
(1 2)

.~ (EQ A C)

iL

"« (EQUAL A C)

T

In the example above, the values of A and B are the exact same list, so they are EQ. However, the value
of C is a totally different list, although it happens to have the same elements. EQUAL should be used to
compare the elements of two lists. In general, one shouid notice whether list manipulaton functions use
EQ or EQUAL for comparing lists. This is a frequent source of errors.

Interlisp provides an extensive set of list manipuiation functions:
2.5.1 Creating Lists
(MKLIST x) {Function]

“Make List” If x is a list or NIL, returns Xx; Otherwise, returns (LIST Xx).

(LIST X; X5 --- Xp) [NoSpread Function]
Rerturns a list of its arguments, e.g.

(LIST 'A 'B '(C D)) => (A B (C D))

(APPEND Xx; X5 --- Xy) [NoSpread Function]
Copies the top level of the list x, and appends this to a copy of the top level of
the list X, appended to --- appended to Xy, €.g..

(APPEND '(A'B) '(C D E) '(FG)) => (ABCDEFG)

Note that only the first ~-1 lists are copied However N=1 is treated specially;
(APPEND X) copies the top level of a single list. To copy a list to all levels, use
copry.

The following examples illusirate the treatment of non-lists:
(APPEND '(A B C) 'D) => (ABC . D)

(APPEND 'A '(B C D)) => (B C D)

O

(NCONC x; X, -

(NCONC1 LST Xx)

(ATTACH x L)

DATA TYPES

(APPEND '(A B C . D) '(EFG)) => (ABCEFG)
(APPEND '(AB C . D)) => (ABC .D)

Xn) [NoSpread Function]

Returns the same value as APPEND, but actually modifies the list structure of X,
=t Xpepe

Note that NCONC cannot change NIL to a list:

~(SETQ FOO NIL)

NIL

~(NCONC FOO '(A B C))
(A B C) ‘
«F00

NIL

Although the value of the NCONC is (A B C), FOO has no! been changed. The
“problem” is that while it is possible to alter list structure with RPLACA and
RPLACD, there is no way to change the non-list NIL to a list.

{Function]

- (NCONC rsT (LIST Xx))

{Function]
“Attaches™ x to the front of L by doing a RPLACA and RPLACD. The value is
EQUAL to (CONS x L), but EQ to L, which it physically changes (except if L is
NIL). (ATTACH X NIL) is the same as (CONS X NIL). Otherwise, if L is not
a list, an error is generated, ARG NOT LIST.

252 Building Lists From Left to Right

Q (TCONC PTR X)

{Functior]
TCONC is similar to NCONC1; it is useful for building a list by adding elements one

~ at a time at the end. Unlike NCONC1, TCONC does not have to search to the end

of the list each time it is called. Instead, it keeps a pointer to the end of the list
being assembled., and updates this pointer after each call. This can be considerably
faster for long lists. The cost is an extra list cell. PTR. (CAR PTR) is the list being
assembled, (CDR PTR) is (LAST (CAR PTR)). TCONC returns PTR, with its
CAR and CDR appropriately modified.

PTR can be initalized in two ways. If pTrR is NIL, TCONC will create and remurn a
PTR. In this case, the program must set some variable to the value of the first call
to TCONC. After that, it is unnecessary to reset the variable, since TCONC physically
changes its value. Example:

~(SETQ FOO (TCONC NIL 1))

((1) 1) :
~(for I from 2 to 5 do (TCONC FOO I))
NIL

~FOO

Building Lists From Left to Right

((12345)5)

If pTR is inidally (NIL), the value of TCONC is the same as for PTR=NIL. but
TCONC changes pTR. This method allows the program to initialize the TCONC
variable before adding any elements to the list. Exampie:

«(SETQ FOO (CONS))

(NIL)

«(for I from 1 to 5 do (TCONC FOO I))
NIL

+«F00

((1 23 45)5)

(LCONC PTR X) [Function]
Where TCONC is used to add elements at the end of a list, LCONC is used for

building a list by adding liszs at the end, ie., it is similar to NCONC instead of
NCONC1. Example:

+~(SETQ FOO (CONS))

(NIL)
«(LCONC FOO '(1 2))
((12) 2)

«(LCONC FOO '(3 4 5))
((1 23 45)5)
«(LCONC FOO NIL)

((1 23 45)5)

LCONC uses the same pointer conventions as TCONC for eliminating searching to
the end of the list, so that the same pointer can be given to TCONC and LCONC
interchangeably. Therefore, continuing from above,

«(TCONC FOO NIL)
((1 23 45 NIL) NIL)
«~(TCONC FOO '(3 4 5))
((12345NIL (3 45)) (345))

The functions DOCOLLECT and ENDCOLLECT also permit building up lists from left-to-right like TCONC.
but without the overhead of an extra list cell. The list being maintained is kept as a circular list.
DOCOLLECT adds items; ENDCOLLECT replaces the tail with its second argument, and returns the full
list.

(DOCOLLECT ITEM LST) [Function]
“Adds” rTEM to the end of LsT. Returns the new circular list Note that LsT is
modified, but it is not EQ to the new list. The new list should be stored and used
as LsT to the next call to DOCOLLECT.

(ENDCOLLECT LsST TALL) ' ' [Function]
Takes LsT, a list returned by DOCOLLECT, and returns it as a non-circular list.
adding TAIL as the terminating CDR.

Here is an exampie using DOCOLLECT and ENDCOLLECT. HPRINT is used to print the results because
they are circular lists. Notice that FOO has to be set to the value of DOCOLLECT as each element is

2.18

./"\\

O

O

added.

«(SETQ FOO NIL]
NIL

DATA TYPES

«(HPRINT (SETQ FOO (DOCOLLECT 1-F00]

+(1 . {1})

+(HPRINT (SETQ FOO (DOCOLLECT 2 FOO]

+(2 1 . {1})

«~(HPRINT (SETQ FOO (DOCOLLECT 3 FO00]

312 . {1})

+(HPRINT (SETQ FOO (DOCOLLECT 4 FOO]

+4123. {1})

«(SETQ FOO (ENDCOLLECT FOO 5]

(1234.5)
253 Copying Lists

(COPY Xx)

(COPYALL x)

[Function]
Creates and returns a copy of the list X. All levels of x are copied down to non-lists,
so that if X contains arrays and strings, the copy of X will contain the same arrays
and strings, not copies. COPY is recursive in the CAR direction oaly, so very long
lists can be copied.

Note: To copy just the rop Jevel of x, do (APPEND x).'
[Funcrion]

Like COPY except copies down to atoms. Arrays, hash-arrays, strings, user data
types, etc., are all copied. Analagous to EQUALALL (page 2.3). Note that this

will not work if given a data structure with circular pointers; in this case, use

(HCOPYALL x)

HCOPYALL.

[Function]
Similar to COPYALL, except that it will work even if the data structure contains
circular pointers.

254 Extracting Tails of Lists

(TAILP x 7Y)

(NTH x N)

[Function}
Rerumns x, if x is a tail of the list v; otherwise NIL. xis a tail of v if it is EQ to
0 or more CDRs of Y.

Note: If x is EQ to 1 or more CDRs of v, X is called 2 “proper wil.”

_ [Function}
Retmns the tail of x beginning with the nth element Returns NIL if X has fewer
than N elements. Examples:

(NTH "(A B C D) 1) => (A B C D)

2.19

(FNTH x N)

“ (LAST x)

(FLAST x).

(NLEFT L N TAL)

(LASTN L N)

Extracting Tails of Lists

t

(NTH "(A B CD) 3) => (CD)

> NIL

(NTH "(A B C D) 9)
(NTH '(A . B) 2) => B

For consistency, if N=0, NTH remurns (CONS NIL x):
(NTH "(A B) 0) => (NIL A B)

' {Function]
Faster version of NTH that terminates on a null-check.

(Interlisp-10) Interpreted, generates an error, BAD ARGUMENT - FNTH, if X ends
in other than NIL.

{Function]
Returns the last list cell in the list x. Returns NIL if x is oot a list. Examples:

(LAST '(A B C)) => (C)
(LAST '(A B . C)) => (B .C)

(LAST 'A) => NIL -
[Function]
Faster version of LAST that terminates on a nulil-check.

(Interlisp-10) Interpreted, generates an error, BAD ARGUMENT - FLAST, if x ends
in other than NIL.

= {Function]
NLEFT returns the tail of L that contains & more elements than TaAL. If L does
not contain N more elements than TA, NLEFT returns NIL. If TAm is NIL or aot
a tail of L, NLEFT returns the last N list cells in L. NLEFT can be used to work
backwards through a list. Exampie:

~(SETQ FOO '(A B C D E))

(AB CDE)
«(NLEFT FOO 2)

(D E)

~(NLEFT FOO 1 (CDDR FOO))
(B CDE)

«(NLEFT FOO 3 (CDDR F0O0))
NIL

[Function]
Returns (CONS X Y), where Y is the last N elements of L. and X is the inidal’
segment. e.g.,

(LASTN '(A B CDE)2) => ({(ABC)DE)

(LASTN "(A B) 2) => (NIL A B)

2.20

~

) p.-':ﬂ
\-‘ -

O

A

DATA TYPES

Rewrns NIL if L is not a list containing at least N elements.

255 Counting List Cells

(LENGTH x)

(FLENGTH x)

(EQLENGTH x N)

(COUNT x)

(COUNTDOWN X N)

Faster version of LENGTH that terminates on a null-check.

[Function]
Returns the length of the list x, where “length” is defined as r.he number of CDRs
required to reach a non-list Examples:

(LENGTH '(A B C)) => 3
(LENGTH "(AB C . D)) => 3
(LENGTH 'A) => 0

[Function]

(Interlisp-10) Interpreted, generates an error, BAD ARGUMENT - FLENGTH, if x.
ends in other than NIL.

[Function]
Equivalent to (EQUAL (LENGTH x) N), but more efficient, because EQLENGTH
Stops as soon as it knows that x is longer than N. Note that EQLENGTH is safe to
use on (possibly) circular lists, since it i *bounded” by n. :

[Function]
Returns the number of list cells in the list X. Thus, COUHT is like a LENGTH that
goes to all levels, COUNT of a non-list is 0. Examples:

(COUNT '(A)) => 1
(COUNT '(A . B)) => 1
(COUNT '(A (B) C)) => 4

In this last example, the value is 4 because the list (A x C) uses 3 list cells for
any object X, and (B) uses another list cell.

[Function]
Counts the number of list cells in X, decrementing N for each one. Stops and
returns N when it finishes counting, or whex N reaches 0. COUNTDOWN can be
used on circular structures since it is “bounded™ by ~. Examples:

(COUNTDOWN '(A) 100) => 99
(COUNTDOWN '(A . B) 100) => 99

(COUNTDOWN '(A (B) C) 100) => 96

(COUNTDOWN ' (DOCOLLECT 1 NIL) 100) => 0

221

Logical Operations

(EQUALN x Y DEPTH) [Functon]

Similar to EQUAL, for use with (possibly) circular structures. Whenever the depth
of CAR recursion plus the depth of CDR recursion exceeds pePTH, EQUALN does
not search further along that chain, and remurns the litatom ?. If recursion never
exceeds DEPTH, EQUALN returns T if the expressions X and vy are EQUAL; otherwise
NIL. ‘

(EQUALN '(((A)) B) "(((2)) B8) 2)
(EQUALN '(((A)) B) "(((Z)) B) 3) => NIL
(EQUALN *(((A)) B) "(((A)) 8) 3) => T

> 7

5.6 Logical Operations

(LDIFF x Y 2)

(LDIFFERENCE x 1

[Funcdon]
Y must be a tail of X, ie., EQ to the result of applying some number of CDRs to
X (LDIFF Xx vY) returns a list of all elements in x up w0 1.

If z is not NIL, the value of LDIFF is effectively (NCONC z (LDIFF x v)),
i.e., the list difference is added at the end of z.

If v is not a wail of X, LDIFF generates an error, LDIFF: NOT A TAIL. LDIFF
terminates on a null-check, so it will go into an infinite loop if X is a circular list
and v is not a tail.

Example:

«(SETQ FOO ‘(A B CDEF)) -
(ABCDETF)

«(CDDR FQO)

(CDEF)

«(LDIFF FOO (CDDR F00))

(A B)

«(LDIFF FOO (CDDR FOOQ) '(1 2))
(12 A B) .
«(LDIFF FOO '(C D E F))

LDIFF: not a tail

(CDEF)

Note that the value of LDIFF is always new list structure unless Y=N1IL. in which
case the value is x itself.

) : [Function]
“List Difference.” Returns a list of those elements in x that are not members of
Y.

(INTERSECTION X Y) [Functon]

Returns a list whose elements are members of both lists X and Y. Note that
(INTERSECTION X X) gives a list of all members of X without any duplicatons.

(UNION x 7)

DATA TYPES

[Function]
Returns a (new) list consisting of all elements included on either of the two origirai
lists. It is more efficient to make x be the shorter list

The value of UNION is Y with all elements of X not in Y CONSed on the front of
it. Therefore, if an element appears twice in Y, it will appear twice in (UNION X
Y). Since (UNION "(A) '(A A)) = (A A), while (UNION *(A A) "(A))
= (A), UNION is non-commutative.

25.7 Searching Lists

(MEMB X Y)

TN

Ok

(FMEMB x Y)

(MEMBER x 1)

(EQMEMB x Y)

[Function]
Determines if x is a member of the hst v. If there is an element of v EQ to X,
returns the tail of v starting with that element. Otherwise, remurns NIL. Examples:

(MEMB 'A '(A (W) C D)) => (A (W) C D)

1

(MEMB 'C "(A (W) C D)) => (C D)

(MEMB 'W '(A (W) C D)) => NIL
(MEMB ' (W) "(A (W) C D)) => NIL

. [Function}
Faster versi_on of MEMB that terminates on a null-check.

(Interlisp-10) Interpreted, FMEMB gives an error, BAD ARGUMENT - FMEMB, if v
ends in a non-list-other than NIL.

[Function]
Identical to MEMB except that it uses EQUAL instead of EQ to check membership
of x in v. Examples:

(MEMBER 'C '(A (W) € D)) => (C D)
(MEMBER 'W '(A (W) C D)) => NIL
(MEMBER '(W) "(A (W) C D)) => ((W) C D)

[Function]
Returns T if either x is EQ to Y, or else v is a list and x is an FMEMB of Y.

25.8 Substitution Functions

(SUBST NEW OLD EXPR) ' ' [Function]

Returns the result of substituting NEwW for all occurrences of OLD in the expression
ExPR. Substitution occurs whenever oLD is EQUAL to CAR of some subexpression
of ExPR, or when oLD is atomic and EQ to a non-NIL CDR of some subexpression
of ExPr. For example:

!\.)
to
(98]

;
-

Substitution Functions

(SUBST 'A 'B '(C B (X . B))) => (C A (X .A))

(SUBST 'A "(B C) '((B C) D B C))
=> (ADBC) not (AD . A)

SUBST returns a copy of EXPR with the appropriate changes. Furthermore, if NEw
is a list, it is copied at each substtution.

(DSUBST NEW OLD EXPR) [Function]
Similar to SUBST, except it does not copy EXPR, but changes the list structure
ExPr itself. Like SUBST, DSUBST substitutes with a copy of NEw. More efficient
than SUBST.

(LSUBST NEW OLD EXPR) " [Function]
Like SUBST except NEWw is substituted as a segment of the list ExPR rather than
as an element. For instance,

(LSUBST (A B) 'Y '"(X Y Z)) => (X ABZ)
Note that if NEW is not a list, LSUBST returns a copy of Ex»r with all oLD’s
delerted:
(LSUBST NIL 'Y '(X Y Z)) => (X Z)
(SUBLIS ALST EXPR FLG) [Funcdon]
® ALST is a list of pairs: :
((oLp; . NEwW;) (OLD, . NEW;) --- (OLDy . NEWpN))
Each oLD; is an atom. SUBLIS rewmrns the result of substtuting each NEW; for
the corresponding OLD; in EXPR, e.g.,
(SUBLIS '((A . X) (C . Y)) '(ABCD)) => (XBYD)
If FLe=NIL, new suucture is created only if needed, so if there are no substitutions,
the value is EQ to ExPR. [f FLG=T, the value is always a copy of ExPR.
(DSUBLIS ALST EXPR FLG) " [Function]
Similar to SUBLIS, except it does not copy EXPR, but changes the list structure
EXPR itself.
(SUBPAIR OLD NEW EXPR FLG) [Function]

Similar to SUBLIS, except that elements of NEW are substituted for con‘espondmg
atoms of OLD in EXPR, e.g..

(SUBPAIR ‘(A C) "(X Y) '(ABCD)) => (XBYD)

As with SUBLIS, new structure is created only if needed, or if FLGg=T, eg., if
FLG=NIL and there are no substitutions, the value is EQ to EXPR.

If oLD ends in an atom other than NIL, the rest of the elements on NEW are
substituted for that atom. For example, if oLb=(A B . C) and NEw=(U V X
Y 1), U is substtuted for A, V for B. and (X Y Z) for C. Similarly, if oLD itseif

2.24

r7
A

O

@

/)

DATA TYPES

is an atom (other than NIL), the entire list NEw is subsdtuted for it. Examples:

(SUBPAIR "(A B . C) "(WXYZ) '"(CABBY)) => ((YZ)WX
X Y)

Note that SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression, whereas
SUBLIS, and DSUBLIS, and SUBPAIR substitute the identical structure (unless FL¢=T). For example:

« (SETQ FOO '(A B))

(A B)
« (SETQ BAR "(X Y 2))

(XY 2)

« (DSUBLIS (LIST (COMNS 'X FO0O0)) BAR)
((AB) Y Z)

© (DSUBLIS (LIST (CONS 'Y FOO)) BAR T)
((AB) (AB) 2)

« (EQ (CAR BAR) FO0O)

T

« (EQ (CADR BAR) FO0O0)

NIL

2.5.9 Association Lists and Property Lists

(ASSOC XEY ALST) [Function]
ALST is a list of lists. ASSOC returns the first sublist of ALsT whose CAR is EQ t0
kKEY. If such a list is not found, ASSOC returns NIL. Exampie:

(ASSOC "B '((A . 1) (B . 2) (C . 3))) => (B . 2)

(FASSOC x=Y ALST) ' - [Function]
Faster version of ASSOC that terminates on a null-check.

(Interlisp-10) Interpreted, FASSOC gives an error 1f ALST ends in a non-list other
than NIL, BAD ARGUMENT - FASSOC.

(SASSOC KZY ALST) [Function]
Samne as ASSOC but uses EQUAL instead of EQ when searching for xzv.

(PUTASSOC KEY VAL ALST) [Function]
Searches ALST for a sublist CAR of which is EQ to k&Y. If one is found, the CDR is
replaced (using RPLACD) with vaL. If no such sublist is found. (CONS KEY VAL)
is added at the end of ALsT. Returns vaL. If ALST is not a list, generates an €rTor,
ARG NOT LIST.

Note that the argument order for ASSOC, PUTASSOC, et. is-different from that of LISTGET, LISTPUT,
etc. :

(LISTGET LST PROFP) {Function]
Similar to GETPROP (page 2.7) but works on lists using property list format
Searches LsT two elements at a time, by CDOR. looking for an element EQ 0
PrOP. If one is found. returns the next element of LsT, otherwise NIL. Returns

2.25

Association Lists and Property Lists
NIL if LsT is not a list Example:
(LISTGET '(A 1B 2¢C 3) 'B) = 2
(LISTGET '(A 1 B 2 C 3) 'W) => NIL
(LISTPUT LST PROP VAL) {Functon}

Similar to PUTPROP, Searches LsST two elements at a time, by CDDR, looking for
an element EQ to ProOP. If PROP is found, replaces the next element of LsT with
VAL, Otherwise, PROP and VAL are added to the end of LsT. If LST is a list with
an odd number of elements, or ends in a non-list other than NIL, PROP and VAL
are added at its beginning. Returns vAL. If LsT is not a lLst, generates an error,
ARG NOT LIST.

e

‘ \
(LISTGET!1 LST PROP) ’ [Function] =~

Like LISTGET, but searches LST one CDR at a time, i.e., looks at each element.
Returns the next element after PROP. Examples:

(LISTGET: '(A 1 B 2 C 3) 'B) => 2

"

(LISTGETL '(A 1B 2C3) 'l) => B
(LISTGET1 '(A 1B 2 C 3) 'W) => NIL
Note: LISTGET1 used to be called GET.

(LISTPUT1 LST PROF VAL) [Function]
Like LISTPUT, except searches LST one CDR at a time, Returns the modified LsT.
Exampie:

«(SETQ FOO '(A 1 8B 2))
(A 1B 2)

«(LISTPUT FOO 'B 3)

(A 1B 3)

«(LISTPUT FOO ‘'C 4)
(A1B3C34)
«(LISTPUT FOO 1 'W)
(A1W3C4)

«F00

(A1 W3C34)

Note that if LsT is not a list, no error is generated. However, since a non-list
cannot be changed into a list, LST is not modified. In this case. the value of
LISTPUT1 should be saved. Example:

~(SETQ FOO NIL)

NIL

«(LISTPUT FOO 'A 5)
(A 5)

«FOO

NIL

2.26

DATA TYPES

2.5.10 Other List Functions

(REMOVE x r)

(DREMOVE x L)

(REVERSE L)

(DREVERSE L)

2.6 STRINGS

{Function]
Removes all top-level occurrences of X from list L, returning a copy of L with all
elements EQUAL to x removed Example:

(REMOVE 'A "(A B C (A) A)) => (B C (A))
(REMOVE '(A) '(A B C (A) A)) => (A B C A)

[Function]
Similar to REMOVE, but uses EQ instead of EQUAL, and actually modifies the list
L when removing X, and thus does not use any additional storage. More efficient
than REMOVE.

~ Note that DREMOVE cannot change a list to NIL:

«(SETQ FOO '(A))
(R)

~(DREMOVE 'A FO0O)
NIL

«F00

(A)

The DREMOVE above returns NIL, and does not perform any CONSes, but the value-
of FOO is still (A), because there is no way to change a list to a non-list See
NCONC.

[Function]
Reverses (and copies) the top level of a list, e.g., <
(REVERSE '(A B (C D))) => ((C D) B A) |
If L is not a list, REVERSE just returns L.

[Function]

Value is the same as that of REVERSE, but DREVERSE destroys the original list
L and thus does not use any additional storage. More efficient than REVERSE.

A string is an object which represents a sequence of characters. Interlisp provides functions for creating
strings, concatenating strings, and creating sub-strings of a string.

The input syntax for a string is a double quote ("), followed by a sequence of any characters except
double quote and %, terminated by a double quote. The % and double quote characters may be included
in a sring by preceding them with the escape character %.

Strings are printed by PRINT and PRIN2 with initial and final double quotes, and %s inserted where

2.27

——

:"—\\

)
)
'~

Strings

necessary for it to read back in properly. Strings are printed by PRIN1 without the delimiting double
quotes and exmra #s.

A “nuil string” contzining no characters is input as "". The null sring is printed by PRINT and PRIN2
as "". (PRIN1 ") doesn’t print anything.

Strings are created by MKSTRING, ALLOCSTRIHG SUBSTRING, and CONCAT.

[nternally a string is stored in two parts; a st:rmg pomter” and the sequence of characters. Several string
pointers may reference the same character sequence, so a substring can be made by creating a new string
pointer, without copying any characters. It is not possible to directly access a character sequence, so
functions that refer to “strings™ actually manipuiate string pointers. In most cases, the user does not have
to be aware of string pointers, but there are some situations where it is important to understand them.
For example, suppose that X is a string pointer to a sequence of characters, and Y is another string pointer
to a substring of X’s-characters. If the characters of v are modified (with RPLSTRING or RPLCHARCODE),

" the corresponding characters of x will be modified too.

(STREQUAL x Y) [Function]
Rerurns T if x and v are both strings and they contain the same sequence of
characters, otherwise NIL. EQUAL uses STREQUAL. Note that strings may be
STREQUAL without being EQ. For instance,

(STREQUAL "ABC" "ABC") => T
(EQ "ABC" "ABC") => NIL

STREQUAL returns T if X and Y are the same string pointer, or two different string
pointers which point to the same character sequence, or two string pointers which
point to different character sequences which contain the same characters. Only in
the first case would x and ¥ be EQ.

(ALLOCSTRING N INITCHAR OLD) " [Function]

Creates a string of length ~N charaters of INTTCHEAR (which can be either a character !

code or something coercible 1o a character). If mrremAar is NIL, it defauits to
character code Q. if oLp is supplied, it must be a string pointer, which is re-used.

(MKSTRING X FLG RDTBL) [Function]
If x is a string, returns X. Or.herwxse creates and returns a string containing the
print name of X. Examples:

(MKSTRING "ABC") => "ABC"

(MKSTRING '(A B C)) => "(A B C)"

(MKSTRING NIL) => "NIL"

Nate that the last example returns the string "NIL", not the atom NIL.

[f FLC is T, then the PRIN2-name of x is used. computed with respect to the
readtable RDTBL. For example,

(MKSTRING "ABC" T) => "%"ABCY""

!\J
[]
oo

o

)

RN

C

O

(SUBSTRING X N M OLDPTR)

.(GNQ X)

(GLC x)

DATA TYPES

[Function]
Returns the substring of x consisting of the Nth through mth characters of x. If M
is NIL, the substring contains the Nth character thru the end of X. N and M can be
negative numbers, which are interpreted as counts back from the end of the string,
as with NTHCHAR (page 2.10). SUBSTRIHNG returns NIL if the substring is not well
defined, e.g., N or M specify character positions outside of X, or N corresponds to
a character in x to the right of the character indicated by M). Examples:

(SUBSTRING "ABCDEFG" 4 6) => "DEF"
(SUBSTRING "ABCDEFG"™ 3 3) => "C"

(SUBSTRING "ABCDEFG" 3 NIL) => T"CDEFG"
(SUBSTRING "ABCDEFG" 4 -2) => "DEF"
(SUSBSTRING "ABCDEFG" 6 4) => NIL
(SUBSTRING "ABCDEFG" 4 9) => NIL

If x is not a string, it is converted to one. For example,
(SUBSTRING '(A B C) 4B) => "B C"

SUBSTRING does not actually copy any characters, but simply creates 2 new string
pointer to the characters in x. If oLDPTR is a swing pointer, it is modified and
returned.

[Function}]
“Get Next Character.” Returns the next character of the string x (as an atom);
also removes the character from the string, by changing the string pointer. Returns
NIL if xis the null string. If x isn't a string, a string is made. Used for sequential

. access to characters of a string. Example:

+(SETQ FOO "ABCDEFG")

"ABCDEFG"

+(GNC FO00)

A

+(GNC FO0O)

B

«FQ0

"CDEFG"

Note that if A is a substring of B, (GNC A) does not remove the character from
B. GNC doesn't physically change the string of characters, just the string pointer.

[Function]
“Get Last Character.” Returns the last character of the string x (as an atom); also
removes the character from the string. Similar to GNC. Example:

~(SETQ FOO "ABCDEFG")
"ABCDEFG"
~(GLC F00)

2.29

(CONCAT x; X5 +--

 (CONCATLIST x)

Strings

G

«(GLC FQO)
F

«F00
"ABCDE"

XN) [NoSpread Functon]
Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are gansformed to strings. Exampies:

(CONCAT "ABC" 'DEF "GHI") => "ABCDEFGHI"
(CONCAT '(A B C) "ABC") => "(A B C)ABC"
(CONCAT) returns the null string, "".

[Function]
X is a list of strings and/or other objects. The objects are transformed to strings if
they aren’t strings. Returns a new string which is the concatenation of the strings.
Example:

(CONCATLIST '(A B (C D) "EF")) => "AB(C D)EF"

(RPLSTRING x N Y) ‘ [Function]

Replaces the characters of string x beginning at character position N with string
Y. x and v are converted to strings if they aren't already. N may be positive or
negative, as with SUBSTRING. Characters are smashed into (converted) x Returns
the string X. Exampies:

(RPLSTRING "ABCDEF" -3 "END") => "ABCEND"
« .
(RPLSTRING "ABCDEFGHIJK" 4 '(A B C)) => "ABC(A B C)K"

Generates an error if there is not enough room in x for v, i.e., the new string
would be longer than the original. If ¥ was not a string, x will already have been
modified since RPLSTRING does not know whether v will “fic” without actually
attempting the transfer.

Note that if x is a substing of Z, Z will also be modified by the action of
RPLSTRING. Example:

~ (SETQ FOO "ABCDEFG")
"ABCDEFG"

« (SETQ BAR (SUBSTRING FOO 4 6)
"DEF"

~ (RPLSTRING BAR 2 "XY")

"DXY"

« FOO

"ABCDXYG"

(RPLCHARCODE X N CHARCODE) : [Function]

Replaces the ~th character of the string x with the character code CHARCODE. N
may be positive or negative. Returns the new x. Similar to RPLSTRING. Exampie:

2.30

N
f*;»,‘ N

3

g
i

@)

DATA TYPES

(RPLCHARCODE "ABCDE" 3 (CHARCODE F)) => “"ABFDE"

(STRPOS PAT STRING START SKIP ANCHOR TAIL) [Function]

STRPOS is a functon for searching one string looking for another. PAT and
STRING are both strings (or else they are converted automatically). STRPOS
searches STRING beginning at character number sTART, (or 1 if START is NIL)
and looks for a sequence of characters equal to PAT. If a match is found, the
character position of the first matching character in STRING is returned, otherwise
NIL. Examples:

(STRPOS "ABC"™ "XYZABCDEF") => 4
(STRPOS "ABC"™ "XYZABCDEF" 5) => NIL
(STRPOS "ABC"™ "XYZABCDEFABC™" 5) => 10

SKkTP can be used to specify a character in PAT that maiches ‘any character in
STRING. Exampies:

(STRPOS "A&C&" "XYZABCDEF" NIL '&) => 4

(STRPOS "DEF&" "XYZABCDEF" NIL '&) > NIL

If ancHOR is T, STRPOS compares PAT with the characters beginning at position
START (or 1 if START is NIL). If that comparison fails, STRPOS returns MIL
without searching any further down sTRING. Thus it can be used to compare one
string with some portion of another string. Examples:

(STRPOS "ABC™ "XYZABCDEF" NIL NIL T) => NIL
(STRPOS "ABC" "XYZABCDEF" 4 NIL T) => 4

Finally, if Tam is T, the value returned by STRPOS if successful is not the starting
position of the sequence of characters corresponding to PAT, but the position of the
first character after tha, i.e., the starting position plus (NCHARS PAT). Examples:

(STRPOS "ABC" "XYZABCDEFABC"™ NIL NIL NIL T) => 7
(STRPOS "A"™ ™A™ NIL NIL NIL T) => 2

If TAL=NIL, STRPOS returns NIL, or a character position within STRING which
can be passed to SUBSTRING. In partcular, (STRPQS “" "") => NIL.
However, if TAmL =T, STRPOS may return a character position outside of STRING.
For instance, note that the second example above returns 2, even though "A" has
only one character.

(STRPOSL A STR START NEG) [Function]

STR is a string (or else it is converted automatically to a string), A is a list
of characters or.character codes. STRPOSL searches STR beginning at character
number START (or else 1 if START=NIL) for one of the characters in A. If one is
found. STRPOSL returns as its value the corresponding character position. otherwise
NIL. Example:

231

Arrays

(STRPOSL '(A B C) "XYZBCD") => 4
If NEG=T, STRPOSL searches for a character not on A. Example:
(STRPOSL "(A B C) "ABCDEF"'NIL T) => 4

If any element of A is a number, it is assumed to be a character code. Otherwise,
it is converted to a character code via CHCON1. Therefore, it is more efficient to
call STRPOSL with A a list of character codes.

If A is a bit table, it is used to specify the characters (see MAKEBITTABLE below)

STRPOSL uses a “bit table” data stucture to search efficiently. If A is not a bit table, it is converted it to
~ a bit table using MAKEBITTABLE. If STRPOSL is to be called frequently with the same list of characters,
" a considerable savmgs can be achieved by convemng the list to a bit rable once, and then passing the bit
. table to STRPOSL as its first argument.

(MAKEBITTABLE L NEG A) [Function]
Returns a bit table suitable for use by STRPOSL. L is a list of characters or

character codes, NEG is the same as described for STRPOSL. If A is a bit table,
MAKEBITTABLE modifies and returns it. Otherwise, it will create a new bit table.

Note: if N2c=T, STRPOSL must call MAKEBITTABLE whether 4 is a list or a bit table. To obtain bit
table efficiency with NEG=T, MAKEBITTABLE should be called with NEG=T, and the resuiting “mverted"
bit table should be given to STRPOSL with NEG=NIL.

2.7 ARRAYS

An array in Interlisp is an object representing a one-dimensional vector of objects. Arrays do not have
~ input syntax; they can only be created by the function ARRAY. Arrays are printed by PRINT, PRIN2,
and PRIN1 as # followed by an integer.

 Note: Interlisp-I0 and Interlisp-Vax provide a much more primidve version of arrays than other
implementations of Interlisp. See page 2.33.

(ARRAY sIZE TYPE INIT ORIG) [Function]
Creates and rerurns a new array capable of containing srze objects of type
TYPE. TYPE may be one of BIT, BYTE, WORD, FIXP, FLOATP, POINTER, or
DOUBLEPOINTER.* ARRAY also accepts any “type” which is legal in DATATYPE
records (such as (BITS 7), FLAG, see page 3.7). (Note: DATATYPE types are
coerced into the next “enclosing” array type. Therefore, users should not rely on
truncation of values stored in arrays of these types.)

*For backward compatibility with Interlisp-10 arrays. TYPE can be NIL or O (meaning to create an array of
type DOUBLEPOINTER) or S1ZE (meaning an artayv of type FIXP). For arrays of type DOUBLEPOINTER.
the functions ELTD and SETD are defined the same as in Interlisp-10 (page 2.34). For arrays of any
other type. ELTD and SETD are the same as ELT and SETD. Combined POINTER/FIXP arrays are not
supported. [nterlisp-D users should avoid using [nterlisp-10 arrays.

02,32

~O

)

-

DATA TYPES

INTT is the initial value in each element of the new array. If not specified, the array
elements will be initialized with 0 (for number arrays) or NIL (all other types).

Arrays can have either 0O-origin or l-origin indexing, as specified by the ORIG
argument; if ORIG is not specified, the default is 1. .

(ELT 4 N) : [Function]
Returns the nth element of the array a. o

(SETA A N V) {Function]
Sets the Nth element of the array 4 to v. SETA returns v.

(ARRAYTYP 4) _ {Function]
Returns a value corresponding to the second argument to ARRAY. :

Note: If ARRAY coerced the array type as described above, ARRAYTYP will return

. the new type.
(ARRAYSIZE 4) [Function]
: Returns the size of array A. Generates the error, ARG NOT ARRAY, if A4 is not an
© array.
(ARRAYORIG 4) [Functon]

Returns the origin of array A, which may be 0 or 1. Generates an-error, ARG NOT
" ARRAY, if A is not an array. ‘ '

" (COPYARRAY 4) . ‘ . [Function]

Returns a new array of the same size and type as A, and with the same contents
as A. Generates an ARG NOT ARRAY error, if A is not an array.

2.7.1 Interlisp-10 Arrays

Interiisp-10 and Interlisp-Vax have a more primitive array facility than the other implementations of
Interlisp. In Interlisp-10, arrays are partitioned into four sections: a header, a section containing unboxed
numbers, a secton conizining list cells (each with a CAR and CDR), and a section containing relocation
information. The last three sectons can each be of arbitrary length (including 0); the header is two words
long and contains the length of the other sections. The unboxed number region of an array is used to
store 36 bit quantities that are not Interlisp pointers, and therefore are not to be chased during garbage
collections, e.g. machine instructions. The relocaton informaion is used when the array contains the
definition of a compiled function, and specifies which locations in the unboxed region of the array must
be changed if the array is moved during a garbage collection. '

ARRAY returns an “array pointer” to the beginning of the array, but it is also possible to create 2 pointer
into the middle of an array.- ARRAYP will accept a pointer into the middle of an array, but ELT, SETA,
ELTD, and SETD generate an error, ARG NOT ARRAY, if A is not an array pointer to the beginning of
an array.

ArTay-pointers print as #NNNN, where NNNN is the octal representation of the pointer. Note that #NNNN
will b= read as a literal atom. and not an array poirnter.

The following functions are used to manipulate Interlisp-10 arrays:

<233

(ARRAY N P V)

(ELT 4 N)

(SETA A N V)

(ELTD 3 N)
(SETD A N V)
“TARRAYTYP A)
(ARRAYé x)
(ARRAYBEG 4)

| (ARRAYORIG 4)

Interlisp-10 Arrays

[Function]
Allocates a block of N+2 words, of which the first two are header informaton.
The next P (< N) words contain unboxed numbers, and are initalized to unboxed
0. The last N-p (> 0) words are list cells; both CAR and CDR are available for
storing information, and each is inidalized to v. If p is NIL, 0 is used (i.e., an array

_containing all Interlisp pointers). ARRAY returns an “array pointer” to the array.

If sufficient space is not available for the array, a garbage collecdon of array space is
initiated. If this is unsuccessful in obtaining sufficient space, an error is generated,
ARRAYS FULL.

[Function]
Returns the nth element of the array 4. (ELT a 1) is the first element of the
array (actually corresponds to the 3rd cell because of the 2 word header).

If ¥ corresponds to the unboxed number region of 4, ELT remrns the full 36 bit
word 2s a boxed integer. If N corresponds to the list cell region of 4, ELT returns
the CAR of the corresponding element,

[Function]
Sets the nth element of the array A to V. If & corresponds to the unboxed number
region of A, v must be a number, and is unboxed and stored as a full 36 bit word
into the ~th element of A. If N corresponds to the list cell region of A, v replaces
the CAR of the Nnth element SETA returns V.

-

[Function]
Same as ELT for the unboxed number region of 4, but returns the CDR of the Nth
element, if N corresponds to the list cell region of A.

[Funcdon]
Same as SETA for the unboxed number region of A, but sets the CDR half of the
Nth element, if N corresponds to the list cell region of A. SETD returns v.

[Function]
Returns the number of unboxed number words of array 4. This value corresponds
to the second argument to ARRAY,

[Function]
Returns x if x is an array pointer, otherwise NIL. No check is made to ensure that
X actually addresses the beginning of an array.

{Function]
If A is a pointer into the middle of an array, returns the pointer to its beginning.
Otherwise returns NIL.

{Function]
Returns 1. A dummy functon provided for compatibility with other Interlisp
arrays.

-
v
\5.'\—

DATA TYPES

2.8 HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp objects (“hash keys™) with other objects
(“hash values™), such that the hash value asscciated with a particular hash key can be quickly obtained.
A set of associations could be represented as a list or array of pairs, but these schemes are very inefficient
when the number of associations is large. There are funcdons for creatng hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash key.

Hash keys can be any lisp object, but is should be noted that the hash array functions use EQ for
comparing hash keys. Therefore, if non-atoms are used as hash keys, the exact same object (not a copy)
must be used to retrieve the hash value.

In the description of the functions below, the argument HARRAY has one of three forms: NIL, in which
case a hash array provided by the system, SYSHASHARRAY, is used; a hash-array created by the function
HARRAY: or a list, CAR of which is a hash array. The. latter form is used for specifying what is to be
done on overflow, as described below.

(HARRAY ' LEN) [Function]
Creates a hash array containing at least LzN hash keys.

(HARRAYSIZE HARRAY) [Function]
Returns the size of ZARRAY: the number of hash keys it can hold before becoming
“ﬁlll".

(CLRHASH HARRAY)) : [Function]

Clears all hash keys/values from HARRAY. Returns HARRAY.

(PUTHASH KEY VAL HARRAY) ‘ [Function]
Associates the hash value vAL with the hash key k£Y in BARRAY. Replaces the
previous hash value, if any, If var is NIL, any old associadon is removed (hence
a hash value of NIL is not allowed). If EaArRrAY is full when PUTHASH is called
with a key not already in the hash -array, the function HASHOVERFLOW is called,
and the PUTHASH is done to the value returned (see below). Returns vAL.

(GETHASH KEY HARRAY) " [Function]
Returns the hash value associated with the hash key XY in EARRAY. Reurns NIL,
if kEY is not found.

(REHASH OLDHARRAY NEWHARRAY) [Function]
Hashes ail hash keys and values in OLDHEARRAY into NEWHARRAY. The two hash
arrays do not have to be (and usually aren't) the same size. Returns NEWHARRAY.

(MAPHASH HARRAY MAPHFN) {Function]
MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN
will be applied to (1) the hash value, and (2) the hash key. For example,

[MAPHASH A
(FUNCTION (LAMBDA (VAL KEY)
(if (LISTP KEY) then (PRINT VAL)]

wiil print the hash value for all hash keys that are lists, MAPHASH returns HARRAY.

2.35

Hash Overfiow.

(DMPHASH HARRAY; HARRAY, -+ HARRAYY) [NLambda NoSpread Function]
Prints on the primary.output file LOADable forms which will restore the hash-arrays

contained as the values of the atoms HARRAY,, HARRAY,, - -- HARRAYy. Example:
(DMPHASH SYSHASHARRAY) will dump the system hash-array.

Note: all EQ identities except atoms and small integers are lost by dumpiag
and loading because READ will create new structure for each item. Thus if two
lists contain an EQ substructurs, when they are dumped and loaded back in, the
corresponding: substructures while EQUAL are no longer £Q. The HORRIBLEVARS
file package command (page 11.25) provides a way of dumping hash tables such
that these identities are preserved. -

2.8.1 Hash Overflow

-~-

When ‘a hash array becomes full, attempung to add another hash key will cause the function
HASHOVERFLOW to be called. This will either automatcaily 2nlarge the hash array, or cause the error
HASH TABLE FULL. How hash overflow is handled is determined by the form that was passed to
PUTHASH:

HARRAY If a plain hash array is passed to a hash function, and it overflows, the error HASH
ARRAY FULL is generated.

NIL If a hash function is.passed MIL as its ZARRAY argument, the system hash én-a-y
SYSHASHARRAY is used. This array is not used by the system, but is provided for
the user. If SYSHASHARRAY overflows, it is automatically enlarged by 1.5.

(HARRAY . N) N is a positve integer. This form specifies that upon hash overflow, a new
" hash-array is created with ~ more cells than the current hash-array.

(EARRAY . F) F is a floating point number. This form specifies that upon hash overflow, the new
hash array will be r times the size of the current hash-array.

{HARRAY . FN) FN is a function name or a lambda expression. This form specifies that upon hash
overflow, FN is called with (HARRAY . FN) as its argument. If FN returns a
number, the number will be the size of the new hash array. Otherwise, the new
size defaults to 1.5 times the size of the old hash array. £~ could be used to prmt
a message, or perform some monitor function.

(HARRAY) Equivalent to (BARRAY . 1.5).

[f a list form is used, upon hash overflow the new hash-array is RPLACAed into the dotted pair, and
HASHOVERFLOW returns it ,

2.9 NUMBERS AND ARITHMETIC FUNCTIONS

Numerical atoms. or simply numbers. do not have value cells. function definition cells, property lists,
or explicit print names. There are three different types of numbers in Interlisp: small integers. large
integers, and floating point numbers. Small integers are those integers that can be directy stored within a

2.36

DATA TYPES

pointer value. The range of small integers is implementation-dependent. Since a large integer or floating
point number can be (in value) any full word quantity (and vice versa), it is necessary to distinguish
between those full word quantides that represent large integers or floating point numbers, and other
Interlisp pointers. We do this by “boxing” the number: When a large integer or floating point number is
created (via an arithmetic operation or by READ), Interlisp gets a new word from “number storage™” and
puts the large integer or floating point number into that word. Interlisp then passes around the pointer to
that word, i.e., the “boxed number”, rather than the actual quantty itself, Then when a numeric function
needs the actual numeric quantity, it performs the extra level of addressing to obtain the “value” of the
number. This latter process is called “unboxing”. Note that unboxing does not use any storage, but that
each boxing operation uses one new word of number storage. Thus, if a compuration creates many large
integers or floating point numbers, ie., does lots of boxes, it may cause a garbage collection of large
integer space, or of floating point number space. Different implementations of Interlisp may use different
boxing strategies. Thus, while lots of arithmetc operations may lead to garbage collections, this is not
nq;;ssa.rﬂy always the case. ’

The following functions can be used to distinguish the different types of numbers:

(SMALLP Xx) [Function]
: Retumns x, if x is a small integer; NIL otherwise. Does nor generate an error if X

is not a number.

(FIXP x) [Function]
Returns x, if x is an integer (between MIN.FIXP and MAX.FIXP); NIL otherwise.
Note that FIXP is true for both large and small integers. Does nor generate an
error if X is not a number.

(FLOATP x) [Function]
Rewrns x if x is a floating point number; NIL otherwise. Does nor give an error
if x is not a number.

(NUMBERP Xx) [Function]
Returns X, if x is a number of any type (FIXP or FLOATP); NIL otherwise. Does
not generate an error if x is not a number.

Note that if (NUMBERP Xx) is true, then either (FIXP Xx) or (FLOATP Xx) is
true.

Each small integer has a unique representation, so EQ may be used to check equality. Note that EQ
should not be used for large integers or floating point numbers, EQP, IEQP, or EQUAL must be used
instead. ’

(EQP x 7v) [Function]
Retrns T, if x and v are EQ, or equal numbers; NIL otherwise. Note that EQ
may be used if X and Y are known to be small integers. EQP does not convert
X and Y to integers, e.g.. (EQP 2000 2000.3) => NIL, but it can be used
to compare an integer and a floating point number, e.g., (EQP 2000 2000.0)
=> T. EQP does not generate an error if X or vy are not numbers.)

Note: EQP can also be used to compare stack pointers (page 7.3) and compiled
code objects (page 5.8).

Integer Arithmetic

2.9.1 Integer Arithmetic

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of digits, followed
by an optional Q, and terminated by a delimiting character. If the Q is present, the digits are interpreted
in octal, otherwise in decimal e.g. 77Q and 63 both correspond to the same integers, and in fact are
indistinguishable internally since no record is kept of how integers were created.

- The setting of RADIX (page 6.19), determines how integers are printed: signed or unsigned, octal or

decimal.

[ntegers are created by PACK and MKATOM when given a sequence of characters observing the above
syntax, e.g. (PACK '(1 2 Q)) => 10. Integers are also created as a resuit of arithmetic operations.

“The range of integers of various types is implementation-dependent. This information is accessable to the

ser through the following variables:

MIN. SMALLP ' [Variable]

MAX.SMALLP ‘) [Variabie]
‘ The smallest/largest possible small integer.

MIN.FIXP [Variabie]

MAX.FIXP [Variable]
The smallest/largest possible large integer.

MIN.INTEGER ' ’ [Variable]

MAX.INTEGER : [Variable]

The smallest/largest possible integer representable.' Currently, these variables
are equal to MIN.FIXP and MAX.FIXP; they may be different in future
implementations with other methods for representing integers.

In Interlisp-D, the action taken on integer overfiow is determined with the following function:

(OVERFLOW rLG) [Function]
Sets a flag that determines the system response to integer overflow; returns the
previous setting. If FLG=T, an error occurs on integer overflow. If FLG=NIL, the
largest (or smallest) integer is returned as the result of the overflowed computation.
If FLe =0, the result is rerurned modulo 2132 (the default action).

All of the functions described below work on integers. Unless specified otherwise, if given a floating point
number, they first convert the number to an integer by truncating the fractional bits, e.g.. (IPLUS 2.3
3.8) =5; if given a non-numeric argument, they generate an error, NON-NUMERIC ARG.

(IPLUS x; X5 --- Xy) - ’ [NoSpread Function]
Returns the sum x; + X, + --- + Xn (IPLUS)=0.

(IMINUS Xx) [Function]
-x N

(IDIFFERENCE X Y) [Function]

X-7

N

30

£
2
<

(ADD1 x)

(SUB1 X)

(ITIMES x; x5 ---

(IQUOTIENT X Y)

<:>; . (IREMAINDER X)

(IMOD x Y)

DATA TYPES

[Function]
x+1

{Function]
x-1
Xn) ' [NoSpread Function]
Returns the product X; * X, * --- * X (ITIMES)=1.

[Function]
X / v truncated. Examples:
(IQUOTIENT 3 2) => 1
(IQUOTIENT -3 2) => -1

- ' {Funcdon]

Returns the remainder when x is divided by v. Example:
(IREMAINDER 3 2) => 1

[Function]

Computes the integer modulus; this differs from IREMAINDER in that the resuit
is always a non-negative integer in the range [0,7).

(IGREATERP X 7Y) {Functon]
T, if x> 1; NIL otherwise.

(ILESSP x 1) fFunction]
T, if x < v; NIL otherwise,

(IGEQ x V) [Function]
T, if x > 7v; NIL otherwise.

(ILEQ x v) [Function]
T, if x < v; NIL otherwise.

(IMIN x; X, --- Xy) ' [NoSpread Function]
Returns the minimum of Xy, X, ---, Xy- (IMIN) returns the largest possible large

. integer, the value of MAX.FIXP. '

(IMAX X; X5 . Xp) [NoSpread Function]
Returns the maximum of X;, X5, ---, Xy. (IMAX) returns the smallest paossible
large integer, the value of MIN.FIXP.

(IEQP N M) , [Functon]
Returns T if ~ and M are EQ or equal integers: NIL otherwise. Note that EQ
may be used if ¥ and M are known to be small integers. IEQP converts N and M
to integers, e.g., (IEQP 2000 2000.3) '=> T. Causes NON-NUMERIC ARG
error if either ~ or M are not numbers.

(ZEROP x) [Functionj

(EQ x 0).

(]
w
O

Logical Arithmetic Functions

Note: ZEROP should not be used for floating point numbers because it uses EQ.
Use (EQP x 0) instead.

(MINUSP Xx) ~ [Function}
Returns T if x is negative; NIL otherwise. Does not convert X to an integer, but
simply checks the sign bit.

(FIX x) [Function]
If x is an integer, returns x. Otherwise, converts X to an integer by truncating
fractional bits, e.g., (FIX 2.3) => 2, (FIX -1.7) => -1
Since FIX is also a programmer’s assistant command (page 8.10), typing FIX
directly to Interlisp will not cause the function FIX to be called.

{GCD x Y) [Function]

Returns the greatest common divisor of x and v, e.g., {GCD 72 64) =8,
2.9.2 Logical Arithmetic Functions

(LOGAND x; x5 -+ Xp) [NoSpread Function]
Returns the logical AND of all its arguments, as an integer. Example:

(LOGAND 7 § 6) => 4

(LOGOR X; X5 -+ Xp) [NoSpread Function]
Returns the logical OR of all its arguments, as an integer. Example:

(LOGOR 1 3 9) => 11

(LOGXOR Xx; X, -+ Xpn) = [NoSpread Function]
Rerurns the logical exclusive OR of its arguments, as an integer. Example:

(LOGXOR 11 5) => 14
(LOGXOR 11 5 9) <=> (LOGXOR 14 9) => 7

(LSH X N) [Function]
(arithmetic) “Left Shift.” Returns x shifted left ~ places, with the sign bit
unaffected. x can be positive or negative. If N is negative, x is shifted right -~
places. :

(RSH x N) ' [Function]
(arithmetic) “Right Shift.” Retumns x shifted right & places, with the sign bit
unaffected, and copies of the sign bit shifted into the leftmost bit. x can be
positive or negative, If N is negative, X is shifted /eftr -~ places.

Warning: Be careful if using RSH to simulate division: RSHing a negative number
is not generally equivalent to deviding by a power of two.

(LLSH x N) . [Functon]
“Logical Left Shift.”

)
C

()

O

DATA TYPES

(LRSH x N) [Function]
“Logical Right Shift”

(INTEGERLENGTH N) [Function]
Returns the number of bits needed to represent N (coerced to a FIXP). This is
equivalent to: 1+ floor{log2[abs{N]]]. (INTEGERLENGTH 0) = Q.

(POWEROFTWOP N) [Function]
: Returns non-NIL if N (coerced to a FIXP) is a power of two.

(EVENP x Y) ’ [NoSpread Function]
If v is not given, equwalent to (ZEROP (IMOD x 2)): otherwise equivalent to
(ZEROP (IMOD x Y)).

" (0DDP x 1) [NoSpread Function]

Equivalent to (NOT (EVENP X 7¥)).

The difference between a logical and arithmetic right shift lies in the treatment of the sign bit. Logical
shifting treats it just like any other bit; arithmetic shifting will not change it, and will “propagate”
rightward when actually shifting rightwards. Note that Shlﬁ‘.mg (arithmetic) a negative number “all the
way” to the right yleld.s -1, not O.

The following “logical” arithmetic functions are derived from Common Lisp, and have both macro
and funcdon definitions (the macros are for speed in running of compiled code). The following code
equivalences are primarily for deﬁmnonal purposes, and should not be consxdered an implementadon
(especially since the real implementation tends to be faster and less “consy™ than would be apparent from
the code here).

Note: The following logical functions are currently only implemented in Interiisp-D.

(LOGHOT N) . [Function]
(LOGXOR N -1)

(BITTEST N MASK) [Function]
(NOT (ZEROP (LOGAND N Mask)))

(BITCLEAR N MASK) ’ [Function]
(LOGAND N (LOGNOT Mask))

(BITSET N MASK) [Function]
(LOGOR N MASK)

(MASK.1'S POSITION SIZE) _ [Function]
(LLSH (SuB1 (EXPT 2 s1zE))

POSITION)
(MASK.0'S POSITION SIZE) : . [Function]

(LOGNOT (MASK.1'S POSITION SIZE))
(LOADBYTE N POSITION SiZE) [Funcrion]

(LOGAND (LRSH N POSITION)

241

i
]
1
]
|
l
!
g

Floating Point Arithmetic

(MASK.1'S 0 sizE))

(DEPOSITBYTE N POSITION SIZE BYTE) [Function]

(LOGOR (BITCLEAR N (MASK.1'S POSITION SIZE))
(LLSH (LOGAND BYTE (MASK.1'S 0 s1ZE))
POSITION))

(ROT X N FIELDSIZE) - [Function]
“Rotate bits in field”. This is a slight extension of the CommonLisp ROT function.
It performs a bitwise left-rotation of the integer X, by ~ places, within a field of
FIELDSIZE bits wide. Bits being shifted out of the position selected by (EXPT 2
(SUB1 rrErpsize)) will flow into the “units™ position.

The opticnal argument FIELDSIZE defaults to the “cell” size (the integeriength of
the current maximum F IXP), and must either be a positive integer, or ¢lse bz one
of the litatoms CELL or WORD. In the latter two cases the appropriate numerical
values are respectively substituted. A macro optimizes the case where FIELDSIZE is
WORD and N is L.

The notions of position and size can be combined to make up a “byte specifier”, which is constructed by
the macro BYTE {note reversal of arguments as compare with above functions}:

(BYTE SIZE PQSITION) _ [Macro]
Constructs and returns a “byte specifier” containing S1zE and POSITION.

(BYTESIZE BYTESPEC) [Macro]
Returns the s1zx componant of the “byte specifier’” BYTESPEC.

(BYTEPQOSITION BYTESPEC) [Macro]
Returns the posITIoN componant of the “byte specifier” sYTESPEC.

(LDB BYTESPEC VAL) ‘ [Macroj

(LOADBYTE vAL
(BYTEPOSITIOR BYTESPEC)
(BYTESIZE BYTESPEC))

(DPB N BYTESPEC VAL) [Macro]

(DEPQSITBYTE vAL ‘
(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC) ’
N)

293 Floating Point Arithmetic

A floating point number is input as a signed integer. followed by a decimal point. followed by another
sequence of digits called the fraction. followed by an exponent (represented by E followed by a signed
integer) and terminated by a delimiter.

&

&

)

O
v
te

DATA TYPES

Both signs are optional, and either the fraction following the decimal point, or the integer preceding the
decimal point may be omitted. One or the other of the decimal point or exponent may also be omitted,
but at least one of them must be present to distinguish a floating point number from an integer. For
example, the following will be recognized as floating point numbers:

5. 5.00 5.01 .3
5E2 5.1E2 5E-3 -5.2E+6

Floating point numbers are printed using the format control specified by the function FLTFMT (page
6.20). FLTFMT is inidalized to T, or free format For example, the above floating point numbers would
be printed free format as:

5.0 5.0 5.01 .3
500.0 510.0 .005 -5.2E6

LTI 2

Floating point numbers are created by the read program when a “.” or an E appears in a number,
e.g., 1000 is an integer, 1000. a floating point number, as are 1E3 and 1.E3. Note that 10000,
1000F, and 1E3D are perfectly legal literal atoms. Floating point numbers are also created by PACK and
MKATOM, and as a result of arithmetic operations,

PRINTNUM (page 6.21) permits greater controls on the printed appearance of fioating point numbers,
allowing such things as left-justification, suppression of trailing decimals, etc.

The floating point number range is stored in the following variables:

MIN.FLOAT [Variable] -

The smallest possible floating point number.

MAX.FLOAT [Variable]
The largest possible floating point number. ’

All of the functions described below work on fioating point numbers. Unless specified otherwise, if given an
integer, they first convert the number to a floating point number, e.g., (FPLUS 1 2.3) <=> (FPLUS
1.0 2.3) => 3.3;if given a non-numeric argument, they generate an error. NON-NUMERIC ARG.

(FPLUS x; X5 -+ Xp) - " [NoSpread Function]
' X1 + X2 + e + XN

(FMINUS Xx) : [Function]
- X

(FOIFFERENCE x Y) : [Function]
X-Y

(FTIMES x; x5 --- Xp) [NoSpread Function]
xl = x2 = .= xN T

(FQUOTIENT x v) : [Function]
x/r

(FREMAIMNDER X Y) [Functicn]

Rerurns the remainder when x is divided by v. Equivalent to:

Mixed Arithmetic

(FDIFFERENCE x (FTIMES Yy (FIX (FQUOTIENT X Y))))
Exampile:
(FREMAINDER 7.5 2.3) => 0.6

(MINUSP Xx) . [Function]
T, if x is negative; NIL otherwise. Works for both integers and floating point
numbers.

(FGREATERP X Y) [Function]
T, if x> v, NIL otherwise.

(FLESSP x ?) : [Function]
T, if x { v, NIL otherwise.

(FEQP x Y) ' [Function]

Returns T if ~ and M are equal floating point numbers; NIL otherwise. FEQP
converts N and M 10 floating point numbers.Causes NON-NUMERIC ARG error if
either N or M are not oumbers.

(FMIN x; X5 -+ Xy) [NoSpread Function]
Returns the minimum of X;, X, ---, Xy. (FMIN) returns the largest possible
floating point number, the value of MAX . FLOAT.

(FMAX X; X; .. Xp) ‘ - [NoSpread Function]
Returns the maximum of X;, Xj, ---, Xn. (FMAX) returns the smallest possible

floating point number, the value of MIN.FLOAT.

(FLOAT x) [Function]
Converts x to a floating point number. Example:

(FLOAT 0) => 0.0

. 294 Mixed Arithmetic

The functdons in this section are *“‘generic” floating point arithmetic functdons. If any of the arguments
are floating point numbers, they act exactly like floating point functions, and float all arguments, and
return a floating point number as their value. Otherwise, they act like the integer funcuons. If given a

* non-numeric argument, they generate an error, NON-NUMERIC ARG.

(PLUS x; X5 -+ Xp) : ' [NoSpread Function]
Xy + Xg+ -0+ Xp

(MINUS Xx) [Function]
-X

(DIFFERENCE X Y) ‘ [Function]
X-Y

2.44

®

N

C

|

<

(TIMES x; x5 ---

{(QUOTIENT X 1)

(REMAINDER x ¥)

DATA TYPES

Xn) [NoSpread Function]

Xp "Xy Y Xy

[Function}
If x and Y are both integers, returns (IQUOTIENT X Y), otherwise (FQUOTIENT

X Y).

{Function]
If x and v are both integers, returns (IREMAINDER x Y), otherwise (FREMAINDER
X Y).

(GREATERP X Y) [Function]
. T,if x > v, NIL otherwise. . m
(LESSP x v) : [Function]
T if x < v, NIL otherwise.
(GEQ x Y1) [Function]
T, if X > v, NIL otherwise.
(LEQ X v) [Function]
T, if x < v, NIL otherwise.
(MIN X; X5 - XN) B} [NoSpread Function]
' Returns the minimum of X; X, ---, Xy (MIN) retumns the value of

(MAX X; X5 -+ Xp)

(ABS x)

MAX.INTEGER.

- [NoSpread Function]
Returns the maximum of X%y, X, -+, Xy. (MAX) remrns the vaiue of
MIN.INTEGER.

{Function]
x if x > 0, otherwise -x. ABS uses GREATERP and MINUS, (oot IGREATERP andf\
IMINUS).

2.95 Special Functions

(EXPT M N)

(SQRT N)

(LOG x)

[Function]
Returns atN. If M is an integer and N is a positive integer, returns an integer,
e.g, (EXPT 3 4) => 81, otherwise returns a floating point number. If M is
negative and N fractional, an error is generated, ILLEGAL EXPONENTIATION. If

" N is floating and either too large or too small. an error is generated, VALUE OUT

OF RANGE EXPT.

{Function]
Rerurns the square root of N as a floating pomt number. N may be fixed or floating
point. Generates an error if N is negative.

[Function]
Returns the natural logarithm of X as a floating point number. X can be integer
or floating point. (j

2.45

O

(ANTILOG x)

Spécial Functions

[Function]
Returns the floating point number whose logarithm is x. x can be integer or floating
point. Example:

(ANTILOG 1) = e => 2.71828...

(SIN X RADIANSFLG) [Function]

Returns the sine of X as a floating point number. x is in degrees unless
RADIANSFLG=T.

(COS X RADIANSFLG) [Function]
Similar to SIN. .
(TAN X RADIANSFLG) ' [Function]
- Similar to SIN.
Q (ARCSIN X RADIANSFLG) [Funcnon]

O

X is a number between -1 and 1 (or an error is generated). The value of ARCSIN is
a floating point number, and is in degrees unless RADIANSFLG=T. In other words,
if (ARCSIN X RADIANSFLG) =2 then (SIN Z RADIANSFLG)=Xx. The range of
the value of ARCSIN is -90 to +90 for degrees, -w/2 to /2 for radians.

(ARCCOS X RADIANSFLG) ' [Function]

Similar to ARCSIN. Range is 0 to 180, 0 to =.

(ARCTAN X RADIANSFLG) o [Function]

Similar to ARCSIN. Range is 0 to 180, 0 to .

(ARCTANZ Y X RADIANSFLG) {Funcricn]

Comput°s(ARCTAN (FQUOTIENT 1 Xx) RA.DZANS?LG) and returns a correspond-
ing value in the range -180 to 180 (or ~» to =), ie. the result is in the proper
quadrant as determined by the signs of x and .

(RAND LOWER UPPER) [Funcuon}

(RANDSET Xx)

Returns a pseudo-random number between LOWER and UPPER inclusive, i.e.,
RAND can be used to generate a sequence of random numbers. If both limits are
integers, the value of RAND is an integer, otherwise it is a floating point number.
"The algorithm is completely deterministic, i.e.. given the same inital state, RAND
produces the same sequence of values. The internal state of RAND is initialized
using the funcion RANDSET described below.

[Function]
Returns the internal state of RAND. If x=NIL, just returns the current suate. If
x=T. RAND is inidalized using the clocks, and RANDSET returns the new state.
Otherwise, x is interpreted as a previous internal state, i.e., a value of RANDSET,
and is used to reset RAND. For example,

« (SETQ OLDSTATE (RANDSET))
« (for X from 1 to 10 do (PRIN1 (RAND 1 10)))

2847592748NIL .
~ (RANDSET OLDSTATE)

246

VA

DATA TYPES

« (for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847582748NIL

2.47

Special Functions

20

®

2.48

CHAPTER 3

THE RECORD PACKAGE

The advantages of “data abstraction™ have iong been known: more readable code, fewer bugs, the ability
to change the data structure without having to make major moedificadons to the program., etc. The record
package encourzgess and facilitates this good programming practice by providing a uniform syntax for
creating, accessing and storing datz into many different types of data structures (arrays, list structures,
association lists, etc.) as well as removing from the user the task of writing the various manipulation
routines. The uszr declares (once) the data structures used by his programs, and thereafier indicates
) ‘he manipulations of the data in a data-structure-independent manner. Using the declarations, the
record package automatcally computes the corresponding Interlisp expressions necessary to accomplish
the indicated access/storage operations. If the data stmucture is changed by modifying the declarations,
the programs automatically adjust to the new conventons.

The user describes the format of a data structure (record) by making a “record declaration”™ (see page
3.5). The record declaraton is a description of the record, associating names with its various pars, or
“fields”. For example, the record declaradon (RECORD MSG (FROM TO . TEXT)) describes a data
structure cailed MSG, which contains three fields: FROM, TO, and TEXT. The user can reference these fields
by name, to retrieve their values or to store new values into them, by using the FETCH and REPLACE
cperators (page 3.1). The CREATE operator (page 3.3) is used for creating new instances of a record, and
TYPE? (page 3.4) is used for testing whether an cbject is an instance of a particular record. (note: all
record operators can be in either upper or lower case.)

Records may be implemented in a variety of different ways, as determined by the first element (“record
type™) of the record declaraton. RECORD (used to specify elements and tails of a list structure) is just
one of several record types currently implemented. The user can specify a property list format by using
the record type PROPRECORD, or that fieids are to be associated with parts of a data structure via a
specified hash array by using the record type HASHLINK, or that an endrely new data type be allocated

Q (as cescribed on page 3.14) by using the record-type DATATYPE.

O

The record package is implemented through the DWIM/CLISP facilities, so it contains features such as
speiling correcton on field names, record types. etc. Record operadons are translated using all CLISP
declarations in effect (standard/fast/undoable); it is also possible to declare local record declarations that
override global ones (see page 16.9).

The file package includes a RECORDS file package command for dumping record declarations (page 11.25),
and FILES? and CLEANUP will inform the user about records that need to be dumped.

3.1 FETCH AND REPLACE

The fields of a record are accessed and changed with the FETCH and REPLACE operators. If the record
MSG has the record declaration (RECORD MSG (FROM TO . TEXT)). and X is a MSG data structure.
(fetch FROM of X) will recurn the vaiue of the FROM field of X, and (replace FROM of X with

4

31

)

FETCH and REPLACE

Y) will replace this field with the value of Y. In general, the value of a REPLACE operation is the same
as the value stored into the field.

Note that the form (fetch FROM of X) implicitly states that X is an instance of the record MSG, or
at least it should to be treated as such for this partcular opzration. In other words, the interpretation
of (fetch FROM of X) never depends on the value of X. Therefore, if X is not a MSG record, this
may produce incorrect results. The TYPE? record operation (page 3.4) may be used to test the types of
objects. .

If there is another record declaradon, (RECORD REPLY (TEXT . RESPONSE)), then (fetch TEXT
of X) is ambiguous, because X could be either a MSG or a REPLY record. In this case, an error will
occur, AMBIGUOUS RECORD FIELD. To clarify this, FETCH and REPLACE can take a list for their “field”
argument: (fetch (MSG TEXT) of X) will ferch the TEXT field of an MSG record.

Note that if a field has an identical interpretation in two declarations, e.g. if the field TEXT occurred Lq
the same location within the declarations of MSG and REPLY, then {(fetch TEXT of X) would not be
considered ambiguous.

Another complication can occur if the fields of a record are themselves records, The fields o a record
can be further broken down into sub-fields by a “subdeclaration™ within the record declaration (see page
3.10). For example, .

(RECORD NODE (POSITION . LABEL) (RECORD POSITION (XLOC . YLOC)))

permits the user to access the POSITION field with (fetch POSITION of X), or its subﬁeld XLoC
with (fetch XLOC of X)

The user may also elaborate a field by declaring that field name in a separate record declaration (as
opposed to an embedded subdeclaraticn). For instance, the TEXT field in the MSG and REPLY records
above may be subdivided with the seperate record declaration (RECORD TEXT (HEADER . TXT)).
Fields of subfields (to any level of nested subfields) are accessed by specifying the “‘data path” as a list
of Pecord/field nares. where there is some path from each record to the next in the list. For instance,
{fetch (MSG TEXT HEADER) o X) indicates that X is to be treated as a MSG record its TEXT
field should be accesssd, and its HEADER field should be accessed. Only as much of the data path as
is necessary to disambiguate it needs to be specified. In this case, (fetch (MSG HEADER) of X) is —
sufficient. The record package interprets a2 data path by performing a tree search among all current record
declarations for a path from each name to the next considering first local declaratons (if any) and then
global ones. The central point of separate declarations is that the (sub)record is nor tied to another rzcord
(as with embedded declarations), and therefore can be used in many different contextwss. If a data-path
rather than a singie field is ambiguous. (e.g., if there were yet another declaration (RECORD TO (NAME

HEADER)) and the user specified (fetch (MSG HEADER) of X)), the error AMBIGUOUS DATA
PATH is generated.

FETCH and REPLACE forms are translated using the CLISP declarations in effect FFETCH and

FREPLACE are versions which insure fast CLISP declarations will be in effect, /REPLACE insures undoable
declarations.

3.2

o

J

THE RECORD PACKAGE

3.2 CREATE

Record operations can be applied to arbitrary stuctures, ie., the user can explicitely creating a data
structure (using CONS, etc), and t2en maaipulate it with FETCH and REPLACE. However, to be consisaat
with the idea of data abstractcn, new data should be created using the same declarations that define its
data paths. This can be done with an expression of the form:

(CREATE RECORD-NAME . ASSIGNMENTS) .-

A CREATE expression ranslates into an appropriate Interlisp form using CONS, LIST, PUTHASH, ARRAY,
ew., that creates the new datum with the various fields initialized to the appropriate values. ASSIGNMENTS
is opdonal and may contain expressions of the following form:

FIEELD-NAME + FORM
Specifies initial value for FIELD NAME.

USING FORM Specﬁes that for all fields not explicitly given a value. the value of the corresponding
field in FORM is to be used.

COPYING FORM Similar to USING except the corresponding values are copied (with COPYALL).

REUSING FORM Similar to USING, except that wherever possible, the corresponding structure in
FORM is used.

SMASHING FOrRM . A new instance of the record is not created at all; rather, the value of FORM is
used and smashed.

The record package goes to great pains to insure that the order of evaluation in the translation
is the same as that given in the original CREATE expression if the side effects of one expression
might affect the evaluadon of another. For exampie, given the declaration (RECORD CONS (CAR
CDR}), the expression. (CREATE CONS CDR«X CAR<«Y) will translate to (CONS Y X), but (CREATE
CONS CDR«(FQ0) CAR«(FIE)) will wansiate to ((LAMSDA (S31) (CONS (PRCGM (SETQ SSi
(FOQ)) (FIE)) $31))) because FQO might set some variables used by FIE.

Note that (CREATE RZCORD REUSING FORM ...) does not itself do any destructive operations on
the value of rcrM. The distinction between USING and REUSING is that (CREATE RECORD REUSING
FOrM ...) will incorporate as much as possible of the old data structure into the new one being created.
while (CREATE rzcorp USING FORM ...) will create a completely new data structure, with oaly
the contents of the flelds re-used. For example, CREATE REUSING a PROPRECORD just CONSes the new
property names and values onto the list. while CREATE USING copies the top level of the list. Another
example of this distinction occurs when a fleld is elaborated by a subdeclaraton: USING will create a
new instance of the sub-record. while REUSING will use the old contents of the field (unless some feld
of the subdeclaration is assigned in the CREATE expression.)

If the value of a field is neither explicitly specified. nor implicitly specified via USING, COPYING or
REUSING, the default value in the declaration is used. if any, otherwise NIL. (Note: For BETWEEN fields
in DATATYPE records. N; is used: for other non-pointer fields zero is used.) For example. foilowing
(RECORD A (B C D) D «~ 3),

(CREATE A B~T) ==> (LIST T NIL 3)

(CREATE A B«T USING X) ==Y (LIST T (CADR X) (CADDR X))

-

S

(W)
h
(o3

TN
~

TYPE?

(CREATE A B~T COPYING X)) ==> [LIST T (COPYALL (CADR X)) (COPYALL (CADDR %]
(CREATE A B«T REUSING X) ==> (CONS T (CDR X))

33 TYPE?

o

The record package ailows the-user to test if a given datum “looks like” an instance of a record. This can
te dome via an expression of the form

(TYPE? R.E’CORD—NA.ME FORM)

TYPE? is mainly intended for records with a record type of DATATYPE or TYPERECORD. For DATATYPO
the TYPE? check is exacr; i.e. the TYPE? expression will remurn non-NIL only if the value of FORM
is an instance of the record named by RECORD-NAME. For TYPERECORDs, the TYPE? expression will
check that the value of FORM is a list beginning with RECORD-NAME. For ARRAYRECORDs, it checks that
the value is an array of the correct size. For PROPRECORDs and ASSOCRECORDs, a TYPE? expression
will make sure that the value of FORM is a property/association list with property names among the
field-names of the declaration.

Attempting to execute a2 TYPE? expression for a record of type ACCESSFNS, HASHLINK or RECORD
will cause an error, TYPE? NOT IMPLEMENTED FOR THIS RECORD. The user can (re)define the
interpretation of TYPE? expressions for a particular declaration by inclusion of an expression of the form
(TYPE? com) in the record declaration (see page 3.9).

34 WITH

Often it is necessary 1o manipulate the values of the fields of a particulér record. The WITH construct ca.r’j
be used to talk about the fields of a record as if they were variables within a lexical scope: L
(WITH RECOAD-NAME RECORD-INSTANCE FORM; -+ FORMy)

RECORD-NAME is the name of a record. and RECOARD-INSTANCE is an expression which evaluares 1o an
instance of that record. The expressions FORM, --- FORM), are evaluated so that references to variables
which are feld-names of RECORD-NAME are implemented via fetch and SETQs of those variables are
implemented via replace.

For example, given - .

(RECORD RECN (FLD1 FLD2))
(SETQ INST (CREATE RECN FLD1 ~ 10 FLD2 « 20))

Then the construct
(with RECN INST (SETQ FLD2 (PLUS FLD1 FLD2]

is equivalent to

3.4

o

O

THE RECORD PACKAGE

(replace FLDZ of INST with (PLUS (fetch FLD1 of INST) (fetch FLD2 of INST]

Note that the substitudon is lexical: this operates by actually doing a substitution inside the forms.

33 RECORD DECLARATIONS

v

A record is defined by evaluating a record declaration! which is an expression of the form:
(RECORD-TYPE RECORD-NAME FIELDS . RECORD-TAIL)

RECORD-TYFE specifies the “type” of data being described by the record declaration, and thereby
implicidy specifies how the corresponding access/storage operations arc performed. RECORD-TYFE
currently is either RECORD, TYPERECORD, ARRAYRECORD, ATOMRECORD, ASSOCRECQORD, PROPRECORD,
DATATYPE, HASHLINK, ARRAYBLOCK or ACCESSFNS. RECORD and TYPERECORD are used to descrine
list structures, DATATYPE to describe user data-types, ARRAYRECORD to describe arrays, ATOMRECORD
to describe (the property list of) litatoms, PROPRECORD to describe lists in property list format, and
ASSOCRECORD to describe association list format. HASHLINK can be used with any type of data: it
simply specifies the data path to be a hash-link. ACCESSFNS is also type-less; the user specifies the
data-paths in the record declaration itself, as described below.

RECORD-NAME is a litatom used to identfy the record declaration for creating instances of the record
via CREATE, testing via TYPE?, and dumping to files via the RECORDS file package command (page
11.25). DATATYPE and TYPERECORD declarations also use RECORD-NAME (0 identfy the data structure
(as described below).

FIELDS describes the structure of the record. Its exact interpretation varies with RECORD-TYPE:

RECORD ' [Record Type]
FIELDS is a list swucrure whose non-NIL literal atoms are taken as field-names
to be associated with the corresponding elements and tails of a list swructure.
For example, with the record declaration (RECORD MSG (FROM TO . TEXT)),
(fetch FROM of X) translates as {CAR X).

NIL can be used as a place marker to fill an unnamed field, e.g.. (A NIL B)
describes a three element list, with B corresponding to the third element. A aumber
may be used to indicate a sequence of NILs, e.g. (A 4 B) is interpreted as (A
NIL NIL NIL NIL B).

TYPERECORD : [Record Typel
Similar to RECORD. except that RECORD-NAME is also used as an indicator in CAR
of the datum to signifv what “type” of record it is. This type-field is used by
the record package in the translation of TYPE? expressions. CREATE will insert
an extra field contzining RECORD-NAME at the beginning of the structure, and
the translation of the access and storage functions will wke this extra fieid into

1 ocal record declarauons are defined by including an expression of this form in the CLISP declaration
for that functicn. rather than evaluating the expression itself (see page 16.10).

3.5

ASSOCRECORD

PROPRECORD

Record Declarations

account. For example, for (TYPERECORD MSG (FROM TO . TEXT)), (fetch
FROM of X) translates as (CADR X), not (CAR X).

[Record Type]
FIELDS is a list of literal atoms. The fields are stored in association-list format:

((FIELDNAME; . VALUE;) (FIELDNAME, . VALUE,;) ---)

Accessing is performed .with ASSOC (or FASSOC, depending on current CLISP
declarzations), storing with PUTASSCC.

: [Record Type]
FIELDS is a list of literal atoms. The fields are stored in “property list” format:

(FIELDNAME,; VALUE; FIELDNAME, VALUE; ---)

Accessing is performed with LISTGET, storing with LISTPUT.

Both ASSOCRECORD and PROPRECORD are useful for defining data structures in which it is often the
case that many of the fields are NIL. A CREATE for these record types only stores those fields which are
non-NIL. Note, however, that with the record declaration (PROPRECORD FIE (H I J)) the expression
(CREATE FIE) would still construct (H NIL), since a later operation of (replace J of X with
Y) could not possibly change the instance of the record if it were NIL.

ARRAYRECORD

HASHLINK

ATOMRECORD

[Record Typel
FIELDS is a list of field-names that are associated with the corresponding elements
of an array. NIL can be used as a place marker for an unnamed field (element).
Positive integers can be used as abbreviadon for the corresponding number of NILs.
For example, (ARRAYRECORD (ORG DEST NIL ID 3 TEXT)) describes an
eight element array, with ORG corresponding to the first element, ID to the fourth.
and TEXT to the eighth.

Note that ARRAYRECORD only creates arrays of pointers. Other kinds of arrays
must be implemented by the user with ACCESSFNS.

[Record Tvpe]
FIELDS is either an atom FIELD-NAME, Or a list (FIELD-NAME EARRAYNAME
HARRAYSIZE). BARRAYNAME indicates the hash-array to be used: if zot given.
SYSHASHARRAY is used. HARRAYSIZE is used for initializing the hash amray: if
HARRAYNAME has not been initialized at the ume of the declaradon. it wiil be
set to (LIST (HARRAY (OR HARRAYSIZE 100))). HASHLINKs are useful as
subdeclarations to other records to add additional fields to already existing data-
structures. For example, suppose that FOO is a record declared with (RECORD FOO
(A B C)). To add an aditional field BAR, without modifving the already-existing
data strutures, redeclare FOO with:

(RECORD FOO (A B C) (HASHLINK FOO (BAR BARHARRAY)))

Now, (fetch BAR of X) will translate into (GETHASH X BARHARRAY), hash-
ing off the existng /ist X.)

[Record Type]
FIELDS is a list of property names. e.2., (ATOMRECORD (EXPR CODE MACRC

3.6

)

O

QO

O

DATATYPE

THE RECORD PACKAGE

BLKLIBRARYDEF)). Accessing is performed with GETPROP, storing with
PUTPROP. As with ACCESSFNS, CREATE is not initially defined for ATOMRECORD
records.

[Record Type]
Specifies that 2 new user data type with type name RECORD-NAME be allocated
via DECLAREDATATYPE (page 3.14). Unlike other record-types, the records of a
DATATYPE declaration are represented with a completely new Interlisp type, and
oot in terms of other existing types.

FIELDS is a list of field specifications, where each specificaticn is either a list
(FIELDNAME . FIELDTYPE), Or an atom FIELDNAME. If FIELDTYPE is omitted,
it defaults to POINTER, Optons for FIELDTYPE are:

POINTER .- Field contains a poirter to any arbitrary Interlisp object.
BITS N~) Field contins an ~-bit unsigned integer.

BETWEEN Ny Np A generalization of BITS. Field may contain an integer
X, such that x is greater than or equal to N, and less
than or equal to N, Enough bits are allocated to store a
number between 0 and Ny~N;; N, is appropriately added or
subtracted when the field is accessed or stored into.

INTEGER or FIXP Field contains a full word signed integer (the size is
'~ implementation-dependent).

FLOATING or FLOATP
Field contains a full word floating point number.

FLAG Field is a one bit field that “contains™ T or NIL.
For éxample, the declaration

(DATATYPE FOO
((FLG BITS 12)
TEXT
(CNT BETWEEN 10 25)
HEAD
(DATE BITS 18)
(PRIO FLOATP)
(READ? FLAG)))

would define a data type FOO which occupies (in Interlisp-10) three words of storage
with two pointer fields (one word), a full word floating point number. fields for an
18, 12. and 4 bit unsigned integer, and a fag (one bit), with 1 bit left over. Fields
are allocated in such a way as to optimize the szorage used and not necessarily in the
order specified. To store this information in a conventional RECORD list structure.
e.g.. (RECORD MSG (FLG TEXT CNT DATE PRIO . HEAD)), would take §
words of list space and up to three number boxes (for FLG, DATE, and PRIO).

Since the user data type must be set up at run-time, the RECORDS file package
comrmand will dump a DECLAREDATATYPE expression as well as the DATATYPE

3.7

ARRAYBLOCK

ACCESSFNS

Record Declarations

declaration itself. The INITRECORDS file package command (page 11.25) will
dump only the DECLAREDATATYPE expression.

Note: DATATYPE declarations should be used with caution within local declarations,
since a new and different data type is allocated for each one with a different name.

[Record Typej
(Not implemented in Interlisp-D) Similar to a DATATYPE declaration, except that
the objects it creates and manipulates are arrays. As with DATATYPE's, the actual
order of the fields of the ARRAYBLOCK may be shuffled around in order to satsfy
garbage collector consTaints,

For example,

(ARRAYBLQCK FOO
((F1 INTEGER)
(F2 FLOATING)
(F3 POINTER)
(F4 BETWEEN -30 =2)
(F5 BITS 12)
(F& FLAG)))

fRecord Tvpe]
FIELDS is a list of elements of the form (rmz.n-mua ACCESSDEF SETDEF),
ie. for each fieldname, the user specifies how it is to be accessed and ser
ACCESSDEF should be a function of one argument. the datum, and will be used
for accessing. SETDEF should be a function of two arguments, the datum and
the cew value, and will be used for storing. SETDEF may be omiited, in which
case, no storing operations are allowed. ACCESSDEF and/or SETDEF may also be a
LAMBDA expression or 2 form written iz terms of variables DATUM a.nd (in SETDEF)
NEWVALUZ. For example. given the declaration :

[ACCESSFNS ((FIRSTCHAR (NTHCHAR DATUM 1)
(RPLSTRING DATUM 1 NEWVALUE))
(RESTCHARS (SUBSTRING DATUM 2]

(replace FIRSTCHAR of X with Y) would transiate to (RPLSTRING X 1
Y). Since no sETDEF is given for the RESTCHARS field, attempting to perform
(replace RESTCHARS of X with Y) would generate an error. REPLACE

()

)

J

UNDEFINED FOR FIELD. Notethat ACCESSFNS do not have a CREATE definition.

However, the user may supply one in the defaults and/or subdeclarations of the
declaration, as described below. Attempting to CREATE an ACCESSFNS record
without specifying a create definition will cause an error CREATE NOT DEFINED
FOR THIS RECORD.

ACCESSDEF and SETDEF can also be a property list which specify FAST, STANDARD
and UNDOABLE versions of the ACCESSFNS. forms. e.g.

[ACCESSFNS LITATOM ((DEF (STANDARD GETD FAST FGETD)
(STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect use FGETD for feiching, if UNDOABLE, use

3.8

D

O .

THE RECORD PACKAGE

/PUTD for saving.

The ACCESSFNS facility allows the use of data-structurss not specified by one of the buiit-in record
types. For exampie. one possible representation of a data-smucture is to store the fields in paralle! arrays,
especially if the number of instances required is known, and they do not need to be garbage coliected.
Thus, to implement a data stucture called LINK with wo felds FROM and TO, one would have two
arrays FROMARRAY and TOARRAY. The representation of an “instance” of the record would be an integer

. which is used to index into the arrays. This can be accomplished with the declaration:

O

[ACCESSFNS LINK
((FROM (ELT FROMARRAY DATUM)
(SETA FROMARRAY DATUM NEWVALUE))
(TO (ELT TOARRAY DATUM)
(SETA TOARRAY DATUM NEWVALUE)))

(CREATE (PROG1 (SETQ LINKCNT (ADD1 LINKCNT))

- (SETA FROMARRAY LINKCNT FROM)
(SETA TOARRAY LINKCNT TO)))

(INIT (PROGN (SETQ FROMARRAY (ARRAY 100))

(SETQ FROMARRAY (ARRAY 100))]

- To CREATE a new LINK, a counter is incremented and the new elements stored (although the CREATE

TN

U

(:>

form given the declaration should actually include a test for overflow).
RECORD-TAL 1s optional, It may contain expressions of the form:

FIELD-NAME + FORM : -
Allows the user to specify within the record declaraton the default value to be
stored in FIELD-NAME by a2 CREATE (if no value is given within the CREATE
expression itseif). Note that ForMm is evaluated at CREATE time, not when the
declaration is made.

(CREATE FORM) Defines the manner in which CREATE of this record should be performed. This
: provides a way of specifying how ACCESSFNS should be created or overriding the
usual definition of CREATE. If ForM contains the field-names of the declaration as
variables, the forms given in the CREATE operation will be subsututed in. If the
word DATUM appears in the create form, the origina/ CREATE definiton is inserted.

This effectively allows the user to “advise™ the create.

Note: (CREATE rFoRM) may also be specified as “RECORD-NAME + FORM”, e.g.
C « (CONS A D).

(INIT FORM) Specifies that ForM should be evaluated when the record is declared. ForM will
also be dumped by the INITRECORDS file package command (page 11.25).

For example, see the exampie of an ACCESSFNS record declaration above. [n this
example. FROMARRAY and TOARRAY are inidalized with an INIT form.

(TYPE? FORM) Defines the manner in which TYPE? expressions are to be translated. FORM may
either be an expression in terms of DATUM or a functon of one argument

Note: (TYPE? roRM) may also be specified as “RECORD-NAME @ FORM', e.g.
C @ LISTP.

3.9

‘Defining New Record Types

(SUBRECORD NAME . DEFAULTS)
NAME must be a field that appears in the current declaration and the name of
another record. This says that, for the purposes of translating CREATE expressions,
substitute the top-level declaration of NAME for the SUBRECORD form, adding on
any defaults specified. .

For example: Given (RECORD B (E F G)), (RECORD A (B € D) (SUBRECORD
B)) would be treated like (RECORD A (B C D) (RECORD B (E F G))) fo‘
the purposes of translating CREATE expressions.

a subdeclaration (Le., a record declaration.)
The RECORDNAME of a subdeclaration must be either the RECORD-NAME of its
immediately superior declaraton or one of-the superior’s field-cames. Instzad of
identifying the declaradon as with top level declaratons, the record-name of a p
subdeclaration idendfies the parent field or record that is being described by the \
subdecla.rar.ion Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaranon (RECORD NaME, NAME;,) is a simple way of defining a
synonym for the field NAME,.

Note that, in a few cases, it makes sense for a given field to have more :han one
subdeclaration. For example, in

(RECORD (A . B) (PROPRECORD B (FOO FIE FUM)) (HASHLINK B C))
B is elaborated by both a PROPRECORD and a HASHLINK. Similarly,
(RECORD (A B) (RECORD A (C D)) (RECORD A (FOO FIE)))

is 2is0 acceptable, and essentially “overlays™ (FOO FIE) and (C D), ie. (fetch
FOO of X) and (fetech € of X) would be equivalent. In such cases, the first
subdeclaration is the one used by CREATE.

3.6 DEFINING NEW RECORD TYPES

In additon to the built-in record types, users can declare their own record types by performing the
following steps:

(1) Add the new record-type to the value of CLISPRECORDTYPES:.

(2) Perform (MOVD 'RECORD RECORD-TYPE), Le. give the record-type the same definition as that of
the function RECORD;

(3) Put the name of a function which will return the translation on the property list of RECORD-TYPE, as
the value of the property USERRECORDTYPE. Whenever a record declaradon of type RECORD-TYPZ is
encountered. this function will be passed the record declaration as its argument, and should return a new
record declaration which the record package will then use in its place.

//\
N

OGN

O

®

THE RECORD PACKAGE

3.7 RECORD MANIPULATION FUNCTIONS

The user may edit (or delete) global record declarations with the functon:

(EDITREC NAME COM; -+ COMy) [NLambda NoSpread Function}
Nospread niambda function similar to EDITF or EDITV. EDITREC calls the editor
on a copy of all declarztions in which NAMZ is the record-name or a field name.
On exit, it redeclarss those that have changed and undeclares any that have been
deletad. If NAME is NIL, all declarations are edited.

COM, -+ COMy are (optonal) edit commands.

When the user redeclares a global record, the transiadons of all expressions involving that record or any
of its fields are automatically deleted from CLISPARRAY, and thus will be recomputed using the new

‘informaticn. If the user changss a /oca/ record declaration, or changes some other CLISP declaration, e.g.,

STANDARD to FAST, and wishes the new informadon to affect record expressions already translated, he
must make sure the corresponding transiations are removed, usually either by CLISPIFYing or applying
the ! DW edit macro.

(RECLOOK RECORDNAME — — — =) [Function}
Returns the endre declaration for the record named RECORDNAME: NIL if
no record declaration with name RECORDNAME. Note that the record package
maintains internal state about current record declarations, so performing deswuctive
operations (e.g. NCONC) on the value of RECLOOK may leave the record package
in an inconsistanat state. To change a record declaradon, use EDITREC.

(FIELDLOOK FIELDNAME) ' {Function]
Returns the list of declarations in which FIELDNAME is the name of a field.

(RECORDFIELDNAMES RECORDNAME) [Function]
Returas the list of fields declared in record RECORDNAME. RECORDNAME may
either be a name or an entire declaration,

(RECORDACCESS FELD DATUM DEC TYPE NEWVALUE) [Function]
' TYPE is one of FETCH., REPLACE, FFETCH, FREPLACE. /REPLACE or their
lowercase equivalents. TYPE=NIL means FETCH. If TYPE corresponds to a fetch
operation, i.e. is FETCH, or FFETCH, RECORDACCESS performs (TYPE FIZLD
OF patum). If TYPE corresponds to a replace, RECORDACCESS performs (TY=E
FIELD OF DATUM WITH NEWVALUZ). DEC is an optional declaraticn: if given,

FIELD is interpreted as a fleld name of that declaration.

Note that RECORDACCESS is relatively inefficient aithough it is better than
constructing the equivalent form and performing an EVAL.

38 CHANGETRAN

A very common programming construction consists of assigning a new value to some datum that is a
functon of the current value of that dacum. Some exampies of such read-modify-write sequences include:

311

)

>,

Changetran
(SETQ X (IPLUS X 1)) Incrementing a counter
(SETQ X (CONS Y X)) Pushing an item on the front of a list
(PROG1 (CAR X) (SETQ X (CDR X))) Popping an item off a list

It is easier to express such computations when the datum in question is a simple variable as above thaa
when it is an element of some larger data structure. For example, if the datum to be modified was { CAR
X), the above examples would be:

(CAR (RPLACA X (IPLUS (CAR X) 1)))
(CAR (RPLACA X (CONS Y (CAR X))) ' (ﬁv
(PROG1 (CAAR X) (RPLACA X (CDAR X)))

and if the datum was an element in an array, (ELT A N), the examples would be:

*

(SETA A N (IPLUS (ELT A N) 1)))
(SETA A N (CONS Y (ELT A N))))
(PROG1 (CAR (ELT A N)) (SETA A N (CDR (ELT A N))))

The difficulty in expressing (and reading) modification idioms is in part due to the well-known assymmerry
-of setting versus accessing operations on structures: RPLACA is used to smash what CAR would return,
SETA corresponds to ELT, and so on.

The “Changetran™ facility is designed to provide a more satisfactory notation in which to express certain
common (but user-exiensible) structure modification operations. Changetran defines a set of CLISP words
that eacode the kind of modification that is to take place, e.g. pushing on a list, adding to a number.
etc. More important, the expression that indicates the datum whose value is to be modified needs to be
szted only once. Thus, the “change word” ADD is used to increase the value of a datum by the sum of

a set of numbers. Its arguments are an expression denoting the datum, and a set of items to be added tc,)
its current value. The datum expression must be a variable or an accessing expression (eavolving fetch,
CAR, LAST, ELT, etc) that can be manslaied to the appropriate setting expression.

For example. (ADD (CADDR X) (F00)) is equivalent to:

(CAR (RPLACA (CDDR X) :
(PLUS (FOO) (CADDR X)))

[f the datum expression is a complicated form-involving subsidiary function calls, such as (ELT (F00 X)
(FIE Y)}), Changetran goes to some lengths to make sure that those subsidiary functdons are evaluatad
only once (it binds local variables to save the results), even though they logically appear in both the
setting and accessing parts of the translation. Thus. in thinking about both efficiency and possible side
effects. the user can rely on the fact that the forms will be evaluated only as often as they appear in the
expression.

For ADD and all other changewords, the lower-case version (add. etc.) may also be specified. Like other
CLISP words, change words are translated using all CLISP declarations in effect (see page 16.9).

, Thefollowing is a list of those change words recognized by Changetran. Except for POP. the value of il ™

312

-

S

O

THE RECORD PACEAGE

built-in changeword forms is defined to be the new value of the datum.

(ADD DATUM ITEM; ITEMg ---) {Change Word]
Adds the specified items to the current value of the datum, stores the result back
in the datum location. The transiaton will use IPLUS, PLUS or FPLUS according

to the CLISP declarations in effect

(PUSH DATUM ITEM; ITEMy ---) {Change Word]
CONSes the items onto the front of the current value of the datum, and stores the
result back in the darum location. For example, (PUSH X A B) would traaslate

as (SETQ X (CONS A (CONS B X))).

(PUSHNEW DATUM ITEM) [Change Word]
Like PUSH (with only one item) except that the item is not added if it is already
FMEMB of the datum'’s value.

Note that, whereas (CAR (PUSH X 'FO00)) will always be FOO, (CAR (PUSHHNEW
X 'FOQ)) might be something else if FOO already existed in the middle of the
list

(PUSHLIST DATUM ITEM; ITEMg -:-) {Change Word]
Similar to PUSH, except that the items are APPENDed in front of the current value
of the datum. For example, (PUSHLIST X A B) would translate as (SETQ X
(APPEND A B X)).

(POP pATUM) [Change Word]
Rerurns CAR of the current va.lue of the datum after storing its CDR into the datum.
The current value is computed only once even though it is referenced twice. Note
thar this is the only built-in changeword for which the value of the form is not Lhe
new value of the datum.

(SWAP DATUM, DATUM,) - [Change Word]
Sets DATUM, 10 DATUM, and vice versa.

"™ (CHANGE DATUM FORM) {Change Word]
This is the most flexible of all chance words since it enables the user o provide 22
arbitrary form describing what the new value should be, but it stll highlights the
fact that structure modification is to occur, and sdll enables the damm expression
to appear only once. CHANGE sets DATUM to the value of FORM®, where FORM” IS
constucted from FORM by substituting the datum expression for every occurrence
of the litatom DATUM. For example. (CHANGE (CAR X) (ITIMES DATUM 3))
transiates as (CAR (RPLACA X (ITIMES (CAR X) 5))).

CHANGE is useful for expressing modificatons that are not built-in and are not
sufficienty common to justify defining a user-changeword. As for other changeword
expressions, the user need not repeat the damum-expression and need not worty
about multiple evaluation of the accessing form.

It is possible for the user to define new change words. To define a change word. say sub. that
subtracts items from the current value of the datum. the user must put the property CLISPWORD. vaiue
(CHANGETRAN . sub) on both the upper and lower-case versions of sub:

User Defined Data Types

(PUTPROP 'SUB °'CLISPWORD '(CHANGETRAN . sub))
(PUTPROP 'sub 'CLISPWORD ' (CHANGETRAN . sub))

. Then. the user must put (on the /ower-case version of sub only) the property CHANGEWORD, with value
FN. FN is a funcdon that will be applied to a single argument, the whole sub form, and must return a
form that Changetran cao translate into an appropriate expression. This form should be a list structurs
with the atom DATUM used whenever the user wants an accessing expression for the current value of the
datum 1o appear. The form (DATUM«~ FORM) (note that DATUM« is a single atom) should occur cace in
the expression: this specifies that an appropriate storing expression into the datum should occur at that
point. For example, sub could be defined with:

(PUTPROP ‘sub 'CHANGEWORD
' (LAMBDA (FORM)
(LIST 'DATUMe)
--(LIST 'IDIFFERENCE \
' DATUM
(CONS 'IPLUS (CDDR FORM))))))

If the expression (sub (CAR X) A B) were encountered, the arguments to SUB would first be
dwimified, and then the CHANGEWORD function would be passed the list (sub (CAR X) A B), and
return (DATUM« (IDIFFERENCE DATUM (IPLUS A B))), which Changetran would convert to {(CAR
(RPLACA X (IDIFFERENCE (CAR X) (IPLUS A B)))).

Note: The sub changeword as defined above will always use IDIFFERENCE and IPLUS: add uses the
correct addition operation depending on the current CLISP declarations. .

3.9 ° .USER DEFINED DATA TYPES

-

Note: The most convenient way to define new user data types is via DATATYPE record declarations (see

page 3.7). m

In addition to built-in data-types such as atoms, lists, arrays. etc.. Interlisp provides a way of defining
completely new classes of objects, with a fixed aumber of fields determined by the definition of the datz
type. Facilides are provided for declaring the name and type of the fields for a given class. creating
objects of a given class. accessing and replacing the contents of each of the fields of such an object. as
well as interrogating such objects.

In order to define a new class of objects. the user must supply a name for the new dawa type and
specifications for each of its fields. Each field may contain either a pointer (i.e., any arbitrary Interlisp
datum), an integer, a floating point number, or an N-bit mteger This is done via the functicn
DECLAREDATATYPE:

(DECLAREDATATYPE TYPENAME FIELDSPECS) [Function]j
TYPENAME Is a literal atom, which specxﬁes the name of the data type. FIELDSPECS
is a list of “field specifications”. Each field specification may be one of the following:

POINTER Field may contain any [nterlisp datum.

FIXpP Field contains an integer. —

3.14

@,

THE RECORD PACRKAGE

FLOATP Field contains a floating point number.
(BITS N) ¢ Field contains a non-negative integer less than 2V,

DECLAREDATATYPE returns a list of “field descriptors”, one for each element of
FIELDSPECS. A field descriptor contains information about where within the datum
the field is actually stored.

If TYPENAME is already declared a datatype, it is re-declared. If FIZLDSPECS is
NIL, TYPENAME is “undeclared”.

(FETCHFIELD DESCRIPTOR DATUM) [Function]
Returns the conients of the field described by DESCRIPTOR from DATUM.
DESCRIPTOR must be a “field descriptor” as returned by DECLAREDATATYPE.
If bATUM is not an instance of the datatype of which DESCRIPTOR is a descriptor,
causes error DATUM OF INCORRECT TYPE.

In Interlisp-10, if DESCRIPTOR is quoted, FETCHFIELD compiles open. This
capability is used by the record package.

(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE) {Function]
Store NEWVALUE into the Seld of paTum described by DESCRIPTOR. DESCRIPTOR
must be a field descriptor as returned by DECLAREDATATYPE. If DATUM is not an
instance of the datatype of which DESCRIPTOR is a descriptor, causes error DATUM
OF INCORRECT TYPE. Value is NEWVALUE.

(NCREATE TYPENAME FROM) [Function]
Creates and returns a new instance of datatype TYPENAME.

[f FrROM is also a datum of datatype TYPENAME, the fields of the new object are
initialized to the values of the corresponding fields in FROM. '

NCREATE will not work for built-in datatypes, such as ARRAYP, STRINGP, ewc. If
TYPENAME is not the type name of a previously declared user data type, generztes
an error, ILLEGAL DATA TYPE,

(GETFIELDSPECS TYPENAME) [Function]

Returns a list which is EQUAL to the FIELDSPECS argument given to DECLAREDATATYPE

for TYPENAME: if TYPENAME is not a currenty declared data-type. returns NIL.

(GETDESCRIPTORS TYPENAME) [Function]
Returns a list of field descriptors, EQUAL to the value of DECLAREDATATYPE for
TYPENAME. '

(USERDATATYPES) [Functon]j

Rewurns list of names of currently declared user data types.

Note that the user can define how user data types are to be printed via DEFPRINT (page 6.23). how they
are (o be evaluated by the interpreter via DEFEVAL (page 5.11), and how they are to be compiled by the
compiler via COMPILETYPELST (page 12.9).

The DATATYPE facility in [nterlisp-D is an extension of that found in Interflisp-19. I[nterlisp-D also
accepts 8YTE, WORD, and SIGNEDWORD as datatype field descriptors equivalent to BITS 8. BITS 16.

3.15

O

User Defined Data Types

and BETWEEN -215 and 215-1 respectively. Interlisp-D will not move fields around in a user declaration
if they pack into words and pointers as specified. POINTER fields take 24 bits and must be 32-bit
right-justified.

|

3.16

Q

CHAPTER 4

CONDITIONALS AND ITERATIVE STATEMENTS

In order to do any but the simplest computations, it is necessary to test values and execute expressions
conditionaily. and to execute expressions repeatedly. Interlisp supplies a large number of useful conditional
and iterative constructs.

(COND CLAUSE,

CLAUSE, --+ CLAUSEg) [NLambda NoSpread Functiozn]

The conditonal function of Interlisp, COND, takes an indefinite number of
arguments, called clauses. Each CLAUSE; is.a list of the form (7; ¢;; -+ Civ).
where p; is the predicate. and ¢;; --- C;y are the consequents. The operation of
COND can be paraphrased as:

IF p; THEN ¢y --- €y ELSEIF P, THEN Cg; -+ Cop ELSEIF Py - -+

The clauses are considered in sequence as follows: the predicate P, of the clause
CLAUSE; is evaluated. If the value of p, is “true” (non-NIL), the consequents C;;
- Cjy are evaluated in order, and the value of the COND is the value of C;y, the

last expression in the clause. If p; is “false” (EQ to NIL), then the remainder of

" CLAUSE; is ignored, and the next clause, CLAUSE;_ ;, is considered. If no p; is true

for any clause, the value of the COND is NIL.

Note: If a clause has no consequents, and has the form (P;), then if P; evaluates
to non-N1IL, it is returned as the value of the COND. It is only evaluated once.

Example:

~ (DEFINEQ (DOUBLE (X)

(COND ((NUMBERP X) (PLUS X X})
((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))

(T (PRINT "unknown") X)

. ((HCRRIBLE-ERROR))]

(DQUBLE)

- (DQUBLE 5)

10

+~ (DOUBLE "FOO™)

"FOOFOO"

« (DOUBLE 'BAR)

BARBAR

+~ (DOUBLE '(A B C))

"unknown”

(A B C)

A few points about this exampie: Notice that 5 is both a number and an atom.

but it is “caught” by the NUMBERP clause before the ATOM clause. Also notice
the predicate 7. which is always true. This is the normal way to indicate a COND

41

clause which will always be executed (if none of ihe preceeding clauses are true).
(HORRIBLE-ERROR) wiil never be executed.

Note: The IF statement (page 4.4) provides an easier and more readable way of
coding conditional expressions than COHD.

(AND x; x5 -+ Xp) [NLambda NoSpread Function}
Takes an indefinite number of arguments (including zero), that are evaluated in
order. If any argument evaluates to NIL, AND immediately returns NIL (without
evaiuating the remgzining arguments). If all of the arguments evaluate to non-HIL.
the value of the last argument is returned. (AND) => T.

(OR x; X3 --- Xp) [NLambda NoSpread Functon]
Takes an indefinite number of arguments (including zero), that are evaluated in
order. If any argument is non-NIL, the value of that argument is returned by OR
(without evaluating the remaining arguments). If all of the arguments evaluate to
NIL, NIL is returned. (OR) => NIL. ' :

AND and OR can be used as simple logical connectves, but note that they may not evaluate all of their
arguments. This makes a difference if the evaluation of some of the arguments causes side-effects. Another
result of this implementation of AND and OR is that they can be used as simple conditional statements.
For example: (AND (LISTP x) (CDR x)) returns the value of (CDR x) if x is a list cell; otherwise
it returns NIL without evaluatng (CDR Xx). In genmeral this use of AND and OR should be avoided in
favor of more explicit conditional statements in order to make programs more readable.

(SELECTQ X CLAUSE; CLAUSE, ::+ CLAUSEyx DEFAULT) [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of its first argument x.
Each clause CLAUSE; is a list of the form (s; ¢;; --- C;n) where s; is the selection

key. The operation of SELECTQ can be paraphrased as:
'[Fx = s, THEN ¢;; --+ ¢y ELSEIF x = 5, THEN ... ELSE DEFAULT.

If s; is an atom, the value of x is tested to see if it is €EQ to s; (which is not
evaluated). If so, the expressions C;; --+ Cpy are evaluated in sequence, and the

1

value of the SELECTQ is the value of the last expression evaluated, i.e., C;n-

If s; is a list, the value of x is compared with each element (not evaluated) of §;,
and if x is £Q to any one of them, then ¢;; --- C; are evaluated as above.

If cLAUSE; is not selected in one of the two ways described, CLAUSE; ., is tested.

etc.. until all the clauses have been tested. If none is selected, DEFAULT is evaluated.

and its value is returned as the value of the SELECTQ. DEFAULT must be present
An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))
((APRIL JUNE SEPTEMBER NOVEMBER) 30)

31]

If the value of MONTH is the litatom FEBRUARY, the SELECTQ returns 28 or 29
(depending on (LEAPYEARP)): otherwise if MONTH is APRIL. JUNE, SEPTEMBER.

,/'\\

CONDITIONALS AND ITERATIVE STATEMENTS

or NOVEMBER, the SELECTQ returns 30: otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it will not work if
the vaiue of x is a list, a large integer, or floating point number, since SELECTQ
uses EQ for all comparisons.

Note: The function SELCHARQ (page 2.13) is a version of SELECTQ that recognizes CHARCODE litatoms.

(SELECTC X CLAUSE; CLAUSE; --- CLAUSEg DEFAULT) [NLambda NoSpread Function]
“SELECTQ-on-Constant.” Similar to SELECTQ except that the selection keys are
evaluateg, and the result used as a SELECTQ-style selecton key.

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compiie-
tdme. Therefore, the selection keys act like compile-time constants (see page 12.5).

For example:
ON |

[SELECTC NUM .
((for X from 1 to 9 collect (TIMES X X)) "SQUARE")
"HIP"]

compiles as:

[SELECTQ NUM
((149 16 25 36 49 64 81) "SQUARE")
"HIP"]

(PROG1 x; X5 -+ Xy) ' [NLambda NoSpread Function]
Evaluates its arguments in order, and returns the value of its first argument x,. For
example, (PROG1 X (SETQ X Y)) sets X to Y, and returns X's original value.

(PROGZ Xx; X3 -+ Xp) [Function]
' Similar to PROG1. Evaluates its arguments in order, and returns the value of its
second argument X,.

D (PROGN x; X, -+ Xp) [NLambda NoSpread Function]

' PROGN evaluates each of its argumensts in order, and returns the value of its las:
argument. PROGN is used to specify more than one computation where the syniax
allows only one, e.g., (SELECTQ -.- (PROGN ...)) allows evaluation of several
expressions as the defauit condition for a SELECTQ.

(PROG VARLST E; E; --- Ey) [NLambda NoSpread Function]
This function allows the user to write an ALGOL-like program containing Interlisp
. expressions (forms) to be executed. The first argument. VARLST, is a list of local
variables (must be NIL if no variables are used). Each atom in VARLST is weated
as the name of a local variable and bound to NIL. VARLST can also contain lists
of the form (atom form). In this case. atom is the name of the variable and is
bound to the value of form. The evaluation takes place before any of the bindings
are performed, e.g., (PROG ((X Y) (Y X)) ---) will bind local variable X {0
the ‘value of Y (evalvated outside the PROG) and local variable Y t0 the value of
X (ouwside the PROG). An atiempt to use anvthing other than a literal atom as a
PROG variable will cause an error, ARG NOT LITATOM. An attempt to use NIL
or T as a PROG variaple will cause an error, ATTEMPT TO BIND NIL OR T.

O o

RETURN Xx) {Funcdon]

~ I'ne IF statement provides a way of way of specifying conditional expressions that is much easier and
readzble than using the COND funcion directly. CLISP translates expressions employing IF, THEN,

The IF Statement

The rest of the PROG is a sequence of non-atomic statements (forms) and litatoms
(labels). The forms are evaluated sequenually: the labels serve oniy as markers.
The two special functions GO and RETURN alter this flow of control as described
below. The value of the PROG is usually specified by the function RETURH. If no
BETURN is executed before the PROG “falls off the end,” the value of the PROG is
NIL.

(GO x) [NLambda NoSpread Function]
GO is used to cause a transfer in a PROG. (GO L) will cause the PROG to evaluate
forms startng at the label L (60 does oot evaluate its argument). A GO can be
used at any ievel in a PROG. If the label is not found. GO will search higher progs
within the same ﬁmction. e.g., (PROG --- (PROG --- (GO A))) If the
label is not found in the functon in which the PROG appears, an error is generated,
UHDEFINED OR ILLEGAL GO.

- A RETURN is the normal exit for a PROG. Its argument is evaluated and is
immediately returned the value of the PROG in which it appears.

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG, the GO or RETURN
will be executed in the last mterpreted PROG entered if any, otherwise cause an error.

GO or RETURN inside of a complled funcuon that is not a PROG is not allowed., and wﬂl cause an error
at compile dme.

As a corollary, GO or RETURN in a functionza! 'a.rgumenr. e.g.. to SORT, will not work compiled. Also, *
since NLSETQ’s and ERSETQ’s compile as separate functions, a 60 or RETURN cannot be used inside of a

compiled NLSETQ or ERSETQ if the corresponding PROG is outside, ie., above, the NLSETQ or ERSETQ.

4.1 THE [F STATEMENT

~
e

ELSEIF, or ELSE into equivalent COND expressions. o general, statements of the form:
(IF aaa THEN BB ELSEIF ccc THEN ppp ELSE EEE)
are transiated to:
(COND (aas BBB)
" {ccc pDD)
(T =))

The segment between IF or ELSEIF and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSEIF as the consequent(s). ELSE is the same as
ELSEIF T THEN. These words are spelling corrected using the speang list CLISPIFWORDSPLST. Lower
case versions (if, then, elseif, else) may also be used.

[f there is nothing following a THEN. or THEN is omitted entirely, then the resulting COND ciause has a

™
)

4.4

@

CONDITIONALS AND ITERATIVE STATEMENTS

predicate but no consequent. For example, (IF X THEN ELSEIF ...) and (IF X ELSEIF -...) both
translate to (COND (X) ---), which means that if X is not NIL, it is returned as the value of the COND.

CLISP considers IF, THEN, ELSE, and ELSEIF to have lower precedence than all infix and prefix
operators, as well as Interlisp forms, so it is sometimes possible to omit parentheses around predicate or
consequent forms. For example, (IF FOO X Y THEN -..) is equivalent to (IF (FOO X Y} THEN
.-.),and (IF X THEN FOO X Y ELSE -..) asequivalentto (IF X THEN (FCO X Y) ELSE -.-.).
Essentally, CLISP determines whether the segment berween THEN and the next ELSE or ELSEIF
correspends to one form or several and acts accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note tha: if FOO is bound as a varizble. (IF FOO THEN .-.) is translated as (COND
(FOO .-.)), so if a call to the function FOO is desired, use (IF (FO0) THEN ---).

42 THE ITERATIVE STATEMENT

The iterative statement (i.s.) in its various forms permits the user to specify complicated iterative
statements in a straightforward and visible manner. Rather than the user having to perform the mental
transformations to an equivalent Interlisp form using PROG, MAPC, MAPCAR, etc., the system does it for
him. The goal was to provide a robust and tolerant facility which could “make sease™ out of a wide class
of iteradve statements. Accordingly, the user shouid not feel obliged to read and understand in detail the
description of each operator given below in order to use iterative statements.

An iteradve statement is a form consisting of a number of special words (known as i.s. operators or
i.s.oprs), followed by operands. Many is.oprs (FOR, DO, WHILE, etc.) are similar to iterative statements
in other programming languages; other i.s.oprs (COLLECT, JOIN, IN, etc.) specify useful operations in a
Lisp environment Lower case versions of i.s.oprs (do, collect, etc.) can also be used. Here are some
examples of iteratve statements:

¢ (for X from 1 to § do (PRINT 'FO0))

FOO '

FOO

FOO

FOO

FOO

NIL :

« (for X from 2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100)

« (for X in '(A B 1 C 6.5 NIL (45)) count (NUMBERP X))
2

[terative statements are implemented through CLISP. which tanslates the form into the appropriate
PROG. MAPCAR, ewc. Iterative statement forms are translated using all CLISP declaratons in effect
(standard/fast/undoable/ etc.); see page 16.9. Misspelled i.s.oprs are recognized and corrected using the
spelling list CLISPFORWORDSPLST. The order of appearance of operators is never important: CLISF
scans the entire statement before it begins to consuuct the equivalent Interlisp form. New Ls.oprs can be
defined as described on page 4.13.

[f the user defines a function by the same name as an i.s.opr (WHILE. T0. ewc.). the is.opr wili no longer
have the CLISP interpretation when it appears as CAR of a form, although it will continue to be treated

4.5

S.types

as an Ls.opr if it appears in the interior of an iterative statement. To alert the user, a warning message is
printed. e.g., (WHILE DEFINED, THEREFORE DISABLED IM CLISP).

421 Ls.types

The following Ls.oprs are examples of a certain kind of iterative statement operator called an is.type. The
Ls.type specifies what is to be done at each iteradon. Its operand is called the “body” of the iterative
statement. Ezch iteratdve statement must have one and only one is.rype.

D0 Form

| COLLECT romrm

 JOIN Fomm

SUM rorM

COUNT FORM

ALWAYS FORM

NEVER rFOrRM

[LS. Operzator]
Specifies what is to be done at each iteration. DO with no other operator specifies
an infinite loop. If some explicit or implicit terminating condition is specified, the
value of the is. is NIL. Translates to MAPC or MAP whenever possible.

' [1.S. Operator]
Spec1ﬁes thaz the value of FORM at each iteration is to be collected in a list, which
is returned as the value of the iLs. when it terminates. Translates to MAPCAR,
MAPLIST or SUBSET whenever possible.

When COLLECT translates to a PROG (e.g., if UNTIL, WHILE, etc. appear in the
i.s.), the translation employs an open TCONC using two pointers similar to that
used by the compiler for compiling MAPCAR. To disable Lh.xs translation, perform
(CLDISABLE 'FCOLLECT).

[1.S. Operator]
Similar to COLLECT, except that the values of FORM at each iteration are NCCONCed.
Translates to MAPCONC or MAPCON whenever possible. /NCONC, /MAPCONC, and
/MAPCON are used when the CLISP declaration UNDOABLE is in effecL

[LS. Operator]
Specmes that the values of FORM at each iteration be added together and returned
as the value of the is. eg., (FOR I FROM 1 TO 5 SUM It2) is egual to
1+4+9+16+25. IPLUS, FPLUS, or PLUS will be used in the transiation depending
on the CLISP declarations in effect.

[1.S. Operator]
Counts the number of times that FORM is true, and returns that count as its value.

[1.S. Operartor]
Returns T 1f the value of ForM is non-NIL for all iteradons. (Note: returns NIL
as soon as the value of ForM is NIL).

[1.S. Operator]
Similar 0 ALWAYS, except returns T if the value of FORM is never ue, (Note:
returns NIL as soon as the value of FORM is non-NIL).

The following Ls.types explicitly refer to the iteration variable (i.v.) of the iteratve statement, which is a
variable set at each iteration. This is explained below under FOR.

THEREIS rorM

[L.S. Operator]
Retumns the first value of the i.v. for which FORM is non-NIL. e.g.. (FOR X IN Y

4.6

)

—

O

o

LARGEST rorM
SMALLEST FORM

CONDITIONALS AND ITERATIVE STATEMENTS

THEREIS (NUMBERP X)) returns the first number in Y. (Note: returns the value
of the i.v. as soon as the value of FORM is non-NIL).

[1.S. Operator]

[L.S. Operator]
Returns the value of the i.v. that provides the largest/smallest value of FORM.
SSEXTREME is always bound to the current greatest/smallest value, SSVAL to the
value of the iv. from which it came.

.2

4.2.2 Iteration Variable Is.oprs

FOR war

FOR vArs

FOR OLD vAR

BIND vAr

" BIND VARS

{LS. Operator]
Specifies the iteration variable (i.v.) which is used in conjunction with IN, ON,
FROM, TO, and BY. The variable is rebound within the is, so the value of the
variable outside the is. is not effected. Example:

~ (SETQ .X 55)

55

~ (for X from 1 to 5 collect (TIMES X X))
(1 49 16 25)

- X

55

. A T [L.S. Operator]
VARS a list of variables, e.g., (FOR (X Y Z) IN ...). The first variable is the
i.v., the rest are dummy variables. See BIND below.

{1.S. Operator]}
Similar to FOR, except that VAR is nor rebound within the is., so the value of the
i.v. outside of the is. is changed. Example:

« (SETQ X 53)

55

~ (for old X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

~ X

6

[L.S. Operator]
[L.S. Operator]
Used to specify dummy variables, which are bound locally within the i.s.

-

Note: FOR, FOR OLD, and BIND variables can be initialized by using the form VAR<FORM:

(FOR OLD (Xerorm) BIND (Y«FORM) --.)

IN FORM

[L.S. Operator]
Specifies that the is. is to iterate down a list with the i.v. being reset w0 the
corresponding element at each iteration. For example, (FOR X IN Y DO ..-)
corresponds 0 (MAPC Y (FUNCTION (LAMBDA (X) ---))). If no iv. has
been specified, a dummy is supplied. e.g., (IN Y COLLECT CADR) is equivalent

4.7

Iteration Variable [s.oprs

to (MAPCAR Y (FUNCTION CADR)).

ON FORM {L.S. Operator]
Same as IN except that the iv. is reset to the corresponding tai/ at each iteration.
Thus IN corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to
MAP, MAPLIST, and MAPCOM. .

Note: for both IN and ON, FOrM is evaluated before the main part of the iLs. is entered, ie. outside of
the scope of any of the bound variables of the is. For example, (FOR X BIND (Y«'(1 2 3)) IN Y
-..) will map down the list which is the value of Y evaluated outside of the is., not (1 2 3).

IN OLD wAR (LS. Operator]
Specifies that the is. is to iterate down VAR, with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (FOR X IN OLD L DO ... UNTIL

.- --+) finishes, L will be some tail of its original value.

IN OLD (VAR®*FORM) (LS. Operator}
Same as IN OLD VAR, except VAR is first set to value cf FORM.

ON OLD wvar . ' " [LS. Operator}
. Same as IN OLD vAR except the iv. is reset to the current value of VAR at each
iteradon, instead of to (CAR VAR).

ON OLD (VAR*FORM) - (LS. Operator]
Same as ON OLD vAR, except VAR is first set to value of FORM.

INSIDE FORM [1.S. Operator}
Similar to IN, except treats first non-list, non-NIL tail as the last element of the
iteraton, e.g., INSIDE '(A B C D . E) iterates five times with the i.v. set to
E on the last iteratdon. INSIDE 'A is equivalent to INSIDE '(A), which will

iteraze once.
=
FROM FORM [I.S. Cperaror]
Used to specify aa inidal value for a numerical iv. The iv. is automadcally
incremented by 1 after each iteration (unless BY is specified). If no i.v. has been
specified, 2 dummy i.v. is supplied and initialized, e.g., (FROM 2 TO 5 COLLECT
SQRT) returns (1.414 1,732 2.0 2.236).
' TO FORM [L.S. Operator]

Used to specify the final value for 2 numerical i.v. If FROM is not specified. the
Lv. is inidalized to 1. If no iv. has been specified. a dummy iv. is supplied
and inidalized. If BY is not specified. the i.v. is automatically incremented by 1
after each iteration.! When the iLv. is definitely being incremented. i.e., either BY is
not specified. or its operand is a positive number, the i.s. terminates when the i.v.
exceeds the value of FORM e.g. (FOR X FROM 1 TO 10 =--) is egquivalent 0
(FOR X FROM 1 UNTIL (X GT 1Q0) =--). Similarly, when the i.v. is definitely

lexcept when both the operands to TO and FROM are numbers, and TQO's operand is less than FROM's
operand, e.g.. FROM 10 TQ, 1. in which case the iLv. is decremented by 1 after each iteration. In this
case, the 15 temmates when the i.v. becomes less than the value of FORM.

4.3

N
.)

)

O

CONDITIONALS AND ITERATIVE STATEMENTS

being decremented the i.s, terminates when the iv. becomes /ess than the value of
FORM (see descripdon of BY).

Note: ForM is evaluated only once, when the is. is first entered, and its value
bound to a temporary variable against which the iv. is checked each interation. If
the user wishes to specify an is. in which the value of the boundary condition is
recomputed each iteration, he should use WHILE or UNTIL instead of TO.

BY rorm (with IN/ON) - [L.S. Operator]

If IN or ON have been specified, the value of FOrRM determines the tail for
th2 next iteration, which in turn determines the value for the iv. as described
earlier, i.e., the new iv. is CAR of the tail for IN, the tail itself for ON. In
conjunction with IN, the user can refer. to the current tail within FORM by using
the iv. or the operand for IN/ON, eg., (FOR Z IN L BY (CDDR Z) :--)
or (FOR Z IN L BY (CDDR L) ---). At translation time, the name of the

-internal variable which holds the value of the current tail is substituted for the i.v.

throughout ForM. For example, (FOR X IN Y BY (CDR (MEMB 'FOO (CDR
X})) COLLECT X) specifies that after each iteration, CDR of the current tail is
to be searched for the atom FQOQ, and (CDR of) this latter tail to be used for the
next iteraton.

BY rorMm (without IN/ON) [1.S. Operator}

AS VAR

If IN or ON have not been used, BY specifies how the i.v. itself is reset at each
iteradon. If FROM or TO have been specified, the iv. is known to be numerical.
so the new iv. is computed by adding the value of ForM (which is reevaluated
each iteration) to the current value of the i.v., e.g., (FOR N FROM 1 TO 10 BY
2 COLLECT N) makes a list of the first five odd numbers.

If ForM is a positive number,? the i.s. terminates when the value of the L.v. exceeds
the value of TO's operand. If FORrM is a negative number, the is. terminates when
the value of the i.v. becomes less than TO’s operand, e.g., (FOR I FROM N TO M
BY -2 UNTIL (I LT M) ...). Otherwise, the terminatng condition for each
iteradon depends on the value of ForM for that iteration: if FORM<O, the test IS
whether the i.v. is less than TO’s operand, if FORM>0 the test is whether the i.v.
exceeds TO's operand, otherwise if FORM =0, the is. terminates unconditionally.

If FROM or TO have not been specified and FORM is not a number, the iv. is
simply reset to the value of FORM after each iteradon. e.g., (FOR I FROM N BY
M ...) is equivalent to (FOR I«N BY (IPLUS I M) ...).

[L.S. Cperator]}
Used to specify an iterative siatemnent involving more than one iterative vanable,
eg., (FOR X IN Y AS U IN V DO --) corresponds to MAP2C. The is. ter-
minates when any of the terminating conditions are met, e.g., (FOR X IN Y AS
I FROM 1 TO 10 COLLECT X) makes a list of the first ten elements of Y, or
however many elements there are on Y if less than 10.

The operand to AS, VAR. specifies the new iv. For the remainder of the is.
or untl another AS is encountered, all operators refer to the new iv. For

2rorM itself, not its value, which in general CLISP would have no way of knowing in advance.

49

Condition Ls.oprs

example, (FOR I FROM 1 TO N1 AS J FROM 1 TQO N2 BY 2 AS K FROM
N3 TO 1 BY -1 ~-) terminates when I excesds N1, or J exceeds N2, or K
becomes less than 1. After each iteration, I is incremented by 1, J by 2, and K by
-1.

QUTOF FORM) [L.S. Operator]
For use with generators (page 7.13). On each iteration, the i.v. is set to successive
values returned by the generator. The is. terminates when the generator runs out.

4.23 Condition I.s.oprs

WHEN rForM [1.S. Operator]
Provides a way of excepting certain iterations. For example, (FOR X IN Y
COLLECT X WHEN (NUMBERP X)) collects only the elements of Y that are

numbers.

UNLESS rForM _ {1.S. Operatorj
Sarne as WHEN except for the difference in sign, i.e., WHEN Z is the same as UNLESS
(NOT Z).

WHILE FomMm ' [1.S. Operator]

Provides a way of terminating the is. WHILE FORM evaluates FORM before each
iteration, and if the value is NIL, exits.

.UNTIL FORM ' [L.S. Operator}
Same as WHILE except for difference in sign. i.e, WHILE X is equivalent to UNTIL

(NOT X).
UNTIL ~ (N~ a number) , [LS. Operator]

Equivalent to UNTIL (rv. GT »).

REPEATWHILE roam (I.S. Operator]
Same as WHILE except the test is performed after the evaludon of the body, but
before the Lv. is reset for the next iteration.

REPEATUNTIL FORM . [1.S. Operaror]
Same as UNTIL, except the test is performed after the evaluation of the bedy.

REPEATUNTIL ~ (N~ a number) . [1.S. Operator}
Equivalent to REPEATUNTIL (rv. GT w).)

-

424 Other Is.oprs

FIRST FoRM ' . [.S. Operator}
FORM is evaluated once before the first iteration. e.g.. (FOR X Y Z IN L FIRST
(FOO Y Z) ---). and FOO could be used to inidalize Y and Z.

FINALLY FORM (LS. Operator]
FORM is evaluated after the is. terminates. For example, (FOR X IN

i

4.10

“

)

®

EACHTIME FORM

DECLARE: DECL

DECLARE DECL

CONDITIONALS AND ITERATIVE STATEMENTS -

L BIND Y«0 DO (IF ATOM X THEN Y«Y+1) FINALLY (RETURN Y)) wil
return the number of atoms in L. -

{1.S. Operator]
FORM is evaluated at the beginning of each iteration before, and regardiess of, any
testing. For example, consider,

(FOR I FROM 1 TO N
DO (--- (FOO IY -.)
UNLESS (--- (FOO I) .-.)
UNTIL (--- (FOO I) ---))

The user might want to set a temporary variable to the value of (FOO I) in order
to avoid computing it three times each iteration. However, without knowing the
transladon, he would not know whether to put the assignment in the operand to
DO, UNLESS, or UNTIL, i.e., which one would be executed first. He can avoid this
problem by simply writing EACHTIME (SETQ J {(F0O0 I)).

: [LS. Operator]
Inserts the form (DECLARE DEcCL) immediately following the PROG variable list in
the transiation, or, in the case that the transladon is a mapping function rather than
a PROG, immediately following the argument list of the lambda expression in the
translation. This can be used to declare variables bound in the iteratve statement
to be compiled as local or special variables (see page 12.4). For example (FOR X
IN Y DECLARE: (LOCALVARS X) ---). Several DECLARE :s.can apppear in
the same is.; the deciarations are inserted in the order they appear.

{L.S. Operator}
Same as DECLARE :.

Note that since DECLARE is also the name of a function, DECLARE cannot be used
as an i:s, operator when it appears as CAR of a form, i.e. as the first i.s. operator
in an iterative statement. However, declare (lower-case version) can be the first
i.s. operator.

ORIGINAL LS.OPR OPERAND [1.S. Operator]

Ls.oPR will be translated using its original. built-in interpretadon, independent of
any user defined Ls. operators. See page 4.13.

There are also a number of 1s.oprs that make it easier to create iterative statements that use the clock.
looping for a given period of time. See Timers, page 14.11.

4.25 Miscellaneous

o [owercase versions of all i.s. operators are equivalent to the uppercase, e.g.,, (for X in Y -..).

e Each is. operator is of lower precedence than all Interlisp forms. so parentheses around the operands
can be omitted and will be supplied where necessary, e.g.,, BIND (X Y Z) can be written BIND X Y
Z, OLD (X~ForM) as OLD X«rOrRM. WHEN (NUMBERP X) as WHEN NUMBERP X, etc.

o

» RETURN or GO may be used in any operand. (In this case, the transiation of the iterative statement will

4.11

Miscellaneous

always be in the form of a PROG, never a mapping functon.) RETURN means return from the is. (with
the indicated value), not from the function in which the is appears. GO refers to a label elsewhere in
the function in which the is. appears, except for the labels SSLP, SSITERATE, and $SOUT which are
reserved, as descrited beiow,

¢ In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the is.types, e.g., DO, COLLECT,
SUM, etc., the operand caa consist of more than one form, e.g, COLLECT (PRINT X:1) X:2, in which
case a PROGN is supplied.

e Each operand can be the name of a functidn, in which case it is applied to the (last) i.v,, e.g., {FOR X

IN Y DO PRINT WHEN NUMBERP) isthesameas (FOR X IN Y DO (PRINT X) WHEN (NUMSERP.

X)). Note that the iv. nesd not be explicily specified, e.g., (IN Y D0 PRINT WHEN NUMBERP) will
work. :

For Ls.types, e.g., DO, COLLECT, JOIN, the functdon is'alw'ays applied to the first i.v. in the Ls., whether

" explicity named or not. For example, (IN Y AS I FROM 1 TO 10 DO PRINT) prints elements on

Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON, since they “operate”™ -

before the loop starts, when the i.v. may not even be bound.

In the case of BY in comjunction with IN, the functon is applied to the current tail e.g., FOR X IN ¥
BY CODR ... isthe same as FOR X IN Y B8Y (CDDR X)....

e While the exact form of the translation of an iterative statement depends on which operators are present,
3 PRCG will always be used whenever the i.s. specifies dummy variables, i.e., if a BIND operator appears,
or there is more than one variable specified by a FOR operator, or a GO, RETURN, or a reference 10 the
variable SSVAL appears in any of the operands. When a PROG is used, the form of the translation is:

(PROG VARIABLES
{initialize}

SSLP (dachtime}
{test}
{body}

 SSITERATE

{aftertest}
{update}
(GO SSLP)

SSOUT {finalize}
(RETURN SSVAL))

where {test} corresponds to that porton of the loop that tests for termination and also for those
lterations for which {body} is not going to be executed, (as indicated by a WHEN or UNLESS): {body}
corresponds to the operand of the i.s.type, e.g.. DO, COLLECT, et.; {aftertest} corresponds to those
tests for termination specified by REPEATWHILE or REPEATUNTIL: and {update} corresponds to that
part that resets the tail, increments the counter, etc. in preparation for the next iteration. {initialize},
{finalize}, and {eachtime} correspond to the operands of FIRST, FINALLY. and EACHT IME, if
any.

Note that since {body} always appears at the top level of the PROG, the user can insert labels in {body}.
and GO to them from within {body} or from other is. operands. e.g.. (FOR X IN Y FIRST (GO A)
00 (FO0) A (FIE)). However, since {body} is dwimified as a list of forms. the label(s) should be

4.12

O

O

CONDITIONALS AND ITERATIVE STATEMENTS

added to the dummy variables for the iterative statement in order to prevent their being dwimified and
possibly “corrected”, e.g., (FOR X IN Y BIND A FIRST (GO A) DO (FOO0) A (FIE)). The user
can also GO to $SLP, SSITERATE, or $50UT, or explicitly set SSVAL.

4.2.6 Errors in Iterative Statements

An error will be generated and an appropriate ‘diagnostic printed if any of the following conditions hold:
1. Operator with null operand, i.e., two adjacent operators, as in FOR X IN Y UNTIL DO ~--

2. Operand consisting of more than one form (except as operand to FIRST, FINALLY, or one of the
Ls.types), e.g., FOR X IN Y (PRINT X) COLLECT --.

IN; ON, FROM, TO, or BY appear twice in same is.
Both IN and ON used on same i.v.

FROM or TO used with IN or ON on same iv.

SO s

More than one is.type, e.g., 2 DO and a SUM.
In 3, 4, or 5, an error is not generated if an intervening AS occurs.
If an error occurs, the is. is left unchanged.

If no DO, COLLECT, JOIN or any of the other is.types are specified, CLISP will first attempt to find an
operand consisting of more than one form, e.g., FOR X IN Y (PRINT X) WHEN ATOM X, and in this
case will insert a DO after the first form. (In this case, condition 2 is not considered to be met and an
error is not generated.) If CLISP cannot find such an operand, and no WHILE or UNTIL appears in the
Ls.. a warning message is printed; NO DO, COLLECT, OR JOIN: followed by the i.s.

Similarly, if no terminating condition is detected, i.e., no IN, ON, WHILE, UNTIL, TO. or a RETURN or GO,
a warning message is printed:® PQOSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed
by the iterative statement. However, since the user may be planning to terminate the is. via an error,
coniroi-E, or 2 RETFROM from a lower functon. the is. is still translated.

4.2.7 Defining New Iterative Statement Operators

The following function is available: for defining new or redefining existing iterative statement operators:

(1.S.0PR NAME FORM OTHERS EVALFLG) - ‘ [Function]
NAME is the name of the mew is.opr. If FORM is a list, NAME will be 2 new
istype (see page 4.6), and FORM its body.

OTHERS is an (opuonal) list of additional i.s. operators and operands which will
be added to the i.s. at the place where NAME appears. If FORM is NIL. NAME is
a new is.0pr defined entirely by OTHERS.

unless the value of CLISPI.S,GAG is T (initially NIL).

4.13

Defining New Iterative Statement Operators

In both FOrRM and OTHERS, the atom SSVAL can be used to reference the value to
be returned by tae is. I.V. to reference the current i.v., and BODY to reference
NAME's operand. [n other words, the current iv. will be substituted for ail
instances of I.V. and NAME's operand will be substtuted for all instances of
BOOY throughout FORM and OTHERS.

If evaLFLG is T, FORM and OTEERS are evaluated at translation time, and their
values used as described above. LSTVARS is a list of dummy variable names
used by the iterative statement transiator. If the user wishes to obtain a dummy
variable for use in translaton, and be sure it does not clash with a dummy variatle
already used by some cther i.s. operators, he can use CAR of LSTVARS, and reset
LSTVARS to (CDR LSTVARS).

If NAME was previously an i.s.opr and is being redefined, the message (NAME
REDEFINED) will be printed (unless DFNFLG=T), and all expressions using the
Ls.opr NaMmE that have been uanslated will have their translations discarded.

For example, for COLLECT, ForM would be (SETQ SSVAL (NCONC1 SSVAL BOODOY)).

For SUM, ForM would be (SSVAL+~SSVAL+BODY),* oTHERS would be (FIRST SSVAL«0).

For NEVER, ForM would be (IF BODY THEN SSVAL-NIL (GO SSOUT))).’

For THEREIS, ForM would be (IF BODY THEN SSVAL«I.V. (GO $SOUT)).

Examples:

To define RCOLLECT, a version of COLLECT which uses CONS instead of NCONC1 and then feverses the

list of values:

(I.S.0PR 'RCOLLECT

' (SSVAL+(CONS BODY $3VAL))

"(FINALLY (RETURN (DREVERSE SSVAL)))]

... To define TCOLLECT, a version of COLLECT which uses TCONC:
© (I.S.OPR 'TCOLLECT

"(TCONC S$SVAL BODY)
*(FIRST SSVAL+(CONS) FINALLY (RETURN (CAR SSVAL)))]

To define PRODUCT:

(I.S.0PR *PRODUCT
' (SSVAL~SSVAL=80DY)
*(FIRST SSVAL+~1)]

To define UPTO, a version of TO whose operand is evaluated only once:

iSSVAL+BODY is used instead of (IPLUS SSVAL BODY) so that the choice of function used in the
transiation. i.e.. IPLUS, FPLUS, or PLUS. will be determined by the declarations then in effect.

3(IF BODY THEN RETURN NIL) would exit from the is. immediately and therefore not execute the
operatons specified via a F INALLY (if any).

4.14

®

>

)

O

O,

CONDITIONALS AND ITERATIVE STATEMENTS

(I.5.0PR '"UPTO
NIL
‘(BIND SSFQ0+BODY TO $SF00)]

To redefine TO so that instead of recomputing FORM each iteration, a variable is bound to the value of
FORM, and then that variable is used:

(I.S.0PR 'TO
HIL . e’
'(BIND SSEND FIRST SSEND~BODY ORIGINAL TO SSEND)]

Note the use of ORIGINAL to redefine TO in terms of its original definition. ORIGIMNAL is intended
for use in redefining built-in operators, since their definitions are not accessible, and hence not directdy
modifiable. Thus if the operator had been defined by the user via I.S.0PR, ORIGINAL would not
obtain its original definition. In this case, one presumably would simply modify the is.opr definition.

1.S.0PR can also be used 10 define synonyms for already defined is. operators by calling I.S.0PR
with FORM an atom, e.g., (I.S.0PR 'WHERE ‘'WHEN) makes WHERE be the same as WHEN. Similarly,
following (I1.S.0PR 'ISTHERE 'THEREIS), one can write (ISTHERE ATOM IN Y), and following
(I.S.OPR 'FIND 'FOR) and (I.S.OPR 'SUCHTHAT 'THEREIS), one can write (FIND X IN Y
SUCHTHAT X MEMBER Z). In the current system, WHERE is synonymous with WHEN, SUCHTHAT and
ISTHERE with THEREIS, FIND with FOR, and THRU with TO.

If Forac is the atom MODIFIER, then NAME is defined as an is.opr which can immediately follow another
i.s. operator (i.e. an error will not be generated, as described previously). NAME will not terminate the
scope of the previous operzator, and will be stripped off when DWIMIFY is called on its operand. OLD
is an example of a MODIFIER type of operator. The MODIFIER feature allows the user to define is.
operators similar to OLD, for use in conjunction with some other user defined Ls.opr which will produce
the appropriate transiation.

The file package command I.S5.0PRS(page 11.25) will dump the definition of is.oprs. (I.S.OPRS

PRCDUCT UPTOQ) as a file package command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.

4.15

P

Defining New Iterative Statement Operators

4.16

—

CHAPTER 5

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The Interlisp programming system is designed .to help the user define and debug functions. Developing
an applications progrem in Interlisp involves defining 2 number of functions in terms of the system
primidves and other user-defined functicns. Once defined. the user’s functons may be referenced exacdy
like Interlisp primitive functions, so the programming process can be viewed as extending the Interlisp
language to include the required furctionality.

The user defines a function with a list expressions known as an EXPR. An EXPR specifies if the function
has a fixed or variable number of arguments, whether these arguments are evaluated or not, the function
argument names, and a series of forms which define the behavior of the function. For exampie:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

A function defined with this EXPR would have two evaluated arguments, X and Y, and it would execute
(PRINT X) and (PRINT Y) when evaluated. Other types of EXPRs are described below.

A funcdon is defined by putting an EXPR in the function definition cell of a litatom. There are a number
of functons for accessing and setting function definition cells, but one usually defines a2 function with
DEFINEQ (page 5.9). For exampie:

~ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))
(FOD)

The expression above will define the function FOO to have the EXPR definition (LAMBDA (X Y) (PRINT
X) (PRINT Y)). After being defined this function may be evaluated just like any system function:

« (FOO 3 (IPLUS 3 4))

t NN wW

All funcdon definition cells do not contain EXPRs. The compiler (page 12.1) translates EXPR definitions
into compiled code objects, which execute much faster. In Interlisp-10, many primitive system functions
are defined with machine code objects known as SUBRs. Interlisp provides a number of “function type
funcuons™ which determine how 2 given function is defined (EXPR/compiled code/SUBR), the number
and names of function arguments. etc. See page 5.6.

Usually, functions are evaluated automatically when they appear within another functon or when typed
into Interlisp. "However, sometimes it is useful to envoke the Interlisp interpreter explicitty to apply a
given “‘functional argument” to some data. There are a number of functons which wiil apply a given
funcuon repeatedly. For example. MAPCAR will apply a function (or an EXPR) to all of the elements of
2 list. and remumn the values returned by the function:

~ (MAPCAR "(1 2 3 4 5) '(LAMBDA (X) (ITIMES X X))

5.1

Function Types

(1 49 16 25)

Whez using functional arguments, there are a number of problems which can arise, related with accessing
free varizbles frcm within 2 functon arzument. Many times these problems can be solved using the
function FUNCTION to create a FUNARG object (see page 5.15).

The macro facility provides another way of specifying the behavior of a function (see page 5.17). Macros
are very useful when developing code which should run very quickly, which should be compiled diffeérently
than it is interpreted, or which should run differently in different implementations of Interlisp.

51 FUNCTION TYPES

- Interlisp functions are defined using list expressions called EXPRs. An EXPR is a list of the form
(LAMBDA-WORD ARG-LIST FORM; --- FORM)). LAMBDA-WORD determines whether the arguments to
this funcdon Wwill be evaluated or mot, ARG-LIST determines the oumber and names of arguments, and

FORM, --- FORM)y are a series of forms to be evaluated after the arguments are bound to the local

variables in ARG-LIST.

If LAMBDA-WORD is the litatom LAMBDA, then the arguments to the function are evaluated. If LAMBDA-
WORD is the litatom NLAMBDA, then the arguments to the function are not evaluated. Functions which
evaluate or don't evaluate their arguments are therefore known as “lambda” or “nlambda” functons,
respectively. L

If ARG-LIsT is NIL or a list of litatoms, this indicates a function with a fixed number of arguments. Ezch
litatom is the name of an argument for the function defined by this expression. The process of binding
these litatoms to the individual arguments is czlled “spreading™ the arguments, and the functon is cailed
a “spread” function. If the argument list is any litatom other than NIL, this indicates a function with a
variable number of argumeants, known as a “nospread” function. .

If ARG-LIST is anything other than a litatom or a list of litatoms, such as (LAMBDA "FQ00O" ...),
attempung to use this EXPR will generate an ARG NOT LITATOM error. In addidon, if NIL or T is used
as an argument name, the ertor ATTEMPT TO BIND NIL OR T is generated.

These two parameters (lambda/nlambda and spread/nospread) may be specified independently, so there
are four mein fuccuon types. known as lambda-spread. nlambda-spread. lambda-nospread, and nlambda-
nospread functions. Each one has a different form, and is used for a different purpose. These four
function types are described more fully below.

Note: The Lambdarran lispusers package provides facilities for creating new fuaction types which
evaluate/spread their arguments in different ways than those provided by Interlisp. See page 23.16.

5.1.1 Lambda-Spread Functions

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common function
type. A lambda-spread EXPR has the form:

(LAMBDA (ARG, --- ARG)/) FORM; --- FORMy)

TN
-/

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The argument list (ARG, --- ARG),) is a list of litatoms that gives the number and names of the formal
arguments to the functon. If the argument list is () or NIL, this indicates that the function takes no
arguments. When a lambda-spread function is applied to some arguments, the arguments are evaluated,
and bound to the local variables ARG, --- ARG),. Then, FORM;, --- FORM), are evaluated in order, and
the value of the function is the value of FORMy.

~ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))
(F0O)

~ (FOO 99 (PLUS 3 4)) oo

09 :

7

7

-

In the above example, the function FOO defined by (LAMBDA (X Y) (PRINT X) (PRINT Y)) is
applied to the arguments 99 and (PLUS 3 4), these arguments are evaluated (giving 99 and 7), the local
variable X is bound to0 99 and Y to 7, (PRINT X) is evaluated, printing 99, (PRINT Y) is evaluated,
printing 7, and 7 (the value of (PRINT Y)) is returned as the value of the function.

A suandard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many arguments, the extra arguments are
evaluated but ignored. If a function is called with too few arguments, the unsupplied ones will be delivered
as NIL. In fact, a spread funcuon cannot distinguish between being given NIL as an argument, and not
being given that argument, e.g., (FOO) and (FOO NIL) are exactly the same for spread funcrions. If it
is necessary to distnguish between these two cases, use an nlambda function and explicitly evaluate the
arguments with the EVAL function (page 5.11). :

5.12 Nlambda-Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread EXPR has
the form: ' , .

(NLAMBDA (ARG; -+ ARG)) FORM; --- FORMy)

Nlambda-spread functions are evaluated similarly to lambda-spread functions, except that the arguments
are not evaluated before being bound to the variables ARG; - -+ ARGy

~ (DEFINEQ (FOO (NLAMBDA (X Y) (PRINT X) (PRINT Y))))
(FOO)

« (FOO 99 (PLUS 3 4))

99

(PLUS 3 4)

(PLUS 3 4)

.
-

(:)‘\

In the above example, the function FOO defined by (NLAMBDA (X Y) (PRINT X) (PRINT Y)) is
applied to the arguments 99 and (PLUS 3 4), these arguments are bound unevaluated to X and Y,
(PRINT X) is evaluated. printing 99. (PRINT Y) is evaluated. printing (PLUS 3 4). and the list
(PLUS 3 4) is returned as the value of the function.

Note: Functons can be defined so that all of their arguments are evaluated (lambda functdons) or none

5.3

Lambda-Nospread Functions

are evaluzted (nlambda functions). If it is desirable to write a functon which only evaluates some of its
arguments (e.g. SETQ), the functon should be defined as an nlambda, with some arguments explicidy
evaluated using the functon EVAL (page S5.11). If this is done, the user should put the litatom EVAL on
the property list of the function under the property INFO. This informs various system packages such as
DWIM, CLISP, and \'Iastexscope that this functon in fact does evaluate its arguments, even though it is
an nlambda.

| 5.13 Lamhda-Nospread Functions _

Lambda-nospread functions take a variable number of evaluated arguments. A lambda-nospread EXPR

has the form:

(LAMBDA VAR FORM; +-- FORMy)

" VAR may be any litatom, except NIL and T. When a lambda-nospread function is applied to some

arguments, each of these arguments is evaluated and the values stored on the pushdown list VAR is
then bound to the number of arguments which have been evaluated. For example, if FOO is defined by
(LAMBDA X --.), when (FOO A B C) is evaluated, A, B, and C are evaluated and X is bound to 3.
VAR should never be reset

The following functions are used for accessing the arguments of lambda-nospread functions:

(ARG VAR M) [NLambda Function]
Returns the mth argument for the lambda-nospread function whose argument list
is VAR, VAR is the name of the atomic argument list to a lambda-nospread function,
and is not evaluated: M is the number of the desired argument, and is evaluared.
The value of ARG is undefined for m less than or equal to 0 or greater than the
value of VAR.

(SETARG VAR M X) [INLambda Function]
Sets the mth argument for the lambda-nospread function whose argument list is
VAR 10 X. VAR is not evaluated; M and x are evaluated.. M should be between 1
and the value of VAR.

[n the example below, the function FOO is defined to print all of the evaluated arguments it is given, and

- return NIL (the value of the for statement).

« (DEFINEQ (FOO
(LAMBDA X
(for ARGNUM from 1 to X do (PRINT (ARG X ARGNUM))))))
(FOO)
« (FOO 99 (PLUS 3 4))
29
7
NIL
- (FOO 99 (PLUS 3 4) (TIMES 3 4))
a9
7
12
NIL

5.4

U

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

5.1.4 Nlambda-Nospread Functions

Nlambda-nospread functions take a variable number of unevaluated arguments. An nlambda-hospread
EXPR has the form:

(NLAMBDA VAR FORM; :-- FORMy)

VAR may be any litatom, except NIL and T. Though similar in form to lambda-nospread EXPRs, an
nlambda-nospread is evaluated quite differently. When an nlambda-nospread function is appiied to some
arguments, VAR is simply bound to a list of the unevaluated argumeants. The user may pick apart this list,
and evaluate different arguments.

In the example below, FOO is defined to print (and then return) the reverse of list of arguments it is given
(unevaluated):

~ (DEFINEQ (FOO (NLAMBDA X (REVERSE X))))

(FCO)

~ (FOO 99 (PLUS 3 4))

((PLUS 3 4) 99)

((PLUS 3 4) 99)

~ (FOO 99 (PLUS 3 4) (TIMES 3 4))

((TIMES 3 4) (PLUS 3 4) 99) : '
((TIMES 3 4) (PLUS 3 4) 9¢)

515 Compiled Functions

Funcdons defined by EXPRs can be compiled by the Interlisp compiler (page 12.1), which produces

- cempiled code objects, which execute more quickly than the corresponding EXPR code. Functions defined

by compiled code objects may have the same four types as EXPRs (lambda/nolambda, spread/nospread).
Functions created by the compiler are referred to as compiled functons.

5.1.6 SUBRs

In Interlisp-10. basic built-in functions such as CONS, CAR. and COND are handcoded in machine language.
These functions are known as “SUBRs.” Functions defined as SUBRs can be lambda/nolambda or
spread/nospread. the same four function types as EXPR functions.

SUBRs are called in a special way, so their definidons are stored differently than those of compiled
or interpreted funcuons. GETD of a SUBR returns a dotted pair, CAR of which is an encoding of the

_ ARGTYPE and number of arguments of the SUBR, and CDR of which is the address of the first instruction.

Note that each GETD of a subr performs a CONS. Similarly. PUTD of a definition of the form (NUMBER
ADDRZSS). where NUMBER and ADDRESS are in the appropriate ranges, stores the definition as a SUBR.

5.5

Function Type Functions

5.1.7 Function Type Functions

There are a variety of functons used for examining the type, argument list, etc. of functions. These
functions may be given either a litatom, in which case they obtain the functon definidon from the
litatom’s definitdon cell, or a function definition itself.

(FNTYP FN)

(EXPRP FN)

(CCODEP FN)

(SUBRP FN)

(ARGTYPE FN)

[Function]

Returns NIL if Fv is not a funcdon definition or the name of a defined functon. -

Qtherwise FNTYP returns one of the following twelve litatoms:

Expressions Compiled Built-In
Lambda-Spread EXPR CEXPR SUBR
Nlambda-Spread FEXPR CFEXPR FSUBR
Lambda-Nospread EXPR® CEXPR® SUBR®
Nlambda-Nospread FEXPR® CFEXPR® FSUBR®

The types in the first column are all defined by EXPRs. The types in the second
column are compiled versions of the types in the first column. as indicated by the
prefix C. In the third column are the parallel types for built-in subroutines (only
in Interlisp-10). Functions of types in the first two rows have a fixed number of
arguments, i.e., are spread functions. Functions in the third and fourth rows have
an indefinite number of arguments, as indicated by the suffix ®. The prefix F
indicates unevaluated arguments. Thus, for example, a CFEXPR® is a compiled
nospread-niambda function.

FNTYP returns the litatom FUNARG if FN is a FUNARG expression. See page 5.15.

[Funcnon]
Returns T if (FNTYP FN) is either EXPR, FEXPR, EXPR®, or FEXPR=, i.e., first
column of FNTYPs: NIL otherwise. However, (EXPRP FN) is also true if Fv is
{has) a list definition that is not a SUBR, even if it does not begin with LAMBCA or
NLAMBDA. In other words, EXPRP is not quite as selective as FNTYP,

[Function]
Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR=*, or CFEXPR™", ie.,
second column of FNTYPs; NIL otherwise.

[Function]
Returns T if (FNTYP rFN) is either SUBR, FSUBR, SUBR™, or FSUBR®, iz.. the
third column of FNTYPs; NIL otherwise.

_ » [Functionj
FN is the name of a funcdon or its definition. ARGTYPE returns 0, L. 2. or 3, or
NIL if FN is not a function. The interpretation of this value is:

0 lambda-spread functions (EXPR, CEXPR, SUBR)

5.6

().

e "\\

Ny

)

O

O

(NARGS FN)

(ARGLIST #N)

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION
1 nlambda-spread functions (FEXPR, CFEXPR, FSUBR)
2 lambda-nospread funcdons (EXPR®, CEXPR®, SUBR"™)
3 nlambdz-nospread functions (FEXPR®, CFEXPR®, FSUBR®}

i.e., ARGTYPE corresponds to the rows of FNTYP’s,

P [Function]
Returns the number of arguments of FN, or NIL if 7N is not a function. If FN is
a nospread function, the value of NARGS is 1. ‘

[Function]
Returns the “argument list” for FN. Note that the “argument list” is a litatom
for nospread functions. Since NIL is a possible value for ARGLIST, an error is
generated, ARGS NOT AVAILABLE, if FN is not a function.

If Fv is a compiled function. the argument list is consttucted, i.e., each call to
ARGLIST requires making a new list. For EXPRs, whose definitions are lists
beginning with LAMBDA or NLAMBDA. the argument list is simpily CADR of GETD.
If 7~ has a list definition, and CAR of the definition is not LAMBDA or NLAMBDA,
ARGLIST will check to see if CAR of the definition is 2 member of LAMBDASPLST
(page 15.12). Ifitis. ARGLIST presumes this is a function cbject the user is defining
via DWIMUSERFORMS (page 15.10), and simply returns CADR of the definition as
its argument list. Otherwise ARGLIST generates an error as described above.

(Interlisp-10) If F~ is a spread SUBR, the ARGLIST returns (U), (U V). (U V
W), ec. depending on the number of arguments; if a nospread SUBR, it retumns
U. This is merely a “feature” of ARGLIST; SUBRs do not actually store the names
of their arguments(s) on the stack.

{SMARTARGLIST FN EXPLAINFLG TAILL) : [Function]

A “smart” version of ARGLIST that tries various strategies to get the arglist of FN.

If FN is not defined as a function. SMARTARGLIST attempts spelling correction
on FN by calling FNCHECK (page 15.19), passing TAL t0 be used for the call to
FIXSPELL. If unsuccessful, an error will be generated, /N NOT A FUNCTION.

If FN is known to the file package (page 11.1) but not loaded in, SMARTARGLIST
will obtain the arglist information from the file.

[n Interlisp-10, if the HELPSYS help system is installed. SMARTARGLIST may
use it to look up the arguments to FN in the [nterlisp: manual files. Specificaily,
HELPSYS will be used if ExPLAINFLG=T and FN is a nospread function. or
if N is a spread SUBR, regardless of the value of ExpPramrre. For all other
cases. and when HELPSYS is undefined or unsuccessful in finding the arguments.
SMARTARGLIST simply returms (ARGLIST FN).

In order to avoid repeated calls to HELPSYS, and also to provide the user with an
override, SMARTARGLIST stores the arguments returned from HELPSYS on the
property list of FN under the property ARGNAMES and checks for this property
before calling HELPSYS. For spread functions. the argument list itself is stored.

i

5.7

®

Function Definition

For nospread, the form is (NIL ARGLIST; . ARGLIST;) where ARGLIST, is the
value of SMARTARGLIST when EXPLAINFLG=T, and ARGLIST, the value when
EXPLAINFLG=NIL. For example, (GETPROP 'DEFINEQ 'ARGNAMES) = (NIL
(X1 XI ... XN) . X).

SMARTARGLIST is used by BREAK (page 10.4) and ADVISE (page 10.9) with ExPrAINFLG=NIL for
constructing equivalent EXPR definitions, and by the programmer’s assistant command ?= (page 9.5), witit.
EXPLAINFLG=T.

: 4
52 FUNCTION DEFINITION

Funcdon definitions are stored in a “function definition cell” associated with each litatom. This cell iso .

o directly accessible via the two functions PUTD and GETD, but it is usually easier to define functions with

DEFINEQ (page 5.9).

(GETD FN) ' [Function]}
Returns the function definition of FN. Returns NIL if FN is not a litatom, or has
no definition.

GETD of a compiled function constructs a pointer to the definition, with the result
J that two successive calls do not produce EQ results. EQP or EQUAL must be used
to compare compiled definitions.

(Interlisp-10) GETD of a SUBR performs a CONS.

(FGETD FN) ' [Funcdon]
' Faster version of GETD. Interpreted, generates an error, BAD ARGUMENT -
FGETD, if FN is not a litatom. . .

FGETD is intended primarily to check whether a funcdon has a definition, rather
than to obtain the definition. Therefore. in [nterlisp-10, FGETD of a SUSR rewurns (\r
just the address of the function definition. not the dotted pair returned by GETD,
thereby saving the CONS.

A [Function]
Puts peF into FN’s function cell, and returns DEF. Generates an error, ARG NOT
LITATOM, if #N is not a litatom. Generates an error, ILLEGAL ARG. if DEFis a
string, number, or a litatom other than NIL. -

: [NLambda Function]
~Nlambda version of PUTD; both arguments are unevaluated. Returns Fi.

(PUTD FN DEF —)

(PUTDQ FN DEF)

(PUTDQ? ~N DEF) [NLambda Function]
If FNv is not defined. same as PUTDQ. Otherwise, does nothing and returns NIL.

(MOVD FROM TO COPYFLC)) {Function]
Moves the definition of FROM to TO, i.e.. redefines To. If coPYFLG=T, a COPY
of the definitdon of FroM is used. COPYFLG=T is only meaningful for EXPRs, -
although MOVD works for compiled functions and SUBRs as well. MOVO reums

.

5.8

O

O

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

TC.

(MOVD? FROM TO COPYFLG) ' [Function]

(DEFINEQ x; X5 ---

(DEFINE x —)

If To is not defined, same as (MOVD FrROM TO cOPYFLG). Otherwise, does
nothing and returns NIL.

Xn) [NLambda NoSpread Function]
DEF INEQ is the function normally used for defining functions. It takes an indefinite
number of arguments which are not evaluated. Each x; must be 2z list defining one
funcdon, of the form (NAME DEFINITION). For example:

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X))))

The above expression will define the function DOUBLE with the EXPR definition
(LAMBDA (X) (IPLUS X X)). x; may also have the form (NAME ARGS .

 DEF-BODY), in which case an appropriate Lambda EXPR will be constructed.

Therefore, the above expression is exactly the same as:

(DEFINEQ (DOUBLE (X) (IPLUS X X)))

Note that this alternate form can only be used for Lambda functions. The first
form must be used to define an Nlambda function.

DEFINEQ returns a list of the names of the functions defined.

: [Functon]
Lambda-spread version of DEFINEQ. Each element of the list x is itself a list either
of the form (NAME DEFINTTION) or (NAME ARGS . DEF-BODY). DEFINE will
generate an error, INCORRECT DEFINING FORM, on encountering an atom where
a defining list is expected. ’

Note: DEFINE and DEFINEQ will operate correctly if the function is already defined and BRCKEN,
ADVISED, or BROKEN-IN.

For expressions involving type-in only, if the time stamp facility is enabled (page 17.60), both DEFIKE
and DEFINEQ will stamp the definition with the user's initials and date,

DFNFLG

(SAVEDEF FN)

: [Variable]
DFNFLG is a global variable that effects the operation of DEFINE (and DEFINEQ,
which calls DEFINE). If DFNFLG=NIL, an attempt to redefine a function 7N
will cause DEFINE to print the message (FN REDEFINED) and to save the
old definitdon of FN using SAVEDEF before redefining it. except if the old and
new definitions are the same (i.e. EQUAL), the effect is simply a no-cp. If
DFNFLG =T, the functon is simply redefined. If DFNFLG=PROP or ALLPROP, the
new definition is stored on the property list under the property EXPR. ALLPROP
affects the operation of RPAQQ and RPAQ (page 11.37). DFNFLG is initally NIL.

DFNFLG is reset by LOAD (page 11.4) to enable various ways of handling the
defining of functions and setting of variables when loading a file. For most
applications, the user will not reset DFNFLG directy.

_ [Funcuon]
Saves the definitdon of FN on its property list under the property EXPR, CODE.

3.9

e
Q

r"; o
9

Function Evalnation

or SUBR depending on its FNTYP. Returns the property name used. If (GETD
FN) is non-NIL, but (FNTYP FN)=NIL, SAVEDEF saves the definidon oa the
property name LIST. This situadon can arise when a functon is redefined which
was originaily defined with LAMBDA misspelled or omitted.

If N is a list, SAVEDEF operates on each functdon in the list, and returns a list of
the individual values.

(UNSAVEDEF FN PROP) [Function]
Restores the definidon of FN from its property list under property PROP (see
SAVEDEF above). Returns Prop. If nothing is saved under PrOP, and #N is defined,
returns (PROP NOT FOUND), otherwise generates an error, NOT A FUNCTION.

If PrOP is not given, ie., NIL, UNSAVEDEF looks under the properties EXPR,
CODE, and SUBR, in that order. The value of UNSAVEDEF is the property name,
or if nothing is found and FN is a function, the value is (NOTHING FOUND):
otherwise generates an ertor, NOT A FUNCTION.

If DFNFLG=NIL, the current definition of Fn, if any, is saved using SAVEDEF.
Thus one can use UNSAVEDEF to switch back and forth between two definitions
of the same function. keeping one on its property list and the other in the function
definizion cell.

If F~ is a list, UNSAVEDEF operates on each function of the list, and its value is a
list of the individual values.

Both SAVEDEF and UNSAVEDEF are redefined in more general terms (ses page 11.18) to operate on
typed definidors of which a functon definidon is but one example. Thus, their actual argument lists in
Interlisp are different than given here. However, when their extra arguments are defaulted o NIL, they
operate as descrived above.

33 FUNCTION EVALUATION

Usually, functon application is done automatcally by the Interlisp interpreter. If a form is typed into
Interlisp whose CAR is a function, this function is applied to the arguments in the COR of the form. These
arguments are evaluated or not, and bound to the function parameters, as determined by the type of the
function. and the body of the funcdon is evaluated. This sequence is repeated as each form in the body
of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of funcdons that will do this. These functions take “functional arguments”, which may either be
litatoms with function definidons, or EXPR forms such as (LAMBDA (X) -.-.), or FUNARG expressions
{see page 5.15).

The foilowing functions are useful when one wants o supply a functional argument which will always
remurn NIL. T, or 0.

(NILL) . [NoSpread Function]
Retumns NIL.

5.10

'I

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION
(TRUE) ' X [NoSpread Function]
Retwurns 7.
(ZERO)) [NoSpread Function]
"~ Remums 0.

Note: When using EXPR expressions as functional arguments, they should be enclosed within the function
FUNCTION (page 5.15) rather than QUOTE, so that they will be compiled as separate functions. FUNCTION
can also be used to create FUNARG.expressions, which can be used to solve some problems with referencing
free variables, or to create functional arguments which carry “state” along with them.

4 . {Functon]
EVAL evaluates the expression X and returns this value, i.e., EVAL provides a way
of calling the Interlisp interpreter. Note that EVAL is itself a lambda function, so
its argument is first evaluated, e.g.,

(EVAL x <)

~(SETQ FOO '(ADD1 3))
(ADD1 3)

~(EVAL FQO)

4 ;

~(EVAL 'F00)
(ADD1 3) -

Interlisp functions can either evaluate or not evaluate these arguments. For those cases where it is
desirable to specify arguments unevaluated, one may use the QUOTE function:

(QUOTE x) " [NLambda NoSpread Function]
This is a function that prevents its arguments from being evaluated. Its value is X
itself. e.g., (QUOTE FOO) is FOO.

Note: Since giving QUOTE more than one argument is almost always a parentheses

error, and one that wouid otherwise go undetected, QUOTE itself generates an error

in this case, PARENTHESIS ERROR.

(KWOTE Xx) [Function]
: Value is an expression which when evaluated yields x. If x is NIL or a number,

this is x itself. Otherwise, (LIST (QUOTE QUOTE) Xx). For example. if the

value of X is A and the value of Y is B, then (KWOTE (CONS X Y)) = (QUOTE

(A . B)).

(DEFEVAL TYPE FN) [Function}
Specifies how a datum of a particular type is to be evaluated.! Intended primarily
for user defined data types. but works for all data types except lists. literal atoms..
and numbers. TYPE is a type name. FN is a function object. i.e. name of a
function or a lambda expression. Whenever the interpreter encounters a datum of
the indicated type, FN is applied to the datum and its value returned as the result
of the evaluation. DEFEVAL returns the previous evaling function for this type. If
FN=NIL, DEFEVAL rewurns the current evaling functon without changing it. If

"COMPILETYPELST (page 12.9) permits the user 1o specify how a darum of a particular type is to be
compiled.

5.11

®

o

Function Evaluation

FN=T, the evaling function is set back to the system default (which for all data
types except lists is to return the datum itself).

(APPLY FN ARGLIST --) {Function]

0

Applies the function FN to the arguments in the list ARGLIST, and returns its value.
APPLY is a lambda function, so its arguments are evaluated, but the individual
elements of ARGLIST are not evaluated. Therefore, lambda and nlambda functions
are treated the same by APPLY; lambda functions take their arguments from
ARGLIST without evaluating them. Note that FN may still explicitly evaluate one
or more of its arguments itself, as SETQ does. Thus. (APPLY 'SETQ '(FQO
(ADD1 3))) will set FOO to 4, whereas (APPLY 'SET '(FOO (ADD1 3)))
will set FOO to the expression (ADD1 3).

APPLY can be used for manipulating £XPRs, for example:
«~(APPLY '(LAMBDA (X Y) (ITIMES X Y))

(3 4))
12

(APPLY® FN ARG; ARG, :-- ARGy) [NoSpread Function]

(EVALA X 4)

-

[

Nospread version of APPLY, equivalent o (APPLY FN (LIST ARG; ARG, :--
ARGp)). .

[Function]
Simulates a-list evaluation as in LISP 1.5. x is a form, A is a list of the form:

((NAME; . VAL;) (NAME, . VALj) --+ (NAMEN . VALy))
The variable names and values in A are “spread” on the stack, and then X is

evaluated. Therefore, any variables appearing free in X, that also appears as CAR
of an element of A will be given the value in the COR of that element.

The functons below are used to evaluate a form or apply a function repeatedly. RPT, RPTQ, and FRPTQ

... evaluate a given form a specified number of tmes. MAP, MAPCAR, MAPLIST, etc. apply a given function

Orepeatedly to different elements of a list. possibly constructing another list. These functions allow efficient

iterative computations, but they are difficult to use. For programming iteradve compurations. it is usually

better to use the CLISP Iterative Statement facility (page 4.5), which provides a more general and complete

facility for expressing iterative statements. Whenever possible, CLISP translates iterative statements into
expressions using the functions below, so there is no efficiency loss.

{RPT N FORM)

(RPTQ N FORM,; FORM, .-+ FORMy)

[Function]
Evaluates the expression FORM, N times. Returns the value of the last evaluation.
If ¥ < 0, ForM is not evaluated. and RPT returns NIL.

Before each evaluation. the local variable RPTN is bound to the number of
evaluations yet to take place. This variable can be referenced within FORM. For
example, (RPT 10 '(PRINT RPTN)) will print the numbers 10. 9, --- L, and
return L. ‘

[NLambda NoSpread Function]
Nlambda-nospread version of RPT: N is evaluated, FORM; are not. Returns the
value of the last evaluation of FORM,,.

5.12

®

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(FRPTQ N FORM; FORMj -+ FORMy) [NLambda NoSpread Function]
Faster version of RPTQ. Does not bind RPTAN.

(MAP MAPX MAPFNI MAPFN2) [Function]
If MAPFN2 is NIL, MAP applies the function MAPFNI1 tO successwe tails of the
list MmapPx. That is, first it computes (MAPFN1 MAPX), and then (MAPFN: (CDR
MAPX)), etc., untl MAPX becomes a non-list. If MAPFN2 is provided, (MAPFN2

MAPX) is used instead of (CDR maArx) for the next call for MAPFNI. e.g., if.

MAPFN2 were CDDR, alternate elements of the list would be skipped. MAP returns
NIL.

(MAPC MAPX MAPFN1 MAPFN2) [Funcdon]
Identical to MAP, except that (MaPFN1 (CAR MAPX)) is computed at each
iteration instead of (MAPFNI MaPX), ie., MAPC works on elements, MAP on
tails. MAPC returns NIL.

()
(MAPLIST MAPX MAPFN1 MAPFN2) [Function]
Successively computes the same values that MAP would compute, and returns a list
consisting of those values.
(MAPCAR MAPX MAPFN! MAPFN3) [Function]
Computes the same values that MAPC would compute, and returns a list consisting
of those values, e.g., (MAPCAR X 'FNTYP) is a list of FNTYPs for each element
on X.
‘(MAPCON MAPX MAPFN1 MAPFN2) [Function]
Computes the same values as MAP and MAPLIST but NCONCs these values to form
a list which it returns.
(MAPCONC MAPX MAPFN1 MAPFN2) [Function]
Computes the same values as MAPC and MAPCAR, but NCONCs the values to form
- a list which it returns.
Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the new e
list is the result of applying a function 10 the corresponding element on the original list. MAPCONC is used\)

when there are 2 variable number of elements (including none) to be inserted at each iteration. Examples:

(MAPCONC '(A B C NIL D NIL)
"(LAMBDA (Y) (if (NULL Y) then NIL else (LIST Y))))
=> (A B C D)

This MAPCONC returns a list consisting of mMarx with all NILs removed.

(MAPCONC '((A B) C (D E F) (G) H I)
*(LAMBDA (Y) (if (LISTP Y) then Y else NIL)))
==> (ABDEFG)

This MAPCONC returns a linear list consisting of all the lists on MAPX.

Since MAPCONC uses NCONC 16 string the corresponding lists together. in this example the original list will
be alteredtobe ((A B D E F G) C (D E F G) (G) H I). Ifthisisan undesirable side effect the
functional argument to MAPCONC should return instead a top level copy of the lists, i.e. (LAMBDA (Y)

(if (LISTP Y) then (APPEND Y) else NIL))).

5.13

@,

e mm

O

@

Function Evaluation

(MAP2C MAPX MAPY MAPFN1 MAPFN2) [Function]
Idendcal to MAPC except MAPFN1 is a function of two arguments, and (MAPFNI
(CAR MmaPx) (CAR MaPY)) is computed at each iteration. Termiinates when
either MAPX or MAPY is a non-list.

MAPFN2 is still a function of one argument, and is applied twice on each iteraton;
(MAPFN2 MAPX) gives the new MAPX, (MAPFN2 MAPY) the new MAPY. CDR is
used if MAPFN2 is not supplied. ie., is NIL.

(MAP2CAP. MAPX MAPY MAPFNI MAPFN2) [Funcdon]
Identical to MAPCAR except MAPFN! is a function of two arguments and (MAPFN!
(CAR mapPx) (CAR MAPY)) is used to assemble the new list. Term.mates when
either MAPX Or MAPY is a non-list,

(SUBSET MAPX MAPFN1 MAPFN2) [Function]
Applies MAPFN1 to elements of MaPX and returns a list of those elements for
which this application is non-NIL, e.g.,

(SUBSET "(A B 3 C 4) 'NUMBERP) = (3 4).
MAPFN3 plays the same role as with MAP, MAPC, et al.

(EVERY svzm'x EVERYFNI1 mm) [Function]
Returns T if the result of applying EVERYFN! to each element in EVERYX is true,
otherwise NIL. For example, (EVERY "(X Y Z) 'ATOM) => T.

-

EVERY operates by evaluating (EVERYFN! (CAR EVERYX) EVERYX). The
second argument is passed t¢ EVERYFN1 so that it can look at the next element
on EVERYX if necessary. If EVERYFN: yields NIL, EVERY immediately returns
NIL. Otherwise, EVERY computes (EVERYFN2 EVERYX). or (CDR EVERYX) if
EVERYFN2=NIL, and uses this as the “new” EVERYX. and the.process continues.
For example, (EVERY X 'ATOM 'CDOR) is true if every other element of X is
atorriic.

(SOME SOMEX SOMEFN! SOMEFN2) {Function]
Rerurns the tail of somMeExX beginning with the first element that satisfies SOMEFN1.
i.e., for which somMEFN1 applied to that element is true. Value is NIL if no such
element exists. (SOME X '(LAMBDA (Z) (EQUAL Z Y))) is equivalent to
(MEMBER Y X). SOME operates analogously to EVERY. At each stage. (SOMEFNI
(CAR soMEX) somex) is computed. and if this is not NIL. soMEX is returned as
the value of SOME. Otherwise, (SOMEFN2 SOMEX) is computed. or (CDR SOMEX)
if soMEFN2=NIL, and used for the next SOMEX. .

(NOTANY SOMEX SOMEFN! SOMEFN2) [Function]
(NOT (SOME SOMEX SOMEFN! SOMEFN2))

(NOTEVERY EVERYX EVERYFN1 EVERYFN2) [Function]
(NOT (EVERY EVERYX EVERYFNI EVERY'"'N'.’))

(MAPRINT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFLG) [Function]
A general printing functon. [t cycles through LsT applyving 2F~ (or PRIN1 if PFN
not given) to each element of LST. Between each application. MAPRINT performs

5.14

)

- FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

PRIN1 of sgp (or ™ ™ if sEP=NIL). If LEFT is given, it is printed (using PRIN1)
initially; if RIGHT is given it is printcd (using PRIN1) at the end.

For example, (MAPRINT X NIL '%('%)) is equivalent to PRIN1 for lists. To
print a list with commas betwcen each element and a final “." one could use
(MAPRINT X T NIL '%. '%,).

If LispxPrINTFLG=T, LISPXPRIN1 (page 8.20) is used instead of PRIN1.

5.4 FUNCTIONAL ARGUMENTS

)

-~ When using functional arguments, the following function is very useful:

(FUNCTION FN ENV) ' © [NLambda Function]
If ENv=NIL, FUNCTION is the same as QUOTE, except that it is treated differently
when compiled. Consider the function definition:

(DEFINEQ (FOO -..
(FIE LST (FUNCTION (LAMBDA (Z) (ITIMES Z Z))))
))

FOO calls the function FIE with the value of LST and the EXPR expression
(LAMBDA (Z) (LIST (CAR Z))). '

If FOO is run interpreted, it docsn't make any difference whether FUNCTION ot
QUOTE is used. However, when FOQ is compiled, if FUNCTION is used the comptler
will define and compile the EXPR as an auxiliary function (See page 12.8). The
compiled EXPR will run considerably faster, which can make a big difference if it
is applied repeatedly.

Note: Compiling FUNCTION will nor create an auxilia.rjf function if it is a functional n
argument to a function that compiles open, such as most of the mapping functions.
(MAPCAR, MAPLIST, etc.).

If EnV is not NIL. it can be a list of variables that are (presumably) used freely by
FN. In this case, the value of FUNCT ION is an expression of the form (FUNARG FN
pos), where POSs is a stack pointer to a frame that contains the variable bindings
for those vanables on ENV. ENV can also be a stack pointer iself, in which case

~ the value of FUNCTION is (FUNARG FN ENV). Finaily, ENV can be an atom, im
which case it is evaluated, and the value interpreted as described above.

As explained above, one of the possible values that FUNCTION can return is the form (FUNARG rN
Pos). where FN is a function and POS is a stack pointer. FUNARG is not a function itself. Like LAMBDA
and NLAMBDA, it has meaning and is specially recognized by Interlisp only in the context of applying 2
functon t0 arguments. In other words. the expression (FUNARG rN POs) is used exacdy like a functoen.
When a2 FUNARG expression is applied or is CAR of a form being EVAL'ed. the APPLY or EVAL takes
place in the access environment specified by ENV (see page 7.1). Consider the following example:

~ (DEFINEQ (DO.TWICE (FN VAL)

5.15

O

Functional Arguments

(APPLY* FN (APPLY® FN VAL))))

(DO.TWICE)

~ (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X X))]
5)

20

~ (SETQ VAL 1)

1

« (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL))]
§) :

20 :

~ (DO.TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL)) (VAL)]
5)

7

DO.TWICE is defined to apply a function FN to a value VAL, and apply FN again to the value returncd;
in other words it calculates (FN (FN VAL)). Given the EXPR expression (LAMBDA (X) (IPLUS X
X)). which doubles a given value, It correctly caleulates (FN (FN 6)) = (FN 10) =« 20. However,
when given (LAMBOA (X)) (IPLUS X VAL)), which should add the value of the global varfable VAL
the agument X, {t does siiniething unexpected, returning 20 again, rather han §4+1+1 a 7, The problem
is that when the EXPR I8 evaluated, it iy evaluated in the context of DO, TWICE, where VAL s hound
to the second argument of DO. TWICE, namely 5. In this case, one solution is to use the NV argument
to FUNCTION to construct a FUNARG expression which contains the value of VAL at the time that the
FUNCTION is executed. Now, when (LAMBDA (X) (IPLUS X VAL)) is evaluated, it is evaluated in
an environment where the global value of VAL is accessable. Admittedly, this is a somewhat contrived
example (it would be easy enough to change the argument names to 00, TWICE so there would be no
conflict), but this situation arises occasionally with large systems of programs that construct funcions, and
pass them around.

Note: System functions with functional arguments (APPLY, MAPCAR, ew.) are compiled so that their
arguments are local, and not accessiable (see page 12.4). This reduces problems with conflicts with free
virrtables used in functional arguiments,

FUNARG expressions can be used for more than just circumventing the clashing of variables. For examnple,
1 FUNARG expression can be returned as the value of a computation, and then used “higher up”.
Furthermore, if the function in 4 FUNARG expression sets any ol the variables contained in the frame,
only the frame would be changed. For example, consider the following function:

(MAKECOUNTER (CNT)
(FUNCTION [LAMBDA NIL
(PROG1 CNT (SETQ CNT (ADD1 CNT]
(CNT)))

The function MAKECO!INTER returns a FUNARG that increments and returns the previous value of the
counter CNT. However, this is done within the environment of the zall to MAKECOUNTER where FUNCTION
wax executed, which the FUNARG -expression “carries around™ with 11, even .after MAKECOUNTER has
finshed executing. Note that cach call v MAKECOUNTER creates 4 FUNARG expression with 4 new,
tdependent environment, so that muluple counters can be genenitted and used:

~ (SETQ C1 (MAKECOUNTER 1))

(FUNARG (LAMBDA NIL (PROGL CNT (SETQ CNT (ADD1 CNT)))) #1,13724/=FUNARG)
- (APPLY C1)

1«

5.1¢

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

« (APPLY C1)
2

« (SETQ C2 (MAKECOUNTER 17))

(FUNARG (LAMBDA NIL (PROG1 CNT (SETQ CNT (ADD1 CNT)))) #1,13736/°FUNARG)
« (APPLY C2)

17

« (APPLY C2)

18

« (APPLY C1)

3

~ (APPLY C2)

19

/—

)

By creating a FUNARG expression with FUNCTION, a program can create a function object which has m

updatcable binding(s) associated with the object which fast berween calls to it, but are only accessible
through that instance of the function. For example, using the FUNARG device, a program could
mainuain two different instances of the same random number gencrator in different states, and run them
independentdy. :

Note: In Interlisp-10, environment switching is expensive because it is a shallow-binding system (see page
7.1), so this may restrict the applications of FUNARG expressions,

35 MACROS

Macros provide an alternative way of specifying the acton of a function. Whereas function definitions are
evaiuated with a “functon cail”, which involves binding variabies and other houseckesping tasks, macros
are evaluated by translating one Interlisp form into ancther, which is then evaluated.

A litatcm may have both a function definition and a macro definition. When a form is evaluated by
the interpreter, if the CAR has a function definition, it is used (with a function call), otherwise if it has
a macro definition, then that is used. However, when a form is compiled, the CAR is checked for a
macro definition first, and only if there isn't one is the function definition compiled. This allows functions
that behave differently when compiled and interpreted. For example, it is possible to define a function
that, when interpreted. has a function definition that is slow and has a lot of error checks. for use when
debugging a system. This function could also have a macro definition that defines a fast version of the
functon, which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the property list of a litatom. Macros are
often used for functions that should be compiled differendy in different Interlisp implementations. and
the exact property fiame a macro definition is stored under determines whether it should be used in a
particular implementation. The global variable MACROPROPS contains a list of all possible macro property
names which should be saved by the MACROS file package command. Typical macro property names
are 10MACRO for [nterlisp-10, DMACRO for Interlisp-D,2 and MACRO for “implementation independent”
macros. The global variable COMPILERMACROPROPS is a list of macro property names. lnterlisp
determines whether a litatom has a macro definition by checking these property names, in order. and

g

2also VAXMACRO for Interlisp-VAX, and JMACRO 'fdr-[ntcrlisp-.ledco.

A

i7

-

Macros

using the first non-NIL property value as the macro definition. In Interlisp-D this list contains DMACRO and
MACRO in that order so that DMACROs will override the implementation-independent MACRO properties.

In general. use a DMACRO property for macros that are to be used only in Interlisp-D, use 10MACRO for

macrcs that are to be used only in Interlisp-10, and use MACRO for macros that are to affect both systems.

Macro definitions can take the following forms:

(LAMBDA ...) or (NLAMBDA .:.)

A ﬁmcuon can he made to cumpllc open by giving it a macro dcﬁmuon of the form (LAMBDA

-+) or (NLAMBOA ...}, ¢ (LAMBDA (X) (COND ((GREATERP X 0) X) (T (MINUS
X)))) for ABS. The cﬁ'cct is.as if the macro definition were written in place of the function
wherever it appears in a function being compiled, i.c, it compiles as a lambda or nlambda
expression, This saves the time necessary to call the function at the price of more compiled code
generated in-line,

QQ- (NIL EXRESSION) or (LIST EXPRESSION)

C

S

“Subsdrution” macro. Each argument in the form being evaluated or compiled is subsdruted for
the corresponding atom in LIST, and the result 2f the substitution is used instead of the form. For
example, if the macro definition of ADD1 is ((X) (IPLUS X 1)). then, (ADO1 (CAR Y)) is
compiled as (IPLUS (CAR Y) 1).

Note that ABS could be defined by the substitution macro ((X) (COND ((GREATERP X Q)
X) (T (MINUS X)))). In this case, however, (ABS (FOQ X)) would compile as

(COND ((GREATERP (FOO0 X) 0)
(FOO X))
(T (MINUS (FOO X))))

and (FOO X) would be evaluated two times. (Code to evaluate (FOO X) would be generated
three times.)

(OPENLAMBDA ARGS BODY)

This is a cross between substitution and LAMBDA macros. When the compiler processes an
OPENLAMBOA, it attempts to substitute the actual arguments for the formals wherever this preserves
the frequency and order of evaluation that would have resulted from a LAMBDA expression. and
produces a LAMBEOA binding only for those that require it.

When a macro definition is the atom T, it means that the compiler should ignore the macro, and
compile the functon definition; this is a simple way of turning off other macros. For example,
the user may have a function that runs in both Interfisp-D and Interlisp-10. but has a macro

definition that should only be used when compiling in Interlxsp 10. If the MACRO property has -

the macro specification, a DMACRO of T will cause it to be ignored by the Interiisp-D compiler.
Note that this OMACRO would not be necessary if the macro were specified by a 10MACRO instead
of a MACRO.

OTHER-FUNCTION)
A simple way w0 tell the compiler to compile one function exactly as it would compile another.
For example, when compiling in Interlisp-D, FRPLACAs are treated as RPLACAs. This is achieved
by having FRPLACA have a DMACRO of { RPLACA).

(LITATOM EXPRESSION)

(9
-
Ca3

FUNCTION DEFINI'I'ION. MANIPULATION, AND EVALUATION

If a macro definition begins with a litatom other than those given above, this allows computation
of the Interlisp expression to he evaluated or compiled in place of the form. LrraToMsm is bound
to the CDR of the calling form, EXPRESSION is cvaluated, and the result of this evaluation is
evaluated or compiled in place of the form. For example, LIST could be compiled using the
computed macro:

[X (LIST 'CONS
(CAR X)
(AND (CDR X)
(CONS 'LIST
(COR X]

* This would cause (LIST X Y Z) to compile as (CONS X (CONS Y (CONS Z NIL))). Note
the recursion in the macro expansion.

If the result of the evaluation is the litatom IGNOREMACROQ, the macro is ignored and the
compilation of theé expression procecds as if there were no macro definition, I the litawom in
guestion is normally treated specially by the compiler (CAR, CDR, COND, AND, etc.), and ziso has
a macro, if the macro expansion returns IGNOREMACRO, the litatom will stll be treated specially.

In Interlisp-1Q, if the result of the evaluation is the atom INSTRUCTIONS, no code will be
generated by the compiler. It is then assumed the evaluation was done for effect and the

necessary code, if any, has been added. This is a way of giving direct instructions to the comptler

if you understand it

‘Note: It is often useful, when constructing complex macro expressions, to use the BQUOTE facility (see
page 6.39).

The following function is quite useful for debugging macro definitions:

(EXPANDMACRO FORM QUITTFLG —) [Function]

Takes a form whose CAR has a macro definition and expands the form as it would -

be compiled. The result is prettyprinted, unless QUIETFLG =T, in which case the
result is simply returned.

551 MACROTRAN

Interpreted macros are implemented by the function MACROTRAN. When the interpreter encounters a
form CAR of which is an undefined function.? MACROTRAN is called. If CAR of the form has a macro
definivon, the macro is expanded. and the result of this expansion is evaluated in place of the orginal
form. CLISPTRAN (page 16.19) is used to save the result of this expansion so that the expansion only has
to be done once. On subscquent occasions, the translation (expansion) is retrieved from CLISPARRAY
the same as for other CLISP constructs; MACROTRAN never even has to be invoked.

Sﬁmctimcs. macros contain calls to functions that assumc that the macro is being compiled. The
vaniable SHOULDCOMP ILEMACROATOMS is a list of functions that should be compiled w0 work correctly
(initially (OPCODBES) in Interlisp-D. (ASSEMBLE LOC) in interlisp-10). UNSAFEMACROATOMS is a list

*In other words, if you have a macro on FOO, then typing (FOO ‘A 'B) will work, but FOO(A B) will
not work.

5.19

()

-

)

MACROTRAN

of functions which effect the operation of the compiler, so such macro forms shouldn’t even be expanded
except by the compiler (inidally NIL in Interlisp-D, (C2EXP STORIN CEXP COMP) in Interlisp-10). If
MACROTRAN encounters a macro containing calls to functions on these two lists, instead of the macro
being expanded, a dummy function is created with the form as its definition, and the dummy function is
then comnpiled. A form consisting of a call to this dummy function with no arguments is then cvaluated
in place of the original form, and CLISPTRAN is used to save the translation as described above. There
are some situations for which this procedure is not amenable, ¢.g. a GO inside the form which is being
compiled will cause the compiler to give an UNDEFINED TAG error message because it is not compiling
the entire function, just a part of it

Note: MACROTRAN is an entry on DWIMUSERFORMS (page 15.10) and thus will not work if DWIM is not
enabled.

CHAPTER 6

INPUT/OUTPUT

6.1 FILES

All ipput/output functions in Interlisp can specify their source/destination file with an optional extra
argument, which is the name of the file, given as a litatom. These functions generally require that the file
be open. Files are opened and manipulated by the functions described below. The name T designates
terminal input and output, and is always considered open. It is also possible to supply a string as an
input “file”, without needing to open it; input operations remove successive characters from the string.
Note that because of this feature, file names must always be specified as litatoms, not strings.

(OPENFILE FILE ACCESS RECOG BYTESIZE MACHINE.DEPENDENT.PARAMETERS) [Function]
Opens rILe with access rights as specified by AccEss, one of INPUT, OUTPUT,
BOTH, or APPEND, and remirns the full name of the file. Causes error FILE NOT
FOUND if FiLE is not recognized by the file system, or other errors if FILE is
recognized but cannot be opened, e.g. FILE WON'T OPEN if the file is already
opened by someone else or is protected against the operation, FILE SYSTEM
RESOURCES EXCEEDED if there is no more room in the file system.

For Access=INPUT, only input operations are permitted on the file; for
ACCESS=0UTPUT or Access=APPEND, only output operations are permitted.
Note: in Interlisp-10 and Interlisp-D, ACCESS=0UTPUT implies that one intends
to write a new or different file, even if a version number was specified and
the corresponding file already exists. Thus any previous contents of the file are
discarded, and the file is empty immediately after the OPENFILE. If it is desired
to write on an already existing file while preserving the old contents, the file must
be opened for access BOTH or APPEND.

RECOG specifies the recognidon mode of FmLE, as described on page 6.4. If
RECOG=NIL. it defaults according to the value of AcCEsS: for AcCEss= INPUT,
RECOG=0LD is used: for AcCcEss=0UTPUT, rREcoc=NEW is used: for the other
values of ACCESs, RECOG=0LD/NEW is used.

BYTESIZE, if suppﬁe¢ is the byte size in which to open the file. If BYTESIZE=NIL,
the bytesize used is the default for the implementarion (8 for Interlisp-D. 7 for
Interlisp-10).-

MACHINE DEPENDENT.PARAMETERS is a list sﬁecir‘ying additional opening parameters.
In Interlisp-10, this list may contain the following litatoms:

WAIT Wair if file is busy.

DON'T.CHANGE.DATE

6.1

' Files

Don’t change the access dates.
THAWED Open filc in “tha\}ved" mode.

[n Interlisp-D, mcmm.DE#ENDENT.PMTERs should be a list of pairs
(ATTRIB VALUE), where ATTRIB is any file attribute that the file system is willing
to allow the user to set (see SETFILEINFO, page 6.7).

If the FLz argument to an input (output) function is not given (has value NIL), the file specified as
“primary” for input (output) is used. Normally these are both T, for terminal input and output. However,
the primary input or output file may be changed with the functions below.

(INPUT FLLE)

(OQUTPUT FRLE)

(INFILE FRLE)

(QUTFILE FmLE)

(IOFILE FILE)

[Function]
Sets FILE as the primary input file; returns the name of the old primary input
file. FILE must be open for input. INPUT can also be given a string as argument,
interpreted as described above.

(INPUT) returns the current pnmary input file, which is not changed.
[Function]

Sets FILE as the primary output file; returns the name of the old primary output
file. /LE must be open for output A string tannot be used as an output file.

(OQUTPUT) returns the currentlprima.ry output file, which is not changed.

-

[Function]
Opens FE for input, and sets 1t as the primary input file. Equlvalent to (INPUT
(OPENFILE rmre 'INPUT 'OLD))

: [Function]
Opens Fz for output, and sets it as the primary ourput file. Equivalent to
(OUTPUT (OPENFILE rmE 'OUTPUT 'NEW)).

{Function]
(OPENFILE rmeE 'BOTH 'OLD); opens FLE for both input and output Does
not affect the primary input or output file.

(OPENP FILE ACCESS) [Function]

(CLOSEF FILE)

If Access=NIL, retumns the full name of FILE if FILE is open either for input or
for output; otherwise NIL.

If access is INPUT, QUTPUT or BOTH, returns the full name of FILE if it is open
in that access mode: otherwise NIL.

Note: If FILE is not recognized,‘OPENP returns NIL without generating an error.

(OPENP) returns a list of all files open for input or output, excluding T and the
current typescript (dribble) file, if any (page 6.12).

[Function]
Closes FiLz. Generates an error, FILE NOT OPEN. if Fe is not open. {f FILE is
NIL. it attempts 1o close the primary input file if other than rerminal. Failing that
it attempts 1o close the primary output file if other than terminal. Failing both, it

230

@)

O

INPUT/OQUTPUT

recurns NIL. If it closes any file, it returns the name of that file. If it closes either
of the primary files, it resets that primary file to terminal.

WHENCLOSE (page 6.11) allows the user to *“advise” CLOSEF to perform various
operations when a file is closed.

(CLOSEF? rLE) [Function]
Closes FILE if it is open, otherwise does nothing. Returns FILE.

(CLOSEALL ALLFLG) [Function]
Closes all open files, except T and the current typescript file, if any. Returns a list
of the files closed.

WHENCLOSE (page 6.11) allows certain files to be “protected” from CLOSEALL.
(CLOSEALL T) overrides this protection. .

(DELFILE rmLE) " [Funcdon]
Deletes FILE if possible. Returns FLE if deleted, else NIL.

(RENAMEFILE OLDFILE NEWFILE) [Function]
Renames oLDFILE to be NEWFLLE. Returns NEWFLLE if successful, else NIL.

.
-

6.1.1 File Naming and Recognition

In Interlisp, a file name is a literal atom composed of ome or more fields, separated by suitable
punctuation. The precise fields and their interpretation is dependent on the implementation; the functions
PACKFILENAME and UNPACKF ILENAME (page 6.6) are used to construct and take apart filenames in an
implementation-independent way:

Depending on the file system implementation, file names given to input/output functions may be
incompletely specified, with the file system handling the task of obtaining a specific file from a partial
name, or recognizing the file. For example, in file systems that support version numbers. one can call
QPENFILE giving a file name without a version oumber, and the file system will supply a default version
number based on the context (opening a new file for output vs. an old file for input). [nternally, however,
each open file has associated with it a completely-specified filename, one that uniquely identifies the file
to the file system in any context. [t is this “full” file name that is returned from OPENFILE and other
functons that return names of open files. For example, (OPENFILE 'FOO 'QUTPUT) might retumn
{LISP>F00.:3. Any time that an input/output function is called with a file name other than the full
file name. Interlisp must perform recognition on the partial file name in order to determine which open
file is intended. Thus if repeated operations are to be performed. it is considerably more efficient to use
the full file name returned from OPENFILE than to repeatedly use the possibly incomplete name that

. was used to open the file.

In Interlisp-10. filenames follow the conventions of the operating system (either TENEX or TOPS-20).
lLe., FILE can be prefixed by a directory name enclosed in angle brackets, can contain <esc>s or controi-
F's. and can include suffixes and/or version numbers. When a file is opened for input and no version
number is given. the highest existing version number is used Similarly, when a file is opened for
output and no version number is given, a new file is created with a version number one higher than the
highest one currently in use with that file name. The full filename in Interlisp-10 consists of directory,
name, extension. and version. In [nterlisp-D, it also includes a device or host name in brackets. i.e,

6.3

File Naming and Recognition

{PHYLUM}<LISP>FQO.;3).
The following functions can be used to perform file recognition without opening a file:

Warning: In some implementations of [nteriisp (such as: Interlisp-D), it may not be possible to determine
the full name of a new file without trying lo open it. In this case, OUTFILEP and FULLNAME may not
always return the correct value. These functions should not be used in general, because the idea “what a file
would be named if it were opened” is not well defined in some file systems.

(INFILEP FLE) . {Function]
Returns full file name of FILE if FILE is recognized as specifying the name of an
existing file that could potentially be opened for input, NIL otherwise. Recognition
is in input context, i.e., in Interlisp-10, if no version number is given, the highest
existing version number is returned.

¢ (OUTFILEP FLE) 1 [Function]

Similar to INFILEP, except recogmuon is in output context, ie., in Interlisp-10, if
no version number is given, a version aumber one higher than the highest existing
version number is returned. Roughly speaking, OUTFILEP returns the full name
of the file that would be created if OUTFILE were called with the same argument.

A more general version of INFILEP and OUTFILEP is provided by the function FULLNAME:

(FULLNAME X RECOG) [Function]
[f x is recognized in the recoomuon mode specified by RECOG as an abbreviation
for some file, returns the ﬁles full name, otherwise NIL. RECOG can be OLD,
meaning choose the (newest) existing version of the file; NEW, meaning make the
full file name one which does not yet exist (version number one higher than
highest existing version); OLDEST, meaning choose the existing file with the lowest
version number; or OLD/NEW, meaning to recognize an existing version if possible,
otherwise a new version (useful only for writing a file). REcoc=NIL defaults to
OLD. For all other values of RECOG, generates an error ILLEGAL ARG. If x is not
a literal atom, generates an error, ARG NOT LITATOM.

For example, INFILEP could be defined as (FULLNAME rmz 'OLD) and
OUTFILEP as (FULLNAME FILE 'NEW).

The rECOG argument is used only for defaulting unspecified parts of the filename
(in Interlisp~10 and Interlisp-D. the version), not to pass judgment on the specified
parts. In particular, RECOG=NEW does not require that the file be new. For
example, (FULLNAME 'FQ0O0.:2 'NEW) may return <MASINTER>FOQO. ;2 if that
file already exists, even though (FULLNAME 'FOQ 'NEW) would default the
version to a new number, perhaps retumning <MASINTER>FOQQ.:5

Note that INFILEP, OUTFILEP and FULLNAME do not open any files. or change the primary files: they
are pure predicates. [n general they are also only hinrts, as they do not necessarily imply that the caller
has access rights to the file. For example, INFILEP might return non-NIL, but OPENF ILE might fail for
the same file because the file is read-protected against the user, or the file happens to be open for output
by another user at the time. Similarly, OUTFILEP could return non-NIL. but OPENFILE could fail with
a FILE SYSTEM RESOURCES EXCEEDED error. Note also that in a mult-user file system. intervening
file operations by another user could contradict the information returned by recognition. For example,
a file that was INFILEP might be deleted. or between an OUTFILEP and the subsequent OPENFILE.

6.4

O

<:>

5

INPUT/OUTPUT

another user .might create a new version or delete the highest version, causing the names rewrned by
OUTFILEP and OPENFILE to have different version numbers. Thus, in general, the “truth™ about a file
can only be obtained by actually opening the file; in particular, creators of files should rely on the name
returned from OPENFILE, not from OUTFILEP.

»

If the file system does not successfully recognize an incomplete file name, a FILE NOT FOUND error
is generated (except for INFILEP, OUTFILEP, FULLNAME and OPENP, which in this case return NIL).
As described on page 9.16, before a FILE NOT FOUND error occurs, it is intercepted via an entry on
ERRORTYPELST, which causes SPELLFILE (page 15.20) to be called. SPELLFILE will search alternate
directories and possibly attempt spelling correction on the file name. Only if SPELLFILE is unsuccessful
will the error actually occur.

Note that recognition is performed on the user’s entire directory, not just the open files, which can resuit
in certain anomalies. Thus, even if only one file is open, say F0O. : 1, the name F3 (F<esc>) will not
be recognized if the user’s directory also contains the file FIE. ;1. Similarly, it is- possible for a file
name that was previously recognized to become ambiguous. For example, a program performs (INFILE
'FO0), opening FOO. ; 1, and reads several expressions from FOO. Then the user interrupts the program,
creates a FOO. ;2 and reenters his program. Now a call to READ giving it FOO as its FILE argument will
generate a FILE NOT OPEN error, because FOO will be recognized as F0OO0.:2.

6.1.2 Maripulating File Names

Different operating systéems have different conventions for namiﬁg files. However, it is desirabie for -

Interlisp to be as implementation independent as possible. Therefore, all programs that need to reference
parts of a filename, or construct new file names from existing ones, should use the functions described
below. The implementation of these functions obviously is dependent on the operating system they will
run under, but as far as the programs that use them are concerned, they permit expressing operations
that are implementation independent.!

Every file name is composed of a collection of fields which have different semantc interpretations. A
fleid name is a literal atom which is the name of a file-name field. Interlisp assumes that NAME and
EXTENSION are valid field names; the implementor is free to allow other fieids. In Interlisp-10, allowable
field names are: DEVICE, DIRECTORY, -NAME, EXTENSION, VERSION. PROTECTION, ACCOUNT, and
TEMPORARY. [nterlisp-D allows HOST, DIRECTORY, NAME, EXTENSION, and VERSION.

(FILENAMEFIELD FILENAME FIELDNAME) : [Function]
Returns the contents of the FIELDNAME field of FILENAME.

(UNPACKFILENAME FILENAME —) [Functon]
Returns a list of alternadng field names and field contents.

Exampies from I[nterlisp-D:

« (UNPACKFILENAME 'F00.BAR)
(NAME FOO EXTENSION BAR) .
« (UNPACKFILENAME '{PHYLUM}<SANNELLA>LISP>IMTRAN.DCOM;21)

!In partcular. the [nterlisp-10 implementation recognizes file names in both Tenex and TOPS-20 format
and builds new names as appropriate.

6.5

File Attributes

(HOST PRHYLUM DIRECTORY SANNELLADLISP NAME IMTRAN
EXTENSION DCOM VERSION 21)

Examples from Interlisp-10 on Tenex:

« (UNPACKFILENAME ‘<LISP>MAC.COM;:3)
(DIRECTORY LISP NAME MAC EXTENSION COM VERSION 3)
« (UNPACKFILENAME 'WORK.:T)

(NAME WORK EXTENSION NIL TEMPORARY T)

; : Note: InInterlisp -10, (UNPACKFILENAME 'DSK:FQQ) returns (DEVICE DSK:
) NAME FQO0), i.e. the : isleft in. Thisis so (DEVICE NIL:) may be distinguished
from (DEVICE NIL).

- (PACKFILENAME FIELDNAME; FIELDCONTENTS; --- FIELDNAME) FIELDCONTENTSy)
[NoSpread Function]
Takes a list of alternar.mg fileld pames and field contents (atoms or strings),
and returns the corresponding file name. For example, (PACKFILENAME
*DIRECTORY 'LISP 'NAME 'NET) returns <LISP>NET.

If the same field name is given twice, the first occurrence is used.

‘ If the “field name™ BODY is given, this means that the operand to BODY shouild
! itseif be unpacked and spliced into the argument list at that point. This is useful
for providing default field names, or to change just one field in an existing name.

For example, to take a file name FILE and change the DIRECTORY field, perform
(PACKFILENAME 'DIRECTORY NEWDIRECTCRY 'BOOY rmLE). Alternatively,
to provide a default for the EXTENSION field. perform (-PACKFILENAME ‘'BODY
FILE 'EXTENSION DErFAULT). This uses DEFAULT as the extension unless one is
already specified in FzLE.

' Note that a null field is a field that 4as been specified, e.g., if FME=F00;1 in the
above example, the defauit extension will be used, but if FLe=F00. :1, it will
not, because a pull extension has been specified.

[f the first argument to PACKFILENAME is a list PACKFILENAME is called on that
argument. Thus PACKF ILENAME and UNPACKFILENAME operate as inverses.

. 6.13 File Attributes

Any file has a number of “file amributes”, such read daie protection, and bytesize. The exact atrributes
that a file can have is implementation-dependent. The functions GETFILEINFO and SETFILEINFO
allow the user to conveniently access file attributes:

(GETFILEINFO FILE ATTRIB) ! [Function]
Returns the current serting of the ATTRIB atmbute of riLE. In Interlisp-10. FrL=
may also be a JFN as returned by GTJFN (page 22.22).

In Interiisp-10. GETFILEINFOQ takes an optional third argument SCRATCH. which
is analogous to the third argument of GDATE (page 14.10): a suing pointer to reuse

6.6

()

INPUT/QUTPUT

for those ATTRIB's which return string values.

(SETFILEINFQO FILE ATTRIB VALUE) [Function]
Sets the attribute ATTRIB of FILE t0 be VALUE. SETFILEINFO returns T if it
is able to change the attribute ATTRIB, and NIL if unsuccessful (some artributes
cannot be changed, e.g. it doesn’t make sense to change the SIZE of a file without
writing something on it).

GETFILEINFO and SETFILEINFé currenty recognize the following values for ATTRIB:

ACCESS The current access mode of FILE (e.g. INPUT, OUTPUT, BOTH, APPEND) or NIL
if FILE is not open.

BYTESIZE The byte size of the file.

LENGTH The byte position of the end-of-ﬁle Like (GETEOFPTR FILE), but FILE does not

have to be open.
SIZE The size of FILE in pages.

WRITEDATE, READDATE, CREATIONDATE
The date (and time) a$ a string that FILE was respectively last wntten, last reaci,
and originally created.

IWRITEDATE, IREADDATE ICREATIONDATE
The respective date in integer form, as IDATE (page 14.10) would return.

TYPE (Interlisp-D) Either TEXT or BINARY.

OPENBYTESIZE (Interlisp-10) It is possible that the byte size for the “opening” of a file might differ
. from the “permanent” bytesize. For example, a 7-bit text file can be opened in
36-bit mode. To obtain the “open™ bytesize, use artribute OPENBYTESIZE. '

PROTECTION (Inte}IiSp-lO) The *protection code” of FILE, as an integer.

) DELETED (Interlisp-10) T if FILE is the name of a deleted file, NIL otherwise.

Additional ammributes which are available for Interlisp-10 on TOPS-ZO systems (DEC release 4 or later)
are: .

INVISIBLE T if FILE has the invisible atribute, NIL otherwise.
ARCHIVED T if FILE has been archived, NIL otherwise.
QOFF=-LINE T if the contents of FILE are off-line (i.e. FILE has beea archived and its contents

flushed), NIL otherwise.

(POSITION rFmE N) [Function]
Returns the column nurnber at which the next character will be Tead or printed.
After a end of line. the column number is 0. If N is non-NIL, resess the column
number to be x.

Note that (POSITION FmE) is not the same as (GETFILEPTR rmLE) which
gives the position in the jile, not on the line.

6.7

Randomly Accessible Files

|
[

(LINELENGTH N FLE) 5 [Functon]
Sets the length of the print line for the output file FILE to N; returns the former

setting of the line length. FILE defaults to the primary output file. (LINELENGTH
NIL FLE) rewurns the current setting for FLe. When a file is first opened, its
linelength is set to the value of the variable FILELINELENGTH.

Whenever printing an atom or string would increase a file's position beyond the
line length of the file, an end of line is automatically inserted first. This action can
be defeated by using PRIN3 and PRIN4 (page 6.17).

(SETLINELENGTH N) ' : [Funcuon]
If ¥is NIL, mterrogates the operating system for the line length of the terminal
device, and sets the variable TTYLINELENGTH to this value. If ¥ is not RIL,
instructs the operating system to set the terminal line length to N, and also sets
TTYLINELENGTH to ~. Then. in either case, SETLINELENGTH performs (and
returns as its value) (LINELENGTH TTYLINELENGTH T)

Both AFTERSYSOUTFORMS and RESETFORMS (page-8.19) contain a (SETLINELENGTH) so that when
the user first runs a SYSOUT, or types conurol-D, the system obtains the latest information about the
terminal.

6.1.4 Randomly Accessible Files

For most applications, files are read starting at their beginning and proceeding seguendaily, i.e.. the
next character read is the one immediately following the last character read. Similarly, files are written
sequentially. However, it is also possible to read/write characters at arbitrary positions in a file, essentiaily
treating the file as a large block of auxiliary storage. For example, one application might involve writing
an expression at the beginning of the file, and then reading an expression from a specified point in it
middle. This particular example requires the file be open for both input and ourput However. random
file input or output can also be performed on files that have been opened for only input or only output

Associated with each file is a “file pointer” that points to the location where the next character is to be
read from or written to. The file pointer to a file is automartically advanced after each input or output
operation. This section describes functions which can be used to reposition the file pointer on those files
that can be randomly accessed. A file used in this fashion is much like an array in that it has a certain
number of addressable locations that characters can be put into or taken from. However, unlike arrays.
files can be enlarged. For example, if the file pointer is positioned at the end of a file and anything is
written, the file “grows.” It is also possible to position the file pointer beyond the end of file and then
to write. (If the program attempts to read beyond the end of file, an END OF FILE error occurs.) [n
this case. the file is enlarged. and a “hole™ is created, which can later be written into. Note that this
enlargement only takes place at the end of a file: it is not possible to make more room in the middle of
a file. In other words, if expression A begins at position 1000. and expression B at 1100. and the program
attempts [0 overwrite A with expression C, which is 200 characters long, part of B will be altered.

The address of a character (byte) is the number of characters (bytes) ‘that precede it in the file. i.e.. 0 is
the address of the beginning of the file. However, the user should be careful about computing the space
needed for an expression. since end-of-line may be represented bv a different number of characters in
different implementations, even though NCHARS only counts it as one: e.g.. end-of-line in Inreriisp-10
files is represented as the two characters carriage-return. line-feed. Outpur functions may also introduce
end-of-line’s as a result of LINELENGTH consideratons. |

6.8

e

C

INPUT/OUTPUT

(GETFILEPTR FLLE) {Function]
Returns the current position of the file pointer for FILE, Le., the byte address a:
which the next input/output operation will commence.

(SETFILEPTR FILE ADR) {Functior}
Sets the file pointer for FILE to the position ADR: returns ADR. The special value
ADR=-1 is interpreted to mean the address of the end of file.2

(GETEOFPTR FILE) {Function]

Returns the byte address of the end of file, i.e., the number of bytes in the file.

. Equivalent to performing (SETFILEPTR FILE -1) and returning (GETFILEPTR
FILE) except that it does not change the current file pointer.

(EOFP FmE) ' [Function]
Returns T if the file pointer to FILE is pointing to the end of file;: NIL otherwise.
FILE must be open for (at least) input, or an error is generated, FILE NOT OPEN.

(RANDACCESSP FILE) [Function]
Returns rFLE if FILE is randomly accessible, NIL otherwise. The file T is not
randomly accessible, nor are the files LPT:, NIL: in Interlisp-10, or certain nerwork
file connections in Interiisp-D. FILE must be open or an erTor is generated., FILE
NOT OPEN.

(COPYBYTES SRCFIL. DSTFIL START END) : [Function]
Copies bytes (characters) from SRCF’IL to DsSTFIL. starting from position START
and up to but not including position END. Both srRCFL and DSTFIL must be open.
Returns T.

If END=NIL, START is interpreted as the number of bytes to copy (starting at the
current position). If START is also NIL, bytes are copied until the end of the file
is reached.

(FILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) {Function]
Analogous to STRPQOS (page 2.31), but searches a file rather than a siring. FILEPOS
searches FILE for the string PATTERN. Search begins at START (or the current
position of the file pointer, if START=NIL), and goes to END (or the end of FILZ,
if END=NIL). Returns the address of the start of the march, or NIL if not found.

SKIP can be used to specify a character which matches any character in the file. If
TAL is T, and the search is successful. the value is the address of the first character
after the sequence of characters corresponding to PATTERN. instead of the starting
address of the sequence. In either case. the file is left so that the next i/o operation
begins at the address returned as the value of FILEPQS.

2Note: If a file is opened for output only, the end of file is initially zero. even if an old file by the same
name had existed (see OPENFILE. page 6.1). If a file is opened for both input and output. the initial file
pointer is the beginning of the file. but (SETFILEPTR FILE -1) will set it to the end of the file. If
the file had been opened in append mode by (OPENFILE FILE 'APPEND), the file pointer right after
opening would be set 1o the end of the existing file, in which case a SETFILEPTR 1o position the file at
the end would be unnecessary.

6.9

Randomly Accessible Files

CASEARRAY should be a “casearray”™ that specifies that certain characters should
be transformed to other characters before matching. Casearrays are returned by
CASEARRAY or SEPRCASE below. CASEARRAY=NIL means no transformation
will be performed.

A casearray is an implementatdon-dependent object that is logically an array of
character codes with one entry for each possible character. FILEPQOS maps
each character in the file “through” CASEARRAY in the sense that each character
code is transformed into the corresponding character code from CASEARRAY
before matching. Thus if two characters map into the same value, they are
treated as equivalent by FILEPQS. CASEARRAY and SETCASEARRAY provide an
implementation-independent interface to casearrays.

For example, to search without regard to upper and lower case differences,
CASEARRAY would be a casearray where all characters map to themselves, except
for lower case characters, whose corresponding elements would be the upper case
characters. To search for a delimited atom, one could use *“ AToM ™ as the pattern,
and specify a CASEARRAY in which all of the break and separator characters
mapped into the same code as space.

For applications cailing for extensive file searches, the funcdon FFILEPOS is often faster than FILEPQS.

(FFILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) " [Function]
Like FILEPOS, except much faster in most applications.® FFILEPOS is an
implementation of the Boyver-Moore fast string searching algorithm. This algorithm
preprocesses the string being searched for and then scans through the file in steps
usually equal to the length of the sting. Thus, FFILEPOS speeds up roughly in
propordon to the length of the string, e.g.. a string of length 10 will be found twice
as fast as a string of length 5 in the same position.

Because of certain fixed overheads, it is generaily better to use FILEPOS for short
searches or short strings.

(CASEARRAY OLDARRAY) {Function]

Creates and returns a new casearray, with all elements set 10 themselves, to indicate

the identty mapping.
(Interlisp-D) If oLDARRAY is given, it is reused.

(SETCASEARRAY CASEARRAY FROMCODE TOCODE) * [Function]
Modifies the casearray CASEARRAY so that character code FROMCODE is mapped
to character code TOCODE.

(SEPRCASE cLFLG) [Function]
Returns a new casearray suitable for use by FILEPQS or FFILEPOS in which all
of the break/separators of FILERDTBL are mapped into character code zero. If
CLFLG is non-NIL, then all CLISP characters will be mapped into this character as
well. This is useful for finding a delimited atom in a file. For example. if PATTERN

L

*In Interlisp-10, a speedup of 10 to 30 times is typical. [n I[nterlisp-D the speedup is much smaller.

6.10

)

|

O

-

O

INPUT/OUTPUT

is " FOO ", and (SEPRCASE T) is used for CASEARRAY, then FILEPOS will
find " (FOO«".

6.15 Closing and Reopening Files

The function WHENCLOSE permits the user to associate certain operations with open files that govern how
and when the file will be closed, and how the file’s starus will be restored when a SYSOUT is started up.
The user can specify that certain functons will be executed before CLOSEF closes the file and/or after
CLOSEF closes the file. The user can make a particular file be invisible to CLOSEALL, so that it will
remain open across user invocations of CLOSEALL. Finally, the user can associate*a status-saving function
with 2 file which will be called before SYSOUT and which can specify what to do when a SYSOUT is
restarted.

(WHENCLOSE FILE PROP; VAL; --- PROPy VALy) : [NoSpread Function]
FLe must specify the name of an open file other than T (NIL defaults to the
primary input file, if other than T, or primary output file if other than T). The
remaining arguments specify properties 1o be associated with the full name of FiLE.
WHENCLOSE returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

BEFORE VAL is 2 function that CLOSEF will apply to the full name of FILE just before it is
closed. This might be used. for example. to copy information about the file from an
in-core data structure to the file just before it is closed.

AFTER VAL is a function that CLOSEF will apply to the full name of FILE just after it is
closed. This capability permits in-core data structures that know about the file to be
cleaned up when the file is closed.

BEFORE and AFTER differ in their behavior with respect to SYSOUT. If a file that
was open before SYSOUT does not have a STATUS funcdon associated with it that
causes the file to be successfully restored after the SYSOUT is started. then the file
is considered to have been “closed™ by the SYSOUT, and its AFTER function will be
executed after the SYSOUT starts.

STATUS This property provides a way of restoring the status of files when a SYSOUT is
resumed. VAL is a function that will be applied to the full name of FILE just before
a SYSOUT. VAL is expected to return a list, CAR of which is a function which will
be APPLY'd to the CDR when the SYSOUT is started up and which will restore the
status of FILE. If the value of the APPLY is NIL. it is assumed the file could not be
successfully restored. a warning message is printed. and then any AFTER functions
associated with the file are executed. '

The function PERMSTATUS (page 23.17) produces an expression for re-upening a file
after SYSOUT and restoring as many of its auributes as possible.

CLOSEALL VAL is either YES or NO and determines whether FiLz will be closed bv CLOSEALL
(YES) or whether CLOSEALL will ignore it (NO). CLOSEALL uses CLOSEF, so that
any AFTER funcniqns will be executed if the file is in fact closed.

EOF VAL is a function that will be applied to the full name of FILE when an end-of-file

6.11

Dribble Files

error occurs. and the ERRORTYPELST entry for that error, if any, returns NIL. The
function can examine the context of the error, and can decide whether to close the
file, RETFROM some function, or perform some other computation. If the function
supplied returns normally (i.e. does not RETFROM some function), the normal error
machinery will be invoked (but FEz will not be automatically closed xf the EOF
function did not close it).

Note that muitiple AFTER and BEFORE functions may be associated with a file; they are executed
in sequence with the most recently associated function executed first However, a second STATUS
specification will supercede an earlier one. The CLOSEALL and EOF values will also override earlier
values, so only the last value specified will have an effect. Files are initialized with CLOSEALL - YES,
EQF - CLOSEF.

6.1.6 Dribble Files .-

A dribble file is a “transcript” of all of the input and output on a terminal. The following function
enables dribble files for [aterlisp:

(DRIBBLE FILENAME APPENDFLG THAWEDFLG) [Function]
Opens FENAME and begins recording the typescript. Returns the old dribble
file if any, otherwise NIL. If APPENDFLG=T, the typescript will be appended to
the end of FENAME. If TEAWEDFLG=T, the file will be opened in “thawed”
mode. for those implementatdons that support it (DRIBBLE) closes the dribbie

' file. Only one dribble file can be active at any one time, so (DRIBBLE rFILEI)
followed by (DRIBBLE rme2) will cause FIL=1 to be closed.

In Interlisp-D, DRIBBLE opens a dribble file for. the current process, recording the
input and output for that process. Muldple processes can have separate dribble
files open at the same time.

(DRIBBLEFILE) [Function]
Retums the name of the current dribble file, if any, otherwise NIL.

"~ Terminal input is echoed to the dribble file a line buffer at a tme. Thus. the typéscript produced is

somewhat neater than that appearing on the user's terminal, because it does nos show characters that were
erased via control-A or conurol-Q. Note that the typescript file is nor included in the list of files returned
by (OPENP), nor will it be closed by a call to CLOSEALL or CLOSEF. Only (DRIBBLE) closes the
typescript file.

6.2 INPUT FUNCTIONS

Most of the functons described below have an argument FILE. which specifies the name of the file on
which the operaton is to take place. If FrLz is NIL. the primary inpurt file will be used. [f the fle
argument is a string, input will be taken from that string (and the siring pointer reset accordingly).

Most inpur functions also have a RDTBL argument. which specifies the readtable to be used for input [f
ADTBL is NIL, the primary readtable will be used. Readables are described on page 6.32.

6.12

(

)

()

O
(.

O

INPUT/OUTPUT

Note: in all Interlisp-10 symbolic files, end-of-line is indicated by the characters carriage-return and
line-feed in that order. Accordingly, on input from fiies, Interlisp-10 skips all line-feeds that immediately
follow carriage-returns. On input from the terminal, Interlisp echos a line-feed whenever a carriage-return
is input.

When reading from the terminal, the input is buffered a line at a time (unless buffering has been inhibited
by (CONTROL T), or the input is being read by READC or PEEKC) and can be backed up over using
specified editing characters. The user can erase a character at a time, the whole line, or, in Interlisp-D, a
word at a tme. The keys that perform these editing functions are assignable via the SETSYNTAX function
(page 6.34), with the intial settings chosen to be those most nawral for the given operating system:
characters are deleted one at a time by control-A under Tenex, Delete under Tops20, and BackSpace in
Interlisp-D; the whole line is erased by control-Q under Tenex and in Interlisp-D, and control-U under
Tops20: words are erased by control-W in Interlisp-D.

The character-deleting action on normal terminals is to echo a \ followed-by the erased character; on the
Interlisp-D display the character is physically erased from the screen (this action can also be specified for
display terminals in other Interlisps; see page 6.43). The line-deleting action is normally to print ## and
start over on a new line. Neither will back up beyond the previous carriage-return.

When reading from a file. and an end of file is encountered, all input functions close the file and generate
an error, END OF FILE (unless WHENCLOSE has been used to alter this behavior; see page 6.11).

(READ FILE RDTBL FLG) [Funcuon]
Reads one expression from FILE. Atoms are delimited by the break and separator
characters as defined in RDTBEL. To include a break or separator character in an
atom, the character must be preceded by the input escape character %, e.g., AB%(C
is the atom AB(C, %% is the atom %, %control-4 is the atom control-A. For input
from the terminal, an atom containing an interrupt character can be input by typing
instead the corresponding alphabetic character preceded by control-V, e.g., +VC for
controi-C.

Strings are delimited by double quotes. To input a string containing a double
quote or a %, precede it by %, e.g., "AB%"C" is the sring AB"C. Note that % can
always be typed even if next character is not “special”, e.g., 4A%B%C is read as
ABC,

If an atom is interpretable as a number, READ creates a number, e.g.. 1E3 reads as
a floating point number, 103 as a literal atom. 1.0 as a number. 1,0 as a literal
atom. etc. An integer can be input in octal by terminating it with a Q, e.g., 170
and 15 read in as the same integer. The setting of RADIX (page 6.19) determines
in which base integers are printed.

When reading from the terminal, all input is line-buffered to enable the action
of the backspacing control characters (unless inhibited by (CONTROL T) (page
6.45)). Thus no characters are actually seen by the program until a carriage-return is
typed.* However, for reading by READ. when a matching right parenthesis is
encountered. the effect is the same as though a carriage-return were typed, Le.. the

*Actually, the line buffering is terminated by the character with terminal syntax class EOL (see page 6.33).
which in most cases is carriage-return.

6.13

Input Functions

characters are transmitted.’® To indicate this, Interlisp also prints a carriage-return
line-feed on the terminal.

In Interlisp-10, the character control-W is defined as an IMMEDIATE read macro
that erases the last expression read, echoing a \\ and the erased expression. e.3.,
(NOW IS THE TIME+W \\ TIME) returns (NOW IS THE). Controi-W can be
used repeatedly, and can aiso back up and erase expressions on previous lines.
However, since control-W is impiemented as an IMMEDIATE read-macro character,
(page 6.36), once it is typed. then individual characrers typed before it cannot be
deleted by conmol-A or control-Q, since they will already have passed through the
line buffer.

In Interlisp-D, control-W is instead defined as an editing character that deletes the
last “word” of input, i.e., back to the first non-OTHER character preceding the first
non-SEPR character, essentally a repeated BackSpace. The character performing
this function is assignable using the WORDDELETE syntax (page 6.34).

FLG=T suppresses the carriage-return normally typed by READ following a
marching right parenthesis. (However, the characters are stll given to READ:
i.e., the user does not have to type the carriage-return.)

(RATOM FILE RDTBL) [Functon]
Reads in one atom from FILE. Separation of atoms is defined by RDTBL. % is
also an escape character for RATOM, and the remarks concerning line-buffering and
editing control characters also apply. ’

If the characters comprising the atom would normaily be interpreted as a number
by READ, that number is returned by RATOM. Note however that RATCM takes 0o
special action for " whether or not it is a break character, i.e., RATOM never makes
a string.

(RSTRING FILE RDTBL) {Function]
Reads characters from FILE up to, but not including, the next break or separator
character, and returns them as a string. Control-A, control-Q, controi-V, and %
have the same effect as with READ.

Nate that the break or separator character that Lerminateé a call to RATOM or RSTRING is nor read by
that call, but remains in the buffer to become the first character seen by the next reading funcdon that is
called. If that function is RSTRING, it will return the nuil string. This is 2 common source of program
bugs. .

(RATOMS 4 FLE RDTBL) A ' {Function]
Calls RATOM repeatedly until the atom A is read. Rerurns a list of the atoms read.
not including A.

(RATEST FLG) ' [Function]
If FLG = T, RATEST returns T if a separator was encountered immediately prior
to the last atom read by RATOM, NIL otherwise.

5The line burfer is also transmirted to READ whenever an IMMEDIATE read-macro character is typed
(page 6.36).

6.14

@)

(.

()

INPUT/OUTPUT

If FLG = NIL, RATEST returns T if last atom read by RATOM or READ was a .
break character, NIL otherwise.

If FLGc = 1, RATEST returns T if last atom read (by READ or RATOM) contained
’ a % (as an escape character, e.g., 4[or #A%B%C), NIL otherwise.

(READC FILE RDTBL) N [Function]
Reads and returns the next character, including %, ", etc, i.e., is not affected
by break, separator, or escape character. The action of READC is subject to line-
buffering, i.e.,, READC does not return a vaiue until the line has been terminated
even if a character has been typed. Thus, the editing control characters have their
usual effect. RDTBL does not directly affect the value returned, but is used as usual
in line-buffering, e.g., determining when input has been terminated. If (CONTROL
T) has been executed (page 6.45), defeating line-buffering, the RDTBL argumerit is

O ' irrelevant, and READC returns a value as soon as a character is typed (even if the

character typed is one of the editing characters, which ordinarily would never be
seen in the input buffer).

(PEEKC FILE RDTBL) {Function]
Returns the next character, but does not actually read it and remove it from the

buffer. If RDTEL=NIL, PEEKC is not subject to line-buffering,é i.e., it returns
.a value as sopon as a character has been typed. Otherwise, PEEKC waits until the
line has been terminated before returning its value. This means that conwol-A,
control-Q, and control-V will be able to perform their usual editing functions.

(LASTC FILE) A [Functon]
Returns the last character read from FILE.

READ, RATOM, RATOMS, PEEKC, READC all wair for input if there is none. The only way to test whether
or not there is input is to use READP:

(READP FLE FLG) ‘ [Funcrion]
Returns T if there is anytb.mg in the input buffer of FLE, NIL otherwise. Note

the buffer, but READ may still have to waiL.

Q ‘ that because of line-buffering, READP may return T, indicating there is input in

Frequenty, the terminal’s input buffer contains a single EOL character left over
from a previous input. For most applications, this situation wants to be treated
as though the buffer were empty, and so (READP T) returns NIL in this case.
However, if FLG=T, READP also returns T in this case, i.e., (READP T T) returns
T if there is any character in the input buﬁ‘er

(WAITFORINPUT rE)) [Function]
Waits undl input is available from rFmLE or from the terminal. ie. from T.
WAITFORINPUT is funcrionally equivalentto (until (OR (READP T) (READP

ﬁlf reading from the terminal. the character is echoed as soon as PEEKC reads it. even though it is then

“put back™ into the system buffer, where a subsequent del (or control-Z on TOPS-20) before the character
is read can clear it. and where subsequem line buffer backspacing could change it Thus it is possibie for
the value returned by PEEKC to “disagree” in the first character wu.h a subsequent READ.

(Q 6.15

Qurtput Functions

FILE)) do NIL), except that it does not use up machine cycles while waiting.
Returns the device for which input is now available, i.e. Fmz or T.

FILE can also be an integer, in which case WAITFORINPUT waits untl there is
input available from the terminal, or undl FILE milliseconds have elapsed. Value
is T if input is now available, NIL in the case that WAITFORINPUT tmed out

In Interlisp-10, WAITFORINPUT operates by dismissing, checking for, available
input, and then, if there is none, dismissing again, each time for an increasingly
larger interval. The initial interval is DISMISSINIT milliseconds (inigaily
500), .and the interval grows by 1/16 for each dismissal, up to a maximum of
DISMISSMAX milliseconds (initiaily 10,000).

(SKREAD FILE REREADSTRING) [Function]
“Skip Read”. It moves the file pointer for-FILE ahead as if one call to READ had
been performed, without paying the storage and compute cost to really read in the
structure. REREADSTRING is for the case where the user has already performed
some READC’s and RATOM's before deciding to skip this expression. In this case,

: REREADSTRING should be the material already read (as a string), and SKREAD

operates as though it had seen that material first, thus getding its paren-count,

double-quote count, etc. set up properly.

SKREAD always uses FILERDTBL for its readtable. SKREAD may have difficulties if
unusual read-macros have been added to FILERDTBL. SKREAD will not recognize
read-macro characters in REREADSTRING, nor SPLICE or INFIX read macros.
This is only a problem if the read-macros are defined to parse subsequent input in
the file which does not follow the normal parenthesis and string-quote conventions
in FILERDTBL. .

SKREAD returns %) if the read terminated on an unbalanced closing parenthesis:
%] if the read terminated on an unbalanced %], i.e., one which also would have
closed any extant open left parentheses; otherwise NIL.

6.3 OUTPUT FUNCTIONS

Most of the funcdons described below have an argument FILz. which specifies the name of the file on
which the operation is to take place. [f FE is NIL. the primary output file is used. Some of the
functions have a RDTBL argument, which specifies the readtable to be used for output. If RDTEL lS NIL.
- the primary readtable is used.

Unless otherwise specified by DBEFPRINT (page 6.23), pointers other than lists, strings. atoms. or numbers.
are printed in the form {DATATYPE} followed by the octal representation of the address of the pointer
(regardless of radix). For example. an array pointer might print as {ARRAYP}#43,2760. This printed
representation is for compactness of display on the user's terminal. and will not read back in correcdy; if
the form above is read, it will produce the atom “{ARRAYP}#43,2760".

Note: the term end-of-line appearing in the description of an output funcdon means the character or

characters used to terminate a line in the file system being used by the given implementaton of [nterlisp.
For example. in Interlisp-10 end-of-iine is indicated by the characters carriage-return and line-feed in that

6.16

~

INPUT/QOUTPUT
order.
(PRIN1 x FLE) [Function]
Prints x on FILE.
(PRIN2 X FILE RDTEL) [Funcdonj

Prints x on FILE with %’s and "'s inserted where required for it to read back in
properly by READ, using RDTBL.

Both PRIN1 and PRIN2 print lists as well as atoms and strings; PRIN1 is usually used only for explicidy
printdng formarting characters, e.g., (PRIN1 (QUOTE %[)) might be used to print a left square bracket
(the % would not be printed by PRIN1). PRINZ is used for printing S-expressions which can then be
read back into Interlisp with READ; i.e., break and separator characters in atoms will be preceded by %s.
For example, the atom “()” is printed as %(%) by PRINZ2. If RADIX=8 (page 6.19), PRIN2 prints 2
Q after integers but PRIN1 does not (but both print the integer in- octal).

(PRIN3 x FLLE) [Function}
(PRIN4 X FILE RDTBL) [Function}

PRIN3 and PRIN4 are the same as PRIN1 and PRIN2 respectively, except that
they do not increment the horizontal position counter nor perform any linelength
checks. They are useful primarily for printing control characters.

(PRINT x FILE RDTBL) [Function]
Prints the expression x using PRIN2 followed by an end-of-line. Returns x.

(SPACES N FILE)

[Function]
Prints N spaces. Remrns NIL.
(TERPRI rmLE) [Function]
Prints an end-of-line, Returns NIL. :
(TAB POS MINSPACES FILE) [Function]

Prints the appropriate number of spaces to move 10 posmon POS. MINSPACES
indicates how many spaces must be printed (if NIL, 1 is used). If the current
position plus MINSPACES is greater than Pos, TAB does a TERPRI and then

(SPACES Pos). If MINSPACES is T, and the current position is greater than POS,
then TAB does nothing.

Note: A sequence of PRINT, PRIN2, SPACES, and TERPRI expressions can often be more conveniently

coded with a single-PRINTOUT statement (page 6.25).

(SHOWPRIN2 X FILE RDTBL) [Funcrion]
Like PRIN2 except if SYSPRETTYFLG=T, prettyprints X instead. Returns x.

(SHOWPRINT X FILE RDTEL) [Function]

Like PRINT except if SYSPRETTYFLG=T, prettyprmts X instead. followed by an
end-of-line. Retums x.

SHOWPRINT and SHOWPRINZ2 are used by the programmer’s assistant (page 8.1) for printing the values
of expressions and for printing the history list by various commands of the break package (page ¢.1).
e.2. ?= and BT commands. and various other system packages. The idea is that by simply settting or
binding SYSPRETTYFLG to T (initally NIL), the user instructs the system when interacting with the user

6.17

Printlevel

to PRETTYPRINT expressions (page 6.47) instead of printing them.

(PRINTBELLS) {Function]
Used by DWIM (page 15.1) to print a sequence of bells to alert the user to stop

typing. Can be advised or redefined for special applications, e.g., to flash the screen
on a display terminal.

(DOBE) ’ [Function]
' (Interlisp-10) Dismiss undl Output Buffer is Empty, i.e., until all of the characters
that have been printed by Interlisp functions have actually been printed on the
user’s terminal. For example, it is important to perform a DOBE after printng
an error message before clearing, the input buffers to make sure that the user has

actually seen the efror message.

In systems that do not handle output to the display asynchronously with user
computation, such as Interlisp-D, O08E is a no-op.

63.1 Printlevel

When using Interlisp one often has to handle large, complicated lists, which are difficult to undersiand
when printed out. PRINTLEVEL allows the user to specify in how much detail lists should be printed.
The print functions PRINT, PRIN1, and PRIN2 are all affected by level parameters set by:

(PRINTLEVEL CARVAL CDRVAL) [Function]
Sets the CAR print level to CARVAL, and the COR print level to corvAaL. Remrmns a
list cell whose CAR and CDR are the- old setrngs. PRINTLEVEL is inidalized with
the value (1000 . =-1).

In order that PRINTLEVEL can be used with RESETFORM or RESETSAVE, if
CARvAL is a list cell it is equivalent to (PRINTLEVEL (CAR carvar) (CDR
CARVAL)).

(PRINTLEVEL ~ NIL) changes the CAR printlevel without affecting the CDR

printievel. (PRINTLEVEL NIL N) changes the COR printlevel with affecting the
CAR printevel. (PRINTLEVEL) gives the current setting without changing either.

The CAR printlevel specifies how “deep” to print a list Specifically, it is the number of unpaired left
parentheses which will be printed. Below that level, all lists will be printed as &. For example. suppose
x = (A (B C (D (EF)G) H) K). If carvaL=3, (PRINT x) would print (A (B C (D & G)
H) K), ifcarvaL=2. (A (B C & H) K), if carvaL=1. (A & K), and if carvaL =0. just &.

If the CAR printevel is negarive, the action is similar except that an end-of-line is inserted after each right
parentheses that would be immediately followed by a left parenthesis.

The COR prindeve! specifies how “long” to print a list. It is the number of top level list elements that _

will be printed before the printing is terminated with -=-. For example, if cDrRvAL=2, (A B C D £}
will print as (A B --). For sublists. the number of list elements printed is also affected by the depth
of printung in the CAR direction: Whenever the sum of the depth of the sublist (i.e. the number of
unmartched left parentheses) and the number of elements is greater than the CDR printlevel. -~ is printed.
This gives a “triangular” effect in that less is printed the farther one goes in either CAR or COR diraction.
Faor example, if cDrRvAL=2. then (A (B C (0O (E F) G) H) K L) will print as (A (B --) =--)

6.18

)

-

/

O—‘\

INPUT/OUTPUT

and if corvaL=3,as (A (B C --) K --).
If the CDR printlevel is negative, then it is the same as if the CDR printlevel were infinite.

The printlevel setting can be changed dynamically, even while Interlisp is printing, by typing controi-P
followed by a number, i.e., a swing of digits, followed by a period or exclamaton point. As soon as
control-P is typed, Interlisp clears and saves the input buffer, clears the output buffer, rings the bell
indicating it has seen the control-P, and then wairts for input, which is terminated by any non-number.
The input buffer is then restored and the program continues. If the input was terminated by a period or
an exclamation point, the CAR printlevel is immediately set to this number; otherwise, the input is ignored.
Characters cleared from the output buffer will have been lost in either case, and printing continues with
the (possibly new) printlevel. If the print routine is currently deeper than the new level, all unfinished
lists above that level will be terminated by “--)". Thus, if a circular or long list of atoms, is being printed
out, typing “control-P0.” will cause the list to be terminated immediately.

If the string of digits following a control-P is terminated by a comma, another number may be typed
terminated by a period or exclamation point. The CAR printlevel will then be set to the first number, the
CDR printlevel to the second number.

In either case, if a period is used to terminate the printlevel setting, the printlevel will be returned to
its previous setting after the current printout has finished. If an exciamation point is used, the change is
permanent and the printlevel is not restored (uadl it is changed again).

PLVLFILEFLG _ . [Variable]
: Normally, PRINTLEVEL only affects terminal output. OQutput to all other files
acts as though the print level is infinite. However, if PLVLFILEFLG is T (initially

NIL), then PRINTLEVEL affects output to files as well.

6.3.2 Printing oumbers

How the ordinary printing functions (PRIN1, PRIN2, etc.) print numbers can be affected in several ways.
RADIX influences the printing of integers, and FLTFMT influences the printing of floating point numbers.
The setting of the variable PRXFLG determines how the symbol-manipulation functions handie numbers.

“The PRINTNUM package permits greater controls on the printed appearance of numbers, allowing such

things as left-justification, suppression of trailing decimals, etc.

(RADIX N) [Function]
Resets the output radix for integers to the absoiute value of N. If N is negatve,
integers are interpreted by the print routines as unsigned numbers: i.e.. the actual
two's complement representation of the integer in the integer size of the particular
implementation is interpreted as if it were a positive number on a machine of
infinite integer size. Thus. numeric output under a negative radix varies with the
implementation, and numbers printed in this way by one implementation will not
read correctly in an implementation whose integers are of a different size.

For example. in Interlisp-10, whose integer size is 36 bits, -9 will print as shown
with the following radices:

6.19

(FLTFMT FORMAT)

Printing oumbers

(RADIX) (PRINT -9)

10 -8

8 -11Q

-10 68719476727 (i.e. 236-9)
-8 . 777777777767Q

The value of RADIX is its previous setting. (RADIX) gives the current setting
without changing it. The inizal setting is 10.

Note that RADIX affects output only. There is no input radix; on input, numbers
are interpreted as decimal unless they end in Q, in which case they are interpreted
as octal. Thus READ and PRINT are inverses, independent of any radix seming.
RADIX also does not affect the behavior of UNPACK, erc., unless the value of
PRXFLG (below) is T; e.g., with (RADIX 8), the value of (UNPACK @) is (9),
not (1 1).

ce [Function]
Resers the output format for floating point numbers to the FLOAT format FORMAT
(see PRINTNUM below for a descripton of FLOAT formats). FORMAT=T specifies
the default “free” formatting: some number of significant digits (a funcdon of
the implementation) are printed. with trailing zeros suppressed: numbers with
sufficienty large or small exponents are instead printed in exponent notation.

FLTFMT returns its current setting. (FLTFMT) returns the current setting without
changing it. The inidal setting is T.

In Interlisp-10, FORMAT may also be a machine-dependent FLOAT format-code as
recurned by NUMFORMATCODE (page 6.23).

Whether print name manipulation functions (UNPACK, NCHARS, etc.) use the values of RADIX and
FLTFMT is determined by the variable PRXFLG:

PRXFLG

[Variabie]

 If PRXFLG=NIL (the initial setting), then the “PRIN1” name used by PACK,

UNPACK, MKSTRING, etc., is computed using base 10 for integers and the system
default floaung format for floating point numbers. independent of the current
setting of RADIX or FLTFMT. If PRXFLG=T, then RADIX and FLTFMT do dictate
the “PRIN1" name of numbers. Note that in this case, PACK and UNPACK are not
inverses. .

Examples with (RADIX 8), (FLTFMT '(FLOAT 4 2)):
With PRXFLG=NIL,
(UNPACK 13) => (1 3)

(PACK '(A 9)) => A9

6.20

OC

)
5

INPUT/OUTPUT

(UNPACK 1.2345) => (1 %. 2 3 4 5)
With PRXFLG=T,

(UNPACK 13) => (1 5)

(PACK '(A 9)) => Al1

(UNPACK 1.2345) => (1 %. 2 3)

Note that PRXFLG does not effect the radix of “PRIN2” némes, so with (RADIX
8), (NCHARS 9 T), which uses PRIN2 names, would rewurn 3, (since 9 would
print as 11Q) for either setting of PRXFLG.

Warning: Some system functions will not work correctly if PRXFLG is not NIL.
Therefore, resetting the global value of PRXFLG is not recommended. It is much
better to rebind PRXFLG as a SPECVAR for that part of a program where it needs
to be non-NIL.

The basic function for printing numbers under format control is PRINTNUM. Its udility is considerably
enhanced when used in conjunction with the PRINTOUT package (page X.XX), which implements a
compact langunage for specifying complicated sequences of elementary printing operations, and makes
fancy output formats easy to design and simple to program.

(PRINTNUM FORMAT NUMBER FILE) ' : [Function]
Prints NUMBER on FILE according to the format FORMAT. FORMAT is a list structure
with one of the forms described below. FORMAT can aiso be a machine dependent
format-code as returned by NUMFORMATCODE (page 6.23).

(Interlisp-10) If NUMBER does not fit in the field specified by FORMAT, the full
print name is printed. Then a TAB is executed so that the line position of the file
after PRINTNUM is always the position prior to printing pius the indicated width.

If FORMAT is a list of the form (FIX WIDTH RADIX PAD0O LEFTFLUSH). this specifies a FIX
format. NUMBER is rounded to the nearest integer, and then printed in a field wiDTH characters long with
radix set to RADIX (or 10 if RADDX=NIL; note that the setting of RADIX is not used as the default). If
PADo and LEFTFLUSH are both NIL, the number is right-justified in the field. and the padding characters
to the left of the leading digit are spaces. If Papo is T, the character “0” is used for padding. If
LEFTFLUSE is T, then the number is left-jusified in the field, with trailing spaces to fill out WD TH
characters.

The following examples illustrate the effects of the FIX format opnons (the vertical bars indicate the field
width):

®

Printing numbers
FORMAT NUMBER PRINTNUM prints
(FIX 2) 3 | 3]
(FIX 2 NIL T) 7 [07]
(FIX 12 8 T) 14] 000000000016
(FIX 5 NIL NIL T) 2 |2 |

If ForRMAT is a list of the form (FLOAT WIDTH DECPART EXPPART PADO ROUND), this specifies a
FLOAT format. NUMBER is printed as a decimal number in a field wmoTH characters wide, with DECPART

digits to the right of the decimal point. If ExXPPART is not 0 (or NIL), the number is printed in exponent
notaton, with the exponent occupying EXPPART characters in the field. ExPPART should allow for the q
character E and an optional sign to be printed before the exponent digits. As with FIX format, padding °

on the left is with spaces, unless papo is T. If ROUND is given, it indicates the digit position at which

“- rounding is to take place, counting from the leading digit of the aumber.?

FLOAT format examples:

FORMAT | NUMBER PRINTNUM prints

(FLOAT 7 2) 27.689 | 27.69]

(FLOAT 7 2 NIL T) 27.689 , 10027.69]

(FLOAT 7 2 2) 27.689 _ | 2.77E1}

(FLOAT 11 2 4) 27.689 | 2.77E+01]8

(FLOAT 7 2 NIL NIL 1) 27.689 | 30.00]

(FLOAT 7 2 NIL NIL 2) 27.689 | 28.00]

NILNUMPRINTFLG [Variable] (;>

[f PRINTNUM's NUMBER argument is not a number and not NIL, a NON-NUMERIC
ARG error is generated. If NUMBER is NIL. the effect depends on the setting of the
variable NILNUMPRINTFLG. [FNILNUMPRINTFLG is NIL, then the error occurs as
usual. If it is non-NIL, then no error occurs. and the value of NILNUMPRINTFLG
is printed right-justfied in the field described by ForMmAT. This opton facilitates
the printing of aumbers in aggregates with missing values coded as NIL.

“The interpretation of wiDTE=NIL and DECPART=NIL are not specified. and are currenty a function
of the implementation. Interlisp-10 prohibits wiIDTH=NIL, and treats DECPART=NIL as equivalent to
DECPART=0. Interlisp-D interprets wipTH=NIL 10 mean no padding, i.e., 10 use however much space
the number needs. and interprets DECPART =NIL (0 mean as many decimal places as needed.

8As of this writing, the [nterlisp-10 impiementation actually does something less intuitive with the EXPPART
field: the placement of the decimal point is affected by DECPART. and padding never occurs. These two
examples in Interlisp-10 would actually print as | .28£+02| and {27.69E+0000]. —

6.22

\\‘/‘

INPUT/OUTPUT

In some implementations, formatted printing of numbers receives assistance from the operating system.
provided that the format is specified in some sort of sper:xal code. PRINTNUM works by convertng the
machine-independent format specifications described above into macmne-dependent codes the exact form
of which may vary from implementation to impiementation. This conversion process takes place on each
call to PRINTNUM. For efficiency purposes, if the user is going to be performing a particular call to
PRINTNUM frequently, he may wish to separate the conversion from the actual priating, performing the
conversion process just once and saving the result. The function NUMFORMATCODE is available for this
purpose: NUMFORMATCODE takes a format, performs the conversion and returns a machine dependent
format-code, which can be given to PRINTNUM in place of a list structure format as described above. In
this case, PRINTNUM will not have to perform the conversion, but can simply use the machine*dependent
format code directly.

(NUMFORMATCODE FORMAT SMASHCODE) {Function]
Converts the FIX or FLOAT format FORMAT to a machme-dependent format-
code. If SMASHCODE is recogdized as a format-code data-structure, then the
new format-code is smashed into that structure instead of allocating new storage.
(NUMFORMATCODE) returns an uninitalized datum that can later be smashed.

In Interlisp-D, this function is a no-op, as there is no special internal representation
for number formats.

633 User Defined Printing

(DEFPRINT TYPE FN) ['Funcuon]

TYPE is a type name (see page 2.1). Whenever a printing function (PRINT, PRINI,

PRINZ, etc.) encounters an object of the indicated type, FN is called with the item
to be printed as its argument. [f it requrns NIL, the damum is printed in the manner
the system defaults; for user data types, it is printed as {datatype}#nnnnnn. If
FN wishes to specify how the datum should be printed. it should return a list of
the form (ITEM:1 . ITEM2). ITEM1 is printed using PRIN1 (unless it is NIL), and
then rrem2 printed using PRIN2 with no spaces between the two items. (Typically,
ITEMI is a read macro character.)

In Interlisp-10, TYPE may also be a type number (see page 22.2). Note that the
user can specify different action for type names ARRAYP, HARRAYP, TERMTABLEP.
READTABLEP, and CCODEP, even though they all have the same type number.

Note that DEFPRINT also affects internal calis to print from PACK, COMCAT. et., i.e. any operation that
involves obtaining a print name (see page 2.8). A consequence of this fact is that in implementadons
that do not have reentrant printing code (in partcular, Interlisp-10), the user’s DEFPRINT functdon must

not call any print name manipulating functions itself. or the results of the whole printing operation are
undefined.

6.3.4 Dumping Unusual Data Structures

HPRINT (for “Horrible Print") and HREAD provide a mechanism for printing and reading back in general
darta structures that cannot normally be dumped and loaded easily, such as (possibly se-entrant or circular)
structures containing user datatypes, arrays. hash tables, as well as list structures. HPRINT will correcty
print and read back in any structure contzining any or all of the above. chasing all pointers down to the

6.23

e et

READFILE and WRITEFILE

level of literal atoms. numbers or strings. HPRINT currently cannot handle compiled code arrays, stack
positions, or arbirary unboxed numbers.

HPRINT operates by simulating the Interlisp PRINT routine for normal list structures. When it encounters
a user datatype (see page 3.14), or an array or hash array, it prints the dawa contained therein, surrounded
by special characters defined as read-macro characters (see page 6.36). While chasing the pointers of a
structure, it also keeps a hash table of those items it encounters, and if any item is encountered a second
time, another read-macro character is inserted before the first occurrence (by resertting the file pointer with
SETFILEPTR) and all subsequent occurrences are printed as a back reference using an appropriate macro
character. Thus the inverse function, HREAD merely calls the Interlisp READ routine with the appropriate
readtable.

(HPRINT EXPR FILE UNCIRCULAR DATATYPESEEN) [Functon]
Prints ExPR on FILE. If UNCIRCULAR is non-NIL, HPRINT does no checking for
any circularities in ExPr (but is stll useful for dumping arbimrary structures of
arrays, hash arrays, lists, user data types, etc., that do not contain circujarities).
Specifying UNCIRCULAR as onon-NIL resuits in a large speed and internal-storage
advantage.

Normally, when HPRINT encounters a user data type for the first tme. it outputs
a summary of the data type's declaration. When this is read in, the data type is
redeclared. If DATATYPESEEN is non-NIL, HPRINT will assume that the same data
type declarations will be in force at read time as were at HPRINT time, and not
output declarations.

HPRINT is intended primarily for output to disk files, since the algorithm depends
on being able to reset the file pointer. If 7= is not a disk file (and UNCIRCULZAR
= NIL), a temporary file, HPRINT.SCRATCH, is opened. ExPr is HPRINTed on
it, and then that file is copied 10 the final outpurt file and the temporary file is

dejeted.
(HREAD FmLE) ' [Function]
i Reads and returns an HPRINT-ed expression from FILE.
(HCOPYALL x) ' [Funcdon]
Copies data structure X. X may contain circular pointers as well as arbimary
structures.

Note: HORRIBLEVARS and UGLYVARS (page 11.25) are two file package commands for dumping and
reloading circular and re-entrant data structures. They provide a conveaient interface to HPRINT and
HREAD.

6.4 READFILE AND WRITEFILE

For those applications where the user simply wants to simply read all of the expressions on a file. and
not evaluate them,. the funcion READFILE is available:

(READFILE rrLE) [Funcuon]
Reads successive expressions from file using READ (with FILERDTBL as readrable)

6.24

-

Q
—"

@)

INPUT/OUTPUT

until the single atom STOP is read, or an end of file encountered. Returns a list
of these expressions. ° :

(WRITEFILE x FILE) " [Function]
Inverse of READFILE. Writes a date expression onto FILE, followed by successive
expressions from X, using FILERDTBL as a readtable. If x is atomic, its value is
used. If FILE is not open, it is opened. If FILE is a list, (CAR rmLE) is used and
the file is left opened. Otherwise, when X is finished, a STOP is printed on FILE
and it is closed. Returns FILE.

(ENDFILE FLE) [Function]
Prints STOP on FILE and closes it.

6.5 PRINTOUT

Interlisp provides many facilities for controlling the format of printed output. By executing various
sequences of PRIN1, PRIN2, TAB, TERPRI, SPACES, PRINTNUM, and PRINTDEF, almost any effect can
be achieved. PRINTOUT implements a compact language for specifying complicated sequences of these
elementary printing funcdons. It makes fancy output formats easy to design and simple to program.

PRINTOUT is a CLISP word (like for and if) for interpreting a special printing language in which

the user can describe the kinds of printing desired. The description is translated by DWIMIFY to the -

appropriate sequence of PRIN1, TAB, etc., before it is evaluated or compiled. PRINTOUT printing
descriptions have the following general form:

(PRINTOUT FILE PRINTCOM; PRINTCOM, --- PRINTCOMy)

FILE is evaluated to obtain the name of the file to which the output from this specification is directed.
The PRINTOUT commands are strung together, one after the other without punctation, after FILE. Some
commands occupy a single position in this list. but many commands expect to find arguments following the
command name in the list. The commands fall into several logical groups: one set deals with, horizontal
and vertical spacing, another group provides controls for certain formatting capabilities (font changes and
subscripting), while a third set is concerned with various ways of actually printing items. Finally, there is
a command that permits escaping to a simple Lisp evaluation in the middle of a PRINTOUT form. The
various commands are described below. The following examples give a general flavor of how PRINTOUT
is used:

Example 1: Suppose the user wanted to print out on the terminal the values of three variables. X. Y, and
Z. separated by spaces and followed hy a carriage return. This could be done by:

(PRIN1 X T)
(SPACES 1 T)
(PRIN1 Y T)
(SPACES 1 T)
(PRIN1 Z T)
(TERPRI T)

or by the more concise PRINTOUT form:

Horizoatal Spacing Commands

(PRINTOUT T X , Y , Z T)

Here the first T specifies output to the terminal, the commas cause single spaces to be printed, and the
final T specifies a TERPRI. The variable names are not recognized as special PRINTOUT commands, so

they are printed using PRIN1 by default

Example 2: Suppose the values of X and Y are to be pretty-printed lined up at position 10, preceded by
identifying strings. If the output is t0 go to the primary output file, the user could write either:

(PRIN1 "X =")

(PRINTDEF X 10 T))
(TERPRI)

(PRIN1 "Y =") |

(PRINTDEF Y 10 T))

(TERPRI) ‘ o .
or the equivalent: '
(PRINTOUT NIL "X =".10 PPV X T "Y =" 10 PPV Y T)

Since strings are not recognized as special commands, "X =" is also printed with PRIN1 by default
The positive integer means TAB to positdon 10, where the . PPV command causes the value of X to be
premyprinted as a variable. By convention, special atoms used as PRINTOUT commands are prefixed with
a period. The T causes a carriage return, so the Y informadon is printed on the next line.

Example 3. As a final example, suppose that the-value of X is an integer and the value of Y is a
floating-point number. X is to be printed right-fushed in a field of width 5 beginning at position 19,
and Y is to be printed in a field of width 10 also starting at position 15 with 2 places to the right of the
decimal point. Furthermore, suppose that the variable names are to appear in the font named BOLDFONT
and the values in font SMALLFONT. The program in ordinary Lisp that would accomplish these effects is
too complicated to include here. With PRINTOUT, one could write: '

(PRINTOUT NIL | =
.FONT BOLDFONT "X =" 15),
.FONT SMALLFONT .I§ X T - :
.FONT BOLDFONT "Y =" 15 &

.FONT SMALLFONT .F10.2 Y T
.FONT BOLDFONT)

The .FONT commands do whatever is necessary to change the font on a multi-font output device. The
.15 command sets up a FIX formart for a call to the function PRINTNUM (page 6.21) to print X in the
desired format. The .F10.2 specifies a FLOAT format for PRINTNUM.

6.5.1 Horizontal Spacing Commands
The horizontal spacing commands provide convenient ways of calling TAB and SPACES. In the following

descriptions. ~ stands for a literal positive integer.

N Used for absolute spacing. [t results in a TAB to position ~ (literally, a (TAB
N)). If the line is currendy at position ~ or bevond. the file will be positioned at
position N on the next line. (ﬂ

6.26 | &

O

@

.TAB Pos
.TABO POs
-N

.SP DISTANCE

,RESET

INPUT/OUTPUT

Specifies TAB to position (the value of) pPos. This is one of several commands
whose effect could be achieved by simply escaping to Lisp, and executing the
corresponding form. It is provided as a separate command so that the PRINTOUT
form is more concise and is prettyprinted more compactly. Note that . TAB ~ and
N, where N is an integer, are equivalent

Like .TAB except that it can result in zero spaces (i.e. the call to TAB specifies
MINSPACES=0).

Negative integers indicate relative (as opposed to absolute) spacing. Translates as
(SPACES |N}).

Provides a short-hand way of specifying 1, 2 or 3 spaces, i.e., these commands are
equivalent to -1, -2, and -3, respectively.

Translates as (SPACES DrsTANCE). Note that .SP N and ~N, where N is an
integer, are equivalent

Resets the current line by causing a carriage-return to beé printed without a line-
feed. Useful for overprmung, or for regaining control of a line on which charactﬂ's
have been printed in a variable pitched font

6.5.2 Vertical Spacing Commands

Vertical spacing is obtained by calling TERPRI or printing form-feeds. The relevant commands are:

T

.SKIP LINES

. PAGE

Translates as (TERPRI). This command is functionally equivalent to the integer
command €: they both move to position 0 {= coiumn 1) of the next line. To print
the letter T, use the string "T". '

Equivalent to a sequence of LINES (TERPRI)’s. The .SKIP command allows for
skipping large constant distances and for computing the distance to be skipped.

- Puts a form-feed (control-L) out on the file. Care is taken to make sure that

Interlisp’s view of the current line position is correctly updated.

5.3 Special Formatting Controls

There are a small number of commands for invoking some of the formartting capabilides of muld-font
output devices. The available commands are:

.FONT FONTSPEC

.SuUP

Puts cur a control sequence that causes a change to font FONTSPEC (the association
between FONTSPEC and a specific font must be defined in the user’s font profile. as
described in page 6.55). FONTSPEC may be a font-name variable or an expression
that evaluates to the value of a font-name variable. FONTSPEC may aiso be a
positive integer N. which is taken as an abbreviated reference to the font named
FONTN (e.g. 1 => FONT1).

Specifies superscripting. All subsequent characters are printed above the base of
the current line. Note that this is absolute, not relative: a . SUP following a . SUP

o
(9]
~1

———— e M ki .

Printing Specifications

is a no-op.

.SuB Specifies subscripting. Subsequent printing is below the base of the current line.
) As with superscripting, the effect is absolute.

.BASE Moves printing back to the base of the current line. Un-does a previous .SUP or
" .SUB; a no-op, if printing is currendy at the base.

6.54 Printing Specifications

The value of any expression in a PRINTOUT form that is not recognized as a command itself or as a
command argument is printed using PRIN1 by default. For example, title strings can be printed by
simply mcludmg the string as a separate PRINTOUT command, and the values of variables and forms can
" orinted in much the same way. Note that a literal integer, say 51, cannot be printed by’ mcludmg it as
4 command, since it would be interpreted as a TAB; the desired effect can be obtained by using instead
the string specification “S1”, or the form (QUOTE 51).

For those instances when PRIN1 is not appropriate, e.g., PRIN2 is required, or a list structures must be
prettyprinted, the following commands are available:

.P2 THING Causes THING to be printed using PRIN2; transiates as (PRIN2 THING).

.PPF THING Causes THING 10 be prettyprinted at the current line position via PRINTDEF (page
6.49). The call to PRINTDEF specifies that THING is to be printed as if it were part
of a function definition. That is, SELECTQ, PROG, etc., receive special treatment.

.PPV THING Prettyprints THING as a variable: no special interpretation is given to SELECTQ,
' PROG, er.
.PPFTL THING Like .PPF, but prettyprints THING as a (i, that is, without the inital and final

parentheses if it is a list. Useful for prettyprinting sub-lists of a list whose other
elements are formatred with other commands.

~PPVTL THING Like . PPV, but prettyprints FHING as a tail.
6.5.4.1 Paragraph Format

Interlisp’s prettyprint routines are designed to display the structure of expressions. but they are not really
suitable for formatting unstrucrured text. If a list is to be printed as a textual paragraph. its internal
structure is less important than controlling its left and right margins. and the indentation of its first line.
The .PARA and .PARA2 commands allow these parameters (0 be conveniendy specified.

.PARA LMARG RMARG LIST
Prints LI1sT in paragraph formar using PRIN1. Translates as (PRINTPARA
LMARG RMARG LIST) (see page 6.31). Example: (PRINTOUT T 10 .PARA
5 -5 LST) will print the elements of LST as a paragraph with left margin at 3.
right margin at (LINELENGTH)-5. and the first line indented w0 10.

. PARA2 LMARG RMARG LIST

6.28

~

])
RN

Jo—

INPUT/OUTPUT

Print. as paragraph using PRIN2 instead of PRIN1. Translates as {(PRINTPARA
LMARG RMARG LIST T).

6.5.4.2 Right-Flushing

Two commands are provided for printing simple expressions flushed-right against a specified line positon,
using the function FLUSHRIGHT (page 6.31). They take into account the current position, the number
of characters in the print-name of the expression, and the position the expression is to be flush against,
and then print the appropriate number of spaces to achieve the desired effect. Note that this might entail
going to a new line before printing. Note also that right-flushing of expressions longer than a line (e.g. a
large list) makes little sense, and the appearance of the output is not guaranteed.

.FR POs EXPR Flush-right using PRIN1. The value of Pos determines the position that the
right end of ExPr will line up at As with the horizontal spacing commands,
a negative position number means |pPos| columms from the current position. a
positive number specifies the positien absolutely. Pos=0 specifies the right-margin,
ie. is interpreted as (LINELENGTH).

.FR2 PCS EXFR Flush-right using PRIN2 instead of PRIN1.
6.5.4.3 Centering

Commands for centering simple expressions between the current line position and another specified
position are also available. As with right flushing, centering of large expressions is not guaranteed.

.CENTER POS EXPR
Centers ExPr between the current line position and the posidon specified by
the value of POs. A positive POS is an absolute position number, a negative POS
specifies a position relative to the current position, and 0 indicates the right-margin.
Uses PRIN1 for printing.

‘Q " .CENTER2 POS EXPR

S

Centers using PRIN2 instead of PRINL.
6.5.44 Numbering

The following commands provide FORTRAN-iike formatting capabilities for integer and floating-point
numbers. Each command specifies a printing format and a number to be printed. The format specification
translates into a format-list for the function PRINTNUM (see page 6.21).

. IFORMAT NUMBER .
Specifies integer printing. Translates as a call to the function PRINTNUM with
a FIX format-list constructed from FORMAT. The atomic format is broken apart
at internal periods to form the format-list. For example, .15.-8.T vields the
format-list (FIX 5 -8 T), and the command: sequence {(PRINTOUT T .I5.-
8.7 FOO) will translate as (PRINTNUM ' (FIX 5 -8 T) F00). It will cause
the vaiue of FOO to be printed with radix -8 right-flushed in a field of width 3.

6.29

Escaping to LISP

with 0's used for padding on the left. Intermal NIL's may be omitted, e.g. the
commands .I5..T and .I5.NIL.T are equivalent

. FFORMAT NUMBER
Specifies floating-number printing. Like the . I format command, except translates

with a FLOAT format-list.

.N FORMAT NUMBER
' The .1 and .F commands specify calls to PRINTNUM with quoted format
specificadons. The .N command translates as (PRINTNUM FORMAT NUMBER),
i.e., it permits the format to be the value of some expression. Note that, unlike
the .I and .F commands, FORMAT is a separate element in the command list, not

part of an atom beginning with . N.
. 6.5.5 Escaping to LISP

There are many reasons for taking control away from PRINTOUT in the middle of a long printing expres-
sion. Common situations involve temporary changes to system printing parameters (e.g. LINELENGTH),
conditional printing (e.g. print OO only if FIE is T), or lower-level iterative printing within a higher-level
print specification. -

FORM The escape command. FORM is an arbitrary Lisp expression that is evaluated
within the context established by the PRINTOUT form, i.e., FORM can assume that
the primary output file has been set to be the FILE argument to PRINTOUT. Note
that nothing is done with the value of FORM: any printing desired is accomplished
by ForM itself, and the value is discarded. '

Note: Although PRINTOUT logically encioses its transiation in a RESETFORM (page 9.20) to change the
primary output file to the FLE argument (if non-NIL), in most cases it can actually pass FILE (or a locally
bound variable if FILE is 2 non-trivial expression) to each printing function. Thus, the RESETFORM is oniy
generated when the # command is used. or user-defined commands (below) are used. If many such cccur
- in repeated PRINTOUT forms, it may be more efficient to embed them all in a single RESETFORM which
- changes the primary output file, and then specify FmE=NIL in the PRINTOUT expressions themselves.

6.5.6 User-Defined Commands

The collection of commands and optons outlined above is aimed at fulfilling all common printing
needs. However, certain applications might have other, more specialized printing idioms. so a facility is
provided whereby the user can define new commands. This is done by adding entries to the global list
PRINTOUTMACROS to define how the new commands are o be translated.

PRINTOUTMACROS , [Variable]
PRINTOUTMACROS is an association-list whose elements are of the form (comm
FN). Whenever comM appears in command position in the sequence of PRINTOUT
commands (as opposed to an argument position of another command). FN is applied
to the il of the command-list (including the command).

After,inspecting as much of the tail as necessary, the function must return a list
whose CAR is the transiation of the user-defined command and its arguments. and

6.30

)

S
N

Ga

INPUT/OUTPUT

whose CDR is the list of commands still remaining to be translated in the normal
way.

For example, suppose the user wanted to define a command “?", which will cause its single argument to be
printed with PRIN1 only if it is not NIL. This can be done by entering (? ?TRAN) on PRINTOUTMACROS,
and defining the function ? TRAN as follows:

(LAMBDA (COMS)
(CONS (SUBST (CADR COMS) 'ARG
*(PROG ((TEMP ARG))
(COND (TEMP (PRIN1 TEMP)))))
(CDDR COMS)))

Note that ?TRAN does not do any printing itself; it returns a form which, when evaluated in the proper
context, will perform the desired action. This form should direct all printing to the primary ourput file.

6.5.7 Special Printing Functions

The paragraph printing commands are translated into calls on the function PRINTPARA, which may also
be called directy:

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) [Function]
Prints L1sT on FILE in line-filled paragraph format with its first element beginning at.
the current line position and ending at or before RMARG, and with subsequent lines

. appearing between LMARG and RMARG. [f pPaFrLAG is non-NIL, prints elements
using PRIN2, otherwise PRIN1. If PARENFLAG is non-NIL, then parentheses will
be printed around the elements of LIST.

If LMARG is zero or positive, it is interpreted as an absolute column position.
If it is negative, then the left margin will be at {|LMARG| + (POSITION). If
LMARG=NIL, the left margin will be at (POSITION), and the paragraph will
appear in block format

If RMARG is posidve, it also is an absolute column position (which may be greater
than the curreat (LINELENGTH)). Otherwise, it is interpreted as relative to
(LINELENGTH), i.e., the right margin will be at (LINELENGTH)+ |RMARG].
Example: (TAB 10) (PRINTPARA 5§ -5 LST T) will PRIN2 the elements of
LST in a paragraph with the first line beginning at column 10. subsequent lines
beginning at column 5. and all lines ending at or before (LINELENGTH)-5.

The current (LINELENGTH) is unaffected by PRINTPARA, and upon completion.
FLE will be positioned immediately after the last character of the last item of LIST.
PRINTPARA is a no-op if LIST is not a list.

The right-flushing and centering commands translate as calls to the function FLUSHRIGHT:

(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE) [Function]
If CENTERFLAG=NIL. prints X rght-flushed against position POS on FILZ!
otherwise, centers X between the current line position and pos. Makes sure that it
spaces over at least MIN spaces before printing by doing a TERPRI if necessary;
MIN=NIL is equivalent to MIN=1. A positve PoOs indicates an absolute position.

6.31

!

Readtables

while a negative POs signifies the position which is |Pos| to the right of the
current line position. Pos=0 is interpreted as (LINELENGTH), the right margin.

6.6 READTABLES

Many Interlisp input functions treat certain characters in special ways. For example, READ recognizes that
the right and left parenthesis characters are used to specify list structures, and that the quote character is
used to delimit text strings. The [nterlisp input and (to a certain extent) output routines are table driven
by readtables. Readtables are objects that specify the syntactic properties of characters for input routines.
Since the input routines parse character sequences into objects, the readtable in use determines which
sequences are recognized as literal atoms, strings, list structures, etc.

{ost Interlisp input functions take an opdonal readtable argument, which specifies the readtabie to use
when reading an expression. If NIL is given as the readtable, the “primary readtable” is used. If T is
specified, the system terminal readtable is used. Some functions will also accept the atom ORIG (not the
value: of ORIG) as indicating the “original” system readtable. Some output functons also take a readtzbie
argument. For example, PRIN2 prints an expression so that it would be read in correcily using a given
readtable.

The Interlisp system uses three readtables: T for input/output from terminals, the value of FILERDTBL for
input/output from files, and the value of EDITRDTBL for input from terminals while in the editor. These
three tables are initially copies of the ORIG readtable, with changes made to some of them to provide
read macros (page 6.36) that are specific w terminal input or file input. Usihg the functions described
below, the user may further change, reset, or copy these tables. The user can also create new readtables,
and either explicitly pass them to input/output functions as arguments, or install them as the primary
readtable, via SETREADTABLE, and then not specify a RDTBL argument, ie., use NIL.

6.6.1 Readtable Functions

"READTABLEP RDTBL) : [Function]
p Returns RpTBL if RDTBL is a real readtable (nor T or ORIG), otherwise NIL.

(GETREADTABLE RDTBL) [Function]
If ”RDTBL =NIL, returns the primary read table. If RoTBEL =T, returns the system
terminal readtable. [If RDTBL is a real readtable, returns RDT3EL. Otherwise.
generates an ILLEGAL READTABLE error.

(SETREADTABLE RDTBL FLG) : [Functon]
Sets the primary readtable o RDTBL. If FLG=T, SETREADTABLE sets the system
terminal readtable. T. Note that the user can reset the other system readtables with
SETQ, e.g., (SETQ FILERDTBL (GETREADTABLE)).

Generates an ILLEGAL READTABLE error if RDTBL is not NIL. T. or a
real readtable. Returns the previous seting -of the primary readtable. so
SETREADTABLE is suitable for use with RESETFORM (page 9.20).

‘ 6.32

)

O

INPUT/OUTPUT

(COPYREADTABLE RDTBL) [Functicn]
Returns a copy of RDTBL. RDTBL can be a real readtable, NIL, T, or ORIG (in
which case COPYREADTABLE returns a copy of the original system readtable),
otherwise COPYREADTABLE generates an ILLEGAL READTABLE error.

Note that COPYREADTABLE is the only function that creates a readtable.

(RESETREADTABLE RDTBL FROM) . - [Function]
Copies (smashes) FROM into RDTBL. FROM and RDTBL can be NIL, T, or a real
readtable. In addition, FroOM can be ORIG, meaning use the system’s original
readtable.

6.6.2 Syntax Classes

A readtable is an object that contains information about the “syntax class” of each character. There are
nine basic svntax classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, STRINGDELIMN,
ESCAPE, BREAKCHAR, SEPRCHAR, and OTHER, each associated with a primitive syntactic property. In
addidon, there is an unlimited assortment of user-defined syntax classes, known as “read-macros”. The
basic syntax classes are interpreted as follows:

LEFTPAREN ~ (normally left parenthesis) Begins list structure.

RIGHTPAREN (normally right parenthesis) Ends list structure.

LEFTBRACKET (normally left bracket) Begins list strucrure. Also matches RIGHTBRACKET
characters.

RIGHTBRACKET (normally left bracket) Ends list structure. Can close an arbitrary numbers of
LEFTPAREN lists, back to the last LEFTBRACKET.

STRINGDELIM (normally double quote) Begins and ends text strings. Within the string, all
characters except for the one(s) with class Z5C~PE are treated as ordinary, i.e..
interpreted as if they were of syntax class 07THER. To include the sting delimiter
inside a string, prefix it with the ESCAPE character.

ESCAPE (normally percent sign) Inhibits any special interpretation of the next character, i.e..
the next character is interpreted to be of class QTHER, independent of its normal
syntax class.

BREAKCHAR (None inidally) Is a break character. i.e., delimits atoms, but is otherwise an
ordinary character.

SEPRCHAR (space, carriage return. etc.) Delimits atoms. and is otherwise ignored.

OTHER Characters that are not otherwise special belong to the class OTHER.

Characters of syntax class LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET. and STRINGDEL IM
are all break characters. That is, in addition to their interpretation as delimidng list or string structures.
they also terminate the reading of an atom. Characters of class BREAKCHAR serve onfy to terminate atoms.
with no other special meaning. In addition. if a break character is the first non-separator encountered by
RATOM. it is read as a one-character atom. In order for a break character to be included in an atom. it

6.33

Syntax Classes

must be preceded by the ESCAPE character.

Characters of class SEPRCHAR also terminate atoms, but are otherwise completely ignored; they can be
thought of as logically spaces. As with break characters, they must be preceded by the ESCAPE character

in order to appear in an atom.

For example, if $ were a break character and * a separator character, the input stream ABC*<DEFSGH=*SS
would be read by 6 calls to RATOM returning respectvely ABC, DEF, 8, GH, §, 3.

Although normally there is only one character in a readtable having each of the list- and string-delimiting
syntax classes (such as LEFTPAREN), it is perfectly acceptable for any character to have any syntax class,
and for more than one to have the same class.

Note that a “syntax class” is an abstraction: there is no object referencing a collection of characters called

a syntax class. Instead, a readtable provides the association between a character.and its syntax class, and
the input/output routines enforce the abstraction by using readtables to drive the parsing.

The functions below are used to obtain and set the syntax class of a character in a readtable. cm can
either be a character code (a number), or a character (a single-character atom); those Interlisp objects
that happen to be both, viz., one-digit numbers, are interpreted as character codes. For example, in
Interlisp-10, 1 indicates control-A, and 49 indicates the character 1.

Note: Terminal tables, described in page 6.40, also associate characters with syntax classes, and they can
also be manipulated with the functions below. The set of readtable and terminal table syntax classes are
disjoint, so there is never any ambiguity about which type of table is-being referred to.

(GETSYNTAX c= TABLE) ' [Function]
Returns the syntax class of ¢&, a character or a character code, with respect to
TABLE. TABLE can be NIL, T, ORIG, or a real readtable or terminal table.

CH can also be a syntax class, in which case GETSYNTAX returns a list of the
character codes in TABLE that have that syntax class.

(SETSYNTAX CHAR CLASS TABLE) [Function]
Sets the syntax class of CHAR, a character or character code, in TABLE. TABLE can
be either NIL, T, or a real readtable or terminal table. SETSYNTAX returns the
previous syntax class of CHAR. CLASS can be any one of the following:

s The name of one of the basic syntax classes.
e A list, which is interpreted as a read macro (see page 6.36).

o NIL. T, ORIG. or a real readtable or terminal table. which means to give CHAR
the syntax class it has in the table indicated by cLAss. For example. (SETSYNTAX
'%('ORIG TABLE) gives the left parenthesis character in TABLE r.he same syntax
class that it has in the original system readtable.

e A character code or character. which means 10 give CHAR the same syntax class
as the character CHAR in TABLE. For example, (SETSYNTAX '{ '%[TABLE)
gives the left brace character the same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) : [Functon]
CODE is a character code: TABLE is NIL, T, or areal readtable or terminal table.

6.34

._/’w
e

S

/

INPUT/0OUTPUT

Returns T if cODE has the syntax class cLASS in TABLE; NIL otherwise.

CLASS can also be a read-macro type (MACRQ, SPLICE, INFIX), or a read-macro
opton (FIRST, IMMEDIATE, etc.), in which case SYNTAXP returns T if the syntax
class is a read-macro with the specified property.

Note: SYNTAXP will roz accept a character as an argument, only a character code.

For convenience in use with SYNTAXP, the atom BREAK may be used to refer to a/f break characters.
Le., it is the union of LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, STRINGDELIM,
and BREAKCHAR. For purely symmetrical reasons, the atom SEPR corresponds to all separator characters.
However, since the only separator characters are those that also appear in SEPRCHAR, SEPR ard
SEPRCHAR are equivalent.

. Note that GETSYNTAX never returns BREAK or SEPR as a value although SETSYNTAX and SYNTAXP

accept them as arguments. Instead, GETSYNTAX returns one of the disjoint basic syntax classes that
comprise BREAK. BREAK as an argument to SETSYNTAX is interpreted t0 mean BREAKCHAR if the
character is not already of one of the BREAK classes. Thus, if %(is of class LEFTPAREN, then (SETSYNTAX
'%('BREAK) doesn’t do anything, since %(is already a break character, but {SETSYNTAX '%(
'BREAKCHAR) means make %{ be just a break character, and therefore disables the LEFTPAREN
function of %(. Similarly, if one of the format characters is disabled completely, e.g., by (SETSYNTAX
'%('OTHER), then (SETSYNTAX '%('BREAK) would make %(be only a break character; it would
not restore %(as LEFTPAREN.

The followmg functions provide a way of collectively accessing a.nd setting the separator and break
characters in a readtable:

(GETSEPR RDTBL) [Function]
Returns a list of separator character codes in RDTBL. Equivalent to (GETSYNTAX
'SEPR RDTEL). ' -

(GETBRK RDTEL) [Function]
Returns a list of break character codes in roTsL. Equivalent to (GETSYNTAX
‘BREAK RDTBL).

(SETSEPR LST FLG RDTBL) ' {Functon]
Sets or removes the separator characters for RDTBL. LST is a list of charactors or
character codes. FLG determines the action of SETSEPR as follows: If FLG=NIL,
makes RDTBL have exactly the elements of LST as separators, discarding from
RDTBL any old separator characters not in LsT. If FLG=0, removes from RDTEL
as separator characters all elements of rLsT. This provides an “UNSETSEPR”. If
FLG=1, makes each of the characters in LST be a separator in RDTBL.

If LsT=T, the separator characters are reset to be those in the system'’s readtabie
for terminals, regardless of the value of FLG, i.e.. (SETSEPR T) is equivalent to
(SETSEPR (GETSEPR T)). If RoTBL is T, then the characters are reset [o those
in the original system table. :

Retmurns NIL.

(SETBRK LST FLG RDTBL) [Fugnction}
Sets the break characters for RDTBL. Similar to SETSEPR.

6.35

Read-Macros

As with SETSYNTAX to the BREAK class, if any of the list- or string-delimiting break characters are
disabled by an appropriate SETBRK (or by making it be a separator character), its special action for READ
will not be restored by simply making it be a break character again with SETBRK. However, making these
characters be break characters when they already are will have no effect.

" The action of the ESCAPE character (normally %) is not affected by SETSEPR or SETBRK. It can be

disabled by seming its syntax to the class OTHER, and other characters can be used for escape on input
by assigning them the class ESCAPE. As of this writing, however, there is no way to change the ourput
escape character; it is “hardwired” as %. That is, on output, characters of special synwax that need to
be preceded by the ESCAPE character will always be preceded by %, independent of the syntax of % or
which, if any characters, have syntax ESCAPE, .

The following function can be used for defeating the action of the ESCAPE character or characters:

(ESCAPE FLG RDTEL) [Function]

If FLe=NIL, makes characters of class ESCAPE behave like characters of class
OTHER on input. Normal setting is (ESCAPE T). ESCAPE returns the previous
setting.

6.6.3 Read-Macros

Read-macros are user-defined syntax classes that can cause complex operations when certain characters
are read. Read-macro characters are defined by specifying as a syntax class an expression of the form:

(TYPE OPTION; :-- OPTIONy FN)

where TYPE is one of MACRO, SPLICE, or INFIX, and FN~ is the name of a function or a lambda
expression. Whenever READ encounters a read-macro character, it calls the associated functon, giving it
as arguments the input file and readtable being used for that call to READ. The interpretation of the value
recurned depends on the type of read-macro:

MACROQ This is the simplest type of read macro. The result returned from the macro is
treated as the expression to be read, instead of the read-macro character. Otften
the macro reads more input itself. For example, in order 1o cause ~EXPR to be
read as (NOT EXPR), one could define ~ as

[MACRO (LAMBDA (FL ROTBL) (LIST 'NOT (READ FL RDTBL]

SPLICE The result (which should be a list or NIL) is spliced into the input using NCONC.
For example, if $ is defined by:

(SPLICE (LAMBDA NIL (APPEND F0O)))

and the value of FOO is {A B C), then when the user inputs (X $ Y), the result
will be (X A B C Y).

INFIX The associated function is called with a third argument, which is a lisz in TCONC
format (page 2.17), of what has been read at the current level of list nesting. The
funcdon's value is taken as a new TCONC list which replaces the old one. For
example, + could be defined by:

6.36

®

INPUT/OUTPUT

(INFIX (LAMBDA (FL RDTBL 2)
(RPLACA (CDR 2)
(LIST (QUOTE IPLUS)
(CADR Z)
(READ FL RDTBL)))

Z))

If an INFIX read-macro character is encountered nor in a list. the third argument to
its associated funcdon is NIL. If the function returns NIL. the read-macro character
is essentially ignored and reading continues, Otherwise, if the functdon returns a
TCONC list of one element, that element is the value of the READ. If it returns a
TCONC list of more than one element, the list is the value of the READ.

The specification for a read-macro character can be augmented to specify various options oPTION, -

OPTIONy, €.2. (MACRO FIRST IMMEDIATE rN). The following three disjoint options specify when
the read-macro character is to be effective:

ALVIAYS The defauit. The read-macro character is always effective (except when preceded
by the escape character), and is a break character, i.e., a member of (GETSYNTAX
'BREAK RDTBL).

FIRST The character is interpreted as a read-macro character only when it is the first
character seen after a break or separator character; in all other situarions, the
character is treated as having class OTHER. The read-macro character is nor a break
character. For example, the quote character is a FIRST read-macro character, so
that DON'T is read as the single atom DON'T, rather than as DON followed by
(QUOTE T). ‘

ALONE The read-macro character is no¢ a break character, and is interpreted as a read-
macro character only whien the character would have been read as a separate atom
if it were not a read-macro character, i.e., when its immediate neighbors are both
break or separator characters. For example, * is an ALONE read-macro character
in order to implement the comment pointer feature (see page 6.51).

Making a FIRST or ALONE read-macro character be a break character (with SETBRK) disables the
read-macro interpretation, i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS read-macro
character be a break character is a no-op.)

The following two disjoint options control whether the read-macro character is to be protected by the
ESCAPE character on output:

ESCQUOTE or ESC The default, When printed with PRIN2. the read-macro character will be preceded
by the output escape character (%).

NOESCQUOTE or NOESC
The read-macro character will be printed without an escape, e.g.. ' is a
NOESCQUOTE character.. Unless vou are very careful what you are doing, read-
macro characters in FILERDTBL shouid never be NOESCQUOTE. since symbols
that happen to contain the read-macro character will not read back in correctiy.

The foliowing two disjoint options control when the macro’s function is actually executed:

6.37

o

Read-Macros

IMMEDIATE or IMMED
The read-macro character is immediately acdvated, i.e., the current line is

terminated, as if an EOL had been typed, a carriage-return line-feed is printed, and
the entire line (including the macro character) is passed to the inpu: function.

IMMEDIATE read-macro characters enable the user t0 specify a character that will
take effect immediately, as soon as it is encountered in the input, rather than
waiting for the line to be terminated. Note that this is not necessarily as soon as
the character is typed. Characters that cause action as soon as they are typed are
interrupt characters (see page 9.17).

Note that since an IMMED IATE macro causes any input before it to be sent to the
reader, characters typed before an IMMEDIATE read-macro character cannot be
erased by control-A or control-Q once the IMMEDIATE character has been typed.
since they have already passed through the line buffer. However, an INFIX read O
macro can still alter some of what has been typed earlier, via its third argument.)

M'NONIMMEDIATEorNONIMMED

o

The default. The read-rnacro character is a normal character with respect to the .
line buffering, and so will not be actvated until a carriage-return or matching right
parenthesis or bracker is seen.

Making a read-macro character be both ALONE and IMMEDIATE is a contradiction, since ALONE reguires
that the next character be input in order to see if it is a break or separator character. Thus, ALONE
read-macros are always NONIMMEDIATE, regardless of whether or not IMMEDIATE is specified.

Read-macro characters can be “nested”. For example, if = is defined Ey
(MACRO (LAMBDA (FL RDTBL) (EVAL (READ FL RDTBL))))
and ! is defined by

(SPLICE (LAMBDA (FL RDTBL) (READ FL RDTBL)))

then if the value of FOO is (A B8 C), and (X =F00 Y) is input, (X (A B C) Y) will be returned. If (w
(X 1=F00 Y) isinput, (X A B C Y) will be returned. L

If a read-macro’s functdon calls READ, and the READ returns NIL. the function cannot distinguish the
-case where a2 RIGHTPAREN or RIGHTBRACKET followed the read-macro character. (e.g. “(A B '}")
from the case where the atom NIL (or “()™) actually appeared. Therefore. in [nteriisp-10. reading a
single RIGHTPAREN or RIGHTBRACKET via a READ inside of a read-macro function is disallowed. [f this
occurs. the paren/bracket is put back into the input buffer. and a READ-MACRO CONTEXT ERROR is
generated. The following two functions are useful for avoiding this error:

{ INREADMACRQP) ‘ {Functon]
Returns NIL if currenty nor under a read-macro function. otherwise the number
of unmarched left parentheses or brackets.

-

(SETREADMACROFLG FLG) ‘ {Function]
Resets the “read-macro™ flag, i.e.. the internal system flag that informs READ
that it is under a read macro functon. and causes it 1o generate a READ-MACRO
CONTEXT ERROR. if an unmatched) or] is encountered. Returns the previous

6.38

* (back-quote)

e i (e o e

INPUT/OUTPUT

value of the flag. The main use for this is when debugging read-macro functions: o
avoid spurious READ~MACRO CONTEXT error messages when typing into breaks,
the user can put (SETREADMACROFLG) on BREAKRESETFORMS (page 9.13).

The READ-MACRO CONTEXT error does not occur in Interlisp-D; a READ inside of a read-macro when
the next input character is 2 RIGHTPAREN or RIGHTBRACKET eats the character and returns NIL, just
as if the READ had not occurred inside a read-macro.

If a call to READ from within a read-macro encounters an unmatched RIGHTBRACKET within a list the
bracket is simpiy put back into the buffer to be read (again) at the higher level. Thus, inputing an
expression such as (A B '(C D] works correcty.

(READMACROS FLG RDTBL) [Funcdon]

If FLe=NIL, turns off action of read-macros. If FLe=T, turns them on. Returns
previous setting.

In Interlisp-D, turns off/on action of read-macros in readtable RDTEL.

The following read macros are standardly defined in Interlisp:

' (single-quate} Currently defined only in T and EDITRDTBL. Returns the next expression, wrapped:
in a call to QUOTE; e.g., 'FOO reads as (QUOTE FOO). The macro is defined as
a FIRST read macro. so that the quote character has no effect in the muddle of a

‘'symbol. The macro is also ignored if the quote character is immediately followed
by a separator character.

control-Y Defined in T and ED ITRDTBL. Returns the result of evaluating the next expression.
For example, if the value of FOO is (A B), then (LIST 1 comtrol-YFQO 2) is
read as (1 (A B) 2), but note that no structure is copied; the CADR of that
input expression is still EQ to the value of FOQ. Control-Y can thus be used to read
structures that ordinarily have no read syntax. For example, the value returned
from reading (KEY1 controi-Y(ARRAY 10)) has an array as its second elemeat.
Control-Y can be thought of as an “un-quote™ character. The choice of character
to perform this function is changeable with SETTERMCHARS (page 17.59).

Back-quote makes it easier to write programs to construct complex data structures.
Back-quote is like quote, except that within the back-quoted expression, forms can
be evaluated. The general idea is that the back-quoted expression is a “template”

containing some constant parts (as with a quoted form) and some parts to be filled
in by evaluating something.

Within the back-quoted expression. the character *,” (comma) introduces a form
to be evaluated. A form preceded by “,@" is'to be spliced in. using APPEND. and
a form preceded by ™, ." is to be spliced in. using NCONC. Unlike with control-Y.
however, the evaluation occurs not at the time the form is read. but at the time
the back-quoted expression is evaluated. Thar is, the back-quote macro returns an
expression which, when evaluated. produces. the desired structure.

For example. if the value of FOO is {1 2 3 4), then the form (A .(CAR FQ0O0)
,@(CDDR FOO) D E) evaluatesto (A 1 3 4 D E): it is logically equivalent 10
writing (CONS 'A (CONS (CAR FOO) (APPEND (CDDR FOO) '(D E)))).
Back-quote is partcularly useful for writing compiler macros. For example.

6.39

Terminal Tables

‘(COND
((FIXP ,(CAR X))
. (CADR X))
(T .@(CDDR X)))

is equivalent to writing

(LIST 'COND
(LIST (LIST 'FIXP (CAR X))
(CADR X))
(CONS 'T (CDDR X)))

Note that comma does not have any special meaning outside of a back-quote
_context. '

For users without a back-quote character on their keyboards, back-quote can also
be written as |' (vertical-bar, quote). In Interlisp-D, back-quote is typed as
shift-linefeed.

? Defined in T and EDITROTBL. Implements the ?= command for on-line help
regarding the function currently being “called” in the typein (see page 9.5).

- Defined in FILERDTBL only. Implements the comment poincér feéture for saving
space by keeping the text of comments outside memory (page 6.51).

control-w Defined in T and EDITRDTBL, Interlisp-10 only. An IMMEDIATE read macro that
. deletes the previous expressxon In Interlisp-D. control-W is an editng character
that deletes the previous “word”.

| (vertical bar) When followed by ' {(quote), is a synonym for back-quote: followed by certain
other characters, it is used by HPRINT and HREAD to print and read in unusual
expressions; otherwise is ignored. i.e., treated as a separator character, enabling the
editor’s CHANGECHAR feature (page 6.55).

6.7 TERMINAL TABLES

A readtable contains input/output information that is media-independent, For example, the action of
parentheses is the same regardless of the device from which the input is being performed. A terminal
uble is an object that contains information that pertains t0 ferminal input/output operatons only, such
as the character to type to delete the last character or 1o delete the last line. In addition. terminal tables
contain such informadon as how line-buffering is to be performed. how control characters are to be
echoed/printed. whether lower case input is to be converted to upper case, etc.

Using the functions below. the user may change, reset. or copy terminal tables. or create a new terminal
table and install it as the primary terminal table via SETTERMTABLE. However, unhke readtables, terminal
tables cannot be passed as arguments 10 input/output functions.

6.40

—~—— - - -

()

\

S

P

O

s

O

INPUT/OUTPUT

6.7.1 Terminal Table Functions

(TERMTABLEP TTBL) [Function]
Returns TTBL, if TTBL is a real terminal table, NIL otherwise.

(GETTERMTABLE TTBL) [Function}
If TTBL=NIL, returns the primary (i.e., current) terminal table. If TTBL is a
real terminal table, reurn T7BL. Otherwise, generates an ILLEGAL TERMINAL

TABLE error.

(SETTERMTABLE TTBL) [Function]
Sets the primary terminal table to be TTBL. Returns the previous T78L. Generates
an ILLEGAL TERMINAL TABLE error if TTBL is not a real terminal table,

(COPYTERMTABLE TTBL) , : [Function]
' Returns a copy of TTBL. TTBL can be a real terminal table, NIL, or ORIG, in
which case it returns a copy of the original system terminal table. Note that

COPYTERMTABLE is the only function that creazes a terminal table.

(RESETTERMTABLE TTBL FROM) [Function]
Copies (smashes) FROM into TTBL. FROM and TTBL can be NIL or a real terminal
‘table. In addition, FROM can be ORIG, meaning to use the system’s original
terminal table.

6.7.2 Terminal Syntax Classes

A terminal table associates with each character a single “terminal syntax class”, one of CHARDELETE,
LINEDELETE, WORDDELETE (Interlisp-D only), RETYPE, CTRLV, EOL, and NONE. Unlike readtable
classes, only one character in a particular terminal table can belong to each of the classes (except for the
default class NONE). When a new character is assigned one of these syntax classes by SETSYNTAX, the
previous character is disabled (i.e., reassigned the syntax class NONE), and the value of SETSYNTAX is the
code for the previous character of that class, if any, otherwise NIL.

The terminal syhtax classes are interpreted as follows:

CHARDELETE or DELETECHAR
(Initially control-A under Tenex. del under Tops20. BackSpace in Interlisp-D)
Typing this character deletes the previous character typed. Repeated use of this
character deletes successive characters back to the beginning of the line.

LINEDELETE or DELETELINE
(Inidally control-Q in Interlisp-10 under Tenex and in Interlisp-D, control-U under
Tops20) Typing this character deletes the whole line: it cannot be used repeatedly.

WORDDELETE (Interlisp-D only: initally control-W) Typing this character deletes the previous
“word”, i.e.. sequence of non-separator characiers.

RETYPE (Initally control-R) Causes the line to be retyped as Interlisp sees it (useful when
repeated deletions make it difficult to see what remains).

6.41

Terminal Control Functiouns

CTRLV or CNTRLYV (Initally control-V) When followed by A, B, --- Z, inputs the corresponding control
character control-A, conuol-B, - -- control-Z. This allows interrupt characters to be
input without causing an interrupt.

EOL On input from a terminal, the EOL character signals to the line buffering routine
to pass the input back to the calling function. It also is used to terminate inputs to
READLINE (page 8.30). In general, whenever the phrase carriage-return linefeed
is used, what is meant is the character with terminal syntax class EOL.

NONE The terminal syntax class of ail other characters.

GETSYNTAX, SETSYNTAX, and SYNTAXP all work on terminal tables as well as readtables (see page
6.34). When given NIL as a TABLE argument, GETSYNTAX and SYNTAXP use the primary readtable or
primary terminal table depending on which table contains the indicated crAss argument For example,
(SETSYNTAX cH 'BREAK) refers to the primary readuable, and (SETSYNTAX crE 'CHARDELETE)
refers 1o the primary terminal table. In the absence of such information, all three functions default to the
primary readtabie; e.g., (SETSYNTAX '{ '%[) refers to the primary read table. If given incompatible
cLASs and table arguments, all three functions generate errors. For example, (SETSYNTAX cx 'BREAK
TTBL), where TTBL is a terminal table; generates an ILLEGAL READTABLE error, and (GETSYNTAX
'CHARDELETE rpTsL) generates an ILLEGAL TERMINAL TABLE error.

6.7.3 Terminal Control Functions

(ECHOCONTROL CHAR MODE TT3L) ' ’ [Functxon]
Used to indicate how control characters are to be echoed or pnnted. CHAR is
a character or character code. MODE may be one of the atoms IGNORE, REAL.
SIMULATE, or INDICATE,® which specify how the control character should be

printed:

IGNORE CHAR is never printed.

REAL CHAR itself is printed: i.e.. the raw control character is
sent to the terminal. Some terminals, particularly displays.
respond to certain control characters in interesting ways.

-SIMULATE Output of cHAR is simulated. For example. control-I (tab)
may be simulated by printdng spaces. The simulaton is
machine-specific and beyond the control of the user.

INDICATE cHAR is printed as + followed by the corresponding al-

phabetc character.

The value of ECHOCONTROL is the previous output mode for cHAR. [f MODE=NIL.
ECHOCONTROL returns the current output mode without changing it

Note that although the name of this function suggests echoing only, it afects af/
output of the control character. both echoing of input and printng of" output.

SUPARROW is an obsolete synonym of INDICATE.

6.42

)
¢

&

INPUT/OUTPUT

The two cannot be specified independently, which can lead to some trickiness in
DELETECONTROL messages {(below).

In Interlisp-10, echoing information can be specified only for control characters
(although al/l echoing can be disabied using ECHOMODZ, below). Therefore, if cAR
is an alphabetic character (or code), it refers to the corresponding control character,
e.g.. (ECHOCONTROL 'Z 'INDICATE) makes control-Z echo as +Z. All other
values of czAar generate ILLEGAL ARG errors. [n Interlisp-D and I[nterlisp-VAX,
it is possible to specify echoing information for a// characters, using the function
ECHOCHAR.

(ECHOCHAR CHARCODE MODE TTBL) [Function]
(Interlisp-D, Interlisp-VAX only) Like ECHOCONTROL, but CHARCODE must be a
character code, and can specify any character—no coercions are performed. The
INDICATE mode for “meta” characters, te., characters whose codes are in the
range 200Q through 377Q, causes the character to be printed following a #. For
example, meta-A would print as #A, meta-control-B as #+8.

"CHARCODE can also be a list of characters, in which case ECHOCHAR is applied to
each of them with arguments MODE and TTBL.

(ECHOMODE rLG TTBL) [Function}
If rFLa=T, turns echoing for terminal table TT3L on. If FLe=NIL, turns echoing
off. Returns the previous setting.

(GETECHOMODE TTBL) v [Function]
Rerwurns the current echo mode for TTBL. '

(DELETECONTROL TYPE MESSAGE TTEL) [Funcdor]
Specifies the ourput protocol when 2 CHARDELETE or LINEDELETE is typed. In
the case of character deletion. Interlisp-10 is initially set up for hardcopy terminals:
it echos the characters being deleted, -preceding the first by a \ and following the
last by a \, so that it is easy to see exactly what was deleted. viz.. the characters
between the \’s. Interlisp-D and Interlisp-VAX are initally set up to physically
erase the deleted characters from the display, backing up over them. The various
values of TYPE specify different phases of the deledon. as follows:

1STCHDEL MESSAGE is the message printed the first ime CHARDELETE
is typed. Inidally “\" in [nrterlisp-10.

NTHCHDEL MESSAGE is the message printed on subsequent CHARDELETE's
(without intervening characters). Inmallv *** in Interlisp-10.

POSTCHDEL MESSAGE is the message printed when input is resumed
following a sequence of one or more CHARDELETE's.
Inigally “\" in Interlisp-10.

EMPTYCHDEL MESSAGE is the message printed when a CHARDELETE is
typed and there are no characters in the buffer. [nitially
“## 7" in Interlisp-10.

ECHO The characters deleted by CHARDELETE are echoed. MESSAGE

Terminal Control Functions

is ignored.

NOECHO The characters deleted by CHARDELETE are not echoed
MESSAGE is ignored.

LINEDELETE MESSAGE is the message prmted when LINEDELETE charac-
ter is typed. I[nitially “##c”

Note: In Interlisp-10, the LINEDELETE, 1STCHDEL, NTHCHDEL, POSTCHDEL,
and EMPTYCHDEL messages must be 4 characters or fewer in length.

DELETECONTROL returns the previous message as a string. I[f MESSAGE=NIL,
the value returned is the previous message without changing it. For ECHO and
NOECHO, the value of DELETECONTROL is the previous echo mode, i.e., ECHO or
NOECHO. .

(GETDELETECONTROL TYPE TTBL) [Functon]
Rerturns the current DELETECONTROL mode for TYPE in TTBL.

If the user’s terminal is a display, DELETECONTROL and ECHOCONTROL can be used to make it really
delete the last character by performing the following:

(ECHOCONTROL 8 'REAL)
8 is the code for conmrol-H, which is backspace; we want the terminal to reaily

backspace when we send +H.

(DELETECONTRGL 'NOECHO)
Do oot echo the deleted characzers.

(DELETECONTROL '1STCHDEL "tH tH™)

(DELETECONTROL 'NTHCHDEL "tH tH"™)
Erase each character by backspacing over it, printing a space, then backspacing
again to put the carriage in the right place.

The following functions mariipuiare the RAISE mode, which determines whether lower case characters
are converted to upper case when input from the terminal. (There currently is no “raise” mode for input
from files.)

(RAISE FLG TTBL) [Function]
Sets the RAISE mode for terminal table TT8L. If FLG=NIL, all characters are
passed as typed. If FLe=T, input is echoed as typed, but lowercase letters are
converted (0 upper case. If FLG=0, input is coaverted 10 upper case before it is
echoed. Returns the previous setting.!©

91n Interlisp-10, both (RAISE) and (RAISE T) execute Tenex/Tops20 JSYS calls corresponding to the
Executive command NORAISE. while (RAISE 0) executes the JSYS cails corresponding to the Executive
command RAISE. Thus with (RAISE T), the conversion to uppercase is performed by Interlisp. while
with (RAISE 0) the conversion is performed at the operating system level. i.e.. before Tnterlisp-10 even
sees the characters. The initial setuing of RAISE in [nterlisp-10 is determined by the terminal mode at
the time the user first starts up the system. When a SYSOUT is started. the RAISE mode is restored to
whatever it was prior (o the SYSQUT.

6.44

()
C

=)
&

O

INPUT/OUTPUT

(GETRAISE TTBL) [Function]
. Returns the current RAISE mode for TTBL.

6.7.4 Line-Buffering

Characters typed at the terminal are stored in two buffers before they are passed to an input function. All
characters typed in are put into the low-level “system buffer”, which allows type-ahead. When an input
function is entered, characters are transferred to the “line buffer” until a character with terminal syntax
class EQL appears (or, for calls from READ, when the count of unbalanced open parentheses reaches 0).11
Until this time, the user can delete characters one at a time from the line buffar by typing the current
CHARDELETE character, or delete the entire lme buffer back to the last carriage-return by typing the
current LINEDELETE.

; Note that this line editing is not performed by READ or RATOM, but by Interlisp, ie., it does not matter

(nor is it necessarily known) which function will ultimately process the characters, only that they are still
in the Interlisp line buffer. However, the function that is requesting input at the timu the buffering starts
does determine whether parentheses countng is observed. For example, if a program performs (PROGN
(RATOM) (READ)) and the user types in “A (B C D)”, the user must type in the carriage-return
following the right parenthesis before any action is taken, because the line buffering is happening under
RATOM. If the program had performed (PROGN (READ) (READ)), the line-buffering would be under
READ, so that the right parenthesis would terminate line buffenng, and no terminating carriage-return

. would be required.

Once a carriage-return has been typed, the entire line is “available” even if not all of it is processed by the
functon initiating the request for input. If any characters are “left over”, they are returned immediately
on the next request for input. For example. (LIST (RATOM) (READC) (RATOM)) when the input is
“A B¢ returns the three-element list (A % B) and leaves the carriage-return in the buffer.

If a carriage-return is typed when the input under READ is not “complete” (the parentheses are not
balanced or a string is in progress), line buffering continues, but the lines completed so far are not
available for editing with CHARDELETE or LINEDELETE.

The function CONTROL is available to defeat line-buffering:

(CONTROL MODE TTBL) [Function]
. If MODE=T. eliminates Interlisp's normal hne-buﬂ"enng for the terminal table TTBL.
If MoDE=NIL. restores line-buffering (normal). When operating with a terminal
table in which (CONTROL T) has been performed. characters are returned to the
calling function without line-buffering as described below.

CONTROL returns its previous setting.

(GETCONTROL TTBL)) [Functon]
Rerurns the current control mode for TTBL. _

The function that initates the request for input determines how the line is treated when (CONTROL T)
is in effect:

i
MIPEEKC is an exception: it returns the character immediately when its second argument is NIL.

6.45

READ

RATOM

READC or PEEKC

Line-Buffering

If the expression being typed is a list, the effect is the same as though done with
(CONTROL NIL). ie., line-buffering continues until a carriage-return or matching
parentheses. If the expression being typed is not a list, it is returned as soon
as a break or separator character is encountered, e.g., (READ) when the input
is “ABC<{space>” immediately returns ABC. CHARDELETE and LINEDELETE are
available on those characters still in the buffer. Thus, if a program is performing
several reads under (CONTROL T), and the user types “NOW IS THE TIME™
followed by control-Q, only TIME is deleted, since the rest of the line has already
been transmitted to READ and processed.

An exception to the above occurs when the break or separator character is an
opening parenthesis, bracket or double-quote, since returning at this point would

'leave the line buffer in a “funny” state. Thus if the input to (READ) is “ABC(",

the ABC is not read until a carriage-return or matching parentheses is encountered.
In this case the user could LINEDELETE the entire line, since all of the characters
are stll in the buffer.

Characters are returned as soon as a break or separator character is encountered.
Until then, LINEDELETE and CHARDELETE may be used as with READ. For
example, (RATOM) followed by “ABC{control-A><space>” returns AB. (RATOM)
followed by “(<control-A>" returns (and types ## indicadng that control-A was
attempted with nothing in the buffer, since the (is a break character and would
therefore already have been read.

The character is returned immediately; no line editing is possible. In pardgcular.

(READC) is perfectly happv to remurn the CHARDELETE or LINEDELETE
characters, or the ESCAPE character (%).

The system buffer and line buffer can be directly manipulated using the following functions.

(CLEARBUF FILE FLG) 4 [Function]

{(SYSBUF rLgG)

Clears the input buffer for FLE. If FL2 is T and FLG is T, the contents of Interlisp's
system buffer and line buffer are saved (and can be obtained via SYSBUF and
LINBUF described below).

When control-D or control-E is typed, or any of the interrupt characters that
require terminal interaction is typed (control-H, control-P, or control-S), Interlisp
automatically performs (CLEARBUF T T). For control-P, control-S, and. when
the break is exited normally, controi-H, Interlisp restores the buifer after the
interaction.

The action of (CLEARBUF T), i.e.. clearing of typeahead. is also available as the
RUBOUT interrupt character. initially assigned to the del key in Interlisp-D and in
Interlisp-10 under Tenex. control-Z under Tops20. Note that this interrupt clears
both buffers at the tme it is typed. whereas the action of the CHARDELETE and
LINEDELETE character occur at the tme they are read.

[Function]
If FLG=T. returns the contents of the svstem buffer (as a string) that was saved at
the last (CLEARBUF T T). If FLG=NIL, clears this internal burfer.

6.46

()

)

iy

-~

o

INPUT/OUTPUT

(LINBUF FLG) [Function]
Same as SYSBUF for the line buffer.

If both the systemn buffer and Interlisp’s line buffer are empty, the internal buffers associated with L INBUF
and SYSBUF are not changed by a (CLEARBUF T T).

(BKSYSBUF X FLG RDTBL) [Function]
BKSYSBUF sets the system buffer to the PRIN1-name of x. The effect is the same
as though the user typed x. Some implementations have a limit on the length of
X, in which case characters in X beyond the limit are ignored. Returns x.

If FLG is T, then the PRIN2-name of X is used, computed with respect to the
readtable RDTBL. '

Note that if the user is typing at the same time as the BKSYSBUF is being performed,
the relative order of the type-in and the characters of X is unpredictable.

Compatbility note: Some implementations of BKSYSBUF (Interlisp-10) use a
“system” buffer, from which keyboard interrupts are also processed. In this
case, BKSYSBUF of an interrupt character actually invokes the interrupt at some
(asynchronous) time after the BKSYSBUF is inidated. [n other implementations
(Interlisp-D), the characters are not processed for interrupts, and it is possible to
BKSYSBUF characters which would otherwise be impossible to type.

(BKLINBUF sTR) ’ - _ : [Function]
‘ STR is a string. BKLINBUF sets [nterlisp’s line buffer to sTR. Some implementations
have a limit on the length of STR, in which case characters in STR beyond the

limit are ignored. Returns STR.

BKLINBUF, BKSYSBUF, LINBUF, and SYSBUF provide a way of "undoing” a CLEARBUF. Thus to
“peek™ at various'characters in the buffer, one could perform (CLEARBUF T T), examine the buffers
via LINBUF and SYSBUF, and then put them back. °

The more common use of these functions is in saving and restoring typeahead when a program requires
some unandcipated (from the user’s standpoint) input. The function RESETBUFS provides a convenient
way of simply clearing the input buffer, performing an interaction with the user, and then restoring the
input buffer.

(RESETBUFS FORM; FORM, --- FORMy) [NLambda NoSpread Function]
Clears any typeahead (ringing the terminal’s bell if there was, indeed. typeahead).
evaluates FORM;, FORM,, -- FORM, then restores the typeahead. Returns the
value of FORM),. Compiles open. :

6.8 PRETTYPRINT
The standard way of printing out function definitions (on the terminal or into fles) is to use PRETTYPRINT.

(PRETTYPRINT FNS PRETTYDEFLG —) . [Function]
FNS is a list of functions. If #Ns is atomic. its value is used). The definitions of

647

Prettyprint

the functions are printed in a pretty format on the primary output file using the
primary readtable. For example, if FACTORIAL were defined by typing

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND ((ZEROP N) 1)
(T (ITIMES N (FACTORIAL (SUB1 N]

(PRETTYPRINT ' (FACTORIAL)) would print out

(FACTORIAL
[LAMBDA (N)
(COND
((ZEROP N)
1)
(T (ITIMES N (FACTORIAL (SUB1 N])

PRETTYDEFLG is T when called from PRETTYDEF (and hence MAKEFILE). Among
other actions taken when this argument is true, PRETTYPRINT indicates its progress
in writing the current output file: whenever it starts a new function, it prints on
the terminal the name of that function if more than 30 seconds (real time) have
elapsed since the last time it printed the name of a functon.

PRETTYPRINT operates correctly on functions that are BROKEN, BROKEN-IN, ADVISED, or have been
compiled with their definitions saved on their property lists: it prints the original, pristine definition, but
does not change the current state of the function. If a function is not defined but is known to be on
one of the fles nodced by the file package, PRETTYPRINT loads in the definition (using LOADFNS) and
prints it (except when called from PRETTYDEF)., If PRETTYPRINT is given an atom which is not the
name of a function, but has a value, it prettyprints the value. Otherwise, PRETTYPRINT attempts spelling
correction. If all fails, PRETTYPRINT rerurns (F~ NOT PRINTABLE).

(PP FN; --- FNp) , [NLambda NoSpread Function]
For pretyprinting functons to the terminal. PP calls PRETTYPRINT with the
_primary output file set to T and the primary read table set to T. The primary
output file and primary readtable are restored after printing. '

(PP FOO) is equivalent to (PRETTYPRINT '(F00)); (PP FOO FIE) is
equivalent to (PRETTYPRINT '(FO0 FIE)). - -

As described above, when PRETTYPRINT, and hence PP, is called with the name of a function that is
not defined. but whose definidon is on a file known to the file package, the definition is automadcally
read in and then prettyprinted. However, if the user does not intend on editing or running the definition.
but simply wants to see the definition, the functign PF described below can be used to simply copy the
corresponding characters from the file to the terminal. This results in a savings in both space and tme,
since it is not necessary to allocate storage to actially read in the definition. and it is not necessary to
re-prettyprint it (since the function is already in prettyprint format on the file).

(PF FN FROMFILES TOFILE) : [NLambda NoSpread Function]
Copies the definition of 7~ found on each of the files in FROMFILES 10 TOFILE.
If TOFILE=NIL, deraults to T. If FROMFILES=NIL. defaults 0 (WHEREIS FN
NIL T) (see page 11.10).-The typical usage of PF is simply 0 type "PF FN.

When printing to the terminal, PF performs several wansformations on the characters in the file that
comprise the definition for FN: (1) font information (page 6.55) is stripped out (except in [nterlisp-D.

6.48

O
(

INPUT/OUTPUT

whose display supports multiple fonts); (2) occurrences of the CHANGECHAR (page 6.55) are not printed;
(3) since functions typically tend to be printed to a file with a larger linelength than when printing to
a terminal, the number of leading spaces on each line is cut in half;!? and (4) comments are elided, if
«COMMENTFLG is non-NIL (see page 6.50).

While the function PRETTYPRINT prints entire function definitions, the functon PRINTDEF can be used
to print parts of functions, or arbitrary Interlisp structures:

(PRINTDEF EXPR LEFT DEF TAILFLG FNSLST FILE) {Function]
Prints the expression EXPR in a pretty format on FILE using the primary readtable.
LEFT is the left hand margin (LINELENGTH determines the right hand margin.)!?

DEF=T means EXPR is a function definition, or a piece of one. If DEF=NIL,
no special action is taken for LAMBDA's, PROG's, COND’s, comments, CLISP, etc.
DEF is NIL when PRETTYDEF calls PRETTYPRINT to print variables and property
lists, and when PRINTDEF is called from the editor via the command PPV.

TALFLG=T means EXPR is interpreted as a tail of a list, to be printed without
parentheses.

FNSLST is for use with the Font package (page 6.55). PRINTDEF prints occurrences
of any function in the list FNsLST in a different font, for emphasis. MAKEFILE
- passes as FNSLST the list of all functions on the file being made.

6.8.1 Comment Feamré

A facility for annotating Interlisp functions is provided in PRETTYPRINT. Any expression beginning with
the atom * is interpreted as a comment and printed in the right margin. Example:

(FACTORIAL
[LAMBDA (W) : (* COMPUTES N!)
(COND
((ZEROP N) (* 0!=1)
1) :
(T (* RECURSIVE DEFINITION:

NI=N*N-11)
(ITIMES N (FACTORIAL (SUB1 NJ)

These comments actually form a part of the function definition. Accordingly, * is defined as an nlambda
nospread function that returns its argument, similar to QUOTE. When running an interpreted function. * is
entered the same as any other Interlisp function. Therefore, comments should only be placed where they
will not harm the computaton, i.e., where a quoted expression could be placed. For example, writing

(ITIMES N (FACTORIAL (SUB1 N)) (* RECURSIVE DEFINITION))

12Unless PFDEFAULT is T. PFDEFAULT is initally HIL.

'PRINTDEF inidally performs (TAB LzFT T). which means to space to position LEFT, unless aiready
beyond this posiuon, in which case it does nothing.

6.49

Comment Feature

in the above function would cause an error when I TIMES attempted to multiply N, N=1!, and RECURSIVE,

For compilation purposes, * is defined as a macro which compiles into no instructions (unless the comment
has been placed where it has been used for value, in which case the compiler prints an appropriate error
message and compiles * as QUOTE). Thus, the compiled form of a functon with comments does not use
the extra atom and list structure storage required by the comments in the source (interpreted) code. This
is the way the comment feature is intended to be used.

A comment of the form (®* E X) causes X to be evaluated at prettyprint time, as well as printed as a
comment in the usual way. For example, (®* E (RADIX 8)) as a comment in a function contammg
octal numbers can be used to change the radix to produce more readable printout.

The comment character ® is stored in the variable COMMENTF LG. The user can set it to some other vaiue,
e.g. “;”, and use this to indicate comments.

" COMMENTFLG [Vanable]
' If CAR of an expressmu is EQ to COMMENTFLG the expression is treated as a
comment by PRETTYPRINT. COMMENTFLG is initialized to *. Note that whatever
atom is chosen for COMMENT FLG should also have an appropria:e function definition

and compiler macro, for example, by copying those of ®.

Comments are designed mainly for documenting listings. Therefore, when prettyprinting to the terminal,
comments are suppressed and printed as the string **COMMENT=®, The value of **COMMENT®*FLG
determines the action.

“#=COMMENT=*=FLG ' [Variable]
If **COMMENT**FLG is NIL. comments are printed. Otherwise, the value of

COMMENT®FLG is printed. [nitally " **COMMENT*= ".
The functions PP* and PF* are provided to easily print functions, including their comments.

(PP* x) [NLambda NoSpread Function]
PP=® gperates exacty like PP except it first sets ®**COMMENT**FLG to NIL. so
comments are printed in full.

(PF* FN FROMFILES TOFILE) [NLambda NoSpread Function]
PF= operates exactly like PF except it first sers **COMMENT**FLG to NIL. so
comments are printed in full.

(COMMENT1 L —) [Function]
Prints the comment L. COMMENT1 is a separate functioni* to permit the user (o
write prettyprint macros (page 6.54) that use the regular comment printer. For

. example, to cause comments to be printed at a larger than normal linelength. one
~could put an entry for * on PRETTYPRINTMACROS:

(* LAMBDA (X) (RESETFORM (LINELENGTH 100) (COMMENT1 X)))

HCOMMENT L is an entry to the PRETTYPRINT biock. However. it is called internally by PRETTYPRINT
so that advising or redefining it will not affect the action of PRETTYPRINT. COMMENT1 should not be
called when not under a PRINTDEF.

6.50

N
4

INPUT/OUTPUT

This macro resets the line length, prints the comment, and then restores the line
length.

COMMENT1 expects to be called from within the environment established by
PRINTDEF, so ordinarily the user should call it only from within prettyprint macros.

6.8.2 Comment Pointers

For a well-commented collection of programs, the list structure, atom, and pname storage required to
represent the comments in core can be significant If the comments already appear on a file and are
not needed for editing, a significant savings in storage can be achieved by simply leaving the text of the
comment on the file when the file is loaded, and instead retaining in core only a pointer to the comment
This feature has been implemented by defining * as a read-macro in FILERDTBL which, instead of

" reading in the entire text of the comment. constructs an expression containing (1) the name of the file in

which the text of the comment is contained, (2) the address of the first character of the comment (3) the
number of characters in the comment, and (4) a flag indicating whether the comment appeared at the right
hand margin or centered on the page. For cutput purposes, * is defined on PRETTYPRINTMACROS (page
6.54) so that it prints the comments represented by such pointers by simply copying the corresponding
characters from one file to another, or to the terminal. Normal comments are processed the same as
before. and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the value of NORMALCOMMENTSFLG.

NORMALCOMMENTSFLG [Variable]
The comment pointer feature is enabled by setting NORMALCOMMENTSFLG to NIL.
NORMALCOMMENTSFLG is initally T.

NORMALCOMMENTSFLG can be changed as often as desired. Thus, some files can be
loaded normally, and others with their comments converted to comment pointers.

For convenience of editing selected comments, an edit macro, GET®, is included, which loads in the
text of the corresponding comment. The editor’s PP* command, in contrast, prints the comment without
reading it by simply copying the corresponding characters to the terminal. GET* is defined in terms of
GETCOMMENT:

(GETCOMMENT X DESTFL —) [Function]
If x is a comment pointer, replaces x with the actual text of the comment, which
it reads from its file. Rewurns x in all cases. If pESTFL is non-NIL. it is the
name of an open file, to which GETCOMMENT copies the comment; in this case.
X remains a comment pointer. but it has been changed 1o point to the new file
(unless NORMALGOMMENTSELG = DONTUPDATE).

(PRINTCOMMENT Xx) [Function]
Defined as the prettyprint macro for ®: copies the comment to the primary output .
file by using GETCOMMENT.

(READCOMMENT FL RDTBL LST) [Funcrion]
Defined as the read macro for * in FILERDTBL: if NORMALCOMMENTSFLG is NIL.

6.51

Converting Comments to Lower Case

it constructs a comment pointer.ts

Note that a certain amount of care is required in using the comment pointer feature. Since the text of the
comment resides on the file pointed to by the comment pointer, that file must remain in existence as long
as the comment is needed. GETCOMMENT helps out by changing the comment pointer to always point
at the most recent file that the comment lives on. However, if the user has been performing repeated
MAKEFILE’s (page 11.6) in which differing functions have changed at each invocatdon of MAKEFILE, it is
pessible for the comment pointers in memory 0 be pointing at several versions of the same file, since a
comment pointer is only updated when the function it lives in is prettyprinted, not when the function has
been copied verbatim to the new file. This can be a problem for file systems, such as Tenex and Tops20,
that have a built-in limit on the number of versions of a given file that will be made before old versions
are expunged. In such a case, the user should set the version retention count of any directories involved
to be infinite. GETCOMMENT prints an error message if the file that the comment pointer points at has

disappeared. _ '

similarly, one should be cognizant of comment pointers in SYSOUTs, and be sure to rewain any files thus
pointed to.

When using comment pointers, the user.should also not set PRETTYFLG (page (.54) to NIL or call
MAKEF ILE with option FAST, since this will prevent functons from being prettyprinted, and hence not
get the text of the comment copied into the new file.

If the user changes the value of COMMENTFLG but still wishes to use the comment pointer feature,
the new COMMENTFLG should be given the same read-macro definition in FILERDTBL as * has, and
the same entry be put on PRETTYPRINTMACROS. For example, if COMMENTFLG is reset to be “;",
then (SETSYNTAX '; '* FILERDTBL) should be performed. and (; . PRINTCOMMENT) added to
PRETTYPRINTMACROS.

6.8.3 Converting Comments to Lower Case

This section is for users operating on terminals without lower case, e.g. moedel 33 teletypes, who

“nevertheless would like their comments to be converted to lower case for more readable line-printer

_astngs. If the second atom in a comment is %%, the text of the comment is converted to lower case so

that it looks like English instead of LISP. Note that comments are converted only when they are actually
written 0 a file by PRETTYPRINT.

The algorithm for conversion to lower case is the following: If the first character in an atom is t, do not
change the atom (but remove the +). If the first character is %. convert the atom to lower case.!f If the
atom {minus any trailing punctuation marks) is an [nterlisp word,!” do not change it. Otherwise. convert
the atom to lower case. Conversion only affects the upper case alphabet, i.e.. atoms already converted
to lower case are not changed if the comment is converted again. When converting, the first character
in the comment and the first character following each period are left capitalized. After conversion. the
comment is physically modified to be the lower case text minus the %% Hag, so that conversion is thus

t3Unless it believes the expression beginning with * is not acrually a comment e.g., if the next atom is
*.7oor E. :

15User must type %% as % is the escape character.

'"l.e.. is a bound or free variable for the function containing the comment. orHas a top level value, or is
a denned function. or has a non-NIL property list.

®

%% flag).
LCASELST

UCASELST

ABBREVLST

INPUT/OUTPUT

- only performed once (unless the user edits the comment inserting additional upper case text and another

[Variable]
Words on LCASELST will always be converted to lower case. LCASELST is
initialized to contain words which are Interlisp functions but also appear frequeatiy
in comments as English words (AND, EVERY, GET, GO, LAST, LENGTH, LIST, et.).
Therefore, if one wished to type a comment including the lisp fuction GO, it would
be necessary to type +GO in order that it might be left in upper case.

[Variable]
Words on UCASELST (that do not appear on LCASELST) will be left in upper
case. UCASELST is initialized to NIL.

[Mariable]
ABBREVLST is used to distinguish between abbreviations and words that end in
periods. Normally, words that end in periods and occur more than halfway to the
right margin cause carriage-returns. Furthermore, during conversion to lowercase,
words ending in periods, except for those on ABBREVLST, cause the first character
in the nex: word to be capitalized. ABBREVLST is initalized to the upper and
lower case forms of ETC., I1.E., and E.G..

6.8.4 Special Prettyprint Controls

PRETTYTABFLG

#RPARS

FIRSTCOL

PRETTYLCOM

#CAREFULCOLUMNS

[Variable}
In order to save space on files, tabs are used instead of spaces for the inital spaces
on each line, assuming that each tab corresponds to 8 spaces. This results in a
reduction of file size by about 30%. Tabs are not used if PRETTYTABFLG is set to
NIL (initally T). « .

' [Variable]
Conwols the number of right parentheses necessary for square bracketing to
occur. If #RPARS=NIL, no brackets are used. #RPARS is initialized to 4.

[Variable]
The starting column for comments. Inidal setting is 48. Comments run between
FIRSTCOL and LINELENGTH. If a word in a comment ends with 2 “.” and

is not on the list ABBREVLST, and the position is greater than halfway between
FIRSTCOL and LINELENGTH, the next word in the comment begins on a new
line. Also, if a list is encountered in a comment. and the position is greater than
halfway. the list begins on a new line. ‘

[Variable]
If a comment is bigger (using COUNT) than PRETTYLCOM in size, it is printed
starting at column 10, instead of FIRSTCOL. PRETTYLCOM is iniualized to 14
(arrived at empirically). Comments are also printed starting at column 10 if their
second element is also a ®, i.e., comments of the form (* * --).

. : [Variabie]
In the interests of efficiency, PRETTYPRINT approximates the number of characters

)

Special Prettyprint Controls C

in each atom, rather than calling NCHARS, when computing how much will fit on
a line. This procedure works satisfactorily in most cases. However, users with
unusually long atoms in their programs, e.g., such as produced by CLISPIFY, may
occasionlly encounter some glitches in the output produced by PRETTYPRINT. The
value of #CAREFULCOLUMNS tells PRETTYPRINT how many columns (counting
from the right hand margin) in which to actually compute NCHARS instead of
approximating. Setting #CAREFULCOLUMNS to 20 or 30 will eliminate the glitches,
although it will slow down PRETTYPRINT slightly. #CAREFULCOLUMNS is inidally
0.

(WIDEPAPER FLG) [Function]
(WIDEPAPER T) sets FILELINELENGTH to 120, FIRSTCOL to 80, and PRETTYLCOM
to 28. These are useful settings for prettyprindng files to be listed on wide paper.
(WIDEPAPER) restores these parameters to their inidal values. The value of —
WIDEPAPER is its previous setting. ‘

PRETTYFLG , - [Variable]
If PRETTYFLG is NIL, PRINTDEF uses PRIN2 instead of prettyprinting. This is
useful for producing a fast symbolic dump (see FAST option of MAKEFILE, page
11.6). Note that the file loads the same as if it were pretryprinted. PRETTYFLG is
inidally set to T. PRETTYFLG should not be set to NIL if comment pointers (page
6.51) are being used.

CLISPIFYPRETTYFLG 4 ¢ [Variable]
Used to inform PRETTYPRINT to call CLISPIFY on selected functon definitions

before printing them (see page 16.20).

PRETTYPRINTMACROS [Variable]

: An association-list that enables the user to control the formarting of selected

expressions. CAR of each expression being PRETTYPRINTed is looked up on

PRETTYPRINTMACROS, and if found. CDR of the corresponding entry is applied

to the expression. If the result of this applicaton is NIL, PRETTYPRINT ignores

the expression: i.e.. it prints nothing, assuming that the prettyprintmacro has

done any desired printng. If the result of applying the prettyprint macro is

non-NIL, the result is prettyprinted in the normal fashion. This gives the user

the option of computing some other expression to be prettyprinted in its place.
PRETTYPRINTMACROS is initally NIL.

Note: “prettyprinted in the normal fashion™ includes processing pretryprint macros.
uniess the prettyprint macro returns a structure £Q to the one it was handed, in
which case the potential recursion is broken.

PRETTYPRINTYPEMACROS ' [Variable]
A list of elements of the form (TYPENAME . FN). For types other than lists
and atoms, the type name of each damum to be prettyprinted is looked up on
PRETTYPRINTYPEMACRQS. and if found. the corresponding function is applied
to the datum about to be printed. instead of simply printing it with PRINZ.
PRETTYPRINTYPEMACROS is initially NIL.

PRETTYEQUIVLST [Variable]

An associaton-list that tells PRETTYPRINT to treat a CAR-of-form the same
as some other CAR-or-form. For example, if (QLAMBDA . LAMBDA) appears

6.54

O)

INPUT/OUTPUT

on PRETTYEQUIVLST, then expressions beginning with QLAMBDA are prat-.

typrinted the same as LAMBDAs. PRETTYEQUIVLST is imitially NIL. Currently,
PRETTYEQUIVLST only allows (i.e., supports in an interesting way) equivalences
to forms that PRETTYPRINT internally handles. Equivalence to forms for which
the user has specified a prettyprint macro should be made by adding funher entries
to PRETTYPRINTMACROS

CHANGECHAR [Variable]

If non-NIL, and PRETTYPRINT is printing to a file or display terminal, PRETTYPRINT

prints CHANGECHAR in the right hand margin while printing those expressions
marked by the editor as having been changed (see page 17.22). CHANGECHAR is
inidally |. _

- 6.85 Font Package

PRETTYPRINT contains a facility for printing elements of various classes (user functions, system funcuons,
clisp words, comments, etc.) in different fonts to emphasize (or deemphasize)- their importance, and in
general 1o provide for more pleasing printout when printing to a file. Of course, in order to be useful,
this facility requires that the user has access to a printer which supports muitipie fonrs, such as an XGP.

Prettyprint signals font changes by inserting a user-defined escape sequence, e.g. +F+C meaning change
to font 3, +F+A change back to font 1, etc. It is convenient if these sequences can consist of control
characters, because by making these characters. be separator charactors in FILERDTBL, a file with font
changes in it can also be loaded back in. Otherwise, the user would have to dump two files, one for
listing, and cne for loading.

Currently, the user can specify fonts for each of the following eight classes, each different, or the same
for several classes.

LAMBDAFONT The font for printing the name of the function being prettyprinted, before the

actual definition (usually a large fonr).

CLISPFONT If CLISPFLG is om, the font for printing any clisp words, Le. atoms with property
CLISPWORD.

COMMENTFONT The font for everything inside of a comment

USERFONT The font for the name of any function in the file. or any member of the list
FONTFNS.

SYSTEMFONT The font for any other (defined) function.

CHANGEFONT The font for anything in an expression marked by the editor as having been
changed.

PRETTYCOMFONT The font used in printing the operand of a file package command.

DEFAULTFONT The font for everything else. or any of the above classes for which a font is not
specified.

Note: the output primitives PRINT, PRIN1. etc., currentdy do not know about variable width fonts. so

i
|

i
i

Font Package

the user may have to experiment to find a compatible (pleasing) set of fonts. Note also that the user does
not set LAMBDAFONT, CLISPFONT, et al, but indicates what font to be used by including an appropriate
enaoy in FONTPROFILE. FONTSET will then set LAMBDAFONT, CLISPFONT, et al, to a data structure
that contains the necessary information for performing the font change.

FONTPROFILE [Variable]
A list of elements of the form (FONTCLASS NIL FONT#),'8 where FONTCLASS
is one of the eight font classes and FONT# is the font number for that class. it is
assumed that the user has some way of communicating to the printing device the
correspondence between font numbers and fonts. For each fontclass, the escape
sequence consists of FONTESCAPECHAR followed by the character code for the
font number, i.e. for font number 1, +A, for font number 2, +B, etc.

If FONT# i1s NIL for any fontclass, the DEFAULTFONT is used. Note that the
DEFAULTFONT must be specified or an error is generated. -

" The operation of the font package is affected by a large number of parameters, e.g. FILELINELENGTH,

LISTFILESTR, etc. plus the various fontnames themseives. To facilitate switching back and forth between

+ various configuradons, the font package allows the user to set the various parameters to their desired

values, and then use the. function FONTNAME to package up and save this configuration. Subsequently,
the user invokes this configuradon by performing (FONTSET NAME).

Note that the user may also want to reset FILELINELENGTH (page 23.14), PRETTYLCOM (page 6.53),
and FIRSTCOL (page 6.53) as a part of various font configuradons.

(FONTNAME NAME) ' ‘ [Function]
Performs some processing on FONTPROFILE, and then collects names and values
of variables on FONTDEFSVARS, and saves them on FONTDEFS. '

(FONTSET NAME) [Function]
Restores font gpnfiguration for NAME. Generates an error if NAME not previously
defined.

“ONTDEFSVARS [Variable]

The list of variables to be packaged by a FONTNAME. Initually FONTCHANGEFLG,
FILELINELENGTH, COMMENTLINELENGTH, FIRSTCOL, PRETTYLCOM, LISTFILESTR, »#
and FONTPROFILE.

FONTESCAPECHAR . [Variable]
The characrer or string used to signal the start of a font escape sequence.

FONTCHANGEFLG [Variablej
If T, enables fonts, if NIL, disables fonts, i.e. no font changes are performed when
prettyprinting.

'¥The NIL is a place marker. FONTNAME replaces (RPLACA) CADR when the font configuration is
defined.

6.56

(N
G

O

INPUT/CUTPUT

LISTFILESTR [Variable]
Passed to the operating system by LISTFILES (page 11.9). Can be used to specify
subcommands to the LIST command, e.g. to establish correspondance between

. font number and font name.

COMMENTLINELENGTH ‘ [Variable]
Since comments are usually printed in a smaller font, COMMENTLINELENGTH is
provided to-offset the fact that Interlisp does not know about font widths, When
FONTCHANGEFLG=T, CAR of COMMENTLINELENGTH is the linelength usad to
print short comments, i.e. those printed in the right margin, and CDR is the
linelength used when printing full width comments.

(CHANGEFONT FONTCLASS) ‘ : [Function]
Prints the font escape sequence to change to FONTCLASS. Note that FONTCLASS
is not a font name, so ome should use (CHANGEFONT LAMBDAFONT), not
(CHANGEFONT 'LAMBDAFONT). For use in PRETTYPRINTMACROS.

FONTDEFS [Variable]
The dicdonary of font configurations. FONTDEFS is a list of elements of form
(NAME . PARAMETER-PAIRS). To save a configuration on a file after performing
a FONTNAME to define it, the user could either save the entire vaiue of FONTDEFS,
~or simply use an ALISTS file package command (page 11.23) to dump out just the
one configuration.

6.9 ASKUSER

DWIM, the compiler, the editor, and many other system packages all use ASKUSER, an extremely general
user interaction package, for their interactions with the user at the terminal. ASKUSER takes as its principal
argument KEYLST which is used to drive the interaction. KEYLST specifies what the user can type at
any given point, how ASKUSER should respond to the various inputs, what value should be returned by
ASKUSER, and is also used to present the user at any given point with a list of the possible responses.
ASKUSER also takes other arguments which permit specifying a wait time. a default value, a message
to be printed on entry, a flag indicating whether or not typeahead is to be permitted. a flag indicating
whether the transaction is 10 be stored on the history list (page 8.1), a default ser of optons, and an
(opdonal) input file/string.

6.9.1 Startup Protocol

Interlisp permits and encourages the user to typezhead: in actual practice, the user frequently does this.
This presents a problem for ASKUSER. When ASKUSER is entered and there has been typezhead. was
the input intended for ASKUSER. or was the interaction unanticipated, and the user simply typing ahead
to some other program. e.g. the programmer's assistant? Even where there was no typeahead. i.e.. the
user staris typing aster the call to ASKUSER. the guestdon remains of whether the user had time to see
the message from ASKUSER and react to it or simply began typing ahead at an inauspicious moment.
Thus, what is needed is an interlock mechanism which warns the user to stop typing, gives him a chance
to respond to the warning, and then allows him to begin typing to ASKUSER.

Startup Protocol

Therefore, when ASKUSER is first entered, and the interaction is to take place with a terminal, and
typeahead to ASKUSER is not permitted. the foilowing protocol is observed:

(1) If there is typeahead, ASKUSER clears and saves the input buffers and rings the bell to warn the user
to stop typing. The buffers will be restored when ASKUSER completes operation and returns.

(2) If MESss, the message to be printed on entry, is not NIL (the typical case), ASKUSER then prints MESS -

if it is a string, otherwise CAR of MEss, if MESS is a list

(3) After printing MESs or CAR of MESs, ASKUSER waits until the ourput has actually been printed on the
terminal to make sure that the user has actually had a chance to see the output. This also give the user
a chance to react. ASKUSER then checks to see if anything additional has been typed in the intervening
period since it first warned the user in (1). If something has been typed, ASKUSER clears it out and
. again rings the bell. This latter material, i.e., that typed between the entry to ASKUSER and this point,
 is discarded and will not be restored since it is not certain whether the user simply teacted quickly to
the first warning (bell) and this input is intended for ASKUSER, or whether the user was in the process
of typing ahead when the call to ASKUSER occurred, and did not stop typing at the first warning, and
therefore this input is a continuation of input intended for another program.

Anything typed after (3) is considered 1o be intended for ASKUSER, i.e., once the user sees M£ss or CAR
of Mess, he is free to respond. For example, UNDQ (page 8.11) calls ASKUSER when the number
of undosaves are exceeded for an event with MESS=(LIST NUMBER-UNDOSAVES "undosaves,
continue saving”). Thus, the user can type a response as soon as NUMBER-UNDOSAVES is typed.

(4) ASKUSER then types the rest of MESs, if any.

(5) Then ASKUSER goes into a wait loop until something is typed. If warr, the wait time. is not NIL,
and nothing is typed in warT seconds, ASKUSER will type “..." and treat the elements of DEFAULT,
the default value, as a list of characters. and begin processing them exactly as though they had been
typed. If the user does type anything within WAIT seconds, he can then wait as long as he likes, i.e., once
something has been typed. ASKUSER will not use the default value specified in bEFAULT. -

If the user wants 10 consider his response for more than wAIT seconds. and does not want ASKUSER to
default, he can type a carriage return or a space, which are ignored if they are not specified as acceptable
. inputs by KEYLST (see below) and they are the first thing typed.

[f the calling program knows that the user is expecting an interaction with ASKUSER, e.g. another
interaction preceded this one, it can specify in the call to ASKUSER that typeahead is permitted. In this
case. ASKUSER simply notes whether there is any typeahead,!® then prints MESS and goes into a wait
loop as described above.

(6) Finally, if the interacton is not with the terminal. ie.. the optonal input file/string is specified.
ASKUSER simply prints MESS and begins reading from the file/string. - .

191n this case. if the typeahead turns out to contain unacceptable input. ASKUSER will assume that the
typeahead was not intended for ASKUSER, and will restore the typeanead when it completes operation
~ and returns.

6.58

O

INPUT/OUTPUT

6.9.2 Operation

All input operations are executed with the terminal table in the variable ASKUSERTTBL,, in which (1)
(CONTROL T) has been executed, so that ASKUSER can interact with the user after each character
is typed; and (2) (ECHOMODE NIL) has been executed, so that ASKUSER can decide affer it reads a
character whether or not the character should be echoed, and with what, e.g. unacceptable inputs are
never echoed.

As each character is typed, it is matched against KEYLST, and appropriate echoing and/or prompting is
performed. If the user types an unacceptable character, ASKUSER simply rings the bell and allows him

10 oy again.

At any point, the user can type ? and receive a list of acceptable respenses at that point (generated from
KEYLST), or type a control-A, control-Q, control-X, or , which causes ASKUSER to reinitialize, and
start over. '

Note that 7, Control-A, Control-Q, and Conrrol-X will not work if they are acceptable inputs, i.e., they
match one of the keys on XEYLST. <deD> will not work if it is an interrupt character, in which case it is
not seen by ASKUSER.

When an acceptable sequence is completed, ASKUSER returns the indicated value.
6.9.3 Format of KEYLST

KEYLST is a list of elements of the form (XEY PROMPTSTRING . OPTIONS), where KEY is an atom
or a string (equivalent), PROMPTSTRING is an atom or a string, and OPTIONS a list of options in
propeny list format. The following options are recognized and explained below: KEYLST, CONFIRMFLG,
PROMPTCONFIRMFLG, NOCASEFLG, RETURN, EXPLAINSTRING, NOECHOFLG, KEYSTRING, PROMPTON,
COMPLETEON, AUTOCOMPLETEFLG. If an option is specified in oPTIONS, the value of the option is the
next element. Otherwise, if the option is specified in OPTIONSLST (the seventh argument to ASKUSER),
its value is the next element on OPTIONSLST. Thus, OPTIONSLST can be used to provide default options
for an entire KEYLST. rather than having to include the opton at each level. If an option does not appezr
on either OPTIONS Or OPTIONSLST, its value is NIL.

For convenience, an enty on KEYLST of the form (x=Y . ATOM}STMG), can be used as an
abbreviation for (KEY ATOM/STRING CONFIRMFLG T), and an entry of just the form kZv. ie. a
non-list. as an abbreviation for (ky NIL CONFIRMFLG T).

As each character is read. it is matched against the currently active keys. A character maiches a key if it
is the same character as that in the corresponding position in the key, or. if the character is an alphabetic
character, if the characters are the same without regard for upper/lower case differences, i.e. “A™ matches
“a" and vice versa.?® [n other words, if two characters have already been input and marched. the third
character is matched with each active key by comparing it with the third character of that key. If the
character matches with one or more of the keys, the entries on KEYZST corresponding io the remaining
keys are discarded. If the character does not match with any of the keys, the character is not echoed. and
a bell is rung instead. . ‘

20Unless the NOCASEFLG option (page 6.62) is T.

6.59

Format of KEYLST

499

When a key is complete, PROMP"I"STRHVG is printed (NIL is equivalent to *”, the empty string, i.e., nothing

will be printed). Then, if the value of the CONFIRMFLG option is T, ASKUSER waits for confirmation of

the key by a¢v2! or space. Otherwise, the key does not require confirmation.

Then, if the value of the KEYLST opdon is not NIL, its value becomes the new KEYLST, and the process
recurses. Otherwise, the key is a *“leaf,” i.e., it terminates a particular path through the original, top-level
KEYLST, and ASKUSER returns the result of packing all the keys that have been matched and completed
along the way (unless the RETURN option is used to specify some other value, as described below).

For example, the following k¥=YLsT is the default KEYLST, i.e., is used when ASKUSER is called with
KEYLST=NIL: ((Y "esc¢™") (N "o0°™"))

This XEYLST specifies that if (as soon as) the user types Y (or y), ASKUSER echoes with Y, prompts with

“as¢™, and returns Y as its value. Similarly, if the user types N, ASKUSER echoes the N, prompts with

a¢r”, and returns N. If the user types ?, ASKUSER prmts -

Yes .

No

to indicate his possible responses. All other inputs are unacceptable, and ASKUSER will ring the bell and
not echo or print anything.

Here is a more complicated example, the XEYZLST used for the compiler questions (page 12.1):

((ST "ore and redefine " KEYLST ("™ (F . "orget exprs"))
(S . "ame as last time") , :
(F . "File only")

(T . "o terminal™)

1
2
(Y .-"es")
(N . "0"))

| "When ASKUSER is called with this KEYLST, and the user types an S, two keys are matwched: ST and S.
. Che user can then type a T, which martches only the ST key, or confirm the S key by typing a¢" or space.

[f the user confirms the S key, ASKUSER prompts with “ame ‘as 1ast time”, and returns S as its
value. (Note that the confirming character is not included in the value.) If the user types a T, ASKUSER
prompts with “ore and redefine”, and makes ("" (F . "orget exprs")) be the new KEYLST,
and waits for more input. The user can then type an F, or confirm the “” (which essentially starts out
with all of its characters matched). If he confirms the “”’, ASKUSER returns ST as its value the result of
packing ST and ™". If he types F. ASKUSER prompts with “orget exprs”, and waits for confirmation
again. [f the user then confirms. ASKUSER returns STF. the result of packing ST and F.

As mentioned earlier. at any point the user-can type a ? and be prompted with the possible responses.
For example, if the user types S and then ?. ASKUSER will type:

STore and redefine Forget exprs
STore and redefine
Same as last time

21er is used throughout the discussion to denote carriage return.

6.60

C,;Q

o

INPUT/OUTPUT

6.9.4 Completing 2 Key

The decision about when a key is complete is more complicated than simply whether or not all of its
characters have been matched. In the example above, all of the characters in the S key are matched as
soon as the S has been typed, but until the next character is typed, ASKUSER does not know whether the
S completes the S key, or is simply the first character in the ST key. Therefore, a key is considered o
be complete when:

(1) All of its characters have been matched and it is the only key left, i.e., there are no other keys for
which this key is a substring; or

(2) All of its characters have been matched and a confirming character is typed; or

(3) All of its characters have been matched, and the value of the CONFIRMFLG opton is NIL, and the
value of the KEYLST option is not NIL, and the next character matches one of the keys on the value of
the KEYLST optdon; or

(4) There is oaly one key left and a confirming character is typed. Note that if the value of CONFIRMFLG
is T, the key still has to be confirmed, regardless of whether or not it is complete. For example, if the
first entry in the above example were instead

(ST "ore and redefine " CONFIRMFLG T KEYLST ("" (F . "orget exprs"))

and the user wanted to specify the STF path. he would have to type ST. then confirm before typing F,
even though the ST completed the ST key by the rule in case (1). However, he would be prompted with
“ore and redefine” as soon as he typed the T, and completed the ST key.

Case (2) says that confirmation can be used to complete a key in the case where it is a substring of another
key, even where the value of CONFIRMFLG is NIL. In this case, the cohfirming character doubles as both
an indicator that the key is complete, and also 10 confirm it, if necessary. This situation corresponds to
typing S¢ in the above example. . :

Case (3) says that if there were another entry whose key was STX in the above example, so that after
the user typed ST, two keys, ST and STX, were still active, then typing F would complete the ST key,
because F matches the (F . "orget exprs”) entry on the value of the KEYLST option of the ST
enty. In this case, “ore and redefine™ would be printed before the F was echoed.

Finally, case (4) says that the user can use confirmation to specifv completion when only one key is left,
even when all of its characters have not been matched. For example, if the first key in the above example
were STORE, the user could type ST and then confirm, and ORE would be echoed, followed by whatever
prompting was specified. In this case, the confirming character also confirms the key if necessary, so that
no further action is required, even when the value of CONFIRMFLG is T.

Case (4) permirs the user not to have to type every character in a key when the key is the only one left
Even when there are several active keys, the user can type type S (the £SC key, or on some terminals,
the key labelled ALT) to specify the next N>0 common characters among the currently active keys. The
effect is exactly the same as though these characters had been typed. If there are no common characters
in the actve keys at that point. i.e. N=0, the $ is treated 2s an incorrect input. and the bell is rung.
For example. if kEYLST is (CLISPFLG CLISPIFYPACKFLG CLISPIFTRANFLG), and the user types
C followed by &, ASKUSER will supply the L, I, S, and P. The user can then type F followed by¢" or
space to complete and confirm CLISPFLG. as per case (4), or type I, followed by S, and ASKUSER will
supply the F, etc. Note that the characters supplied do not have to correspond to a terminal segment of

6.61

Options

any of the keys. Note also that the $ does not confirm the key, although it may complete it in the case
that there is only one key active.

If the user types a confirming character when several keys are left, the next N>0 common characters are
stll supplied, the same as with $. However, ASKUSER assumes the intent was to complete a key. i.e,
case (4) is being invoked. Therefore, after supplying the next N characters. the bell is rung to indicate
that the operation was not completed. In other words, typing a confirming character has the same effect
as typing an $ in that the next N common characters are supplied. Then, if there is only one key lefi,
the key is complete (case 4) and confirmation is not required. If the key is not the only key left. the bell
is rung. : ,

6.9.5 Options

KEYLST ' ‘When a key is complete, if the value of the KEYLST op'ti'on is not NIL, this value
becomes the new KEYLST and the process recurses. Otherwise, the key terminates
a path through the original, top-level kEY1sT, and ASKUSER returns the indicated
value,. .

CONFIRMFLG If T, the key must be confirmed with either a°r or a space. If the value of
CONFIRMFLG is a list, the confirming character may be any member of the list

PROMPTCONFIRMFLG
If T, whenever confirmation is required, the user is prompted with the suing
[confirm] ™. ‘ '

5

NOCASEFLG If T, says do not perform case independent matching on alphabetic characters. If

NIL, do perform case independent matching, i.e. “A™ marches with “a” and vice
versa.
RETURN If non-NIL, EVAL of the value of the RETURN option is returned as the value

of ASKUSER. Note that different RETURN options can be specified for different
keys. The variable ANSWER is bound in ASKUSER to the list of keys that have
been matched. In other words, RETURN (PACK ANSWER) would be equivalent
to what ASKUSER normally does.

EXPLAINSTRING If the vaiue of the EXPLAINSTRING option is non-NIL. its value is printed when
the user types a ?, rather than XY + PROMPTSTRING. EXPLAINSTRING enables
more elaborate explanations in response to a ? than what the user sees when he
is prompted as a result of simply completing keys. See example below.

NOECHOFLG . If non-NIL, characters that are matched (or automatcally supplied as a result of
typing $ or confirming) are not echoed, nor is the confirming character, if any.
The value of NOECHOFLG is automatically NIL when ASKUSER is reading from a
file or string. The decision about whether or not to echo a character that maiches
several keys is determined by the value of the NOECHOFLG option for the first key.

Example: one of the entries on the KEYLST used by ADDTOFILES? (page 11.8) is:

(] "Nowherec" NOECHOFLG T
EXPLAINSTRING "] - nowhere, item is marked as & dummy<™")

F&

6.62

INPUT/OUTPUT

When the user types], ASKUSER just prints “Nowherec ", i.e, the] is not echoed. If the user types ?,
the explanation corresponding to this entry will be:

] - nowhere, item is marked as a dummy

KEYSTRING If non-NIL, characters that are matched are echoed as though the value of
KEYSTRING were used in place of the key. KEYSTRING is also used for computing
the value returned. The main reason for this feature is to enable echoing in
lowercase.

PROMPTON If non-NIL, PROMPTSTRING is printed only when the key is confirmed with a
member of the value of PROMPTON. See example below.

COMPLETEON When a confirming character is typed, the N characters that are automatically
supplied, as specified in case (4), are echoed only when the key is confirmed with
a member of the value of PROMPTON.

The PROMPTON and COMPLETEON options enable the user to construct a XKEYLST which will cause
ASKUSER 1o emulate the action of the TENEX exec. The protocol followed by the TENEX exec is
that the user can type as many characters as he likes in specifying a command. The command can be
completed with a¢” or space, in which case no further output is forthcoming, or with a §, in which case
the rest of the characters in the command are echoed. followed by some prompting information. The
following ¥=YLST would handie the TENEX COPY and CONNECT comands:

((COPY ™ (FILE LIST) =
‘ PROMPTON (S)

COMPLETEON (S)
CONFIRMFLG (S))

(CONNECT " (TO DIRECTORY) "
PROMPTON (S)
COMPLETEON (S) - s
CONFIRMFLG ($)))

AUTOCOMPLETEFLG '
If the value of the AUTOCOMPLETEFLG opton is not HIL, ASKUSER will
automatically supply unambiguous characters whenever it can, i.e., ASKUSER acts
as though $ were typed after each character {except that it does not ring the bell
if there are no unambiguous characters).

MACROCHARS value is a list of dotted pairs of form (CHARACTER . FORM). When CHARACTER

is typed. and it does not match any of the current keys. FORM is evaluated and
nothing else happens, i.e. the matching process stays where it is. For example. ?
could have been implemented using this option. Essentially MACROCHARS provides
a read macro facility while inside of ASKUSER (since ASKUSER does READC's. read
macros defined via the readwble are never invoked).

EXPLAINDELIMITER
value is what is printed to delimit explanation in response to 7. Initially "*=" but
can be reset. e.g. o ™, ", for more linear output,

Special Keys

6.9.6 Special Keys

& can be used as a key to match with any single character, provided the character does not maitch with
some other key at that level. For the purposes of echoing and returning a value, the effect is r.he same as
though the character that were matched actually appeared as the key.

$ (esc) can be used as a key to match with the result of a single call to READ. For example, if the first
entry in the TENEX KEYLST above were:

(COPY " (FILE LIST) "
PROMPTON (S)
COMPLETEON ($)
CONFIRMFLG ($)
KEYLST ((S NIL RETURN ANSWER)))

then if the user typed COP FQO¢, (COPY FOO) would be returned as the value of ASKUSER. One
advantage of using 8, rather than having the calling program perform the READ, is that the call to READ
from inside ASKUSER is ERRORSET protected, so that the user can back out of this path and reinidalize
ASKUSER, e.g. to change from a COPY command to a CONNECT command, simply by typing controi-E.

$$ can be used as a key to match with the result of a single call to READLINE.

A list can be used as a key, in which case the list/form is evaluated and its value “matches” the key.
This fearure is provided primarily as an escape hatch for including arbitrary input operations as part of
an ASKUSER sequence. For example, the effect of S$ could be achieved simply by using (READLINE T)
as a key.?2 .

“"" can be used as a key. Since.it has no characters, all of its characters are automatically matched.
“» essentially functions as a place marker. For example, one of the entries on the kEYZST used by
ADDTOFILFS" is: _

("" "File/list: "

EXPLAINSTRING "a file name or name of a functionm 1ist”
KEYLST (8))

Thus, if the user types a character that does not match any of the other keys on the XEYLST, then the
character completes the *“" key, by virtue of case (4), since the character wifl match with the $ in the
inner KEYLST. ASKUSER then prints “File/1ist: ™ before echoing the character, then cails READ.
The character will be read as part of the READ. The value returned by ASKUSER will be the value of the
READ.

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG OPTIONSLST FILE)
- (Funcdon]
WAIT is either NIL or a number (of seconds). DEFAULT is a single character or
a sequence (list) of characters to be used as the defauit inputs for the case when
WAIT is not NIL and more than WwaIT seconds elapse without any input. In this

22For 3, 35. or a list. if the last character read by the input operauon is a separator. the character is
treated as a conﬁrmmg character for the key. However if the last character is a break character. it will
be matched against the nexr key. 4

6.64

INPUT/OUTPUT

case, the character(s) from DEFAULT are processed exactly as though they had been
typed. except that ASKUSER first types “...”

MESS is the initial message to be printed by ASKUSER, if any, and can be a suing,
or a list. In the latter case, each element of the list is printed, separated by spaces,
and terminated with 2 * ? ”. KEYLST and OPTIONSLST were described earlier.
TYPEAHEAD is T if the user is permitted to typeahead a response to ASKUSER. NIL
means any typeahead should be cleared and saved. LISPXPRNTFLG determines
whether or not the interaction is to be recorded on the history list. FILE can be
either NIL (in which case it is set to T), the name of a file, or a string.?? All input
operations take place from FILE undl an unacceptable input is encountered, ie.,
one that does not conform to the protocol defined by XEYLsT. At that point, FILE
is set to T, DEFAULT is set to NIL. the input buffer is cleared, and a bell is rung.
Unacceptable inputs are not echoed

The value of ASKUSER is the result of packing all the keys that were matched,
unless the RETURN option is specified (page 6.62).

(MAKEKEYLST LST DEFAULTKEY LCASEFLG —) [Function]

LST is a list of atoms or strings. MAKEKEYLST returns an ASKUSER xXEYLST which
will permit the user to specify one of the elements on LsT by either typing enough
characters to make the choice unambiguous, or else typing a number between 1
and N, where N is the length of LST.

- For example, if ASKUSER is called with xEYLST = (MAKEKEYLST '(CONNECT

SUPPORT COMPILE)), then the user can type C-0-H, S, C-O-M, 1, 2, or 3 t0
indicate one of the three choices.

If LeaseFrGg =T, then echoing of upper case elements will be in lower case (but
the value returned will stll be one of the elements of LsT). If DEFAULTXEY is
non-NIL, it will be the last key on the KEYLST. Otherwise, a key which permits
the user to indicate “No - none of the above™ choices, in which case the value
returned by ASKUSER will be NIL.

S1f FILE is a suing, and all of its characters are read before ASKUSER finishes. FILE willxbe reset to T.
and the interaction will continue with ASKUSER reading from the terminal.

6.65

Special Keys

6.66

. ;
N 7
—~——

CHAPTER 7

VARIABLE BINDINGS AND THE INTERLISP STACK

A number of schemes have been used in different implementations of LISP for storing the values of
variables. These include:

(1) Storing values on an association list paired with the variable names.

(2) Storing values on the property list of the atom which is the name of the variable.
,/—N‘.‘ P
'\)\3) Storing values in a special value cell associated with the atom name, putting old values on a pushdown (:
~ list, and restoring these values when exiting from a funcdon. '

(4) Storing values on a pusndown list,

Interlisp-10 uses the third scheme, so called “shallow binding”. When a function is entered, the value : {
of each variable bound by the function (function argument) is stored in a value cell associated with that i
variable name. The value that was in the value cell is stored in a block of storage called the basic
frame for this functon call. In addidon, on exit from the function each variable must be individually
unbound; that is, the old value saved in the basic frame must be restored to the value cell. Thus there is a
higher cost for binding and unbinding a variable than in the fourth scheme, “deep binding”. However, to
find the current value of any variable, it is only necessary to access the variable’s value cell, thus making
variable reference considerably cheaper under shallow binding than under deep binding, especially for free
variables. However, the shallow binding scheme used does require an additional overhead in switching
contexts when doing “spagheti stack™ operations.

- Interlisp-D uses the forth scheme, “deep binding.” Every time a functdon is entered, a basic frame
containing the new variables is put on top of the stack. Therefore, any variable reference requires

-7 searching the stack for the first instance of that variable, which makes free variable use somewhat more
zxpensive than in a shallow binding scheme. On the other hand, spagheti stack operations are considerably C--.-\ .
faster. Some other tricks involving copying freely-referenced variables to higher frames on the stack are ’
also used to speed up the search.

The basic frames are allocated on a stack or pushdown list; for most user purposes, these frames should
be thought of as containing the variable names associated with the function call. and the curren: values
for that frame. The descripdons of the stack functions in below are presented from this viewpoint. Both
interpreted and compiled functions store both the names and values of variables so that interpreted and
compiled functions are compatible and can be freely intermixed, i.e., free variables can be used with
10 SPECVAR declarations necessary. However, it is possible to suppress storing of names in compiled
functions, either for efficiency or to avoid a clash, via a LOCALVAR declaration (ses page 12.4). The
n?mes are also very useful in debugging, for they make possible a complete symbolic backtrace in case ;
of error. _ !

In addition to the binding information, additional information is associated with each function call: access
information indicating the path t0 search the basic frames for variable bindings. control information, and
temporary results are also stored on the stack in a block called the frame extension. The interpreter also
stores information about partally evaluated expressions as described on page 7.10.

o

The Spaghetti Stack

7.1 THE SPAGHETTI STACK

()

The Bobrow/Wegbreit paper, “A Model and Stack Implementation for Multiple Environments”,! describes

an access and control mechanism more general than the simple pushdown stack. The access and control
mechanism used by Interlisp is a slightly modified version of the one proposed by Bobrow and Wegbreit.
This mechanism is called the “spaghett stack.”

The spaghetti system presents the access and control stack as a data structure composed of “frames.” The
functions described below operate on this structure, These primitives allow user functions to manipulate
the stack in a2 machine independent way. Backtracking, coroutines, and more sophisticated control schemes
can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to hold the values of its local variables
during the computation. In addition to variable bindings, an activation of a function requires a return
link (indicating where control is to go after the completion of the computation)-and room for temporaries
needed during the computation. In the spaghetti system, one *‘stack” is used for storing all this information,
but it is best to view this stack as a tree of linked objects called frame extensions (or simply frames).

A frame extension is a variable sized block of storage containing a frame name, a pointer to some variable
bindings (the BLINK), and two pointers to other frame extensions (the ALINK and CLINK). In additon
to these components, a frame extension contains other information (such as temporaries and reference
counts) that does not interest us here.

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially
an array of pairs, each of which contains a variable name and its value. The reason frame extensions
point to basic frames (rather than just having them *built in") is so that two frame extensions can share
a common basic frame. This allows two processes to communicate via shared variable bindings.

The chain of frame extensions which can be reached via the successive ALINKs from a given frame is
called the “access chain” of the frame. The first frame in the access chain is the starting frame. The chain
through successive CLINKSs is called the *“control chain”.

A frame extension completely specifies the variable bindings and control information necessary for the
evaluation of a function. Whenever a function (or in fact, any form which generally binds local variables)
is evaluated, it is associated with some frame extension.

In the beginning there is precisely one frame extension in existence. This is the frame in which the
top-level call to the interpreter is being run. This frame is called the *“top-level” frame.

Since precisely one function is being executed at any instant, exactly one frame is distinguished as having
the “control bubble” in it. This frame is called the active frame. Initially, the top-level frame is the active
frame. If the computation in the active frame invokes another function, a new basic frame and frame
extension are built The frame name of this basic frame will be the name of the function being called.
The ALINK. BLINK, and CLINK of the new frame all depend on precisely how the function is invoked.
The new function is then run in this new frame by passing control to that frame, i.e., it is made the active
frame. .

'Communications of the ACM, Vol. 16, 10, October 1973.

7.2

()

)

VARIABLE BINDINGS AND THE INTERLISP STACK

Once the active computation has been completed, control normally returns to the frame pointed to by
the CLINK of the actve frame. That is, the frame in the CLINK becomes the active frame.

In most cases, the storage asscciated with the basic frame and frame extension just abandoned can be
reclaimed. However, it is possible to obtain a pointer to a frame extension and to “hold on” to this
frame even ailer it has been exned. This pointer can be used later to run another computation in that
environment, or even “continue” the exited computation.

A separate dama type, called a stack pointer, is used for this purpose. A stack pointer is just a cell that
literally points to a frame extension. Stack pointers print as #ADR/FRAMENAME, e.g., #1,13636/COND.
Stack pointers are returned by many of the stack manipulating functions described below. Except for
certain abbreviatdons (such as “the frame with such-and-such a name”), stack pointers are the only way
the user can reference a frame extension. As long as the user has a stack pointer which references a frame
- extension, that frame extension (and all those that can be reached from it) will not be garbage collectad.

Note that two stack pointers referencing the same frame extension are not necessanly EQ, ie. (EQ
(STKPOS 'FOO) (STKPOS 'FO0O))=NIL. However, EQP can be usad to test if two different stack
pointers reference the same frame extension (page 2.3).

It is possible to evaluate a form with respect to an access chain other than the current one by using a stack
pointer to refer to the head of the access chain desired. Note, however, that this can be very expensive
when using a shallow binding scheme such as that in Interlisp-10. When evaluating the form, since all
references to variables under the shallow binding scheme go through the variable’s value cell, the values
in the value cells must be adjusted to reflect the values appropriate to the desired access chain. This
is done by changing all the bindings on the current access chain (all the name-value pairs) so that they
contain the value current at the time of the call. Then along the new access path, all bindings are made
to contain the previous value of the variable, and the current value is placed in the value cell. For that
part of the access path which is shared by the old and new chain, no work has to be done. The context
switching dme, i.e. the overhead in switching from the current, active, access chain to another one, is
directly proportional to the size of the two branches that are not shared between the access contexts. This
cost should be remembered in using generators and coroutihes (page 7.13).

7.2 STACK FUNCTIONS

In the descripdons of the stack functions below, when we refer 10 an argument as a stack descriptor, we
mean that it is either a stack pointer or one of the following abbreviations:

e NIL means the active frame; that is, the frame of the stack function itself.

e T means the top-level frame.

o Any other literal atom is equivalent to (STKPOS ATom =-1).

e A number is equivalent to0 '(STKNTH NUMBER).

In the stack functons descriced below, the following errors can occur: The error ILLEGAL STACK
ARG occurs when a stack descriptor is expected and the supplied argument is either not a legal stack
descriptor (i.e.. mot a stack pointer, litatom, or number), or is a litatom or number for which there
is no corresponding stack frame, e.g.. (STKNTH -1 'FQQ) where there is no frame named FQO

7.3

5

e h
C- V

2

a

Stack Functions

in the actve control chain or (STKNTH =10 'EVALQT). The error STACK POINTER HAS BEEN
RELEASED occurs whenever a released stack pointer is supplied as a stack descriptor argument for any
purpose other than as a stack pointer to re-use,

Note: The creation of a sirfgle stack pointer can resuit in the retention of a large amount of stack space.
Therefore, one should try to release stack pointers when.they are no longer needed. See page 7.10.

(STKPOS NAME N POS OLDPOS) : [Function]
Returns a stack pointer to the nNth frame with frame name NAME. The search
begins with (and includes) the frame specified by the stack descriptor pos. The
search proceeds along the control chain from pPos if N is negative, or along the
access chain if N is positive. If N is NIL, -1 is used. Returns a stack pointer to
the frame if such a frame exists, otherwise returns NIL. If oLDPOs is supplied and
is a stack pointer, it is reused. If oLpros is supplied and is a stack pointer and

- STKPQOS returns NIL, oLDPOS is released. If orppPoOs is not a stack pointer it is
ignored.

Note: (STKPOS 'STKPQOS) causes an error, ILLEGAL STACK ARG; it is not
permissible to create a stack pointer to the active frame.

(STKNTH N POS OLDFOS) . [Function]
.Rewurns a stack pointer to the Nth frame back from the frame specified by the
stack descriptor pos. If N is negative, the conrtrol chain from pPos is followed. If
N is positive the access chain is followed. If N equals 0, STKNTH returns a stack
pointer to Pos (this provides a way to copy a stack pointer). Returns NIL if there
are fewer than N frames in the appropriate chain. If oLppos is supplied and is a
stack pointer, it is reused. If oLDPOS is not a stack pointer it is ignored.

Note: (STKNTH 0) causes an error, ILLEGAL STACK ARG; it is not possible to
create a stack pointer to the active frame.

[Function]

(STKNAME PoOS) :
Returns the frame name of the frame specified by the stack descriptor rPoOs.

(SETSTKNAME. POS NAME) {Function]
Changes the frame name of the frame specified by POs to be NAME. Returns NAME.

(STKNTHNAME N POS) [Function]
Rerturns the frame name of the Nth frame back from pPos. Equivalent to (STKNAME
(STKNTH N Pos)) but avoids creation of a stack pointer.

In summary, STKPOS converts function names to stack pointers, STKNTH converts numbers to stack
pointers, STKNAME converts stack pointers to function names, and STKNTHNAME converts numbers to
function names.

(DUMMYFRAMEP POS) ' [Function]
Remurns T if the user never wrote a call o the function at pos, e.g. in Interlisp-10.
DUMMYFRAMEP is T for »PROG=LAM, *ENV*, and FOOBLOCK frames (see block
compiler, page 12.13).

REALFRAMEP and REALSTKNTH can be used to write functions which manipulate the stack and work on
either interpreted or compiied code:

7.4

O

VARIABLE BINDINGS AND THE INTERLISP STACK

(REALFRAMEP POS INTERPFLG) [Function]
Returns Pos if Pos is a “real” frame, i.e. if POs is not a dummy frame and Pos
is a frame that does not disappear when compiled (such as COND); otherwise NIL.
If NTERPFLG=T, returns POS if POs is not a dummy frame. For example, if
(STKNAME Pos)=COND, (REALFRAMEP pos) is NIL, but (REALFRAMEP pOs
T) is Pos.

(REALSTKNTH N POS INTERPFLG OLDPOS) [Function]
Returns a stack pointer o the nth (or -nth) frames for which (REALFRAMEP ros

INTERPFLG) is POS.

The following functions are used for accessing and changing bindings. Some of functions take an
argument, N, which specifies a particular binding in the basic frame. If N is a literal atom, it is assumed
to be the name of a variable bound in the basic frame. If N is a number, it is assumed to reference the
Nth binding in the basic frame. The first binding is 1. If the basic frame contains no binding with the
given name or if the number is too large or too small, the error ILLEGAL ARG occurs.

(STKSCAN VAR IPOS OFPOS) [Funcdon]
Searches beginning at Pos for a frame in which a variable named vAR is bound.
The search follows the access chain. Returns a stack pointer to the frame if found,
otherwise returns NIL. If oPos is a stack pointer it is reused, otherwise it is ignored.

(FRAMESCAN ATOM POS) : [Function]
Returns the reiative positon of the binding of ATom in the basic frame of ros.

Returns NIL if AToM is not found.

{STKARG N POs —) [Function]
Returns the value of the binding specified by ~ in the basic frame of the frame
specified by the stack descriptor POs. N can be a literal atom or number.

(STKARGNAME N POS) [Function]
Returns the name of the binding specified by ~, in the basic frame of the frame
specified by the stack descriptor POS. N can be a literal atom or number

Q (SETSTKARG N POS VALUE) [Funczion]
Sets the value of the b.nd.ma specified by N in the basic frame of the frame specified
by the stack descriptor POS. N can be a literal atom or a number. Returns value.

(SETSTKARGNAME N POS NAME) [Function]
Sets the NaMmz of the binding specified by ~ in the basic frame of the frame
specified by the stack descriptor POS. N can be a literal atom or a number, Rerurns
NAME. A

(STKNARGS POs —) {Funcrion)
Returns the number of arguments bound in the basic frame of the frame specified
by the stack descriptor Pos.

(VARIABLES POS) ‘ [Function]
Returns a list of the variables bound at pos. .

As an example of the use of STKNARGS and STKARGNAME, VARIABLES could be
defined by:

Stack Functions

(VARIABLES
[LAMBDA (POS)
(for N from 1 to (STKNARGS PQS)
collect (STKARGNAME N POS])

(S.TKARGS POSs —) ‘ [Function]
Returns a list of the values of variables bound at pos.

The following functions are used to evaluate an expression in a different environment, and/or to alter the
flow of conwmol.

(ENVEVAL FORM APOS CPOS AFLG CFLG) [Function]
Evaluates FORM in the environment specified by APOS and cpos. That is, a new
active frame is created with the frame specified by the stack descriptor APOS as its

.- ALINK, and the frame specified by the stack descriptor ¢Pos as its CLINK. Then
FORM is evaluated. If AFLG is not NIL, and APOS is a stack pointer, then APOS
will be released. Similarly, if cFLG is not NIL, and ¢PoOs is a stack pointer, then
cpos will be released.

(ENVAPPLY FN ARGS APOS CPOS AFLG CFLG) [Function]
APPLYs FN to ARGS in the environment specified by APOS and cPos. AFLG and
CFLG have the same interpretaton as with ENVEVAL.

(STKEVAL POsS FORM FLG —) . . [Function]
Evalugtes ForM in the access environment of the frame specified by the stack
descriptor Pos. If FLG is not NIL and POs is a stack pointer, releases pPos. The
definition of STKEVAL is (ENVEVAL ForM POS NIL FLG).

(STKAPPLY POS FN ARGS FLG —) [Functioz]
Similar to STKEVAL but applies FN to ARGS.

(RETEVAL POS FORM FLG —) [Function]
Evaluates ForMm in the access environment of the frame specified by the stack
descriptor POS, and then returns from Pos with that value. If FLG is not NIL
and POs is a stack pointer, then Pos is released. The definition of RETEVAL is
equivalent to (ENVEVAL FOrRM POS (STKNTH -1 pPos) FLe T), except that
RETEVAL does not create a stack pointer.

(RETAPPLY POS FN ARGS FLG -) [Function]
Similar to RETEVAL except applies FN 10 ARGS.

(RETFROM POS VAL FLG) [Function]
Return from the frame specified by the stack descriptor pos, with the value vAL.
If FLG is not NIL, and PoOs is a stack pointer, then POS is released. An attempt to
RETFROM the top level (e.g., (RETFROM T)) causes an error, ILLEGAL STACK
ARG. RETFROM can be written in terms of ENVEVAL as follows:

(RETFROM
(LAMBDA (POS VAL FLG)
(ENVEVAL (LIST 'QUOTE VAL)
NIL
- (if (STKNTH -1 POS (if FLG then POS))

7.6

)

o

®

O

VARIABLE BINDINGS AND THE INTERLISP STACK

else (ERRORX (LIST 19 POS)))
NIL

7))

(RETTO POS VAL FLG) [Functocn]

(EVALV var POS)

Like RETFROM, except returns ‘o the frame specified by pos.

.o {Funcdox]
Evaluates VAR, where VAR is assumed to be a litatom, in the access environment
specifed by the stack descriptor pos. If var is unbound, EVALV returns
NOBIND and does not generate an error. ~While EVALV could be defined as
(ENVEVAL VAR Pos) it is in fact a SUBR which is somewhat faster. EVALV
compiles open when pos=NIL.

/Y The following ﬁmctiéns and variables are used to manipulate stack pointers.

—~

U

O

(STACKP x)

(RELSTK Pos)

(RELSTKP x)

(CLEARSTK FLG)

CLEARSTKLST

NOCLEARSTKLST

{Function]
Returns x if x is a stack pointer, otherwise returns NIL. '

. {Function]
Release the stack pointer POS (see page 7.10). If Pos is not a stack pointer, does
nothing. Returns pos.

A {Function]
Returns T is X is a released stack pointer, NIL otherwise.

[Function]
If FLG is NIL, releases all active stack pointers, and returns NiL. If FLG is T,
returns a list of all the active (unreleased) stack pointers.

[Variabie]
A variable used by top-level EVALQT. Every dme EVALQT is re-entered {(e.g.
following errors, or control-D), CLEARSTKLST is checked If its value is T, all
active stack pointers are released using CLEARSTK. If its value is a list, then all
stack pointers on that list are released. If its value is NIL, nothing is released
CLEARSTKLST is initially T. '

[Variable]
A variable used by top-level EVALQT. If CLEARSTKLST is T (see above) all active
stack pointers except those on NOCLEARSTKLST are released. NOCLEARSTKLST
is inidally NIL.

Thus if one wishes to use multiple environments that survive through controi-D, either CLEARSTKLST

should be set to NIL, or else those stack pointers t0 be retained should be explicitly added to

NOCLEARSTKLST.

(COPYSTK POS1 POS2) [Function]

(Interlisp-10) Copies the stack. including basic frames, from the frame specified
by the stack descriptor Pos: to the frame specified by the stack descriptor POS2.
That is, copies the frame extensions and basic frames in the access chain from
POS2 10 POS! (inclusive). PosS: must be in the access chain of Pos2. i.e.. “above”
pos2. Rewurns the new pos2. This provides a way to save an entire environment

7.7

Stack Functions

- including variable bindings.

(MAPDL MAPDLFN MAPDLPOS)) {Function]

Starts at MAPDLPOS and applies MAPDLFN, a function of two arguments, to the
functon name at each frame, and the frame (stack pointer) itself, until the top of
the stack is reached. Returns NIL. For example,

[MAPDL (FUNCTION (LAMBDA (X POS)
(if (IGREATERP (STKNARGS POS) 2)
then (PRINT X)]

will print all functions of more than two arguments.

. (SEARCHPDL SRCHFN SRCHPOS) [Funcuon]

{. -

Similar to MAPDL, except searches the pushdown list starting at position SRCHPOS
until it finds a frame for which srRCHEFN, a function of two arguments applied to the
name of the frame and the frame itseif, is not NIL. Returns (NAME . FRAME)
if such a frame is found, otherwise NIL.

(BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) [Function]

Performs a backtrace beginning at the frame specified by the stack descriptor [Fos,
and ending with the frame specified by the stack descriptor EPOS. FLAGS is a
number in which the options of the BACKTRACE are encoded. If a bit is set, the
corresponding information is included in the backtrace.

bit 0 - print arguments of non-SUBRs. i
bit 1 - print temporaries of the interpreter.

bit 2 - print SUBR arguments and local variables.

bit 3 - omit printing of UNTRACE : and ﬁmction names.

bit 4 - follow access chain instead of control chain.

bit 5 - print temporaries. i.e. the blips.

For example: if FLAGS=47Q, everything is printed; if FLAGsS=21Q, follows the
access chain, prints arguments.

FILE is the file that the backtrace is printed to. FILE must be open. PRINTFN is
used when printing the values of variables, temporanes, biips, etc. PRINT.F'N—NIL
defaults to PRINT.

(BAKTRACE IPOS EPOS SKIPFNS FLAGS FILE) [Functon]

Prints a backtrace from [POs 10 EPOS onto FILE. FLAGS specifies the optons of
the backtrace, e.g., do/don't print arguments, do/don’t print temporaries of the
interpreter, etc., and is the same as for BACKTRACE.?

2BAKTRACE calls BACKTRACE with a PRINTFN of SHOWPRINT (page 6.17), so that if SYSPRETTYFLG=T,

, the values will be prettyprinted.

7

7.8

®

VARIABLE BINDINGS AND THE INTERLISP STACK

SKIPFNS is a list of functons. As BAKTRACE scans down the stack, the stack name
of each frame is passed to each functon in SxIPFNS, and if any of them return
non-NIL, Pos is skipped (including all variables).

BAKTRACE collapses the sequence of several function calils corresponding to a call
to a system package into a single “function” using BAKTRACELST as described
below. For exampie, any call to the editor is printed as ®*EDITOR**, a break is
printed as ®*BREAK*®, etc.

BAKTRACE is used by the BT, BTV, BTV+, BTV®, and 8TV! commands, with
FLAGS=0, 1, 5, 7, and 47Q respectvely.

BAKTRACELST [Variable]
Used for telling BAKTRACE (therefore, the BT, BTV, etc. commands) to abbraviate

various sequences of functon calls on the stack by a single key, e.g. **BREAK*=,
*=EDITOR®®, etc.

”The operation of BAKTRACE and format of BAKTRACELST is described so that the user can add his

own entries to BAKTRACELST. Each entry on BAKTRACELST is a list of the form (FRAMENAME KEY

. PATTERN) Or (FRAMENAME (KEY,; . PATTERN;) --- (KEYyny . PATTERNy)), where a pattern
is 2 list of elements that are either atoms, which match a single frame, or lists, which are interpreted
as a list of alternative patterns, e.g. (PROGN °=*BREAK*® EVAL ((ERRORSET BREAK1A BREAK1)
(BREAK1)))

.

BAKTRACE operates by scanning up the stack and, at each point, comparing the current frame name, with
the frame names on BAKTRACELST, i.e. it does an ASSOC. If the frame name does appear, BAKTRACE
attempts to martch the stack as of that point with (ome of) the parterns. If the martch is successful,
BAKTRACE prints the corresponding key, and contdnues with where the match left off. If the frame name
does not appear, or the match fails, BAKTRACE simply prints the frame name and continues with the next
higher frame (unless the sxPFNs applied to the frame name are non-NIL as described above).

Marching is performed by comparing atoms in the pattern with the current frame name, and martching
lists as patternms, i.e. sequences of functon calls, aiways working up the stack. For example, either of
the sequence of function calls *.-. BREAK1 BREAK1A ERRORSET EVAL PROGN --." or *“.-- BREAK1
EVAL PROGH -..” would march with the sample entry given above, causing **8REAK®® to be printed.

Special features:
e The litatom & can be used to match any frame.

e The pattern “~" can be used to match nothing. - is useful for specifying an optional match, e.g. the
example above could also have been written as (PROGN *=®BREAK®**® EVAL ((ERRORSET BREAK1A)
-) BREAK1). :

o It is not necessary to provide in the pattern for matching dummy frames. i.e. frames for which
DUI‘MYFRAMEP (see page 7.4) is true, e.g. in Interlisp-10, *PROG*LAM, *ENV=*, NOLINKDEF 1, ewc. When
working on a match, the marcher automatcally skips over these frames when they do not march.

o [f a march succeeds and the x=v is NIL. nothing is printed. For example. (*PROG*LAM NIL EVALA
*ENV). This sequence will occur following an error which then causes a break if some of the function’s

™

1.9

|
i
|
]
i

Releasing and Reusing Stack Pointers

arguments are LOCALVARS,

73 RELEASING AND REUSING STACK POINTERS

The creaton of a single stack pointer can result in the retention of a large amount of stack space.
Furthermore, this space will not be freed until the next garbage collection, even if the stack pointer is no
longer being used, unless the stack pointer is explicitly released or reused. If there is sufficient amount
of stack space tied up in this fashion, a STACK OVERFLOW condition can occur, even in the simplest of
computations. For this reason, the user should consider releasing a stack pointer when the environment
referenced by the stack pointer is no longer needed. ‘

The effects of releésing a stack pointer are: o (/j

(1) The link berween the stack pointer and the'stack is broken by setting the contents of the stack pointer
to the “released mark” (currently unboxed 0). A released stack pointer prints as #ADR/ #o.

(2) If this stack pointer was the last remaining reference to a frame extension; that is, if no other stack
pointer references the frame extension and the extension is not contained in the active control or access
chain, then the extension may be reclaimed, and is reclaimed immediately. The process repeats for the
access and control chains of the reclaimed extension so that all stack space that was reachable only from
the released stack pointer is reclaimed.

A stack pointer may be released using the function RELSTK, but there are some cases for which RELSTK
is not sufficient. For example, if a function contains a call to RETFROM in which a stack pointer was used
to specify where to return to, it would not be possible to simultaneously release the stack pointer. (A
RELSTK appearing in the function following the call to RETFROM would not be executed!) To permit
release of a stack pointer in this situaton, the stack functions that relinquish control have optional fiag
arguments to denote whether or not a stack pointer is to be released (AFLG and crLG). Note that in this
case releasing the stack pointer will not cause the stack space to be reciaimed immediately because the
frame referenced by the stack pointer will have become part of the acdve environment

Another way of avoiding creating new stack pointers is to reuse stack pointers that are no longer needed. (f)
The stack functons that create stack pointers (STKPOS, STKNTH, and STKSCAN) have an opticnal
argument which is a stack pointer to reuse. When a stack pointer is reused, two things happen. First the
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the
stack pointer. The old stack pointer (with its new contents) is the value of the function. Note that the
reused stack pointer will be released even if the function does not find the specified frame.

Note that even if stack pointers are explicitly being released. creation of many stack pointers can cause
a garbage collection of stack pointer space. Thus, if the user’s application requires creating many stack
pointers, he definitely should take advantage of reusing stack pointers.

7.4 THE PUSH-DOWN LIST AND THE INTERPRETER

In addition to the names and values of arguments for functions, information regarding partialiy-evaluated
expressions is kept on the push-down list. For example, consider the following definition of the function

e
7.10 \ 3

Q VARIABLE BINDINGS AND THE INTERLISP STACK C

FACT (intentionally faulty):

(FACT
[LAMBDA (N)
(COND
((ZERQP H)
L)
(T (ITIMES N (FACT (SUB1 M)

In evaluatdng the form (FACT 1), as soon as FACT is entered, the interpreter begins evaluating the
implicit PROGN following the LAMBDA. The first function entered in this process is COND. COND begins
to process its list-of clauses. After calling ZEROP and getting a NIL value, COND proceeds to the next |
clause and evaluates T. Since T is true, the evaluation of the implicit PROGN that is the consequent of the
T clause is begun. This requires calling the funcdon ITIMES. However before ITIMES can be called,
- -~ its arguments must be evaluated. The first argument is evaluated by retrieving the current binding of H
Q Jom its value cell; the second involves a recursive call to FACT, and another implicit PROGH, etc. SRl

Note that at each stage of this process, some porton of an expression has been evaluated, and another
is awaitdng evaluation. The output below (from Interlisp-10) illustrates this by showing the state of the
push-down list at the point in the computadon of (FACT 1) when the unbound atom L is reached

«FACT(1)
u.b.a. L {in FACT} in ((ZEROP N) L)
(L broken) . ;
:BTV! i
*TAIL® (L)
*ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND)
*FORM® (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
sTAIL* ((COND ((ZEROP N) L) (T (ITIMES W (FACT (SUB1 H))))))
Y wno S
K-/FAcr | - .

FORM (FACT (SUB1 N))

*FN= ITIMES

TAIL ((FACT (SUB1 N)))

=ARGVAL® 1

*FORM® (ITIMES N (FACT (SUB1 N))) : -
*TAIL® ((ITIMES N (FACT (SUB1 N))))

*ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND .

*FORM¥ (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))
*TAIL® ((COND ((ZEROP M) L) (T (ITIMES N (FACT (SUB1 H)

<:> ' | 7.11 C g

)))
)))))

o
aere,

The Push-Down List and the Interpreter

N1
FACT

..Top.-

Internal calls to EVAL, e.g., from COND and the interpreter, are marked on the push-down list by a special
mark or blip which the backtrace prints as *FORM®, The genealogy of *FORM®*’s is thus a history of the
computation. Other temporary information stored on the stack by the interpreter includes the tail of a
partially evaluated implicit PROGN (e.g.. a cond clause or lambda expression) and the tail of a pardally
evaluated form (i.e., those arguments not yet evaluated), both indicated on the backtrace by *TAIL®,
the values of arguments that have already been evaluated, indicated by *ARGVAL®, and the names of
functions waiting to be called, indicated by *FN®. ®*ARG1, -.-, ®*ARGn are used by the backtrace to

" inslicate the (unnamed) arguments to SUBRs.

Note that a function is not actually entered and does not appear on the stack, until its arguments h’axﬂ
been evaluated (except for nlambda functions, of course). Also note that the ®ARG1, *FORM®, ®*TAIL®=,
etc. “bindings” comprise the actual working storage. In other words. in the above example, if a (lower)
functon changed the value of the *ARG1 binding, the COND would continue interpreting the new binding
as a list of COND clauses. Similarly, if the *ARGVAL® binding were changed, the new value would be
given to ITIMES as its first argument after its second argument had been evaluated, and ITIMES was
actually called.

Note that *FORM=®, *TAIL®, ®ARGVAL®, etc.. do not actually appear as variables on the stack, Le.,
evaluating *FORM® or calling STKSCAN to search for it will not work. However, the functons BLIPVAL,
SETBLIPVAL, and BLIPSCAN described below are available for accessing these internal blips. These
functions currently know about four different types of blips: '

FN the name of a function about to be called

ARGVAL® an argument for a function about to be called

=FORM® a form in the process of evaluation

*TAIL® the tail of a COND clause, implicit PROGN, PROG, etc. \/w
(BLIPVAL BLIPTYP IPOS FLG) [Functior;]_ J

Rerurns the value of the specified blip of type sLPTYP. If FLG is a number N,
finds the Nth blip of the desired type, searching the control chain beginning at the
frame specified by the stack descriptor Pos. If rLe is NIL, 1 is used. If FLG is T,
returns the number of blips of the specified type at POs.

(SETBLIPVAL BLIPTYP IPOS N VAL) [Function]
Sets the value of the specified blip of type BLPTYP. Searches for the ~th blip of
the desired type, beginning with the frame specified by the stack descriptor Fos,
and following the control chain.

(BLIPSCAN BLIPTYP POS) [Function]
Returns a stack pointer to the frame in which a blip of type BLIPTYP is located.
Search begins at the frame specified by the stack descriptor ros and follows the
control chain.

)

7.12

TN

)

- greates a generator, which can be called by

VARIABLE BINDINGS AND TEE INTERLISP STACK

13 GENERATORS AND COROUTINES

!

This section describes an applicaton of the spaghetd stack facility to provide mechanisms for creating
and using simpie generators, generalized coroutines, and Conniver style possibility lists.

.7.5.1 Generators

A generator is like a subroutine except that it retains information about previous times it has been called.
Some of this state may be data (for example, the seed in a random number generator), and some may be
in program state (as in a recursive generator which finds all the atoms in a list structurs). For example,
if LISTGEN is defined as:

 (LISTGEN (L)

(IF L THEN (PRODUCE (CAR L))
(LISTGEN (CDR L))))

we can use the functon GENERATOR {(described below) to create a generator that uses LISTGEH to
produce the elements of a list one at a time, e.g.,

(SETQ GR (GENERATOR (LISTGEN '(A B C)))

(GEMERATE GR)

to produce as values on successive calls, A, B, C. When GENERATE (not GENERATOR) is called the first
tme, it simply starts evaluating (LISTGEN '(A B C)). PRODUCE gets called from LISTGEN, and
pops back up to GENERATE with the indicared value after saving the state. When GENERATE gets called
again, it continues from where the last PRODUCE left off. This process continues untl finally LISTGEN
completes and returns a value (it doesn't matter what it is), GENERATE then returns GR itself as its value,
so that the program that called GENERATE can tell that it is finished, i.e., there are no more values to be
generated.

(GENERATOR FORM## COMVAR#Z) [NLambda Functon]
An nlambda function that creates a generator which uses FORM#%#% (0 compute
values. GENERATOR returns a generator handle which is represented by a dotted
pair of stack pointers.

COMVAR#% is opdonal. If its value (EVAL of) is a generator handle, the list
structure and stack pointers will be reused. Otherwise, a new generator handle will
be constructed.

GENERATOR compiles open.

(PRODUCE vAL) : [Function]
Used from within (below) a generator to return VAL as the value of the
corresponding call to GENERATE.

(GENERATE HANDLE vVAL) [Function]
Restarts the generator represented by HANDLE. vAL is returned as the value of

7.13

a

e o0 - - -
. o RN

Coroutines

the PRODUCE which last suspended the operation of the generator. When the
generator runs out of values, GENERATE returns HANDLE itself.

Examples:

The following function wiil go down recursively through a list structure and produce the atoms in the list
structure one at a time.

[LEAVESG (L)
(if (ATOM L)
then (PRODUCE L)
alse (LEAVESG (CAR L))
(if (CDR L)
then (LEAVESG (CDR L)] ' (’}

The following function prints each of these atoms as it appears. It illustrates how a loop can be set up to
use a generator. '

(PLEAVESG1 (L)
(PROG (X LHANDLE)
(SETQ LHANDLE (GENERATOR (LEAVESG L)))
LP (SETQ X (GENERATE LHANDLE))
(if (EQ X LHANDLE)
then (RETURN NIL))
(PRINT X)
(Go LP)))

Note that the loop terminates when the value of the generator is EQ to the dotted pair which is the value

produced by the call to GENERATOR. A CLISP iterative operator, OUTOF, is provided which makes it

much easier to write the loop in PLEAVESG1. OUTOF (or outof) can precede a form which is to be

used as a generator. On each iteration, the iteration variable will be set to successive values returned

by the generator; the loop will be terminated automatically when the generator runs out. Therefore, the

following is equivalent to the above program PLEAVESG1:)
{

(PLEAVESG2 (L) .
(for X outof (LEAVESG L) do (PRINT x))

Here is another example; the following form will print the first N atoms.

(for X outof (MAPATOMS (FUNCTION PRODUCE))
as I from 1 to N do (PRINT X))

7.5.2 Coroutines

This package provides facilities for the creation and use of fully general coroutine structures. It uses
a stack pointer to preserve the state of a coroutine, and allows arbitrary switching between N different
coroutines, rather than just a call to a generator and return. This package is slightly more efficient than
the generator package described above, and allows more flexibility on specification of what to do when a
coroutine terminates. :

7.14

VARIABLE BINDINGS AND THE INTERLISP STACK (

(COROUTINE CALLPTR## COROUTPTR## COROUTFORM## ENDFORM##)
{NLambda Function]

This nlambda function is used to create a coroutine and initialize the linkage. |
CALLPTR## and COROUTPTR## are the names of two variables, which will be ;
set to appropriate stack pointers. If the values of CALLPTR## Orf COROUTPTR# %
are already stack pointers, the stack pointers will be reused. COROUTFORM## is
the form which is evaluated to start the coroutine; ENDCFORM#+# is a form to be
evaluated if COROUTFORM#+# actually returns when it runs out of values.

COROUTINE compiles open.

(RESUME FROMPTR TOPTR VAL) [Function]
Used to transfer control from one coroutine to another. FROMPTR should bte the
o~ stack pointer for the current coroutine, which will be smashed to preserve the
‘) current state. TOPTR should be the stack pointer which has preserved the state of .
b the coroutine to be transferred to, and VAL is the value that is to be retumned to L
the latter coroutine as the value of the RESUME which suspended the operation of
that coroutine.
For example, the following is the way one might write the LEAVES program using the coroutine package:
{LEAVESC (L CORQUTPTR CALLPTR)
(if (ATOM L)
then (RESUME COROUTPTR CALLPTR L)
8lse (LEAVESC (CAR L) CORQUTPTR CALLPTR)
(if (CDR L) then (LEAVESC (CDR L) COROUTPTR CALLPTR))))
A funcdon PLEAVESC which uses LEAVESC can be defined as follows:
(PLEAVESC (L)
(bind PLHANDLE LHANDLE
first (CORQUTINE PLHANDLE LHANDLE -
_ (LEAVESC L LHANDLE PLHANDLE)
- (RETFROM 'PLEAVESC)) :
(‘// do (PRINT (RESUME PLHANDLE LHANDLE)))) (g.

By RESUMEing LEAVESC repeatedly, this function will print all the leaves of list L and then return out
of PLEAVESC via the RETFROM. The RETFROM is necessary to break out of the non-terminating do-loop.
This was done to illustrate the additional flexibility allowed through the use of ENDFORM##.

We use two coroutines working on two trees in the example EQLEAVES, defined below. EQLEAVES tests
to see whether two trees have the same leaf set in the same order, e.g., (EQLEAVES ‘(A B C) '(A B
(C))) is true.

(EQLEAVES (L1 L2)
(bind LHANDLE1 LHANDLE2 PE EL1 ELZ
first (COROUTINE PE LHANDLE1 (LEAVESC L1 LHANDLE1 PE) ‘'NO-MORE)
(COROUTINE PE LHANDLE2 (LEAVESC L2 LHANDLE2 PE) 'NO-MORE)
do (SETQ EL1 (RESUME PE LHANDLE1))
(SETQ EL2 (RESUME PE LHANDLE2))
(if (NEQ EL1 EL2)
then (RETURN NIL))

<:> | T

7.15

—

Passibilities Lists

repeatuntil (EQ EL1 'NO-MORE)
finally (RETURN T)))

7.5.3 - Possibilities Lists

A possibilities list is the interface between a generator and a consumer. The possibilities list is initialized
by a call to POSSIBILITIES, and elements are obtained from it by using TRYNEXT. By using the
spaghetti stack to maintain separate environments, this package allows a regime in which a generator can
put a few items in a possibilities list, suspend itself until they have been consumed, and be subsequently
aroused and generate some more.

(POSSIBILITIES FORM#%#) [NLambda Function]

’ This nlambda function is used for the initial creation of a possibilities list. FORM=E#
will be evaluated to create the list. It should use the functions NOTE and AU-
REVOIR described below to generate possibilities. Normally, one would set some
variable to the possibilities list which is rerurned, so it can be used later, e.g.:

(SETQ PLIST (POSSIBILITIES (GENERFN V1 V2))).
POSSIBILITIES compiles open.

(NOTE vAL LSTFLG) [Function]
Used within a generator to put items on the possibilities list being generated. If
LSTFLG is equal t0,NIL, VAL is treated as a single item. If LsSTFLG is non-NIL,
then the list vaL is NCONCed on the end of the possibilides list. Note that it
is perfectly reasonable to create a possibilitdes list using a second generator, and
NOTE that list as possibilities for the current generator with LSTFLG equal to T.
The lower generator will be resumed at the appropriate poiat

(AU-REVOIR vAL#4#) [NoSpread Function]
Puts var## on the possibilities list if it is given, and then suspends the generator
and returns to the consumer in such a fashion that control will return to the
generator at the AU-REVOIR if the consumer exhausts the possibilities lisc.

Note: NIL is not put on the possibilities list unless it is explicitly given as an
argument to AU-REVOIR, ie., (AU-REVOIR) and (AU-REVOIR NIL) are not
the same. AU-REVOIR and ADIEU are lambda nospreads to enable them t0
distinguish these two cases,

(ADIEU vaL#=# : [NoSpread Function]
Like AU-REVOIR except releases the generator instead of suspending it

(TRYNEXT PLST#+# ENDFORM## VAL##) [NLambda Function]
This nlambda function allows a consumer to use a possibilites list It removes
the first item from the possibilities list named by PLST## (i.e. PLST## must
be an atom whose value is a possibiities list), and returns that item, provided it
is not a generator handle. If a generator handle is encountered, the generator is
reawakened. When it returns a possibilities list, this list is added to the front of the
current list. When a call to TRYNEXT causes a generator to be awakened, VAL##
is returned as the value of the AU-REVOIR which put that generator to sleep. If
PLST#£ is empty, it evaluates ENDFORM## in the caller's environment

7.16

VARIABLE BINDINGS AND THE INTERLISP STACK

TRYNEXT compiles open.

(CLEANPOSLST PLST) . ' [Function]
This function is provided to release any stack pointers which may be left in the
PLST which was not used to exhaustion.

For example, FIB is a gererator for fibonnaci numbers. It starts out by NOTEing its two arguments, then
suspends itseif. Thereafter, on being re-awakened, it will NOTE two more terms in the series and suspends
again. PRINTFIB uses FIB to print the first'N fibonacci numbers.

[FIB (F1 F2)
(do (MOTE F1)

(NOTE F2)
(SETQ F1 (IPLUS F1 F2))
<:> (SETQ F2 (IPLUS F1 F2))

(AU-REVOIR)]

Note that this AU-REVOIR just suspends the generator and adds nothing to the possibilites list except
the generatcr.) . ‘

[PRINTFIB (N)
(PROG ((FL (POSSIBILITIES (FIB 0 1))))
(RPTQ N (PRINT (TRYNEXT FL)))
(CLEANPOSLST FL)]

Note that FIB itself will never terminate.

S

7.17

Possibilitias Lists

7.18

@

O

S

CHAPTER 8

THE PROGRAMMER'S ASSISTANT

8.1 INTRODUCTION

With any interactive computer language, the user interacts with the system through an *“executive”, which
interprets-and executes typed-in commands. In most implementations of Lisp, the executive is a simple
“read-eval-print” loop, which repeatedly reads a Lisp expression, evaluates it, and prints out the value of
the expression. Interlisp has an executive which allows a much greater range of inputs, other than just
regular Interlisp expressions. .

In pa.ruc.zla: the Interlisp execurive xmplemenm a facility known as the “programmer’s assistant” (or

a."). The central idea of the programmer’s assistant is that the user is addressing an active intermediary,
namely his assistant. ‘Normally, the assistant is invisible to the user, and simply carries out the user’s
requests. However, the assistant remembers what the user has done, so the user can give commands to

. Tepeat a particular operaton or sequence of operations, with possible modifications, or to undo the effect

of specified operations. Like DWIM, the programmer's assistant embodies an approach to system design
whose uitimaie goal is to construct an environment that “cocperates” with the user in the development of
his programs, and frees him 10 concentrate more fully on the conceptual difficulties and creadve aspects
of the problem at hand

We will first discuss the various input formats, then the use of commands to the programmers assistant,
and finally how to modify the programmer s assistant for specialized uses.

8.1.1 Input Formats

The Interlisp executive accepts inputs in the following formats:

(1) A single litatom, followed by a carriage-return. The value of the litatom is returned. For the purpaoses
of this discussion, we will call this EVALV-format

(2) A reguiar Interlisp expression, beginning with a left parenthesis or square bracket and terminated by
a matching right parenthesis or square bracket. A right bracket matches any number of left parentheses,
back to the last left bracket or the entire expression. Such an input is known as an “EVAL-format” input,
since the form is simply passed to EVAL for evaluation. Notice that it is not necessary to type a carriage
return at the end of such a form: Interlisp will supply one automatically. If a carriage-return is typed
before the final marching right parenthesis or bracket, it is treated as a space, and input continues. The
following examples are all interpreted the same:

~(PLUS 1 (TIMES 2 3))

~(PLUS 1 (TIMES 2 3]

8.1

Examples

«(PLUS 1 (TIMES®
2 3]

(3) Often, the user, typing at the keyboard, calls furctions with constant argument values, which would
have to be quoted if the user typed it in “EVAL-format”. For convience, if the user types a litatom

immediately followed by a list form, the litatom is APPLYed to the elements within the list, unevaluated. .

For example, typing LOAD(F0Q) is equivalent to typing (LOAD 'FOQO), and GETPROP(X COLOR) is
equivalent to (GETPROP 'X 'COLOR). The input is terminated by the matching right parenthesis or
bracket. We will call such input “APPLY-format.” APPLY-format input is useful in some situations, but
note that it may produce unexpected results when an nlambda function is called that explicitly evaluates
its arguments. For example, typing SETQ(FO0 BAR) will set FOO to the value of BAR, not 1o BAR itseif.

_However, there are times when a user does not want to terminate the input when a closing parenthesis
'~ typed — especially when giving a command t©0 the programmer’s assistant. This leads us to our fourth
rormat. :

(4) A sequence of litatoms acd lists beginning with a litatom and a space (to distinguish it from APPLY-
format), terminated by a carriage reurn or an extra right parenthesis or bracket If a list is terminated
then Interlisp will type a carriage-return and "..." to indicate that further input will be accepted. The
user can type further expressions or terminate the whole expression by a carriage-rerurn.

Once the input is terminated, the programmer’s assistant decides how to ev-~'ate the expression. This
determinaton relies on a heuristic that says “If there is only expressic:. =ssume EVALV-format.
If there are two expressions, then assume APPLY-format If there are wii.. .. more expressions, then
assume EVAL-format” The following inputs are examples of this rule:

«FQ0<spaced>*r
same as FOOr — EVALYV-format

«LIST (A B)
) same as LIST(A B) — APPLY-format
~«PLUS (TIMES 2 3)

.

same as (PLUS (TIMES 2 3) 1) — EVAL-format

8.1.2 Examples

So far. we have dealt only with how the executive instructs [nterlisp to evaluate input. However, the same
scheme also allows the user to give commands directly to the programmer’s assistant. In fact, in each
of the above cases, it is first determined whether the initial litatom is a command to the programmer’s
assisiant. If so. the normal lisp evaluation process is bypassed. Note that this means that a function or
variable with the same name as a programmer’s assistant command will not be evaluated (in the normal
lisp sense) if it is the first litatom of an expression input to the executive.

The programmer’s assistant facility features the use of memory structures called “history lists.” A history
list is a list of the information associated with each of the individual “events” that have occurred in the

3.2

THE PROGRAMMER'S ASSISTANT

system, where each event corresponds to one user input. Associated with each event on the history list is
the input and its value, plus other optional information such as side-effects, formating information, etc.

The following dialogue, taken from an actual session at the terminal, contains illustrative (but not
necessarily useful) examples and gives the favor of the programmer’s assistant facility in Interlisp. The
number before each prompt is the “event number” (see page 8.26).

12«(SETQ FOO §)
5 .
13«(SETQ FOO 10)
(FOO reset)

10

The p.a. notices that the user has reset the value of FOO and informs the user.
14+UNDO

SETQ. undone.

15«F00¢°

5

This is the jirst example of direct communication with the p.a. The user has said to UNDOQO the previous
input to the executive.

25«SET(LST1 (A B C))

(A B C)

26+«(SETQ LST2 '(D E F))

(D E F) -
27«(FOR X IN LST1 DO (REMPROP X 'MYPROP]
NIL

‘The user asked to remove the property MYPROP from the atoms A, B, and C. Now lets assume that is not

what he wanted to do, but rather use the elements of LST2.

28«UNDO FOR
FOR undonea.

First he undoes the REMPROP, by undoing the iterative statement. Notice the UNDO accepted an
“argument,” although in this case UNDQ by itself would be sufficient.

29+USE LST2 FOR LST1 IN 27
NIL

The user just instructed to go back to event number 27 and substitute LST2 for LSTI and then reexecute
the expression. The user could have also specified -2 instead of 27 to specify a relative address.

~O

Examples

47«(PUTHASH 'FOO (MKSTRING 'FOO) MYHASHARRAY)
"FOO"

If MKSTRING was a computationally expensive function (which it is not), then the user might be cacheing
its value for later use.

48+«USE FIE FUM FOE FOR FOO IN MKSTRING
"FIE"
"FUM"
"FOE"

The user now decides he would like to redo the PUTHASH several times with different values. He specifies
the event by “IN MKXSTRING” rather than PUTHASH.

N\
$Qr?? USE _ (L
- L.
48, USE FIE FUM FOE FOR FOO IN MKSTRING
«~(PUTHASH (QUOTE FIE) (MKSTRING (QUOTE FIE)) HYHASHARRAY)
"FIE"
+{PUTHASH (QUOTE FUM) (MKSTRING (QUOTE FUM)) MYHASHARRAY)
"FUM"
~{PUTHASH (QUOTE FQE) (MKSTRING (QUOTE FOE)) MYHASHARRAY)
"FOE" :

Here we see the user ask the p.a. (using the 17 command) what it has on its history list for the last input
to the executive. Since the event corresponds to a programmer’s assistant command that evaluates severcl
forms, these forms are saved as the input, aithough the user’s actual input, the p.a. commard, is also saved
in order to clarify the printout of that event

As stated earlier, the most common interaction with the programmer’s assistant occurs at the top level
read-eval-print loop, or in a break, where the user types in expressions for evaluation, and sees the values
printed out In this mode, the assistant acts much like a standard Lisp executive, except that before

- aempting to evaluate an input, the assistant first stores it in a new entry on the history list. Thus if /_>

he operation is aborted or causes an error, the input is still saved and available for modification and/or

" reexecution. The assistant also notes new funcdons and variables to be added 0 its spelling lists to enable \(~

future corrections. Then the assistant executes the computation (i.e., evaluates the form or appiies the
function to its arguments), saves the value in the entry on the history list corresponding to the input, and
prints the result, followed by a prompt character to indicate it is again ready for input.

If the input typed by the user is recognized as a p.a. .command, the assistant takes special action.
Commands such as UNDQ and ?? are immediately performed. Commands that involved reexecution of
previous inputs, such as REDO and USE, are achieved by computing the corresponding input expression(s)
and then unreading them. The effect of this unreading operation is to cause the assistant’s input routine,
LISPXREAD. to act exactly as though these expressions were typed in by the user. These expressions are
processed exactly as though they had been typed. except that they are not saved on new and separate
entries on the history list, but associated with the history command that generated them.

The net effect of this implementation of the programmer’s assistant is to provide a facility which is easily
inserted at many levels, and embodies a consistent set of commands and conventions for talking about
past events. This gives the user the subjective feeling that a single agent is watching everything he does
and says, and is always available to help.

(‘f

8.4

O

THE PROGRAMMER’S ASSISTANT

8.2 PROGRAMMER’S ASSISTANT COMMANDS

The programmer’s assistant recognizes a number of commands, which usually refer to past events on the
history list. These commands are treated specially; for example, they may not be put on the history list.

Note: If the user defines a function by the same name as a p.2. command, a warning message is printed
to remind him that the p.a. command interpretation will take precedence for type-in.

All programmer’s assistant commands use the same conventions and syntax for indicating which event
or events on the history list the command refers to, even though different commands may be concerned
with different aspects of the corresponding event(s), e.g., side-effects, value, input, etc. Therefore, before
discussing the various p.2. commands, the following section describes the types of event specificztions
currently implemented.

8.2.1 Event Specification

An event address identifies one event on the history list. It consists of a sequence of “‘commands™ for
moving an imaginary cursor up or down the history list, much in the manner of the arguments to the
@ break command (see page 9.3). The event identified is the one “under” the imaginary cursor when
there are no more commands. (If any command fails, an error is generated and the history command is
aborted.) For example, the event address 42 refers to the event with event aumber 42, 42 FOQO refers to
the first eveat (searching back from event 42) whose input contains the word FOO, and 42 FOO -1 refers
to the event preceeding that event. Usually, an event address will contain only one or two commands.

Most of the event address commands perform searches for events which sarsfy some condition. Unless
the + command is given (see below), this search always goes backwards through the history list, from the
most recent event specified to the oldest. Note that each search skips the current event. For example, if
FOO refers to event N, FOO FIE will refer to some event before event N, even if there is a FIE in event
N.

The event address commands are interpreted as follows:

N (an integer) If N is the first command in an event address, refers to the event with event number
N. Otherwise, refers to the event N events forward (in direction of increasing event
number). If N is negative, it aiways refers to the event -~ events backwards.

For example, -1 refers to the previous event, 42 refers tc event number 42 (if
the first command in an event address), and 42 3 refers to the event with event
number 45. .

«LITATOM Specifies the last event with an APPLY-format input whose function matches
LITATOM.

Note: There must not be a space between « and LITATOM.

- Specifies that the next search is to go forward instead of backward. If given as the
first event address commanc, the next search begins with last (oldest) event on the
history list.

. -) “’ - " . -~
F Specifies that the next ObJEC[in the event address is to be searched for, regardless

8.5

\
SUCHTHAT PRED

PAT

Event Specification

of what it is. For example, F -2 looks for an event containing -2.

Specifies that the next object (presumably a pattern) is to be matched against the
values of events, instead of the inputs.

Specifies the event last located.

Specifies an ‘event for which the function PRED returns true. PRED should be a
function of two arguments, the input portion of the event, and the event itself. See
page 8.25 for a discussion of the format of events on the history list.

Any other event address command specifies an event whose input ¢ontains an
expression that matches PAT as described in page 17.13.

The matching is performed by the function HISTORYMATCH (page 8.33), which is

initially defined to call EDITFINDP but can be advised or redefined for specialized

applications.

Note: Symbols used below of the form EventAdd-ess; refer to event addresses, described above. Since an
event address may contain multiple words, the -event address is parsed by searching for the words which
delimit it. For example, in FROM EventAddress; THRU EventAddress,, the symbol EventAddress; cOrresponds
to all words between FROM and THRU in the event specification, and EventAddressy t0 all words from THRU
to the end of the event specification.

FROM EventAddress; THRU EventAddressy
'EveatAddress; THRU EventAddress,

Specifies the sequence of events from the event with address EventAddress, through
the event with address EventAddress,. For example, FROM 47 THRU 49 specifies
events 47, 43, and 49. EventAddress; can be more recent than EventAddress,. For
example, FROM 49 THRU 47 specifies events 49, 48, and 47 (note reversal of
order).

FROM Evenmddreul T0 EventAddressy .
EventAddreuI T0 Ev’entAddren?

FRdM EventAddress;
THRU EventAddressy
T0 EventAddressgy
ALL EventAddress,

empty

Same as THRU but does not include event EventAddressq.

Same as FROM EventAddress; THRU -1. For example, if the current event is
number 53, then FROM 49 specifies events 49, 50, 51, and 52.

Same as FROM -1 THRU EventAddress,, For example, if the current event is
number 53, then THRU 49 specifies events 52, 51, 50, and 49 (note reversal of
order). -

Same as FROM -1 TO EventAddress,.

Specifies all events satisfying EventAddress,, For example, ALL LOAD, ALL
SUCHTHAT FQO.

If nothing is specified. it is the same as specifying -1.

Note: In the special case that the last event was an UNDO, it is the same as

. specifying -2. For example. if the user types (NCONC FOO FIE), he can then

type UNDO., followed by USE NCONC1.

8.6

TN
r \
i

O

@

O

THE PROGRAMMER’S ASSISTANT

EventSpec; AND EventSpecy AND -.. AND EventSpecy
' Each of the EventSpec; is an event specification. The lists of events are concatenated.
For example, FROM 30 THRU 32 AND 35 THRU 37 isthesameas 30 AND 31
AND 32 AND 35 AND 36 AND 37.

@ LITATCM If LrraTOM is the name of a command defined via the NAME command (page 8.12),
specifies the event(s) defining LITATOM.

B@ EventSpec EventSpec iS an event specification interpreted as above, but with respect to the
archived history list (see page 8.13).

If no events can be found that satisfy the event specification, spelling correction on each word in the event
specification is performed using LISPXFINDSPLST as the speiling list. For example, REDO 3 THRUU
6 will work correctly. If the event specifcation still fails to specify any events after speiling correction,
an error is generated.

'822 Commands

All programmer’s assistant commands can be input as list forms, or as lines (see page 8.30). For example,
typing REDO 5¢” and (REDO 5) are equivalent. '

EventSpec is used to denote an event specification. Unless specified otherwise, omitting EventSpec is the
same as specifying EveatSpec==-1. For example, REDO and REDO -1 are the same.

REDO EventSpec [Prog. Asst. Command]
Redoes the event or events specified by EventSpec. For example, REDO FROM -3
redoes the last three events.

REDO EventSpee N TIMES [Prog. Asst. Command]
Redoes the event or events specified by EveatSpec N times. For example, REDO 10
TIMES redoes the last event ten times.

" REDO EventSpec WHILE FORM ' [Prog. Asst Command]

Redoes the specified events as long as the value of FORM is true. FORM is evaluated
before each iteration so if its initial value is NIL, nothing will happen.

REDO Eventspee UNTIL FORM [Prog. Asst Command]
Same as REDO EventSpec WHILE (NOT FORM).

REPEAT EventSpec [Prog. Asst. Command}
Same as REDO EventSpec WHILE T. The eveni(s) are repeated until an error occurs,
or the user types control-E or control-D.

REPEAT EventSpee WHILE FORM [Prog. Asst Command]

REPEAT EventSpec UNTIL FORM [Prog. Asst Command]
Same as REDO. ’

" For all history commands that perform multiple repetitions, the variable REDOCHT is inidalized to 0 and

incremented each iteration. If the event terminates gracefuily, i.e. is not aborted by an error or conuol-D,
the number of iterations is printed.

8.7

RETRY EventSpec

Commands

{Prog. Asst Command]
Similar to REDQ except sets HELPCLOCK (page 9.11) so that any errors that occur
while executing EventSpee Will cause breaks.

USE EXPRS FOR ARGS IN EventSpec [Prog. Asst. Command]

Substitutes EXPRS for ARGS in EventSpee, and redoes the result. Substitution is
done by ESUBST (page 17.57), and is carried out as described below. ExtPRs and
ARGS can include non-atomic members.

For example, USE LOG (MINUS X) FOR ANTILOG X IN -2 AND -1 will
substmte LOG for every occurrence of ANTILOG in the previous two events, and
substitute (MINUS X) for every occurrence of X, and reexecute them. Note that
these substitutions do not change the information saved about these events on the

history list.

Any expression to be substituted can be preceded by a !, meaning that the
expression is to be substituted as a segment, e.g., LIST(A 8 C) followed by USE
! (X Y Z) FOR 8 will produce LIST(A X Y Z C),and USE ! NIL FOR B
will produce LIST(A C). .

If IN EventSpec is omitted, the first member of ARGS is used for EveneSpec. For
example, USE PUTD FOR @UTD is equivalent to USE PUTD FOR @QUTD IN F
@UTD. The F is inserted to handle correctly the case where the first member of
ARGS could be interpreted as an event address command. -

USE EXPRS IN EventSpec ' [Prog. Asst. Command]

If ArRGs are omitted, and the event referred to was itself a USE command, the
arguments and expression substituted into are the same as for the indicated USE
command. In effect this USE command is thus a contnuation of the previous USE
command. For example, following USE X FOR Y IN 50, typing USE Z IN -1
is equivalent to USE Z FOR Y IN 50.

If ARGS are omitted and the event referred to was not a USE command, substtution
is for the “operator” in that command. For example ARGLIST(FF) followed by
USE CALLS IN -1 is equivalent to USE CALLS FOR ARGLIST IN -1.

If IN EventSpec is omitted, it is the same as specifying IN -1.

USE ExPRS; FOR ARGS; AND -.- AND EXPRS) FOR ARGS) IN EventSpec

[Prog. Asst. Command]
More general form of USE command. See description of the substitution algorithm
below.

Note: The USE command is parsed by a small finite state parser to distinguish the
expressions and arguments. For example, USE FOR FOR AND AND AND FOR
FOR will be parsed correcty.

Every USE command involves three pieces of information: the expressions to be substituted. the arguments

to be subsututed for, and an event specification. which defines the input expression in which the substtution
takes place. If the USE command has the same number of expressions as arguments, the substrtution

8.8

4/

TN
..f..\)

(i

f“

C

THE PROGRAMMER’S ASSISTANT

procedure is straightforward.! For example, USE X Y FOR U V means substitute X for U and Y for V,
and is equivalentto USE X FOR U AND Y FOR V. However, the USE command also permits distributive
substitutions, for substituting several expressions for the same argument. For example, USE A B C FOR
X means first substitute A for X then substitute B for X (in a new copy of the expression), then substitute
C for X. The effect is the same as three separate USZ commands, Similarly, USE A B C FOR D AND X
Y Z FOR W is equivalent to USE A FOR D AND X FOR W, followed by USE B FOR D AND Y FOR
W, followed by USE C FOR D AND Z FOR 'W. USE A B C FOR D AND X FOR Y also corresponds
to three substitions, the first with A for D and X for Y, the second with 8 for D, and X for Y, and the third
with C for D, and again X for Y. However, USE A B C FOR D AND X Y FOR Z is ambiguous and will
cause an error. Essentially, the USE command operates by proceeding from left to right handling each
“AND" separately. Whenever the number of expressions exceeds the number of expressions available,
multiple USE expressions are generated. Thus USE A B C D FOR E F means substitute A for E at the
same time as substimuting B for F, then in another copy of the indicated expression, substitute C for E
and D for F. Note that this is also equivalent to USE A C FOR E AND B D FOR F.

VARS [Prog. Asst. Command]
Similar to USE except substitutes for the (first) operand.

For example, EXPRP(FO0) followed by ... FIE FUM is equivalent to USE FIE
FUM FOR FOQ.

Note: In the following discussion, $ is used to represent the character <esc>, since this is how <esc) is
echoad.

$ X FOR Y IN EvenatSpec [Prog. Asst. Command]
$ is a special form of thz USE command for conveniently specifying character
substitutions in litatoms or strings. In addition, it has a number of useful properties
in connection with events that involve errors (see below).

Equivaient to USE $x5 FOR Y IN EventSpec, which will do a character
substimition of the characters in x for the characters in v.

For example, if the user types MOVD(FOO FOOSAVE T), hecan thentype $§ FIE
FOR FOO IN MOVD to perform MOVD(FIE FIESAVE T). Note that USE FIE
FOR FOO would perform MOVD(FIE FOOSAVE T).

$ Y X IN EventSpec [Prog. Asst. Command]
S v TO X IN EventSpec [Prog. Asst. Command]
$ Y = X IN EventSpec [Prog. Asst. Command)
$ Y -> X IN EventSpec [Prog. Asst. Command]

Abbreviated forms of the $§ command: the same as $ X FOR Y IN EventSpec.
which changes vs to xs.

$ does event location the same as the USE command. i.e., if IN EventSpec is not specified, $ searches for
Y. However, unlike USE, 3 can only be used to specify one substitution at a time. After $ finds the event,
it looks to see if an error was involved in that event, and if the indicated character substitution can be
performed in the object of the error message, called the offender. If so, $ assumes the substitution refers

'Except when one of the arguments and one of the expressions are the same. e.g.. USE X Y FOR Y X,
or USS X FOR Y ARD Y FOR X. This situaton is noiiced when parsing the command, ‘and handled
correctly.

8.9

Commands

to the offender, performs the indicated character substitution in the offender only, and then subsdtutes the
result for the original offender throughout the event. For example, suppose the user types (PRETTYDEF
FOOFNS 'FOO FOOOVARS) causing a U.B.A. FOOOVARS error message. The user can now type S
00 0, which will change FOOOVARS to FOOVARS, but no¢ change FOOFNS or FOO.

If an error did occur in the specified event, the user can also omit specifying the object of the substitution,
Y, in which case the offender itself is used. Thus, the user could have corrected the above example by
simply typing $§ FOOVARS. Since ESUBST is used for performing the substitution (see page 17.57), $ can
be used in X to refer to the characters in v. For example, if the user types LOAD(PRSTRUC PROP),
causing the error FILE NOT FOUND PRSTRUC, he can request the file to be loaded from LISP’s
directory by simply typing $ <LISP>S. This is equivalent to performing (R PRSTRUC <LISP>S) on
the event, and therefore replaces PRSTRUC by <LISP>PRSTRUC.

_Note that $ never searches for an error. Thus, if the user types LOAD(PRSTRUC PROP) causing a FILE
10T FOUND error, types CLOSEALL(), and then types § <LISP>S, LISPX will complain that there is

no error in CLOSEALL(). In this case, the user would have to type $§ <LISP>S IN LOAD, or § PRS
<LISP>PRS (which would cause a search for PRS).

Note also that $ operates on input, not on programs. If the user types FOO(), and within the call to FOO
gets a U.D.F. CONDD error, he cannot repair this by $§ COND. LISPX will type CONDD NOT FQUHD
IN FOO(). _

FIX EventSpec [Prog. Asst. Command]
Envokes the default program editor (Dedit or the teletype editor) on a copy of the
" input(s) for EvencSpee. Whenever the user exits via 0K, the result is unread and

reexecuted exactly as with REDO. :

FIX is provided for those cases when the modifications to the input(s) are not simple substtutions of the
type that can be specified by USE. For example, if the default editor is the teletype editor, then:

+(DEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELLINGS2 X 70]
INCORRECT DEFINING FORM

FOO

“FIX

- EDIT

*p
(DEFINEQ FOO (LAMBDA & &))
s(LI 2)

=p

(DEFINEQ (FOO &))

=0K

(F00)

-

The user can also specify the edit command(s) to LISPX. by typing - followed by the command(s) after
the event specification, e.g., FIX - (LI 2). In this case, the editor will not type EDIT, or wait for an
0K after executing the commands. '

Note: FIX calls the editor on the “input sequence™ of an event, adjusting the editor so it is initially
editing the expression typed. However. the entire input sequence is being edited. so it is possibie to give
editor commands that examine this structure further. For more informaton on the format of an event's
input. see page 8.25.

3.10

~O

O

O

THE PROGRAMMER'S ASSISTANT

?? EventSpec [Prog. Asst. Command]
Prints the specified events from the history list. If EventSpec is omitted, ?? prints
the entire history list, beginning with most recent events. Otherwise ?? prints only
those events specified in EveatSpec (in the order specified). For example, 77 -1,
??7 10 THRU 15, etc.

For each event specified, 7?7 prints the event number, the prompt, the input line(s),
and the value(s), If the event input was a p.a. command that “unread” some other
input lines, the p.a. command is printed without a preceding prompt, to show that
they are not stored as the input, and the input lines are printed with prompts.

Events are inidally stored on the history list with their value field equal to the
character “bell” (control-G). Thefore, if an operation fails to complete for any
reason, e.g., Causes an error, is aborted, etc., ?? will print a bell as its “value”.

?7 commands are not entered on the history list, and so do not affect relative
event numbers. In other words, an event specification of -1 typed following a 77
command will refer to the event immediately preceding the ?? command.

77 is implemented via the function PRINTHISTORY, page 8.35, which can also be
called directly by the user. Printing is performed via the function SHOWPRIN2 (page
6.17), so that if the value of SYSPRETTYFLG=T, events will be prettyprinted.

UNDO EventSpec [Prog. Asst Command]
- Undoes the side effects of the specified evems For each event undone, UNDO
prints a message: RPLACA UNDONE, REDO UNDONE etc. If nothing is undone
because nothing was saved, UNDO types NOTHING SAVED. If nothing was undone
because the event(s) were already undone, UNDO types ALREADY UNDOMNE.

If EventSpec is not given, UNDQ searches back for the last event that contained side

= effects, was not undone, and itself was not an UNDOC command. Note that the

. user can undo UNDO commands themselves by specifying the corresponding event
address, e.g., UNDO -7 or UNDO UNDO.

In order to restore all pointers correctly, the user should UNDO events in the reverse order from which
they were executed. For example, to undo all the side effects of the last five events, perform UNDO
THRU -5, not UNDO FROM -5. Undoing out of order may have unforseen effects if the operations
are dependent. For example, if the user performed (NCONC1 FOO FIE), followed by (NCONC1 FOO
FUM), and then undoes the (NCONC1 FOQ FIE), he will also have undone the (NCONC1 FOO FUM).
[f he then undoes the (NCONC1 FOO FUM), he will cause the FIE to reappear, by virtue of restoring
FOO 1o its state before the execution of (NCONC1 FOO FUM). For more details, see page 8.23.

UNDO EventSpec : X; --- Xy ' [Prog. Asst. Commanc]
Each X; is a pattern that is marched to a message printed by DWIM 'in the evenu(s)
specmed by EventSpee. The side effects of the corresponding DWIM corrections,
and only those side effects, are undone.

For example, if DWIM printed the message PRINTT [IN FOO] =-> PRINT,
then UNDO : PRINTT or UNDO : PRINT would undo the correction.

Some portions of the messages printed by DWIM are strings. e.g., the message
FOO UNSAVED is printed by printing FOO and then " UNSAVED". Therefore, if

8.11

Commands

the user types UNDO : UNSAVED, the DWIM correction will not be found. He
should instead type UNDO : FQO or UNDO : SUNSAVEDS (<escOUNSAVED<escD,
see R command in editor, page 17.35).

NAME LITATOM EventSpec [Prog. Asst. Command]
Saves the event(s) (including side effects) specified by EveatSpec On the property list
of LrraTom (under the property HISTORY). For example, NAME FOO 10 THRU
15. NAME commands are undoable.

Events saved on a litatom can be retrieved with the event specification @ LITATOM.
For example, 7?7 @ FOO, REDO @ FQO, etc.

Commands defined by NAME can also be typed in directly as though they were
built-in commands, e.g., FOO¢ is equivalent to REDO @ FO0O0. However, if FOO is
the name of a variable, it would be evaluated, Le., FOO<r would return the value
of FOO. :

Commands defined by NAME can also be defined to take arguments:

NAME LITATOM (ARG, --- ARGy) : EventSpec [Prog. Asst. Command]

NAME LITATOM ARG, -+ ARGy : EventSpec [Prog. Assi. Command]
The arguments ARG; are interpreted the same as the arguments for 2 USE command.
When LITATOM is invoked, the argument values are substituted for ARG - -- ARGy
using the same substitution algorithm as for USE.

NAME FOO EventSpec is equivalent to NAME FOQ : EveatSpec. In either case, if
FOO is invoked with arguments, an error is generated.

For example, following the event (PUTD 'FOQ (COPY (GETPROP 'FIE ‘'EXPR)})), the user types
NAME MOVE FOQ FIE : PUTD. Then typing MOVE TEST1 TEST2 would cause (PUTD 'TEST1
(COPY (GETPROP 'TEST2 ‘*EXPR))) to be executed, ie., would be equivalent to typing USE TEST1
TEST2 FOR FOO FIE IN MOVE. Typing MOVE A B C D would cause two PUTD’s to be executad.
Note that !’s and $'s can also be employed the same as with USE. For example, if following

+PREPINDEX(<MANUAL>14LISP.XGP)
+FIXFILE(<MANUAL>14LISP.XGPIDX)

the user performed NAME FOO $143 : -2 AND -1, then FOO 3158 would perform the indicated two
operations with 14 replaced by 15.

RETRIEVE LITATOM [Prog. Asst. Command]
Retrieves and reenters on the history list the events named by rLiTaTOM. Causes
an error if LITATOM was not named by a NAME command.

For example, if the user performs NAME FOO 10 THRU 15, and at some time later types RETRIEVE

. FOO, 6 new events will be recorded on the history list (whether or not the corresponding events have been

forgotten vet). Note that RETRIEVE does not reexecute the events, it simply retrieves them. The user
can then REDO, UNDO, FIX, ew. any or all of these events. Note that the user can combine the effects
of a RETRIEVE and a subsequent history command in a single operation. e.g.. REDO FO0O is equivalent
to RETRIEVE FQO, followed by an appropriate REDQ. Actually, REDO FOO is better than RETRIEVE
followed by REDO since in the latter case, the corresponding events would be entered on the history list
twice, once for the RETRIEVE and once for the REDO. Note that UNDO FOO and ?? FQO are permittzd.

8.12

)
N

SN
4 \._/'

(™~

TN

e
O

O

THE PROGRAMMER'S ASSISTANT

BEFORE LrTaTOM [Prog. Asst. Command]
Undoes the effects of the events named by LITATOM.

AFTER LImaTOM . {Prog. Asst. Command]
Undoes a BEFORE LITATOM.

BEFORE and AFTER provide a convenient way of flipping back and forth between two states, namely
the state before a specified event or events were executed, and that stzte after execution. For example, if
the user has a complex data structure which he wants to be able to interrogate before and after certain
modificadons, he can execute the modifications, name the corresponding events with the NAME command,
and then can turn these modifications off and on via BEFORE or AFTER commands. Both BEFORE and
AFTER are no-ops if the LITATOM was already in the corre'~'pond1nf-7 state; both generate errors if LITATOM
was not named by a NAME command.

" The alternative to BEFORE and AFTER for repeated switching back and forth involves typing UNDO, UNDO

of the UNDO, UNDO of that etc. At each stage, the user would have to locate the correct event to undo,
and furthermore would run the risk of that event bemg “forgotten” if he did not switch at least once per
time-slice.

Note: Since UNDQ, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inputs they can be referenced
by REDO, USE, etc. in the normal way. However, the user must again remember that the context in
which the command is reexecuted is different than the original context. For example, if the user types
NAME FOO DEFINEQ THRU COMPILE, then types ... FI1E, the input that will be reread will be NAME
FIE DEFINEQ THRU COMPILE as was intended. but both DEFINEQ and COMPILE, will refer to the
most recent event containing those atoms, namely the event consisting of NAME FOO DEFINEQ THRU
COMPILE.

ARCHIVE EventSpec [Prog. Asst. Command]
Records the events specified by EventSpec 0n a permanent history list. This history
list can be referenced by preceding a standard event specification with 88. For
example, ?? @@ prints the archived history list, REDO @@ -1 will recover the
corresponding event from the archived history list and redo it, ete.

The user can also provide for automatic archiving of selected events by appropriately
defining ARCHIVEFN, or by putting the property *ARCHIVE®, value T, on the
event Events that are referenced by history commands are automatically marked
for archiving in this fashion (See page 8.19).

FORGET EventSpec [Prog. Asst. Command]
Permanently erases the record of the side effects for the events specified by EventSpec.
If EventSpec is omirtted, forgets side effects for entire history list.

FORGET is provided for users with space problems. For example, if the user has just
performed SETs, RPLACAs, RPLACDs, PUTD, REMPROPs, etc. to release storage.
the old pointers would not be garbage collected until the corresponding events age
sufficiently to drop off the end of the history list and be forgotten. FORGET can
be used to force immediaie forgetting (of the side-effects only). FORGET is not
undoable (obviously).

REMEMBER EventSpec [Prog. Asst. Command]
Instructs the file package 10 “remember” the events specified by EventSpec. These
events will be marked as changed objects of file package type EXPRESSIONS, which

3.13

PL LITATOM

PB rrraTom

i+ FORM

SHH FORM

Commands

can be written out via the file package command P. For exampie, after the user
types:

~MOVD? (DELFILE /DELFILE)

DELFILE

~REMEMBER -1

(MOVD? (QUOTE DELFILE) (QUOTE /DELFILE))

-

If the user calls FILES?, MAKEFILES, or CLEANUP, the command (P (MOVD?

(QUOTE DELFILE) (QUOTE /DELFILE))) will be comstructed by the file
package and added to the filecoms indicated by the user, unless the user has
already explicitly added the corresponding expression to some P command himselif.

will not result in a (PROP CLISPTYPE FOO) command, because this will save
the current (at the time of the MAKEFILE) value for the CLISPTYPE property,
which may or may not be EXPRESSION. Thus, even if there is a PROP command
which saves the CLISPTYPE property for FOO in some FECOMS, remembering
this event will stll requirea (P (PUTPROP 'FOO 'CLISPTYPE EXPRESSION))
command to appear.

{Prog. Asst. Command]
“Print Property List™ Prints out the property list of LrTATOM in a nice formar..
with PRINTLEVEL reset to (2 . 3). For example,

«pL +
CLISPTYPE: 12
ACCESSFNS: (PLUS IPLUS FPLUS) \

PL is implemented via the function PRINTPROPS.

[Prog. Asst. Command]
“Print Bindings.” Prints the value of LrTaTOAM: with PRINTLEVEL reset to (2
3). If LrraToMm is not bound, does not attempt speiling correction or generate an
error. PB is implemented via the function PRINTBINDINGS.

PB is also a break command (page 9.5). As a break command, it ascends the stack
and, for each frame in which LITATOM is bound, prints the frame name and value
of LrraTom. If typed in to the programmer’s assistant when not at the top level.
e.g. in the editor, a lower USEREXEC, etc., PB will also ascend the stack as it does
with a break. However, as a programmer's assistant command, it is primarily used
to examine the top level value of a variable that may or may not be bound, or to
examine a variable whose value is a large list.

[Prog. Asst. Command]
Allows the user to type a line of text without having the programmer’s assistant
process it. Useful when linked to other users, or to annotate a dribble file (page
6.12).

[Prog. Asst. Command]
Allows the user to evaluate an expression without having the programmer's assistant

8.14

Note that “remembering” an event like (PUTPROP 'FOO 'CLISPTYPE mxpression))

O

EXEC

CONTIH

TYPE-AHEAD

THE PROGRAMMER’S ASSISTANT

process it or record it on a history list Useful when one wants to bypass a
programmer’s assistant command or to keep the evaluation off the history list

[Prog. Asst. Command]
(Interiisp-10) Calls SUBSYS (page 22.21) to descend to lower exec.

Rather than start up a new fork each time the user types EXEC, the EXEC cocmmand
will save the old fork handle upon return from an EXEC command, and, if the fork
handle is still active, reuse it for the next EXEC command, i.e. an EXEC followed
by another EXEC is equivalent to an EXEC followed by a CONTIK.

[Prog. Asst. Command]
(Interlisp-10) Performs (SUBSYS T) to continue the last call to SUBSYS (page
2221).

' [Prog. Asst. Command]
A comumand that allows the user to type-ahead an indefinite number of inputs.

The assistant responds to TYPE-AHEAD with a prompt character of >, The user can now type in an
indefinite number of lines of input, under ERRORSET protection. The input lines are saved and unread
when the user exits the type-ahead loop with the command $G0 (<esc>G0). While in the type-ahead loop,
?77? can be used io print the type-ahead, FIX to edit the type-ahead, and $Q (Kesc>Q) to erase the last
input (may be used repeatedly). The TYPE-AHEAD command may be aborted by $STOP (<esc>STOP);
control-E simply aborts the current line of input.

For example:

«TYPE-AHEAD
>SYSOUT (TEM)
>MAKEFILE(EDIT)

>BRECOMPILE((EDIT WEDIT))

>F

>8Q
\\F
>SQ

\\BRECOMPILE

>LOAD(WEDIT PROP)
>BRECOMPILE ((EDIT WEDIT))

>F

>MAKEFILE(BREAK)

>LISTFILES(EDIT BREAK)

>SYSOUT (CURRENT)

>LOGOUT]
>7?7

>SYSCUT(TEM)
>MAKEFILE(EDIT)
" >LOAD(WEDIT PROP)
>BRECOMPILE((EDIT WEDIT))

>F

>MAKEFTLE (BREAK)
>LISTFILES(EDIT BREAK)
>SYSOUT (CURRENT)

8.15

>LOGOUT]
>FIX
EDIT

Commands

*(R BRECOMPILE BCOMPL)

-p

((LOGOUT) (SYSOUT &) (LISTFILES &) (MAKEFILE &) (F) (BCOMPL &)
(LOAD &) (MAKEFILE &) (SYSOUT &))

*(DELETE LOAD)

*0K
>3G0

Note that type-ahead can be addressed to the compiler, since it uses LISPXREAD for input. Type-zhead
can also be directed to the editor, but type-ahead to the editor and to LISPX cannot be intermixed.

The following are some useful functons and variables:

(VALUEQF LINE)

IT

conuol-U

[NLambda NoSpread Functon]

An nlambda functdon for obtaining the value of a particular event, e.g., (VALUEOF
-1), (VALUEQF «FOO -2). The value of an event consisting of several operations
is a list of the values for each of the individual operations.

Note: The value field of a history entry is inidalized to bell (control-G). Thus a
value of bell indicates that the corresponding operation did not complete, i.e., was
aborted or caused an error (or else it returned beil).

Note: Although the input for VALUEOF is entered on the history list before
VALUEOF is called, (VALUEOF -1) stll refers to the value of the expression
immediately before the VALUEOF input, because VALUEOF effectively backs the
history list up one entry when it retrieves the specified event. Similarly, (VALUEOF
FOO) will find the first event before this one that contains a FQO.

[Variable]
The value of the variable IT is always the value of the last event executed, i.e.
(VALUEOF -1). For example,

«(SQRT 2)
1.414214
«(SQRT IT)
1.189207

[f the last event was a multiple event, e.g. REDO -3 THRU -1, IT is set to value
of the last of these events. Following a 7?7 command. IT is set to value of the last
event printed. In other words, in all cases, IT is set to the last value printed on
the terminal.

When typed in at any point during an input being read by LISPXREAD, permits
the user to edit the input before it is rerurned to the calling function.

Note: control-N for Interlisp on TOPS-20.

This feature is useful for correcting mistakes noticed in typing before the input is executed. instead of
waiting till arter execution and then performing an UNDQ and a FIX. For example, if the user rypes

8.16

N

-~

£t

“;’\\
£~

(-

THE PROGRAMMER'S ASSISTANT

“(DEFINEQ FOO (LAMBDA (X) (FIXSPELL X" and at that point notices the missing left parenthesis,
instead of completing the input and allowing the error to occur, and then fixing the input, he can simply
type control-U, and finish typing normally. Control-U can be typed at any point, even in the middie of
an ator; it simply sets a variabie checked by LISPXREAD.

When the line is finished, the editor is called on (DEFINEQ FOO (LAMBDA (X) (FIXSPELL X -..],
which the user can then fix. If the user exits from the editor via OK, the (corrected) expression will be
returned to whoever called LISPXREAD exactly as though it had been typed. If the user exits via STOP,
the expression is returned so that it can be stored on the history list. However it will not be executed. In
other words, the effect is the same as though the user had typed control-E at exactly the right instant.

Control-U also works for calls to READLINE (page 8.30), i.e., for line commands.

" 823 P.A Commands Applied to P.A. Commands

Programmer’s assistant commands that unread expressions, such as REDQ, USE, etc. do not appear in
the input pordon of events, although they are stored elsewhere in the event. They do not interfere with
or affect the searching operations of event specifications. As a result, p.a. commands themselves cannot
be recovered for execution in the normal way. For example, if the user types USE A B C FOR O and
follows this with USE £ FOR D, he will not produce the effect of USE A B C FQR E, but instead will
simply cause E to be substituted for D in the last event containing a D. To produce the desired effect, the
user should type USE D FOR E IN USE. The appearance of the word REDO, USE or FIX in an event

address specifies a search for the corresponding programmer’s assistant command. It also specifies that’

the text of the programmer's assistant command itself be treated as though it were the input. However,
the user must remember that the context in which a history command is reexecuted is that of the current
history, not the original context. For example, if the user types USE FOQ FOR FIE IN -1, and then
later types REDO USE, the -1 will refer to the event before the REDO, not before the USE.

The one excepton to the statement that programmer’s assistant commands “do not interfere with or
affect the searching operadons of event specifications” occurs when a p.a. command fails to produce
any input. For example, suppose the user types USE LOG FOR ANTILOG AND AMTILCG FOR LOGG,
mispelling the second LOG. This will cause an error, LOGG ?. Since the USE command did not produce
any input, the user can repair it by typing USE LOG FOR LOGG, without having to specify IN USE.
This lazer USE command will invoke a search for LOGG, which will find the bad USE command. The
programmer's assistant then performs the indicated substitution, and unreads USE LOG FOR ANTILOG
AND ANTILOG FOR LOG. In turn, this USE command invokes a search for ANTILOG, which, because it
was not typed in but reread, ignores the bad USE command which was found by the earlier search for
LOGG, and which is still on the history list. In other words, p.a. commands that fail to produce input
are visible to- searches arising from event specifications typed in by the user. but not to secondary event
specifications.

In addition, if the most recent event is a history command which failed to produce input, a secondary
event specification will effectively back up the history list one event so that relative event numbers for
that event specification will not count the bad p.a. command. For example, suppose the user types
USE LOG FOR ANTILOG AND ANTILOG FOR LOGG IN -2 AND -1, and after the p.a. types LOGG
?, the user types USE LOG FOR LOGG. He thus causes the command USE LOG FOR ANTILOG AND
ANTILOG FOR LOG IN -2 AND -1 to be constructed and unread. In the normal case. -1 would refer
1o the last event i.e., the “bad” USE command. and -2 to the event before it However, in this case. -1
refers {0 the event before the bad USE command. and the -2 to the event before that. In short. the caveat
above that “the user must remember that the context in which a history command is reexecuted is that of

8.17

Changing The Programmer’s Assistant

the current history, not the original context” does not apply if the correction is performed immediately.

8.3 CHANGING THE PROGRAMMER'S ASSISTANT

(CHANGESLICE N HISTORY —) ' [Function]

PROMPT#FLG

PROMPTCHARFORMS

HISTORYSAVEFORMS

Changes the time-slice of the history list EISTORY 0 N (see page §.25). If HFISTORY
is NIL, changes both the top level history hst LISPXHISTORY and the edit history
list EDITHISTORY.

Note: The effect of increasing the time-slice is gradual: the history list is simply
allowed to grow to the corresponding length before any events are forgotten.
Decreasing the time-slice will immediately remove a sufficient number of the older
events to bring the history list down to the proper size. However, CHANGESLICE is
undoable, so that these events are (temporarily) recoverable. Therefore, if the user
wants to recover the storage associated with these events without waiting N more
evenats until the CHANGESLICE event drops off’ the history list, he must perform a
FORGET command (page 8.13).

[Variable]
When this variable is set to 7, the current event number to be printed before each
prompt character. See PROMPTCHAR, page 8.31. PROMPT#FLG is inidally T.

[Variable]
The value of PROMPTCHARFORMS is a list of expression which are evaluatad
each time PROMPTCHAR (page 8.31) is called to print the prompt character. If
PROMPTCHAR is going to print something, it first maps down PROMPTCHARFORMS
evaluadng each expression under an ERRORSET.

These expressions can access the special variables HISTORY (the current histery
list), ID (the prompt character to be printed), and PROMPTSTR, which is what
PROMPTCHAR will print before ID, if anything. When PROMPTH#FLG is T,
PROMPTSTR will be the event number. The expressions on PROMPTCHARFORMS
can change the shape of a cursor, update a clock, check for mail, etc. or change
what PROMPTCHAR is about to print by resetting ID and/or PROMPTSTR. After the
expressions on PROMPTCHARFORMS have been evaluated. PROMPTSTR is printed
if it is (sdll) non-NIL, and then ID is printed, if it is (stll) non-NIL.

[Variable]
The value of HISTORYSAVEFORMS is a list of expressions that are evaluated under
errorset protection each time HISTORYSAVE (page 8.32) creates a new event. This
happens each time there is an interaction with the user, but not when performing
an operation that is being redone.

The expressions on HISTORYSAVEFORMS are presumably executed for effect. and
can access the special variables HISTORY (the current history list), ID (the current
prompt character), and EVENT (the current event which HISTORYSAVE is going
to rewurn).

. L™
Note that PROMPTCHARFORMS and HISTORYSAVEFORMS together enable bracketing each interaction

3.18

N

oy

,/\
/)
N

O

3

O

THE PROGRAMMER'S ASSISTANT

with the user. These can be used to measure how long the user takes to respond, to use a different
readtable or terminal table, etc.

RESETFORMS

ARCHIVEFN

ARCHIVEFLG

LISPXMACROS

[Variable]
The vatue of RESETFORMS is a list of forms that are evaluated at each RESET, ie.
when user types control-D, calls function RESET, or types control-C followed by
START.

[Variable]
If the value of ARCHIVEFN is T, and an event is about to drop off the end of
the history list and be forgotten, ARCHIVEFN is called as a function with two
arguments: the input portion of the event, and the entire event (see page 8.25
for the format of events). If ARCHIVEFHN returns T, the event is archived on a
permanent history list (see page 8.13). Note that ARCHIVEFN must be both sat

.and defined. ARCHIVEFN is initially NIL and undefined.

For example, defining ARCHIVEFN as (LAMBDA (X Y) (EQ (CAR X) 'LOAD))
will keep a record of all calls to LOAL.

[Variable]
If the value of ARCHIVEFLG is non-NIL, the system automatically marks all events
that are referenced by history commands so that they will be archived when they
drop off the history list ARCHIVEFLG is Lmually T, so once an event is redone, it
is guaranteed to be saved. .

An event is “marked for archiving” by putting the property *ARCHIVE®, vaine T,
on the event (see page 8.25). The user could do this by means of an appropriately
defined LISPXUSERFN (see below).

[Variable]
LISPXMACRGS provides a macro facility that allows the user to define his own
programmer’s assistant commands. It is a list of elements of the form (COMMAND
DEF). Whenever COMMAND appears as the first expression on a line in a LISPX
input, the variable LISPXLINE is bound to the rest of the line, the event is
recorded on the history list, DEF is evaluated, and DEF’s value is stored as the
value of the event. Similarly, whenever comMmMaND appears as CAR of a form in a -
LISPX inpur, the varizble LISPXLINE is bound to CDR of the form, the event is
recorded, and DEF is evaluated.

An- element of the form (commanp NIL DEF) is interpreted to mean bind
LISPXLINE and evaluate DEF as described above, except do nor save the event
on the history list

LISPXHISTORYMACRQS [Variable]

LISPXHISTORYMACROS allows the user to define programmer’s assistant com-
mands that re-execute other events. LISPXHISTORYMACROS is interpreted the
same as LISPXMACROS. except that the result of evaluating DzF is weated as a list
of expressions t0 be unread. exactly as though the expressions had been retrieved
by a REDO command, or computed by a USE command. Note that remurning
NIL means nothing else is done. This provides a mechanism for defining LISPX
commands which are executed for effect only.

8.19

Changing The Programmer’s Assistant

Many programmer’s assistant commands, such as RETRIEVE, BEFORE, AFTER, etc. are implemented
through LISPXMACROS or LISPXHISTORYMACROS.

Note: Definitions of commands on LISPXMACROS or LISPXHISTORYMACROS can be saved on files with
the file package command LISPXMACROS (ses page 11.24).

LISPXUSERFN

[Variable]
When LISPXUSERFN is set to T, it is applied as a function to ail inputs
not recognized as a programmer's assistant command, or on LISPXMACROS or
LISPXHISTORYMACROS. If LISPXUSERFN decides to handle this input, it simply
processes it (the event was already stored on the history list before LISPXUSERFN
was called), sets LISPXVALUE to the value for the event, and returns T. The
programmer’s assistant will then know not to call EVAL or APPLY, and will simply
store LISPXVALUE into the value slot for the event, and print it. If LISPXUSERFN
returns NIL, EVAL or APPLY is called in the usual way. Note that LISPXUSERFN
must be both set.and defined.

LISPXUSERFN is given two arguments: X and LINE. X is the first expression typed,

and LINE is the rest of the line, as read by READLINE (page 8.30). For example, if

the user typed FOO(A B C), x=FO00, and Love=((A 8 C)); if the user typed
(FOO A B C), x=(FO0 A B C), and Lane=N]IL; and if the user typed FOO
A B C,x=F00 and Line=(A B C).

By appropriately defining (and setting) LISPXUSERFN, the user can with a
minimum of effort incorporate the features of the programmer’s assistant into his
own executive (actually it is the other way around). For exampile, LISPXUSERFN
could be defined to parse all input (other than p.a. commands) in an alternative
way. Note that since LISPXUSERFN is called for each input (except for p.a
commands), it can also be used to monitor some condition or gather statistics.

(LISPXPRINT X Y Z NODOFLG) : [Funcdon]
(LISPXPRIR1 X Y Z NODOFLG) [Function]
(LISPXPRIN2 X Y Z NODOFLG) [Function]
"LISPXSPACES X Y Z NODOFLG) : [Function]
~(LISPXTERPRI X Y Zz NODOFLG) : ' [Function]
(LISPXTAB X Y Z NODOFLG) : [Funcdon}
(LISPXPRINTDEF EXPR FILE LEFT DEF TAIL NODOFLG) [Function]

In addition to saving inputs and values, the programmer’s assistant saves most
system messages on the history list For example, FILE CREATED ---, (FN
REDEFINED), (var RESET), output of TIME, BREAKDOWN, STORAGE. DWIM
messages, etc. When ?? prints the event, the output is also printed. This facility
is implemented via these functons. :

These functdons print exactly the same as their non-LISPX counterpartis. Then,
they put the output on the history list under the property ®*LISPXPRINT=* (see
page 8.25).

If NoporLg is non-NIL, these fuct.ons do not print, but only pit their output on
the history list

To perform output operations from user programs so that the output will appear
on the history list, the program needs simply to call the corresponding LISPX

3.20

-

e N,

)

)

W,

THE PROGRAMMER'S ASSISTANT

printing functon.

(USERLISPXPRINT x FILE Z NODOFLG) [Function]
The function USERLISPXPRINT is available to permit the user to define additonal
LISPX printing functions. If the user has a function rFn that takes three or fewer
arguments, and the second argument is the file name, he can define a LISPX
printing function by simply giving LISPXFN the definitdion of USERLISPXPRINT,
for example, with MOVD(USERLISPXPRINT LISPXrN). USERLISPXPRINT is
defined to look back on the stack, find the name of the calling function, strip off
the leading “LISPX", perform the appropriate saving information, and then call
the functdon to do the actual printing.

LISPXPRINTFLG [Variable]
IfLISPXPRINTFLG=NIL, the LISPX printing functions will not store their output
on the history ist. LISPXPRINTFLG is inidally T.

8.4 STATISTICS

The programmer’s assistant keeps various statistics about system usage, e.g., number of user inputs,
number of undo saves, number of calls to editor, number of edit commands, number of p.a. commands,
cpu time, console dme. etc. These can be viewed via the functon LISPXSTATS. The user can define add
new statistics to the p.a. statistics via the function ADDSTATS, and increment them with LISPXWATCH.

Note: The collection of programmer’s assistant statistics is not supported in Interlisp-D. ADDSTATS and
LISPXWATCH are defined with null definitions, so programs can be transferred.

(LISPXSTATS RETURNVALUESFLG) o [Function]
Prints programmer’s assistant statistics. If nETURNVALUESFLG"T returns the
statistics as a list of elements of the form (VALUE . EXPLANATION).

 (ADDSTATS STAT; -+ STATy) [NLambda NoSpread Function]

Each staT; is a list of the form (STAT-NAME . MESSAGE). Each STAT-NAME is
defined as the name of a new statistic.

For example, (ADDSTATS (EDITCALLS CALLS TO EDITOR) (UNDOSTATS
CHANGES UNDONE) will define two new stadstcs, named EDITCALLS and
UNDOSTATS.

(LISPXWATCH STAT N) {Function]
Increments the statistic with name STAT by N (or 1 if N=NIL).

LISPXWATCH has a BLKLIBRARYDEF (see page 12.14).

The user can save his statistics for loading into a new system by performing MAKEFILE(DUMPSTATS).
After the file DUMPSTATS is loaded, the staristics pnnted by LISPXSTATS will be the same as those that
would be printed following the MAKEFILE.

Undoing

8.5 UNDQING

Note: This discussion only applies to undoing under the executive and break; the editors handles undoing
itself in a slighty different fashion.

The UNDO capability of the programmer’s assistant is implemented by requiring that each operation that
is to be undoable be responsible itself for saving on the history list enough information to enable reversal
of its side effects. In other words, the assistant does not “know” when it is about to perform a destructive
operation, i.e., it is not constantly checking or anticipating. Instead, it simply executes operations, and
any undoable changes that occur are automatically saved on the history list by the responsible functions.
The UNDQ command, which involves recovering the saved information and performing the corresponding
inverses, works the same way, so that the user can UNDO an UNDQ, and UNDO that etc.

"' At each point, until the user specifically requests an operation to be undone, the assistant does not know,

or care, whether informadon has been saved to enable the undoing. Oniy when the user attempts to
undo an operation does the assistant check to see whether any information has been saved. If none has
been saved, and the user has specifically named the event he wants undone, the assistant types NOTHING
SAVED. (When the user simply types UNDO, the assistant searches for the last undoabie event, ignoring
events already undone as well as UNDQ operations themselves.)

This implementation minimizes the overhead for undoing. Only those operations which actually make
changes are affected, and the overhead is small: two or three cells of storage for saving the information, and
an exma function cail. However, even this small price may be too expensive if the operation is sufficiently

primitdve and repetitive, i.e., if the extra overhead may seriously degrade the overall performance of

the progra=:. Hence not every destructive operation in a program should necessarily be undoable; the
programmer must be allowed to decide each case individually.

Therefore for each primidve destructive function, Interlisp has defined an undoable version which always
saves information. By convention, the name of the undoable version of a function is the function name,
preceeded by “/.” For example, there is RPLACA and /RPLACA, REMPROP and /REMPROP, etc. The
*“slash” functions that are currently implemented can be found as the value of /FNS. ‘

The various system packages use the appropriate undoable functions. For example, BREAK uses /PUTD and

. /REMPROP so as to be undoable, and DWIM uses /RPLACA and /RPLACD, when it makes a correction.?

Similarly, the user can simply use the corresponding / function if he wants to make a destructive
operation in' his own program undoable, When the / function is called, it will save the UNDQO information
in the curreat event on the history list.

The programmer’s assistant cannot know whether efficiency and overhead are serious considerations for
the execution of an expression in a user program, so the user must decide if he wants these operations
undoable by explicidy calling /MAPCONC, etc. However, typed-in expressions rarely involve iterations or
lengthy computations directly. Therefore, before evaluating the user input, the programmer’s assistant
substtutes the corresponding undoable functon for any destructive function (see LISPX/, page 8.34).

For example, if the user types (MAPCONC NASDIC --.), it is actually (/MAPCORC NASDIC .-.) that -

is evaluated. Obviously, with a more sophisticated analysis of both user input and user programs, the

*The effects of the following functions are always undoable: DEFINE, DEFINEQ, DEFC (used to give
a function a compiled code definition), DEFLIST, LOAD, SAVEDEF, UNSAVEDEF, BREAK., UNBREAK,

-REBREAK, TRACE. BREAKIN. UNBREAKIN. CHANGENAME, EDITFNS, EDITF, EDITV, EDITP, EDITE,
- EDITL, ESUBST, ADVISE, UNADVISE. READVISE, plus any changes caused by DWIM.

8.22

samse

e

NS

O

O

THE PROGRAMMER’S ASSISTANT

decision concerning which operations to make undoable could be better advised. However, we have
found the confizuration described here to be a very satisfactory one. The user pays a very small price for
being able to undo what he types in, and if he wishes to protect himself from malfunctioning in his own
programs, he can have his program explicitly call undoable functions.

8.5.1 Undoing Cut of Order

/RPLACA operates undoably by saving (on the history list) the list cell that is to be changed and its
original CAR. Undoing a /RPLACA simply restores the saved CAR. This implementation can produce
unexpected results when muitiple /RPLACAs are done on the same list cell, and then undone out of order.
For example, if the user types (RPLACA FOO 1), followed by (RPLACA FOO 2), then undoes both
events by undoing the most recent event first, then undoing the older event, FOO will be restored to its
state before either RPLACA operated. However if the user undoes the first event, then the second event,
(CAR FO0) will be 1, since this is what was in CAR of FOO before (RPLACA FOO 2) was executed.
Similarly, if the user types (NCONC1 FOO 1), followed by (NCONC1 FOO 2), undoing just (NCONC1
FOO 1) will remove both 1 and 2 from FOO. The problem in both cases is that the two operations are
not “independent” In general, operations are always independent if they affect different lists or different
sublists of the same list Undoing in reverse order of execution, or undoing independent operations, is
always guaranteed to do the “right” thing. However, undoing dependent operations out of order may not
always have the predicted effect -

Property list operations, (i.e., PUTPROP, ADDPROP and REMPROP) are handled specially, so that operations
that affec: difTerent properties on the samaz property list are always independent For exampile, if the user
types (PUTPROP 'FQO 'BAR 1) then (PUTPROP 'FO0 'BAZ 2), then undoes the first event, the
BAZ property will remain, even though it may not have been on the property list of FOO at the time the
first event was executed.

8.5.2 SAVESET

Typed-in SETs are made undoable by substituting a call to SAVESET. SETQ is made undoable by
subsdruring SAVESETQ, and SETQQ by SAVESETQQ, both of which are implemented in terms of
SAVESET.

In addition to saving enough information on the history list to enable undoing, SAVESET operates in a

‘manner analogous to SAVEDEF (page 11.18) when it resets a top level value: when it changes a top level

binding from a value other than NOBIND to a new value that is not EQUAL to the old one, SAVESET
saves the old value of the variabie being set on the variable’s property list under the property VALUE, and
prints the message (VARIABLE RESET). The old value can be restored via the function UNSET, which
also saves the current value (but does not print a message) Thus UNSET can be used to flip back and
forth between two values.

Of course, UNDO can be used as long as the event containing this call 1o SAVESET is still active. Note
however that the old value will remain on the property list, and Lherefore be recoverable via UNSET, even
after the original event has been forgotten.

RPAQ and RPAQQ are implemented via calls 1o SAVESET. Thus old values will be saved and messages
printed for any variables that are reset as the result of loading a file.

For top level variables, SAVESET also adds the variable to the appropriate spelling list, thereby noticing

8.23

UNDONLSETQ and RESETUNDO

variables set in files via RPAQ or RPAQQ, as well as those set via type-in.

(SAVESET NAME VALUE TOPFLG FLG) [Function]

=
(UNSET NAME)

An undoable SET. SAVESET scans the stack looking for the last binding of NAME,
sets NAME (0 VALUE, and returns VALUE.

If the binding changed was a top level binding, NAME is added to the spelling list
SPELLINGS3 (see.page 135.14). Furthermore, if the old value was not NOBIND,
and was also not EQUAL to the new value, SAVESET calls the file package to
update the necessary file records. Then, if DFNFLG is not equal to T, SAVESET
prints (NAME RESET), and saves the old value on the property list of NAME,
under the property VALUE.

If ToPFLG=T, SAVESET operates as above except that it always uses NAME'S
top-level value cell. When ToOPFLG is T, and DFNFLG is ALLPROP and the old
value was not NOBIND, SAVESET simvly stores VALUE on the property list of NAME
under the property VALUE, and returns vALUE. This opton is used for loading files

" without disturbing the current value of variables (see page 5.9).

If FLG=NOPRINT, SAVESET saves the old value, but does not print the message.
This option is used by UNSET.

If FLG=NOSAVE, SAVESET does-not save the old value on the property list,
nor does it add NAME to SPELLINGS3. However, the call to SAVESET is stll
undoable. This opdon is used by /SET.

If Lo =NOSTACKXUNDO, SAVESET is undoable only if the binding being changed is
a top-level binding, i.e. this says when resetting a variable that has been rebound,
don’t bother to make it undoable. This option is used by RPAQ, RPAQQ, and
ADDTOVAR.

[Function]
If NAME does not contain a property VALUE, UNSET generates an error. Otherwise

AQ

UNSET calls SAVESET with NAME, the property vaiue, TOPFLG=T, and FLG= MOPRINT/\}
\

85.3 UNDONLSETQ and RESETUNDO

The function UNDONLSETQ provides a limited form of backtracking: if an error occurs under the
UNDONLSETQ, all undoabie side effects executed under the UNDONLSETQ are undone. RESETUNDO, used
in conjuncton with RESETLST and RESETSAVE (page 9.19), provides a more general undo capability
where the user can specify that the side effects be undone after the specified computation finishes, is
aborted by an error, or by a controi-D.

(UNDONLSETQ UNDOFORM —)

[NLambda Function]
An nlambda functon similar 1o NLSETQ (page 9.15). UNDONLSETQ evaluates
UNDOFORM, and if no error occurs during the evaluation, returns (LIST (EVAL
UNDOFORM)) and passes the undo information from uNnDoFory (if any) upwards.
[f an error does occur. the UNDONLSETQ returns NIL. and any undoable changes
made during the evaluation of UNDCOFORM are undone.

Any undo information is stored directly on the history event (if LISPXHIST is

(-

/ S
()

THE PROGRAMMER'S ASSISTANT

not NIL), so that if the user control-D’s out of the UNDONLSETQ, the event is still
undoable.

UNDONLSETQ will operate correctly if #UNDOSAVES is or has been exceeded for
this event, or is exceeded while under the scope of the UNDOXLSETQ.

Note: Caution must be exercised in using coroutines or other non-standard means
of exiting while under an UNDORLSETQ. See discussion in page 9.19.

(RESETUKDO X STOPFLG) [Function]
For use in conjunction with RESETLST (page 9.19). (RESETUNDO) initializes
the saving of undo information and returns a value which when given back
to RESETUNDO undoes the intervening side effects. For example, (RESETLST
(RESETSAVE (RESETUNDO)) . Forms) will undo the side effects of FORMS

.- on normal exit, or if an error occurs or a control-D is typed.

If sTorFLG=T, RESETUNDO stops accumulating undo information it is saving oa
X. Note that this has no bearing on the saving of undo information on higher
RESETURDO’s, or on being able to undo the entire event.

For example,

- (RESETLST
(SETQ FOO (RESETUNDO))
(RESETSAVE NIL (LIST RESETUNDO F00))
(ABVISE -..)
(RESETUHDO FOO T)
. FORMS)

would cause the advice to be undone, but not any of the side effects in FORMs.

8.6 FORMAT AND USE OF THE HISTORY LIST

The system currently uses three history lists, LISPXHISTORY for the top-level Interlisp executive,
EDITHISTORY for the editors, and ARCHIVELST for archiving events (see page 8.13). All history
lists have the same format, use the same functions, HISTORYSAVE, for recording events. and use the
same set of functions for implementing commands that refer 1o the history list, e.g., HISTORYFIND,
PRINTHISTORY, UNDOSAVE, etc.

Each history list is a list of the form (L EVENT# SIZE MOD), where L is the list of events with
the most recent event first, EVENT# is the event number for the most recent event on L, SIZE is
the size of the tme-slice (below), i.e., the maximum length of L, and mMoD is the highest possibie
event number. LISPXHISTORY and EDITHISTORY are both inmitialized to (NIL 0 100 100).
Serting LISPXHISTORY or EDITHISTORY to NIL disables all history features so LISPXHISTORY
and EDITHISTORY act like flags as well as repositories of events.

Each history list has a maximum length. called its “time-slice.” As new events occur. exisling events are
aged. and the oldest events are “forgotnen.” For efficiency, the storage used to represent the forgotten
event is reused in the representation of the new event, so the history list is actually a ring buffer. The

8.25

Format and Use of the History List

time-stice of a history list can be changed with the function CHANGESLICE, page 8.18. Larger time-slices

enable longer “memory spans,” but tie up correspondingly greater amounts of storage. Since the user

seldom needs really “ancient history,” and a facility is provided for saving and remembering selected
events (see NAME and RETRIEVE, page 8.12), a relatively small time-slice such as 30 events is more than
adequate, 2lthough some users prefer to set the time-slice as large as 100 events,

If PROMPT#FLG (page 8.18) is set to T, an “event cumber” will be printed before each prompt. More
recent events have higher numbers. When the event number of the current event is 100, the next event
will be given number 1. If the time-slice is greater than 100, the “roll-over” occurs at the next highest
hundred, so that at no time will two events ever have the same even! number. For example, if the
time-slice is 150, event number 1 will follow event number 200.

Each individual event on L is a list of the form (VPUT ID VALUE . PROPS). ID is the prompt character
_for this event, e.g., «, :, *, etC. VALUE is the value of the event, and is initalized to bell.3 PROPS is 2
yroperty list used to associate other information with the event (described below).

INPUT is the input sequence for the event. Normally, this is just the input that the user typed-in. For an
APPLY format input, this is a list consistdng of two expressions; for an EVAL format input, this is a list
of just one expression; for an input entered as list of atoms, INPUT is simply that list. For example,

User Input INPUT is:
PLUS[1 1] (PLUS (1 1))
(PLUS 1 1) a ((PLUS 1 1))
PLUS 1 1¢ (PLUS 1 1)

If the user types in a programmer’s assistant command that “unreads” and reexecutes other events (REDO,
USE,, etc.), INPUT contains 2 “sequence” of the inputs from the redone events. Specifically, the INPUT
fields from the specified events are concatenated into a single list, seperated by special markers cailed
*“pseudo-carriage returns,” which print out as the string "<c.r.>".4 When the result of this concatenation
- is “reread,” the pseudo-carriage-returns are treated by LISPXREAD ancd READLINE exacty as real carriage
returas, i.e., they serve to distinguish between APPLY and EVAL fcrmats on inputs to LISPX and o

" delimirt line commands to the editor. .

The same convention is used for representing multiple inputs when a USE command involves sequential
subsdtutions. For exampie, if the user types GETD(F00) and then USE FIE FUM FOR FOO, the input
sequence that will be constructed is (GETD (FIE) "<c.r.>" GETD (FUM)), which is the result of
subsdtuting FIE for FOO in (GETD (FQO)) concatenated with the result of substituting FUM for FOO in
(GETD (F00)).

Note that once a multiple input has been entered as the input portion of a new event, that event can
be treated exacty the same as one resulting from type-in. In other words, no special checks have to
be made when referencing an event, to see if it is simple or multiple. This implementation permits an

*On EDITHISTORY, this field is used to save the side effects of each command. See page 8.35.

“The \{aiue of the variable HISTSTRO is used o0 represent a pseudo-carriage return. This is inidally
the string “<c.r.>". Note that the functions that recognize pseudo-carriage returns compare them o
HISTSTRO using EQ, so this marker will never be confused with a string that was typed in by the user.

8.26

e’

THE PROGRAMMER'S ASSISTANT

event specificaton to refer to a single simple event, or to several events, or to a single event originally
constructed from several events (which may themselves have been multiple input events, etc.) without
having 1o treat each case separately.

REDO, RETRY, USE, ..., and FIX commands, i.e., those commands that reexecute previous events, are
not stored as inputs, because the input portion for these events are the expressions to be *“reread”. The
history commands UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as mpurs, and 7?7 prints
them exactly as they were typed.

PROPS is a property list of the form (PROPERTY,; VALUE,; PROPERTY, VALUE, ---), that can be used
to associate arbitrary information with a particular event Currently, the following properties are used by
the programmer’s assistant:

SIDE A list of the side effects of the event. See UNDOSAVE, page 8.33.
*PRINT® N Used by the 7?7 command when special formatting is required, for example, when
- printing events corresponding to the break commands OK, GO, EVAL, and 7=.
USE-ARGS
. .ARGS The USE-ARGS and ...ARGS propertes are used to save the arguments and
expression for the corresponding history command.
ERROR®

CONTEXT® *ERROR®.and *CONTEXT* are used to save informaton when errors occur for
: subsequent use by the $ command. Whenever an error occurs, the offender is
automatically saved on that event’s entry in the history list, under the *ERROR®

property.
= ISPXPRINT® Used to record calls to LISPXPRINT, LISPXPRIN1, etc. (see page 8.20).

sARCHIVE® The property *ARCHIVE® on an event causes the event to be automatically archived

when it “falls off the end” of the history list (see page 8.13).
*GROUP®
*HISTORY® The *HISTORY®™ and *GROUP* properties are used for commands that reexecute

previous events, ie., REDO, RETRY, USE, ..., and FIX. The value of the
HISTORY property is the history command that the user actally typed, e.g.,
REDO FROM F. This is used by the ?? command when printing the event. Thie
value of the *GROUP* property is a structure containing the side effects, etc. for
the individual inputs being reexecuted. This structure is described below.

When LISPX is given an input. it calls HISTORYSAVE (page 8.32) to record the input in a new event.®
Normally, HISTORYSAVE creates and rerurns a new event. LISPX binds the variable LISPXHIST 10
the value of HISTORYSAVE, so that when the operation has completed, LISPX knows where 10 store
the value. Note that by the time it completes, the operatdon may no longer correspond to the mcst
recent event on the history list. For example, all inputs typed to a lower break will appear later on the

5The commands ??, FORGET, TYPE-AHEAD, $BUFS, and ARCHIVE are executed immediately, and are
not recorded on the history list.

8.27

Programmer’s Assistant Functions

history list After binding LISPXHIST, LISPX executes the input, stores its value in. the value field of
the LISPXHIST event, prints the value, and returns.

When the input is a REDO, RETRY, USE, ..., or FIX command, the procedure is similar, except that
the event is also given a ®GROUP=® property, initially NIL, and a *HISTORY* property, and LISPX
simply unreads the input and returns. When the input is “reread”, it is HISTORYSAVE, not LISPX,
that notices this fact, and finds the event from which the input originally came. HISTORYSAVE then
adds a new (INPUT ID VALUE . PROPS) enmry to the *GRQUP*® property for this event, and returns
this enry as the “new event” LISPX then proceeds exactly as when its input was typed directly, ie.,
it binds LISPXHIST to the value of HISTORYSAVE, executes the input, stores the value in CADDR of
LISPXHIST, prints the value, and returns. [n fact, LISPX never notices whether it is working on freshly
typed input, or input that was reread. Similarly, UNDOSAVE will store undo information on LISPXHIST
the same as always, and does not know or care that LISPXHIST is-not the entire event, but one of the
_.elements of the *GROUP* property. Thus when the event is finished, its entry will look like:

- (INPUT ID VALUE
“*HISTORY®
COMMAND
*GROUP=
((mvPUT; D; VALUE; SIDE SDE,)
(INPUT, ID; VALUE, SIDE SIDE,)

In this case, the value field of the event with the *GROUP* property is not being used; VALUEOF instead
returns a list of the values from the *GROUP® property. Simiiarly, UNDOQ operates by collecting the SIDE
properties from each of the elements of the *GROUP* property, and then undoing them in reverse order.

This implementation removes the burden from the functdon calling HISTORYSAVE of distinguishing
between new input and reexecudon of input whose history entry has already been set up.

8.7 PROGRAMMER’S ASSISTANT FUNCTIONS

(LISPX LISPXX LISPXID LISPXXMACROS LISPXXUSERFN LISPXFLG) ' {Functon]
LISPX is the primary function of the programmer’s assistant. LISPX takes
one user input, saves it on the history list, evaluates it, saves its value, and
prints and returns it. LISPX also interpretes p.a. commands, LISPXMACROS.
LISPXHISTORYMACROS, and LISPXUSERFN.

If Lispxx is a list, it is interpreted as the input expression. Otherwise, LISPX
calls READLINE, and uses rLIispxcc plus the value of READLINE as the input for
the event. If Lispxx is a list CAR of which is LAMBDA or NLAMBDA, LISPX calls
LISPXREAD to obtain the arguments. '

LISPXID is the prompt character to print before accepting user input. A user can
call LISPX specifying any prompt character as LISPXID except for *, since in

» S[f HISTORYSAVE cannot find the event for example if a user program unreads the input directly, and
not via a history command, HISTORYSAVE proceeds as though the input were typed.

8.28

@

)

O

THE PROGRAMMER'S ASSISTANT

certain cases LISPX must use the value of LIspxio to tell whether or not it was -
called from the editor.

If LIspxzvacrOS is not NIL, it is used as the list of LISPX macros, otherwise the
top level value of the variable LISPXMACROS is used.

If LIsPxxxUsERFN is not NIL, it is used as the LISPXUSERFN. In this case, it is
not necessary to both set and define LISPXUSERFH as described on page 8.20.

LISPXFLG is used by the E command in the editor (see page 8.35).

Note that the history is nor one of the arguments to LISPX, i.e., the editor must
bind (reset) LISPXHISTORY to EDITHISTORY before calling LISPX to carry out
a history command. LISPX will continue to operate as an EVAL/APPLY function
if LISPXHISTORY is NIL. Only those functions and commands that involve the
history list will be affected.

LISPX performs spelling corrections using LISPXCOMS, a list of its commands, as
a spelling list whenever it is given an unbound atom or undefined funcdon, before
attempting to evaluate the input

LISPX is responsible for rebinding HELPCLOCK, used by BREAKCHECK (page 9.10)
for computing the amount of time spent in a computadon, in order to determine
whether to go into a break if and when an error occurs.

(USEREXEC LISPXID LISPXIMACROS LISPXXUSERFN) fFunction]
Repeatedly calls LISPX under errorset protection specifying LISPXXXMACROS and
LISPXXUSERFN, and using LIsPXID (or « if LisPxxp=NIL) as a prompt character.
USEREXEC is exited via the command OK, or else with a RETFROM.

(LISPXEVAL LISPXFORM LISPXID) [Function]
Evaluates LIsPxForM (using EVAL) the same as though it were typed in to LISPX,
i.e., the event is recorded, and the evaluation is made undoable by substituting
the slash funcuons for the corresponding destructive functions (see page 8.22).
LISPXZVAL returns the value of the form, but does not print it.

When LISPX recieves an “input.” it may come from the user typing it in, or it may be an input that
has been “unread.” LISPX handles these two cases by getting inputs with LISPXREAD and READLINE,
described below. These functions use the variable READBUF to store the expressions that have besn
unread. When READBUF is not NIL, READLIME and LISPXREAD “read” expressions from READBUF
until READBUF is NIL, or untl they read a pseudo-carriage return (see page 8.26). Both functons return
a list of the expressions that haye been “read.” (The pseudo-carriage return is not included in the list.)

When READBUF is NIL, both LISPXREAD and READLINE actually obtain their input by performing .
(APPLY* LISPXREADFN rmLz), where LISPXREADFN is initally set to READ. The user can make
LISPX, the editor, break, etc. do their reading via a different input function by simply -setting
LISPXREADFN to the name of that function (or an appropriate LAMBDA expression).

Notz: The user should only add expressions to READBUF using the function LISPXUNREAD (page 8.31),
which knows about the format of READBUF.,

Programmer’s Assistant Functions ' (

(READLINE RDTBL — —) [Function]
Reads a line from the terminal, returning it as a lis. If (READP T) is NIL,
READLINE returns NIL. Otherwise it reads expressions by performing (APPLY®
LISPXREADFN T) (LISPXREADFN is initially set to READ) until it encounters

either:

e a carriage-return (typed by the user) that is not preceded by any spaces, e.g.,
A B Cer .

and READLINE returns (A B C)

e a list terminatng in a “]", in which case the list is included in the value of
READLINE, eg,

A B (C D] | N

and READLINE remrns (A B (C D)).

¢ an unmatched right parentheses or right square bracket, which is not included in
the value of READLINE, e.g.,

A B C]
and READLINE remurns (A B C).

In the case that one or more spaces precede a carriage-return, or a list is terminated
with a “)”, READLINE will type “...” and continue reading on the next line,

€.g-

AB Ce
...(D E F)
(XY 2]

and READLINE remrns (A B C (D E F) (X Y 2)). &)

If the user types another carriage-return after the “...”, the line will terminate,
e.g.

A B Cer

cr
.

and READLINE returns (A B C).

Note that cartiage-return, i.e., the EOL character, can be redefined with SETSYNTAX
(page 6.34). READLINE actually checks for the EQL character, whatever that may
be. The same is true for right parenthesis and right bracket

When READLINE is called from LISPX, it operates differently in two respects:

(1) If the line consists of a single) or], READLINE returns (NIL) instead of
NIL. ie, the) or] /s included in the line. This permits the user to type FOQ)
or FOO], meaning call the function FOO with no arguments, as opposed 10 FOO¢r

s

()

8.30

THE PROGRAMMER’S ASSISTANT

(FOO<Lcarriage-return>), meaning evaluate the variable FOO.

(2) If the first expression on the line is a list that is not preceded by any spaces,
the list terminates the line regardless of whether or not it is terminated by]. This
permits the user to type EDITF(FOQ) as a single input.

Note that if any spaces are inserted between the atom and the left parentheses or
bracker, READLINE will assume that the list does not terminate the line, This is to
enabie the user to type a line command such as USE (FOO0) FOR FOQO. Therefore,
if the user accidentially puts an extra space between a function and its arguments,
he will have to complete the input with another carriage return, e.g.,

«~EDITF (FO0)

EDIT
L J

(LISPXREAD FILE RDTBL) [Functing]

(LISPXREADP FLG)

A generalized READ. If READBUF =NIL, LISPXREAD performs (APPLY® LISPXREADFY

FILE), which it returns as its value. If READBUF is not NIL, LISPXREAD “reads”
and returns the next expression on READBUF.

Note: If the user types controi-U during the call o READ, LISPXREAD calls the
editor and returns the ecitad value.

LISPXREAD also sets R:READFLG to NIL when it reads via READ, and se‘s
REREADFLG to the value of READBUF when rereadmg

[Function]
A generalized READP. If FLG=T, LISPXREADP returns T if there is any input
waiting 10 be “read”, in the manner of LISPXREAD. If FLG=NIL, LISPXREADP
rerurns T only if there is any input waiting to be *“read” on this line. In both cases,
leading spaces are ignored, i.e., skipped over with READC, so that if only spaces
have been typed, LISPXREADP will return NIL.

(LISPXUNREAD LST —) [Function]

Unreads LsT, a list of expressions.

(PROMPTCHAR ID FLG HISTORY) {Function]

Called by LISPX to print the prompt character 0 before each input. PROMPTCHAR
will not print anything when the next input will be “reread”, i.e., when READBUF
is not MIL.

PROMPTCHAR will not print when (READP) =T, unless FLG is T. The editor calls
PROMPTCHAR with FL6=NIL so that exma *’s are not printed when the user
types several commands on one line. However, EVALQT calls PROMPTCHAR with
FLG=T, since it dlways wants the « printed (except when “rereading™).

If PROMPT#FLG (page 8.13) is T and HISTORY is not NIL, PROMPTCHAR prints
the current event number (cf FISTORY) before printng .

EY
The value of PROMPTCHARFORMS (page 8.18) is a list of expressions that are
evaluated by PROMPTCHAR before, and if, it does any printng.

831

(HISTORYFIND LST

Programmer’s Assistant Functions

(HISTORYSAVE HISTCRY [D INPUTI INPUT2 INPUT3 PROPS) [Function]

Records one event on HISTORY.

If ovepuT: is not NIL, the input is of the form (INPUT; INPUT, . INPUT;). If
INPUT, is NIL, and INPUT, is not NIL, the input is of the form (mvPUT, .
INPUT,). Otherwise, the input is just NPUT,.

HISTORYSAVE creates a new event with the corresponding input, I, value feld
initialized to bell, and pPrors. If the mEISTORY has reached its full size, the last
event is removed and cannibalized

The value of HISTORYSAVE is the new event. However, if REREADFLG is not
NIL, and the most recent event on the history list contains the history command
that produced this input, HISTORYSAVE does not create a new event, but simply
adds an (mvPUT D bell . PROPS) entry to the *GROUP* property for that
event and returns that entry. See discussion on page 8.28.

HISTORYSAVEFORMS (page 8.18) is a list of expressions that are evaluated under
errorset protection each time HISTORYSAVE creates a new event

(LISPXSTOREVALUE EVENT VALUE) [Function]}

Used by LISPX for storing the value of an event. Can be advised by user to waich
for particular values or perform other monitoring functions.

(LISPXFIND HISTORY LINE TYPE BACKUP —) ' " [Functicn]
. LINE is an event specification, TYPE specifies the format of the value to be returned -

by LISPXFIND, and can be either ENTRY, ENTRIES, COPY, COPIES, INPUT, or
REDOQ.-LISPXFIND parses LINE, and uses HISTORYFIND to find the corresponding
events. LISPXFIND then assembies and returns the appropriate structure.

LISPXFIND incorporates the following special features:

(1) if BACckUP=T, LISPXFIND interprets LINE in the context of the history list
before the current event was added. This feature is used, for example, by VALUEOF,
so that (VALUEQOF =-1) will not refer to the VALUEOF event imelf.

(2) if LInNE=NIL and the last event is an UNDO, the next to the last event is taken
This permits the user to type UNDO followed by REDO or USE.

(3) LISPXFIND recognizes @@, and substitutes ARCHIVELST for IZSTORY (see
page 8.13).

(4) LISPXFIND recognizes @, and retrieves the corresponding event(s) from the
property list of the atom following @ (see page 8.12).

INDEX MOD EVENTADDRESS —) [Function]
Searches LST and returns the tails of LST beginning with the event corresponding
l0 EVENTADDRESS. LST, INDEX, and MOD are the first three elements of a “history
list” structure (see page 8.25). EVENTADDRESS 15 an event address (see page 8.5)
e.g. (43), (-1), (FOQ FIE), (LOAD ~ FQO0), ew. If HISTORYFIND cannot
find EVENTADDRESS, il generates an error.

8.32

D

e

[
N

~

-

/\\._/

@)

THE PROGRANMMER'S ASSISTANT

(HISTORYMATCH INPUT PAT BVENT) [Function]
Used by HISTORYFIND for “matching” when EVENTADDRESS specifies a pattern.
Matches paT against INPUT, the input portdon of the history event EVENT, as
matching is defined on page 17.13. Initally defined as (EDITFINDP INPUT PAT
T), but can be advised or redefined by the user.

(ENTRY# EIST X) [Function]
HST is a history list (see page 8.25). xis EQ to one of the events on ZrST. ENTRY#
returns the event number for x. .

(UNDOSAVE UNDOFORM HISTENTRY) [Function]
UNDOSAVE adds the “undo information” uNDOFORM to the SIDE property of the
history event HEZISTENTRY. If there is no SIDE property, one is created. If the value

N, of the SIDE property is NOSAVE, the information is not saved.

HISTENTRY specifies an event. If EISTENTRY=NIL, the value of LISPXHIST is
.- used. If both HISTENTRY and LISPXHIST are NIL, UNDOSAVE is a no-op. Note
that FrsTENTRY (or LISPXHIST) can either be a “real” event, or an event within
the *GROUP* property of another event (see page 8.28).

. The form of UNDOFORM is (FN . ArGs).” Undoing is done by perform-
ing (APPLY (CAR unDorForMm) (CDR unpDOFOrMm)). For example, if the
definition of FOO is DEF, (/PUTD FOO NEWwWDEF) will cause a call to UNDOSAVE
with UNDOFORM = (/PUTD FQO DEF).

CAR of the SIDE property of an event is a count of the number of UNDOFORMS
saved for this event. Each call to UNDOSAVE increments this count. If this count
is set to -1, then it is never incremented, and any number of UNDOFORMS can
be saved. If this count is a positive number, UNDOSAVE restricts the number of
UNDOFORMs saved to the value of #UNDOSAVES, described below, LOAD initializes
the count to -1, so that regardless of the value of #UNDOSAVES, no message will
be printed, and the LOAD will be undoable.

.’\J\ - #UNDOSAVES [Variable]
 The value of #UNDOSAVES is the maximum number of UNDOFORMS to be saved for
a single event. When the count of UNDOFORMs reaches this pumber, UNDOSAVE
prints the message CONTINUE SAVING?, asking the user if he wants to continue
saving. If the user answers NO or defaults, UNDOSAVE discards the previously
saved information for this event, and makes NOSAVE be the value of the property
SIDE, which disables ahy further saving for this event. If the user answers YES,
UNDOSAVE changes the count to -1, which is then never incremented. and continues
saving. The purpose of this feature is to avoid tying up large quantities of storage -
for operatons that will never need to be undone.

If #UNDOSAVES is negative, then when the count reachss -#UNDOSAVES,
UNDOSAVE simply stops saving without printing any messages or interacting with the

“In the special case of /7RPLNODE and /RPLNODE2. the format of UNDOFORM is (X OLDCAR
OLDCDR). When UNDOFORM is undone. this form is recognized and handled specially. This
O implementation saves space.

8.33

(NEW/FN FN)

Programmer’s Assistant Functions

user. #UNDOSAVES=NIL is equivalent to #UNDOSAVES =infinity. #UNDOSAVES
is inidally NIL.

[Function]
NEW/FN performs the necessary housekesping operations to make FN be translated

to the undoable version /FN when typed-in. For example, RADIX can be made
undoable when typed-in by performing: .

« (DEFINEQ (/RADIX (X)

(UNDOSAVE (LIST '/RADIX (RADIX X))
(/RADIX)
« (NEW/FN 'RADIX)

(LISPX/ X FN VARS) ‘ [Function]

(UNDOLISPX LINE)

LISPX/ performs the substitution of / functons for destructve functions that are
typed-in. If N is not NIL, it is the name of a function, and X is its argument list.
If P~ is NIL, x is a form. In both cases, LISPX/ returns X with the appropriate
substitutions. VARS is a list of bound variables (optional).

LISPX/ incorporates informaton about the syntax and semantics of Interlisp
expressions. For example, it does not bother to make undoable operations involving
variables bound in Xx. It does not perform substitution inside of expressions CAR of
which is an nlambda function (unless CAR of the form has the property INFO value
EVAL, see page 5.4). For example, (BREAK PUTD) typed to LISPX, will break on
PUTD, not /PUTD. Similarly, substitution should be performed in the arguments
for functions like MAPC, RPTQ, etc., since these contain expressions that will be
evaluated or applied. For example, if the user types (MAPC '(FQO1 F0OQ2
FOQ3) 'PUTD) the PUTD must be replaced by /PUTD.

[Functon]
LIVE is an event specification. UNDOLISPX is the funcdon thar executes UNDO
commands by calling UNDCLISPX1 on the appropriate entry(s).

-~ (UNDOLISPX1 EVENT FLG —) [Function]

Undoes one event. UNDOLISPX1 returns NIL if there is nothing to be undone.
[f the event is already undone, UNDOLISPX1 prints ALREADY UNDONE and
returns T. Otherwise, UNDOLISPX1 undoes the event, prints a message, e.g.. SETQ
UNDONE, and returns T.

[f FLG=T and the event is already undone. or is an undo command. UNDOLISPX1
takes no action and returns NIL. UNDOLISPX uses this option to search for the
last event to undo. Thus when LwE=NIL, UNDOLISPX simply searches history
undl it finds an event for which UNDOLISPX1 returns T.

Undoing an evenrt consists of mapping down (CDR of) the property value for SIDE,
and for each element, applying CAR to CDR, and then marking the event undone
by attaching (with /ATTACH) a NIL to the front of its SIDE property. Note that
the undoing of each element on the SIDE property will usuaily cause undosaves to
be added to the currenr LISPXHIST, thereby enabling the effects of UNDOLISPX1
to be undone.

()

O

—

N,

Q)

THE PROGRAMMER’S ASSISTANT

(PRINTHISTORY HISTORY LINE SKIPFN NOVALUES FILE) [Function]
LINE is an event specification. PRINTHISTORY prints the events on EISTORY
specified by LINE, eg., (-1 THRU -10). Printing is performed via the
function SHOWPRIN2, so that if the value of SYSPRETTYFLG=T, events wiil
be prectyprinted.

SKIPFN is an (optional) functional argument that is applied to each event before
printing, If it returns non-NIL, the event is skipped, i.e., not printed. :

If NOovALUES=T, or NOVALUES applied to the corresponding event is true, the
value is not printed. For example, NOVALUES is T when printing events on
EDITHISTORY.

For example, the following LISPXMACRO will define ??' as a command for
printing the history list while skipping all “large events” and not printing aay
values.

(27" (PRINTHISTORY
LISPXHISTORY
LISPXLINE
(FUNCTION (LAMBDA (X)
(IGREATERP (COUNT (CAR X)) 5)))
T

™)

8.8 ° THE EDITOR AND THE PROGRAMMER’S ASSISTANT

As mentioned earlier, all of the remarks concerning *“the programmer’s assistant” apply equally well to
user interactions with EVALQT, BREAK or the editor. The differences between the editor’s implementation
of these features and that of LISPX are mostly obvious or inconsequential. However, for completeness,
this section discusses the editor’s implementation of the programmer’s assistant.

The editor uses PROMPTCHAR to print its prompt characier, and LISPXREAD, LISPXREADP, and
READLINE for obtaining inputs. When the editor is given an input. it calls HISTORYSAVE o record the
input in a new event on its history list. EDITHISTORY.2 EDITHISTORY follows the same conventions
and formar as LISPXHISTORY. However, since edit commands have no value, the editor uses the value
field for saving side effects, rather than storing them under the property SIDE.

The editor recognizes and precesses the four commands DO, !E, !F, and !N which refer to previous
events on EDITHISTORY. The editcr also processes UNDC itself, as described below. All other history

8Except that the atomic commands OK. STCP, SAVE. P, 7, PP and E are not recorded. In additon.

number commands are grouped together in a single event. For example. 3 3 -1 is considered as one

command fer changing position.

3.35

1
i
:
|
]
|
:
i

The Editor and the Programmer’s Assistant

commands® are simply given to LISPX for execution, after first binding (reserting) LISPXHISTORY to
EDITHISTORY. The editor also calls LISPX when given an E command (page 17.45). In this case, the
editor uses the fifth argument to LISPX, LISPXFLG, to specify that any history commands are to be
executed by a recursive call to LISPX, rather than by unreading. For example, if the user types E REDO
in the editor, lie wants the last event on LISPXHISTORY processed as LISPX input, and not to be unread
and processed by the editor.

The major implementation difference between the editor and LISPX occurs in undoing. EDITHISTORY
is a list of only the last N commands, where N is the value of the ume-slice. However the editor provides

for undoing a/l changes made in a single editing session, even if that session consisted of more than N
edit commands. Therefore, the editor saves undo information independently of the EDITHISTORY on

a list called UNDOLST, (although it also stores each entry on UNDOLST in the field of the corresponding
event on EDITHISTORY.) Thus, the commands UNDQ, !UNDQ, and UNBLOCK, are not dependent on
EDITHISTORY, and in fact will work if EDITHISTORY=NIL, or even in a system which does not m
sontain LISPX at all. For example, UNDQ specifies undoing the last command on UNDOLST, even if that \ &
event no longer appears on EDITHISTORY. The only interaction between UNDO and the history list occurs N
when the user types UNDO followed by an event specification. In this case, the editor calls LISPXFIND .

to find the event, and then undoes the corresponding entry on UNDOLST. Thus the user can only undo

a specified command within the scope of the EDITHISTORY. (Note that this is also the oniy way UNDO
commands themselves can be undone, that is, by using the history feature, to specify the corresponding

event, e.g., UNDO UNDO.)

The implementation of the actual undoing is similar to the way it is done in LISPX: each command that
makes a change in the structure being edited does so via a function that records the change on a variable.
After the command has completed, this variable contains a list of all the pointers that have been changed
and their criginal contents. Undoing that command simply involves mapping down that list and restoring
the pointers.

%as indicated by their appearance on HISTORYCOMS. a list of the history commands. EDITDEFAULT in-
terrogates HISTORYCOMS before attempung spelling cortection. (All of the commands on HISTORYCOMS
are also on EDITCOMSA and EDITCOMSL so that they can be corrected if misspelled in the editor.) Thus
if the user defines a LISPXMACRO and wishes it to operate in the editor as well. he need simply add it
to HISTORYCOMS. For example, RETRIEVE is implemented as a LISPXMACRO and works equally well
in LISPX and the editor.

\
(\/

8.36

®

CHAPTER 9

ERRORS AND BREAK HANDLING

Occasionally, while a program is running, an error may occur which will stop the computation. A coding
mistake may have caused the wrong arguments to be passed to a function, or the programmer may have

‘not forseen a particular unusual situation which came up, causing a function to try doing something

illegal. Interlisp provides extensive facilides for detecting and handling error conditions, to enable testing,
debugging,and revising of imperfect programs.

Errors can be caused in different ways. As mentioned above, an Interlisp primitive function may signal an
error if given illegal arguments; for example, PLUS will cause an error if its arguments are not numbers. It
is also possible to interrupt a computation at any time by typing one of the “interrupt characters,” such as
control-D or control-E (the Interlisp-D interrupt characters are listed on page 18.1; those for Interlisp-10
on page 22.1). Finally, as an aid to debugging, the programmer can specify that certain functons should
cause an error automatically whenever they are entered (ses page 10.1). This allows examination of the
context within the computation.

When an error occurs, the system can either! reset and unwind the stack, or go into a “break”, an
environment where the user can examine the state of the system at the point of the error, and attempt to
debug the program. Within a break, Interlisp offers an extensive set of “break commands™, which assist
with debugging.

This chapter explains what happens when errors occur. Breaks and break commands are given which
allow the user to handle program errors. Finally, advanced facilities for modifying and extending the

error mechanism are presented. -

9.1 BREAKS

One of the most useful debugging facilities in Interlisp is the ability to put the system into a “break”,
stopping a computation at any point and allowing the user to interrogate the state of the worid and affect
the course of the computation. A break appears to the user like a top-level executive, except that a break
uses the prompt character “:” to indicate it is ready to accept input(s), in the same way that “«” is used
at the top-level. However, a break saves the environment where the break occurred, so that the user may
evaluate variables and expressions in the environment that was broken. In addition, the break program

recognizes a number of useful “break commands”, which provide an easy way to interrogate tife state of

. the broken computation.

Note: In Interlisp-D, the break package has been extended to include window operations (see page 20.10).

'The mechanism used for deciding whether to unwind the stack or to go into a break is described on
page 9.10. The user can modify this mechanism.

9.1

Breaks

Breaks may be eatered in several different ways. Some interrupt characters (page 9.17) automadcally
cause a break to be entered whenever they are typed. Functions errors may also cause a break, depending
on the depth of the computadon (see page 9.10). Finally, Interlisp provides functdons which make it
easy to “break” suspect functions so that they always cause a break whenever they are entered, to allow

examination and debugging (see page 10.4).

Within a break the user has access to all of the power of Interlisp; he caa do anything that he can do at
the top-level executive. For example, the user can evaluate an expression, see that the value is incorrect,
call the editor, change the functon, and evaluate the expression again, all without leaving the break, The
user can even type in commands to the programmer’s assistant (page 8.1), e.g. to redo or undo previously
executed events, including break commands.

Similarly, the user can prettyprint functions, define new functons or redefine old ones, load a file, compile
funcdons, dme a computadon, ete. In short, anything that he can do at the top level can be done while

.. inside of the break. In addidon the user can examine the stack (see page 7.1), and even force a return

sack to some higher funcdon via the funcdon RETFROM or RETEVAL,

It is important to emphasize that once a break occurs, the user is in complete control of the flow of
the computation, and the computation will not proceed without specific instruction from him. If the
user types in an expression whose evaluation causes an error, the break is maintained. Similarly if the
user aborts a computau’on initiated from within the break (by typing conmol-E), the break is maintained.
Only if the user gives one of the commands that exits from the break, or evaluates a foxm which does a
RETFROM or RETEVAL back out of BREAK1, will the computation continue.?

The basic functon of the break package is BREAK1. Note that BREAK1 is just another Interlisp function,
1ot a special sysiem feature like the interpreter or the garbage collector.lt has arguments, and returns a

_value, the same as any other function. The value returned by BREAK1 is called “the value of the break.”

The user can specify this value exphcnly by usmg the RETURN command described below. But in most
cases, the value of a break is given implicitly, via a GO or OK command, and is the result of evaluating
“the break expression,” BRKZXP, which is one of the arguments to BREAK1. For more information on
the ﬁmcuon BREAK1, see page 9.11.

The break expression, stored in the variable BRKEXP, is an expression equivalent to the computation that
would have taken place had no break occcurred. For example, if the user breaks on the function FQO, the
break expression is the body of the definidon of FOO. Whean the user types CK or GO, the body of FOOQ is
evaluated, and its vaiue returned as the value of the break, i.e., to whatever function called FOO. BRKEXP
is set up by the funcdon that created the call to BREAK1. For functions broken with BREAK or TRACE,

BRKEXP is equivalent to the body of the definition of the broken function (see page 10.4). For functions "

broken with BREAKIN, using BEFORE or AFTER, BRKEXP is NIL. For BREAKIN ARGUND, BRKEXP is
the indicated expression (see page 10 5).

BREAK1 recognizes a large set of break commands. These are typed in withou! parentheses. In order
to facilitate debugging of programs that perform input operations, the carriage return that is typed to

2Except that BREAK1 does not “turn off” control-D, ie., a control-D will force an immediate return back
to the top level

9.2

O

O

o}

ERRORS AND BREAK HANDLING

complete the GO, 0K, EVAL, etc. commands is discarded by BREAK1, so that it will not be part of the
input stream after the break.

GO

OK

EVAL

RETURN rForyM

-»

[Break Command])
Evaluates BRKEXP, prints this value, and rewurns it as the vaiue 'of the break.
Releases the break and allows the computation to proceed.

[Break Command]
Same as GO except that the value of BRKEXP is not printed.

[Break Command]
Same as OK except that the break is maintained after the evaluation. The value
of this evaluadon is bound to the local variable ! VALUE, which the user can
interrogate. Typing GO or OK following EVAL will not cause BRKEXP to be
reevaluated, but simply return the value of {VALUE as the value of the break.
Typing another EVAL will cause reevaluation. EVAL is useful when the user is not
sure whether the break will produce the correct value and wishes to examine it
before continuing with the computation.

0

[Break Command]
FORM Is evaluated, and returned as the value of the break. For example, one could
use the EVAL command and follow this with RETURN (REVERSE !VALUE).

[Break Command]
Calls ERROR! and aborts the break, making it “go away™ without returning a vaiue.
This is a useful way to unwind to a higher level break, All other errors, including
those encountered while executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

The following four commands refer to *“the broken function.” This is the function that caused the break,
whose name is stored in the BREAK1 argument BRKFN.

EVAL

1GO

10K

uB

[Break Command]
The broken function is first unbroken, then the break expression is evaluated (and
the value stored in ! VALUE), and then the function is rebroken. This command is
very useful for dealing with recursive functions.

[Break Commund]
E,quwa.lem: to {EVAL followed by GO The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited with
the value typed.

[Break Command]
Equivalent to !EVAL followed by OK. The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited.

[Break Command]}
Unbreaks the broken functon.

[Break Commaznd]
Resets the variable LASTPOS, which establishes a context for the commands 7=,
ARGS, BT, BTV, BTV®, £DIT, and IN? described below. LASTPQS is the position

9.3

Breaks

of a function call on the stack. It is inidaiized to the function just before the call
to BREAK1, i.e., (STKNTH -1 'BREAK1).3

@ treats the rest of the teletype line as its argument(s). It first resets LASTPOS to
(STKNTH =1 'BREAK1) and then for each atom on the line, @ searches down
the stack for a call to that atom. The following atoms are treated specialiy:

e Do not reset LASTPOS to (STKNTH -1 'BREAK1) but leave it as it was,
‘and continue searching from that point.

a number N
If negative, move LASTPOS down the stack N frames. If positdve, move
LASTPOS up the stack N frames.

4 . The next atom on the line (which should be a2 number) specify that the
previous atom should be searched for that many tmes. For exampie, “@
FOO / 3" is eguivalent to “@ FOO FQO FOO™.

Resets LASTPOS to the value of the next expression, e.g., if the value
of FOO is a stack pointer, “@ = FOO FIE" will search for FIE in the
environment specified by (the value of) FQO.

For exampie, if the push-down stack looks like:

BREAK1 9

FOO /8]

COND [7]

FIE /6]

COND /5]

FIE [4]

COND /3] -
FIE [2]

FUM [l

then “@ FIE COND” will set LASTPOS to the position corresponding to /5/; “@ @
COND™ will then set LASTPOS to /3/; and “@ FIE / 3 -1"to//]

If @ cannot successfully complete a search for function rFN, it searches the stack
again from that point looking for a call to a function whose name is close to that
of FN, in the sense of the spelling corrector (page 15.13). If the search is stll
unsuccessful, @ types (FN NOT FOUND), and then aborts. '

When @ finishes, it types the name of the function at LASTPOS; i.e., (STKNAME
LASTPOS). . _

@ can be used on BRKCOMS (see page 9.12). In this case, the nex: command on
BRKCOMS is treated the same as the rest of the teletype line.

3When control passes from BREAK1, e.g. as a result of an EVAL, 0K, GO, REVERT, + command. or via
a RETFROM or RETEVAL typed in by the user, (RELSTK LASTPOS) is executed to release this stack

9.4

Y

—~

-~

S~

OPB

ERRORS AND BREAK HANDLING

[Break Command]
This is a multi-purpose command.* Its most common use is to interrogate the
value(s) of the arguments of the broken function. For example, if FOO has three
arguments (X Y Z), then typing 7= to a break on FOO will produce:

: 7=

X = value of X
Y = value of ¥
Z = valueof Z

?= operates on the rest of the teletype line as its arguments. If the line is empty,
as in the above case, it operates on all of the arguments of the broken function. If-
the user types ?= X (CAR Y), he will see the value of X, and the value of (CAR
Y).5 The difference between using ?= and typing X and (CAR Y) directly to

' BREAK1 is that ?= evaluates its inputs as of the stack frame LASTPOS, ie., it uses

STKEVAL. This provides a way of examing variables or performing computations
as of a particular point on the stack. For example. @ FOO / 2 followed by ?= X
will allow the user to examine the value of X in the previous call to FOOQ, etc.

7= also recognizes numbers as referring to the correspondingly numbered argument,
ie., it uses STKARG in this case. Thus

:@ FIE _ :
FIE -
t?7= 2

will print the name and value of the second argument of FIE.

?= can also be used on BRKCOMS (page 9.12, in which case the next command
on BRKCOMS is treated as the rest of the teletype line. For example, if BRKCOMS
is (EVAL ?= (X Y) GO), BRKEXP will be evaluated, the values of X and Y
printed, and then the function exited with its value being printed.

[Break Command]
Prints the bindings of a given variable. Similar to 7=, except ascends the stack
starting from LASTPQS, and, for each frame in which the given variable is bound,
prints the frame name and value of the variable (with PRINTLEVEL reset to (2

. 3)), eg

:PB FOO
@ FN1: 3
@ FN2:. 10

@ - TOP: NOBIND

4In fact, 2= is a universal mnemonic for displaying argument names and their corresponding values. In
additon 1o being a break command, 7= is an edit macro which prints the argument names and values
for the current expression (page 17.37), and a read-macro (actually ? is the read-macro character) which
does the same for the current level list being read.

SThe valffe of each variable is printed with the function SHOWPRINT (page 6.17), so that if

SYSPRETTYFLG=T, the value will be prettyprinted.

9.5

Breaks

PB is also a programmer’s assistant command (page 8.14) that can be used when
not in a break. PB is impiemented via the funcion PRINTBINDINGS.

BT {Break Command]
Prints a backtrace of function names only starting at LASTPOQS. The several nested
calls in system packages such as break, edit, and the top level exegutive appear as
the single entries **8BREAK®**, **EDITOR®®*, and **TOP** respectively.

BTV {Break Command]
Prints a backtrace of function names with variables beginning-at LASTPQS.

The value of each variable is printed with the funcion SHOWPRINT (page 6.17),
so that if SYSPRETTYFLG=T, the value will be prettyprinted.

- BTV+ [Break Command]

Same as BTV except also prints local variables and arguments to SUBRs.

BTV . [Break Command}]
Same as BTV except prints arguments to SUBRs, local variables, and temporaries
of the interpreter, ie. eval blips (see page 7.10).

BTV! J [Break Command]
Same as BTV except prints everything on the stack.

BT, BTV, 8TV+, BTV®, and BTV! all take optional functonal arguments. These arguments are used to
choose functions to be skipped on the backtrace. As the backwrace scans down the stack, the name of
each stack frame is passed to each of the functional arguments to the backmrace command. If any of
these functions returns a non-NIL value, then that frame is skipped., and not shown in the backtrace. For
example, BT SUBRP will skip all SUBRs, BTV (LAMBDA (X) (NOT (MEMB X FOOFNS))) will skip
all but those functcns on FOOFNS. If used on BRKCOMS (page 9.12) the functional argument is no longer
optional, i.e., the next element on BRKCOMS must either be a list of functional arguments. or NIL if no
funcdonal argument is to be applied.

For BT, BTV, BTV+, BTV®, and BTV!, if contol-P is used to changz a printlevel during the backace,
the printlevel will be restored after the backtrace is completed.

The value of BREAKDELIMITER, inidally "< ", is printed to delimit the output of ?= and backtrace
commands. This can be reset (e.g. to ", ") for more linear output

ARGS [Break Command]
Prints the names of the varidbies bound at LASTPOS, i.e., (VARIABLES LASTPOS)
(page 7.5). For most cases, these are the arguments to the function entered at that
position, i.e., (ARGLIST (STKNAME LASTPOS)). - .

REVERT - [Break Command]
Goes back to position LASTPOS on stack and reenters the functon cailed at that
point with the arguments found on the stack. If the function is not aiready broken,
REVERT first breaks it, and then unbreaks it after it is reentered.

REVERT can be given the position using the conventions described for @, e.g..
REVERT FOO -1 is equivalent to @ FOO -1 followed by REVERT.

REVERT is useful for restarting a computation in the situation where a bug is

9.6

N

>

r

.f‘,;)

®

CRIGIXAL

ERRORS AND BREAK HANDLING

discovered at some point below where the problem actually occurred. REVERT
essentially says “go back there and start over in a break.” REVERT will work
correctly if the names or arguments to the function, or even its function type, have
been changed.

: [Break Command]
For use in conjunction with BREAKMACROS (see page 9.12). Form is (ORIGINAL
. COMS). coMms are executed without regard for BREAKMACROS. Useful for
redefining a break command in terms of itself.

The following two commands are for use only with unbound atoms or undefined function breaks.

= FORM

-> EXPR

[Break Command]
Can only be used in a break following an unbound atom error. Sets the atom to
the value of FORM, exits from the break returning that value, and continues the
computation, e.g.,

UNBOUND ATOM

(FOO BROKEN)
= (COPY FIE)

sets FOO and goes on.
Note: FOrRM may be given in the form FNfARGs].

[Break Command]
Can be used in a break following either with unbound atom error, or an undefined
funcdon error. Replaces the expression containing the error with EXPR (not the
value of ExPr), and continues the computation. -> does not just change BRKEXP;
it changes the functon or expression containing the erroneous form. In other
words, the user does not have to perform any additional editing.

For example,

UNDEFINED CAR OF FORM

(FOO1 BROKEN)
:=> FOO

changes the FOO1 to FOO and continues the computation. ExPR need not be
atomic, e.g.,

UNBOUND ATOM

(FOO BROKEN)
:-> (QUOTE FOO)

For undefined function breaks. the user can specify a function and initial arguments,
e.g..

UNDEFINED CAR OF FORM

- 9.7

Breaks

(MEMBERX BROKEN)
:~> MEMBER X

Note that in the case of a undefined function error cccurring immediately following
a call to APPLY (e.z., (APPLY X Y) where the value of X is FOQ and FOQ is
undefined), or a unbound atom error immediately following a call to EVAL (e.g.
(EVAL X), where the value of X is FOO and FOO is unbound), there is no
expression containing the offending atom. In this case, -> cannot operate, so ? is
printed and no action is taken.

EDIT [Break Command]
Designed for use in conjunction with. breaks caused by errors. Facilitates edm.ng
the expression causing the break:

NON-NUMERIC ARG
NIL

(IPLUS BROKEN)
+EDIT

IN FOO...

(IPLUS X Z)

EDIT

*(3Y)

*0K

FOOQ -

and the user can continue by typing 0K, EVAL, etc.

This command is very simple conceptually, but complicated in its implementation by all of the excepuonal
cases involving interacdons with compiled functions, breaks on user functons, error breaks, breaks within
breaks, et al. Therefore, we shall give the following simplified explanation which will account for 90% of
the situations arising in actual usage. For those others, EDIT will print an apnropnate failure message

- nd return to the break.

EDIT begins by searching up the stack beginning at LASTPOS (set by @ command, initially position of the
break) looking for a form, i.e., an internal call to EVAL. Then EDIT continues from that point looking for
a call to an interpreted funcdon, or to EVAL. [t then calls the editor on either the EXPR or the argument
to EVAL in such a way as to look for an expression EQ to the form that it first found. It then prints
the form, and permits interactive editing to begin. Note that the user can then type successive 0’s to the
editor to see the chain of superforms for this computation.

[f the user exits from the edit with an OK, the break expression is reset, if possible, so that the user can
continue with the computation by simply typing OK. (Note that evaluating the new BRKEXP will involve
reevaluating the form that causes the break. so that if (PUTD (QUOTE (F00)) BIG-COMPUTATION)
were handled by EDIT, BIG-COMPUTATION would be reevaluated.) However, in some situations, the
break expression cannot be reset. For example, if a compiled functcn FOO incorrectly called PUTD and
caused the error ARG NOT ATOM followed by a break on PUTD, EDIT might be able to find the form
headed by FOO, and also find thar form in some higher interpreted function. But after the user corrected
the problem in the FOO-form, if any, he would stll not have in any way informed EDIT what to do about
the immediate problem, i.e., the incorrect call to PUTD. However, if FOO were interpreted [EDIT would
find the PUTD form itself. so that when the user corrected that form, EDIT could use the new corrected

9.8

qi’j

-

Ie

9,

I
\

Q)

v

ERRORS AND BREAK HANDLING

form to reset the break expression. The two cases are shown below:
If FOO is compiled:

FOO compiled FOO interpreted

[Break Command]

Similar to EDIT, but just prints parent form, and superform, but does not call

ARG NOT ATOM : ARG HOT ATOM
(FUM) _ (PUTD BROKEN)
(PUTD BROKEN) ‘ :EDIT
:EDIT IN FOO...
IN FIE... . (PUTD X)
(FOO X) ‘ EDIT
EDIT 2(2 (CAR X))
=(2 (CAR X)) “0K
s0K :0K
NOTE: BRKEXP NOT CHANGED PUTD
FIE
i1 T=
= (FUH)

:(SETQ U (CAR U))
FUM
:0K
PUTD
IN?

editor, e.g.,

ATTEMPT TO RPLAC NIL

T

. (RPLACD BROKEN)
¢ IN?

FOO: (RPLACD X Z)

Although EDIT and IN? were designed for error breaks, they can also be useful for user breaks. For
example, if upon reaching a break on his function FOO, the user determines that there is a problem in
the call to FOO, he can edit the calling form and reset the brezk expression with one operation by using

EDIT. The following two protocol’s with and without the use of EDIT, illustrate this:

Without EDIT: With EDIT:

(FOO BROKEN) (FOO BROKEN)
-?= 1 ?7=

X = (ABC) = (A B C)
Y = D Y =D

:BT :EDIT

=(SW 2 3)

FOO *0K

SETQ " FIES®

COND : 0K

PROG FOO

FIE

9.9

When to Break

COND find which function
FOO is called from

. (aborted with *tE)

:EDITF(FIE) ’

EDIT

*F FOO P

(FOO V U) edit it

*(SW 2 3)

*0K

FIE

:(SETQ Y X) reset X and Y

(A B C)
:(SETQQ X D)

-~ 0

2

D
(A B C) check them

X
Y
: 0K
FOO

9.2 WHEN TO BREAK

When an error occurs, the system has to decide whether to reset and unwind the stack, or go isto a
break. In the middle of a complex computation, it is usually helpful to go into a break, so that the
user may examine the state of the computation. However, if the computation has only proceeded a lLittle
when the error occurs, such as when the user mistypes a function name, the user would normally just
terminate a break, and it would be more convenient for the system to simply cause an error and unwind
the stack in this simatuation. The decision over whether or not to induce a break depends on the depth
of computation, and the amount of time invested in the computation. The actual algorithm is described
‘1 detail below; suffice it to say that the parameters affecting this decision L:ve been adjusted empirically
.50 thar trivial type-in errors do not cause breaks, but deep errors do.

(BREAKCHECK ERRORPOS ERXN) {Function]
BREAKCHECK is called by the error routine to decide whether or not to induce
a break when a erTor occurs. ERRORPOS is the stack position at which the error
occurted; ERxXW is the error number. Rerurns T if a break should occur; NIL
. otherwise,

BREAKCHECK returns T (and a break occurs) if the “computation depth” is greater
than or equal to HELPDEPTH. HELPDEPTH is initally set to 7, arrived at empirically
by taking into account the overhead due to LISPX or BREAK.

If the depth of the computation is less than HELPDEPTH, BREAKCHECK next
_calculates the length of time spent in the computation. If this time is greater than

§X and Y have not been changed. but BRKEXP has.

9.10

/'f\‘~ 3

,\
@,

ERRORS AND BREAK HANDLING

HELPTIME milliseconds, initially set to 1000, then BREAKCHECK returns T (and a
break occurs), otherwise NIL.

BREAKCHECK determines the *“computation depth” by searching back up the stack looking for an
ERRORSET frame (ERRORSETs indicate how far back unwinding is to take place when an error occurs,
see page 9.15). At the same time, it counts the number of internal calls to EVAL. As soon as (if)
the number of calls to EVAL exceeds HELPDEPTH, BREAKCHECK immediately stops searching for an
ERRORSET and returns T. Otherwise, BREAKCHECK continues searching undl either an ERRORSET is
found or the top of the stack is reached. (Note: If the second argument to ERRORSET is INTERNAL, the
ERRORSET is ignored by BREAKCHECK during this search.) BREAKCHECK then counts the number of
function calls between the error and the last ERRORSET, or the top of the stack. The number of function
calls plus the number of calls to EVAL (already counted) is used as the “computation depth”.

BREAKCHECK determines the computation time by subtracting the value of the variable HELPCLOCK from

the value of (CLOCK 2), the number of milliseconds of compute time (see page 14.10). HELPCLCCX --

is rebound to the current value of (CLOCK 2) for each computation typed in to LISPX or to a break.
The time criterion for breaking can be suppressed by setting HELPTIME to NIL (or a very big number),
or by setring HELPCLOCK to NIL. Note that setting HELPCLOCK to NIL will not have any effect beyond
the current computation, because HELPCLOCK is rebound for each computation typed in to LISPX and
BREAK.

The_user can suppress all error breaks by setting the top level binding of the variable HELPFLAG to
NIL using SETTOPVAL (HELPFLAG is bound as a local variable in LISPX, and reset to the global value
of HELPFLAG on every LISPX line, so just SETQing it will not work.) If HELPFLAG=T (the inital
value), the decision whether to cause an error or break is decided based on the computation time-and
the computation depth, as described above. Finally, if HELPFLAG=BREAK!, a break will always occur
following an error.

9.3 BREAK1

The basic function, of the break package is BREAK1, which creates a break. A break appears to be a
regular executive, with the prompt “: ", but BREAK! also detects and interpretes break commands (page
8.3).

(BREAK1 BRKEXP BRKWEEN BRKFN BRKCOMS BRKTYPE ERRORN) [NLambda Function]
If BRKWHEN is NIL, BRKEXP is evaluated and returned as the value of BREAKL.
Otherwise a break occurs and commands are then taken from BRKCOMS or the
terminal and interpreted. All inputs not recognized by BREAK1 are simply passed
on to the programmer’s assistant.

When a break occurs, if ERRCRN is a list whose CAR is a number, ERRORMESS
is called to print an identfying message. If ERRORN is a list whose CAR is not
a number, ERRORMESS1 is called. Otherwise, no preliminary message is printed.
Following this, the message (BRKFN broken) is printed. '

Since BREAK1 itself calls functions, when one of these is broken. an infinite loop
would occur. BREAK1 derects this situation, and prints Break within a break

9.11

BREAK1

on FN, and then simply calls the function without going into a break.

The commands GO, !GO, 0K, !0K, RETURN and + are the only ways to leave
BREAK1l. The command EVAL causes BRKEXP to be evaluated, and saves the
value on the variable ! VALUE. Other commands can be defined for BREAK1 via
BREAKMACROS (below).

BRKTYPE is HIL for user breaks, INTERRUPT for control-H breaks, and
ERRORX for error breaks. For breaks when BRKTYPE is not NIL, BREAK1 will
clear and save the input buffer. If the break returns a value (i.e., is not aborted
via + or control-D) the input buffer will be restored.

The fourth argument to BREAK1 is BRxKCOMS, a list of break commands that BREAK1 interprets and
executes as though they were keyboard input. One can think of BRKCOMS as another input file which

~ always has priority over the keyboard. Whenever BRxkcoMs=NIL, BREAK1 reads its next command from

the keyboard. Whenever BRKCOMS is not NIL, BREAK1 takes (CAR BRKCOMS) as its next command
and sets BRKCOMS to (CDR BRKCOMS). For example, suppose the user wished to see the value of the
variable X after a functon was evaluated. ‘He could set up a break with BRKCcoMs=(EVAL (PRINT
X) 0K), which would have the desired effect. Note that if BrRKCOMS is not NIL, the value of a break
command is not printed. If you desire to see a value, you must print it yourself, as in the above example.
The function TRACE (page 10.4) uses BRXCOMS: it sets up a break with two commands; the first one
prints the arguments of the function, or whatever the user specifies, and the second is the command GO,
which causes the function to be evaluated and its value printed. .

Note: If an error occurs while interpreting the BRKCOMS commands, BRKCOMS is set to NIL, and a full
interactive break occurs.

The break package has a facxhty for redirecting ouput to a file. All output resulting from BRKCOMS will
be output to the value of the variable BRKF ILE, which shouid be the name of an open file. OQutput due
to user typein is not affected, and will always go to the terminal. BRKFILE is initdally T.

BREAKMACROS [Variable]
BREAKMACROS is a list of the form ((NAME; COM;; .-+ COMy;) (NAME,
COMgy; +++ COMj,;) --+). Whenever an atomic command is given to BREAK1, it

first searches the list BREAKMACROS for the command. If the command is equal
0 NAME;, BREAK1 simply appends the corresponding commands to the front of
BRKCOMS, and gdes on. If the command is not found on BREAKMACROS, BREAK1
then checks to see if it is one of the built in commands, and finally, treats it as a
functon or variable as before.’

Example: The command ARGS could be defined by including on BREAKMACROS
the form: (ARGS (PRINT (VARIABLES LASTPOS T)))

(BREAKREAD TYPE)) [Function}
Useful within BREAKMACRCS for reading arguments. If BRKCOMS is non-NIL (the
- command in which the call to BREAKREAD appears was not typed in), returns the

next break command from BRKCOMS, and sets BRKCOMS to (CDR BRKCOMS).

7If the command is not the name of a defined function, bound variable, or LISPX command, BREAK1 will
attempt spelling correction using BREAKCOMSLST as a spelling list If spelling correction is unsuccesstul.
BREAK1 will go ahead and call LISPX anyway, since the atom may also be a misspelled history command.

9.12

N
,‘-"\“\/

o>

s

)

~—

| ERRORS AND BREAK HANDLING

If BRKCOMS is NIL (the command was typed in), then BREAKREAD returns either
the rest of the commands on the line as a list (if TyPE=LIHNE) or just the next
command on the line (if TYPE is not LINE).

For example, the BT command is defined as (BAKTRACE LASTPOS NIL (BREAKREAD

"LINE) 0 T). Thus, if the user types 8T, the third argument to BAKTRACE will
be NIL. If the user types BT SUBRP, the third argument will be (SUSRP).

BREAKRESETFORMS [Variable]
If the user is developing programs that change the way a user and Interlisp normally
interact (e.g., change or disable the interrupt or line-editing characters, turn off
echoing, etc.), debugging them by breaking or tracing may be difficult, because
Interlisp might be in a “funny™ state at the time of the break. BREAKRESETFORMS
is designed to solve this problem. The user puts on BREAXRESETFORMS
expressions suitable for use in copjunction with RESETFORM or RESETSAVET
(page 9.19). When a break occurs, BREAK1 evaluates each expression on
BREAKRESETFORMS before any interaction with the terminal, and saves the
values, When the break expression is evaluated via an EVAL, OK, or GO, BREAK1
first restores the state of the system with respect to the various expressions on
BREAKRESETFORMS. When (if) control returns to BREAK1, the expressions on
BREAKRESETFORMS are aggain evaluated, and their values saved. When the break
is exited with an OK, GO, RETURN, or + command, by typing conwol-D, or by 2
RETFROM or RETEVAL typed in by the user,® BREAK1 again restores state. Thus
the net effect is to make the break invisible with. respect to the user’s programs,
but nevertheless allow the user to interact in the break in the normal fashion.

As mentdoned earlier, BREAK1 detects “Break within a break™ situations, and avoids
infinite loops. If the loop occurs because of an error, BREAK1 simply rebinds
BREAKRESETFORMS to HIL, and calls HELP. This situation most frequently occurs
when there is a bug in a function called by BREAXRESETFQRMS,

Note: SETQ expressions can also be included on BREAKRESETFORMS for saving’
and restoring system parameters, e.g. (SETQ LISPXHISTORY NIL), (SETQ
DWIMFLG MIL), etc. These are handled specially by BREAK1 in that the current
value of the variable is saved before the SETQ is executed, and upon restoration,
the variable is set back to this value,

9.4 ERROR FUNCTIONS

. . [Function]
The entry to the error routines. If ERxar=NIL, (ERRORHN) is used to determine
the error-message. Otherwise, (SETERRORN (CAR ErxnM) (CADR ERXM)) i
performed. “setting” the error number and argument. Thus following either

(ERRORX =rxnM)

8All user type-in is scanned in order to make the operations undoable as described on page 8.22. Al
this point. RETFROMs and RETEVALs are also noticed. However, if the user types in an expression
which calls a functon that then does a RETFROM, this RETFROM will not be noticed, and the effects of
BREAKRESETFORMS will not be reversed.

9.13

Error Functions

(ERRORX '(10 T)) or (PLUS T), (ERRORN) is (10 T). ERRORX calls
BREAKCHECK, and either induces a break or prints the message and unwinds to
the last ERRORSET (page 9.10). Note that ERRORX can be called by any program
to intentionally induce an error of any type. However, for most applicatdons, the
function ERROR will be more useful.

(ERROR MESS1 MZSS2 NOBREAK) [Function]}

Prints mzss: (using PRIN1), followed by a space if MESS: is an atom, otherwise a
carriage return. Then MESs2 is printed (using PRIN1 if MxEss2 is a string, otherwise
PRINT). For exampie, (ERROR "NON-NUMERIC ARG" T) prints

NON-NUMERIC ARG
T

and (ERROR 'FQOO "NOT A FUNCTION") prints FOO NOT A FUNCTION. If
both MESs: and MESs2 are NIL, the message printed is simply ERROR.

If NoBrEAX =T, ERROR prints its message and then calls ERROR!.® Othemnse it
calls (ERRORX '(17 (MESs:t . MEss2))), i.e., generates error number 17, in
which case the decision as to whether or not to break, and whether or not to print
a message, is handled as per any other error.

(HELP MESS1 MESS2 BRKTYPE) [Function]

(SHOULDNT azss)

- _ (ERROR!)

Prints MESs1 and MESs2 similar to ERROR, and then calls BREAKI passing BRKTYPE
as the BRKTYPE argument If both MEss: and MEsSs2 are NIL, HELP! is used
for the message. HELP is a convenient way to program a default condidon, or to
terminate some portion of a pregram which the computation is theoresically never
supposed to reach.

[Function]
Useful in those simations when a program detects a gondition that should
never occur. Calls HELP with the message arguments MESS and "Shouldn't
happen!" and a BRKTYPE argument of 'ERRORX.

{Functon]

Programmable conwol-E; immediately returns from last ERRORSET or resets.

(RESET) [Function]
Programmabie controi-D; immediately rerurns to the top level

(ERRORN) [Function]
Returns information about the last error in the form (NUM EXP) where NUM is
the error number (page 9.22) and ExP is the expression which was (would have
been) printed out after the error message. For example, following (PLUS T),
(ERRORN) would return (10 T).

(SETERRORN NUM MESS) [Function]

Sets the value returned by ERRORN 0 (NUM MESS).

Suniess the value of HELPFLAG is BREAK!, in which case a break will always occur (ses page 9.11).

9.14

D

4

e

!

O

(ERRORMESS U)

ERRORS AND BREAK HANDLING

[Function]
Prints message corresponding to an ERRORN that yielded v. For example,
(ERRORMESS '(10 T)) would print

HON-NUMERIC ARG
T

(ERRORMESS1 MESS1 MESS2 MESS3) [Function]

(ERRORSTRING-N)

Prints the message corresponding to a HELP or ERROR break.

[Function]
Returns as a new string the message corresponding to error number N, e.g.,
(ERRORSTRING 10)="NON-RUMERIC ARG".

(ERRORSET FORM FLAG —) [Function]

(ERSETQ FORM)

.(NLSETQ rorM)

NLSETQGAG

Performs (EVAL rorMm). If no error occurs in the evaiuation of FORM, the value
of ERRORSET is a list containing one element, the value of (EVAL FORM). Ifan
error did occur, the value of ERRORSET is NIL.

Note that ERRORSET is a lambda function, so its arguments are evaluated before

it is entered, i.e., (ERRORSET X) means EVAL is called with the value of X. In

most cases, ERSETQ and NLSETQ (described below) are more useful.

The argument FLAG controls the printing of error messages if an error occurs:

If FLaG=T, the error message is printed; if FLAG=NIL it is not (unless
NLSETQGAG is NIL, see below). Note that if a break occurs below an ERRORSET,
the message is printed regardless of the value of FLAG.

If FLAG=INTERNAL, this ERRORSET is ignored for the purpose of deciding
whether or not to break or print a message (see page 9.10). However, the
ERRORSET is in effect for the purpose of flow of control, i.e., if an error occurs,
this ERRORSET returns NIL.

If FLAG=NOBREAK, no break will occur, even if the time criterion for breaking
is met. Note that FLAG=NOBREAK will nor prevent a break from occurring if
the error occurs more than HELPDEPTH function calls below the errorset, since
BREAKCHECK will stop searching before it reaches the ERRORSET. To guarantes
that no break occurs, Lhe user would also either have to reset HELPDEPTH or
HELPFLAG.

[NLambda Function]
Performs (ERRORSET 'rorm T), evaluating FORM and printing error messages.

[NLambda Function]
Performs (ERRORSET 'FomrM NIL), evaluating FORM without printing error
messages. :

[Variable]
If NLSETQGAG is NIL. error messages will print, regardless of the FLAG
argument of ERRORSET. NLSETQGAG effectively changes all NLSETQs to ERSETQs.
NLSETQGAG is initally T.

o

o
'8

o

Error Handling by Error Type

9.5 ERROR HANDLING BY ERROR TYPE

Occasionally the user may want to treat certain types of errors differently from others, e.g., always break,
never break, or perhaps take some corrective action. This can be accomplished via ERRORTYPELST:

ERRORTYPELST {Variable}
ERRORTYPELST is a list of elements of the form (NUM FORM; --- FORMy),
where NUM is one of the error numbers (page 9.22). During an error,
after BREAKCHECK has been completed, but before any other action is taken,
ERRORTYPELST is searched for an element with the same error number as that
causing the error. If one is found, the corresponding forms are evaluated, and if
the last one produces a non-NIL value, this value is substiruted for the offender,
and the function causing the error is reentered.

hthm ERRORTYPELST entries, the following variables may be useful

ERRORMESS [Variable]
CAR is the error number, CADR the “offender”, e.g., (10 MIL) corresponds to a
NON-NUMERIC ARG NIL error.

ERRORPOS [Variable]
Stack pointer to the functon in which the error occurred, e.g., (STKNAME
ERRORPQOS) might be IPLUS, RPLACA, INFILE, etc.

Note: If the error is going to be handled by a RETFROM, RETTO, or 2 RETEVAL
in the ERRORTYPELST eatry, it probably is a good idea to first release the stack
pointer ERRORPQS, e.g. by performing (RELSTK ERRORPOS).

BREAKCHK [Variable]
Value of BREAKCHECK, i.e., T means a break will occur, NIL means one will not

This may be reset within the ERRORTYPELST enty.

PRINTMSG [Variable]
If T, means print error message, if NIL, don't print error mescage, i.e., corresponds
to second argument to ERRORSET. The user can force or suppress the prindng of
error message for various errortypes by including on ERRO RTYPELST an expression
which exphcxtly sets PRINTMSG.

For example, putting

[10 (AND (NULL (CADR ERRORMESS))
(SELECTQ (STKNAME ERRORPOS)
((IPLUS ADD1 SUB1) 0)
(ITIMES 1)
(PROGN (SETQ BREAKCHK T) NIL]

on ERRORTYPELST would specify that whenever a NON-NUMERIC ARG - NIL error occurred, and the
functon in question was IPLUS, ADD1, or SUB1. 0 should be used for the NIL. If the function was
ITIMES. 1 should be used. Otherwise, always break. Note that the latter case is achieved not by the
value returned. but by the effect of the evaluation, i.e., seuwing BREAKCHK to T. Similarly, (16 (SETQ
BREAKCHK NIL)) would prevent END OF FILE errors from ever breaking.

9.16

®

O

-

ERRORS AND BREAK HANDLING

ERRORTYPELST is inidally ((23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG))),
which causes SPELLFILE to be called in case of a FILE NOT FOUND error (see page 15.20). If
SPELLFILE is successful, the operaton will be reexecuted with the new (corrected) file name.

9.6 INTERRUPT CHARACTERS

Errors and breaks can be caused by errors within functions, or by explicitly breaking a function. The user
can also indicate his desire to go into a break at while a program is running by typing certain control
characters known as “interrupt characters”. The interrupt characters in Interlisp-D are listed on page 18.1;
those in Interlisp-10 are listed on page 22.1.

The user can disable and/or redefine Interlisp interrupt characters, as well as define new interrupt
characters. Interlisp-10 is initialized with 9 interrupt channels: RESET (control-D), ERROR (control-E),
BREAK (contol-B), HELP (control-H), PRINTLEVEL (control-P), CONTROL-T (control-T), RUBOUT (del),
STORAGE (control-S), and OUTPUTBUFFER (control-0). Interlisp-D does not have the STORAGE and
OUTPUTBUFFER interrupt channels, and has the additional channel RAID (control-C). Each of these
channels independently can be disabled, or have a new interrupt character assigned to it via the funcdon
INTERRUPTCHAR described below. In addition, the user can enable up to 9 new interrupt channels, and
associate with each channel an interrupt character and an expression to be evaluated when that character
is typed.

User interrupts can be either “hard” or “soft”. A “hard” interrupt is like control-E or control-D: it takes
place as soon as it is typed. A soft interrupt is like control-H; it does not occur untl the next function
call. Soft interrupts can always be safely continued from. Hard interrupts rip the system out of the
function currently being executed and unwind back to the last function call, i.e. part of the computation
that was interrupted is lost and cannot be continued.

Hard interrupts are implemented by generating error number 43, and retrieving the corresponding form
from the list USERINTERRUPTS once inside of ERRORX. Soft interrupis are implemented by calling
INTERRUPT with an appropriate third argument, and then obtaining the corresponding form from
USERINTERRUPTS. As soon as a soft interrupt character is typed. Interlisp clears and saves the input
buffers, and then rings the bell. Afier the interrupt form is evaluated, the input buffers are restoresd.
In either case, if a character is enabled as a user interrupt, but for some reason it is not found on
USERINTERRUPTS, an UNDEFINED USER INTERRUPT error will be generated.

(INTERRUPTCHAR CHAR TYP/FORM HARDFLG) [Function]
Defines CEAR as an interrupt character. If CHAR was previously defined as an
interrupt character, that interpretation is disabled.

CHAR is either a character or a character code (as remurned by CHCON1). TENEX
requires that interrupt characters be one of control-A, B....Z, space, esc(alt-mode),
rubout(delete), or break. '

If TyP/FORM=NIL, CHAR is disabled.

If TYyP/FORM=T, the current state of CHAR is returned without changing or
disabling it '

If TvP/FORM is one of the § literal atoms HELP, PRINTLEVEL, STORAGE, RUBQUT.

9.17

Changing and Restoring System State

ERROR, RESET, OUTPUTBUFFER, or BREAK, then INTERRUPTCHAR assigns CHAR
to the indicated Interlisp interrupt channel, (reemabling the channel if previously
disabled).)

If TYP/FORM is any other literal atom, CHEAR is enabled as an interrupt character
that when typed causes the atom TYP/FORM to be immediately set to T.

If TYP/FORM is a list, CEAR is enabled as a user interrupt character, and TYP/FORM
is the form that is evaluated when CHAR is typed The interrupt will be hard if
HARDFLG=T, otherwise soit

(INTERRUPTCHAR T) restores all Interlisp channels to their original state, and
disables ail user interrupts.

INTERRUPTCHAR returns an expression which, when given as an argument to

Therefore, INTERRUPTCHAR can be used in comjunction with RESETFORM or
RESETLST (page 9.20).

INTERRUPTCHAR is undoable.

(RESET.INTERRUPTS PERMITTEDINTERRUPTS SAVECURRENT?) [Funcdon]
PERMITTEDINTERRUPTS is a list of interrupt character settings to be performed,
each of the form (¢cEArR . TYP/FORM). The effect of RESET.INTERRUPTS
is as if (INTERRUPTCHAR cHAR TYP/FORM) were performed for each item
on PERMITTEDINTERRUPTS, and (INTERRURTCHAR OTHERCHAR NIL) were
performed on every other existing interrupt character.

If SAVECURRENT? is non-NIL, then RESET. INTERRUPTS returns the current state
. of the interrupts in a form that could be passed to RESET . INTERRUPTS, otherwise

it returns NIL. This can be used with a RESET. INTERRUPTS that appears in a

RESETFQORM, so that the list is built at “entry”, but not upon “exit”.

(INTERRUPTABLE FLAG) [Function]
if FLAG=NIL, tumns interrupt off. If FLAG=T, tumns interrupt on. Value is
previous setting. INTERRUPTABLE compiles open.

Note: Any interrupt character typed while interrupts are off is treated the same as any other character,
i.e. placed in the input buffer, and will not cause an interrupt when interrupts are turned back on.

(INTERRUPTABLEP) [Function]
(Interlisp-10) Returns T if interrupts are enabled; NIL if disabled.

9.7 CHANGING AND RESTORING SYSTEM STATE

In Interlisp. a computation can be interrupted/aborted at any point due to an error, or more forcefully,
because a control-D was typed, causing return to the top level. This situation creates problems for
programs that need to perform a computation with the system in a “different state™, e.g., different radix,
inpur file, readtable, etc. but want to “protect” the calling environment, i.e., be able 1o restore the state

9.18

.
INTERRUPTCHAR, will restore things as they were before the call to INTERRUPTCHAR. N

/
A

-

O

ERRORS AND BREAK HANDLING

when the computation has completed. While program errors and control-E can be “caught” by errorses,
control-D is not.!® Thus the system may be left in its changed state as a result of the computation being
aborted. The following functions address this problem.

Note that these functions do not and cannot handle the situation where their environment is exited via
anything other than a normal return, an error, or a reset. E.g. a RETEVAL, RETFROM, RESUME, etc., will

never be seen.

(RESETLST FORM; ---

(RESETSAVE x Y)

FORMy) [NLambda NoSpread Function]
RESETLST evaluates its arguments in order, after setting up an ERRORSET so that
any reset operations perfermed by RESETSAVE (see below) are restored when the
forms have been evaluated (or an error occurs, or a conmol-D is typed). If no
error occurs, the value of RESETLST is the value of FORMy, otherwise RESETLST
generates an error (after performing the necessary restorations). .

- -

RESETLST compiles open.

. [NLambda NoSpread Function]
RESETSAVE is used within a call to RESETLST to change the system state by calling
2 function or setting a variable, while specifying how to restore the original system
state when the RESETLST is exited (normally, or with an error or controi-D).

If x is atomic, resets the top level value of x-to the value of Y. For
example, (RESETSAVE LISPXHISTORY EDITHISTCRY) resets the value of
LISPXHISTORY to the value of EDITHISTORY,; and provides for the orginal
value of LISPXHISTORY to be restored when the RESETLST completes operation,
(or an error occurs, or a control-D is typed). This use is somewhat anachronistic in
Interlisp-10 in that in a shallow bound system, it is sufficient to simply rebind the
variable. Furthermore, if there are any rebindings, the RESETSAVE will not affect
the most recent binding but will change only the top level value. and therﬂfore
probably not have the intended eﬁ'ecr_

If x is not atomic, it is a form Lhat is evaluated. If v is NIL, X must refurn as it
value its “former state”, so that the effect of evaluating the form can be reversed,
and the system state can be restored, by applying CAR of x 1o the value of x.
For example, (RESETSAVE (RADIX 8)) performs (RADIX 8), and provides
for RADIX to be reset to its original value when the RESETLST completes by
applying RADIX to the value rerurned by (RADIX 8).

In the special case that CAR of x is SETQ, the SETQ is wansparent for the purposes
of RESETSAVE, ie. the user could also have written (RESETSAVE (SETQ X
(RADIX 8))), and restoration would be performed by applying RADIX, not
SETQ, to the previous value of RADIX.

If Yis not NIL, it is evaluated (before x), and its value is used as the restorin g
expression. This is useful for functions whxch do not return their “previous setting”.
For example,

10Note that the program couid redefine control-D as a user interrupt (page 9.17), check for it reenable
it, and call RESET or something similar.

9.19

Changing and Restoring System State

[RESETSAVE (SETBRK -...) (LIST 'SETBRK (GETBRK]

will restore the break characters by applying SETBRK to the value returned
by (GETBRK), which was computed before the (SETBRK ---) expression was
evaluated. Note that the restoration expression is still “evaluated” by appiying its
CAR to its CDR.

If x is NIL, Y is sdll weated as a restoration expression. Therefore,
(RESETSAVE NIL (LIST 'CLOSEF FILE))

will cause FILE to be closed when the RESETLST that the RESETSAVE is under
completes {(or an error occurs or a control-D is typed).

Note: RESETSAVE can be called when not under a RESETLST. In this case, the
restoration will be performed at the next RESET, i.e., control-D or call to RESET.
In other words, there is an “implicit” RESETLST at the top-level executive.

RESETSAVE compiles open. Its value is not a “useful” quantiry.

(RESETVAR VAR NEWVALUE FORM) [NLambda Function]
Simplified form of RESETLST and RESETSAVE for resetting and restoring
global variables.!! Equivalent to (RESETLST (RESETSAVE VAR NEWVALUE)
FORM). For example, (RESETVAR LISPXHISTORY EDITHISTORY (F00))
resets LISPXHISTORY to the value of EDITHISTORY while evaluating (F0O0).
RESETVAR compiles open. If no error occurs, its value is the value of FORM.

(RESETVARS VARSLST E; E, --- Ep) [NLambda NoSpread Function]
Similar to PROG, except the variables in VARSLST are global variables. In a shallow
bound system (Interlisp-10) RESETVARS and PROG are identical.!? In a deep bound
system, each variable is “rebound” using RESETSAVE.

RESETVARS, like GETATOMVAL and SETATOMVAL (page 2.6), is provided to permit compatibility (i.e.
transportablility) between a shallow bound and deep bound system with respect to conceptually giobal
variables.

(RESETFORM RESETFORM FORM, FORM, '+ FORMy) [NLambda NoSpread Function]
Simplifed form of RESETLST and RESETSAVE for resetting a system state when
the corresponding function returns as its value the “previous sexing.” Equivaient
to (RESETLST (RESETSAVE RESETFORM) FORM; FORM, --- FORMx). For

example, (RESETFORM (RADIX 8) (FOO)). RESETFORM compiles open. If

no errTor occurs, it returns the value returned by FORMy.

For some applications, the restoration operation must be different depending on whether the computation
completed successfully or was aborted by an error or control-D. To facilitate this, while the restoration
operaton -is being performed, the value of RESETSTATE will be bound to NIL, ERROR, or RESET,

1Unnecessarily expensive in a shallow bound system as the variable can simply be rebound.
12Excg;that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS (ses
page) .

4

9.20

-

FN

ERRORS AND BREAK HANDLING

depending on whether the exit was normal, due to an error, or reset (i.e., control-D, or in Interlisp-10,
control-C followed by reenter). For example,

(RESETLST
(RESETSAVE (INFILE X)
(LIST- '[LAMBDA (FL) _
(COHD ((EQ RESETSTATE 'RESET)
(CLOSEF FL)
(DELFILE FL]
X))

FORMS)
will cause X to be closed and deleted only if a control-D was typed during the execution of FORMS.

When specifyiﬁg complicated restoring expressions, it is often necessary to use the old value of the saving
expression. For example, the following expression will set the primary input file (to FL) and execute
some forms, but reset the primary input file only if an error or control-D occurs. .-

(RESETLST
(SETQ TEM (INPUT FL))
(RESETSAVE HIL
(LIST '(LAMBDA (X) (ARD RESETSTATE (INPUT X)))
TEM)) :
FORMS)

So that you will not have to explicitely save the old value, the variable OLDVALUE is bound at the time the
restoring operation is performed to the value of the saving expression. Using this, the previous example
could be recoded as: _

(RESETLST
(RESETSAVE (INPUT FL)
"(AHD RESETSTATE (INPUT OLDVALUE)))
FORMS)

As mentioned earlier, restoring is performied by applying CAR of the restoring expression to the
CDR, so RESETSTATE and (INPUT OLDVALUE) will not be evaluated by the APPLY. This partcuiar
example works because AND is an nlambda functon that explicitly evaluates its arguments, so APPLYing
AND to (RESETSTATE (INPUT OLDVALUE)) is the same as EVALing (ARD RESETSTATE (INPUT
OLDVALUE)). PROGN also has this property, so you can use a lambda function as a restoring form by
enclosing it within a PROGN.

The funcdon RESETURDO (page 8.25) can be used in conjunction with RESETLST and RESETSAVE o
provide a way of specifying that the system be restored to its prior state by undoing the side effects of
the computations performed under the RESETLST.

9.8 ERROR LIST

There are currendy fifty-plus types of errors in the Interlisp system. Some of these errors af®e
implementaton dependent, ie. appear in Interlisp-10 but may not appear in other Interlisp systems.

9.21

Error List

The error number is set internally by the code that detects the error before it calls the error handling
functions. It is also the value returned by ERRORN if called subsequent to that type of error, and is used
by ERRORMESS for printing the error message.

Most errors will print the offending expression following the message, e.g., NON-NUMERIC ARG NIL is
very common. Error number 18 (control-B) always causes a break (uniess HELPFLAG is NIL). All other
errors cause breaks if BREAKCHECK returns T (see page 9.10).

The errors are listed below by error npumber:

0 - JSYS ERROR

Faiaa N

1

2 - STACK OVERFLOW

(Interlisp-10) Occurs following 2 trap in a JSYS. As described on page 22.6, TRAP
AT LOCATION is printed, followed by the JSYS diagnostic, and control returns
to the operating system executive. The user can then safely CONTINUE, and the
Interlisp error, JSYS ERROR is then generated A TRAP AT LOCATION can
also coccur if an illegal instrucdon is executed. In this case, the operating system
also prints ILLEGAL INSTRUCTIOHN. This can happen for example if the user is
programming directly in ASSEMBLE code, or if his system somenow got smashed.
In the latter case, it is quite possible that random programs or data structures might
have already been smashed. Unless he is sure he knows what the problem is, the
user is best advised to abandon this system as soon as possible. (If the user does

elect to CONTINUE, Interlisp will (try t0) generate a JSYS ERROR and unwind. In~

scme cases, however, the system may be so badly smashed that the error message
won't even print) Note that in some cases, e.g. illegal instrucdon trap while in the
garbage collector, Interlisp will print out CAN'T CONTINUE, because traps under
those condidons are fatal. The user may be able to reenter his sytem via the START
command, and, if lucky, dump some data or funcdons before the system totzaily
collapses.

In Interlisp-D, this error is named SYSTEM ERROR.

No longer used.

Occurs when computadon is too deep, either with respect to number of function
calls, or number of variable bindings. Usually because of a non-terminating
recursive computaton, i.e., a bug.

In Interlisp-10, the garbage collector uses the same stack as the rest of the system,
so that if a garbage collecdon cccurs when deep in a computation, the stack can
overflow (partcularly if there is a lot of list structure that is deep in the CAR
direction). If this does happen. the garbage collector will flush the stack used by
the computadon in order that the garbage collection can complete. Afterwards,
the error message STACK OVERFLOW IN GC - COMPUTATION LOST is printed,
followed by a (RESET), i.e., return to top level

3 - ILLEGAL RETURN

Call to RETURN when not inside of an interpreted PROG.

4 - ARG NOT LIST E.g., RPLACA called on a non-list

5 - HARD DISK ERROR

(Interlisp-D) An error with the local disk drive.

9.22

« N\,

N

i
&y

ERRORS AND BREAK HANDLING

6 - ATTEMPT TO SET NIL

Via SET or SETQ

7 - ATTEMPT TO RPLAC NIL .

Anempt either to RPLACA or to RPLACD NIL with something other than NIL.

8 - UNDEFINED OR ILLEGAL GO

GO when not inside of a PROG, or GO to nonexistent label.

S - FILE WON'T OPEN

11 - ATOM TOO LONG

From INFILE or OUTFILE, page 6.2.

10 - NON-HUMERIC ARG .

A numeric function e.g., IPLUS, ITIMES, IGREATERP, expected a number.

Auempted to create a litatom (via PACK, or typing one in, or reading from a file)
with too many characters. In Interlisp-D, the maximum number of characters in a
litatom is 255. In Interlisp-10, the maximum is 127 characters.

12 - ATOM HASH TABLE FULL

13 - FILE NOT OPEN

No rocm for any more (new) atoins.

In Interlisp-10, the atom hash table will automatically expand by a specified number
of pages each time it fills up until an upper limit of 32K atoms is reached.

From an I/C function, e.g., READ, PRINT, CLOSEF.

14 - ARG HOT LITATOM

E.g., SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic arg.

15 - TOO MAMY FILES OPEN

16 - END OF FILE

17 - ERROR
18 - BREAK

> 30, excluding the terminal.

From an input function, e.g., READ, READC, RATOM. After the error, the file will
then be closed. : '

Note: The enmries on ERRORTYPELST (page 9.16) are processed before the file
is closed, so that the user can intercept and process this error via an entry on
ERRORTYPELST, thereby preventing the file from being closed. It is also possible
to use an ERRORTYPELST entry to return a character as the value of the call
to ERRORX, and the program will continue, e.g. returning “]” may be used to
complete a read operation.

Cail 10 ERROR (page 9.14).

Conurol-B was typed.

19 - ILLEGAL STACK ARG

A stack function expected a stack position and was given something else. This
might occur if the arguments 10 a stack function are reversed. Also occurs if user
specified a stack posidon with a function name, and that function was not found

.

¢

Error List

on the stack. See page 7.1.

20 - FAULT IN EVAL
Artifact of bootstrap. Never occurs after FAULTEVAL has been defined as described

eariier.

21 - ARRAYS FULL System will first initiate a garbage collection of array space, and if no array space
is reclaimed, will then generate this error.

22 - FILE SYSTEM RESOURCES EXCEEDED
. (Interlisp-10) Includes no more disk space, disk quota exceeded, directory fuil, too

many jibs, job full.

23 - FILE NOT FOUND
File name does not correspond to a file in the corresponding directory. Can also

occur if file name is ambiguous.

Interlisp is initialized with an entry on ERRORTYPELST (page 9.16) to call
SPELLFILE for error 23. SPELLFILE will search alternate directories or perform
spelling correction on the connected directory. If SPELLFILE fails, then the user
will see this error.

24 - BAD SYSOUT FILE
Date does not agree with date of MAKESYS, or file is not a sysout file at ail (see

page 14.3).

25 - UNUSUAL CDR ARG LIST
A form ends in a non-list other than NIL, eg., (CONS T . 3).

26 - HASH TABLE FULL
See hash array functions, page 2.35.

27 ILLEGAL ARG Catch-all error. Currently used by PUTD, EVALA, ARG, FUNARG, ALLOCATE,
RPLSTRING, etc. i

28 - ARG NOT ARRAY .
ELT or SETA given an argument that is not a pointer to the beginning of an array
(see page 2.33).

29 - ILLEGAL OR IMPOSSIBLE BLOCK
(Interlisp-10) From GETBLK or RELBLK (see page 22.20).

30 - STACK PTR HAS BEEN RELEASED
. A released stack pointer was supplied as a stack descnptor for a purpose other than

as a stack pointer to be re-used (see page 7.1).

31 - STORAGE FULL
Following a garbage collection. if a sufficient amount of words has not been
collected, and there is no un-allocated space left in the system, this error is
generated.

32 - ATTEMPT TO USE ITEM OF INCORRECT TYPE
Before a field of a user data type is changed, the type of the item is first checked

9.24

™\

'S

ERRORS AND BREAK HANDLING

to be sure that it is of the expected type. If not, this error is generated (see page
3.14).

33 - ILLEGAL DATA TYPE NUMBER
The argument is not a vahd user data type number (see page 3.14).

34 - DATA TYPES FULL
All available user data types have been allocated. (see page 3.14).

35 -ATTEMPT TO BIND NIL OR T
In 2 PROG or LAMBDA expression.

36 - TOO MANY USER INTERRUPT CHARACTERS
Attempt to enable a user intermrupt character when all 9 user channels are currently -

enabled (see page 9.17).

37 - READ-MACRO CONTEXT ERROR
(Interlisp-10) Occurs when a READ is executed from within a read-macro function

and the next token is a) or a] (see page 6.36).

38 - ILLEGAL READTABLE
The argument was expected to be a valid readtable (see page 6.32).

39 - ILLEGAL TERMINAL TABLE .
The argument was expected to be a valid terminal table (see page 6.40).

40 - SWAPBLOCK TOO BIG FOR BUFFER
(Interlisp-10) An attempt was made to swap in a function/array which is too large
for the swapping buffer. See SETSBSIZE, page 22.26.

4] - PROTECTION VIOLATION
(Interlisp-10) Attempt to open a file that user does not have access to. Also

reference to unassigned device,

42 - BAD FILE NAME . .« .
Illegal character in file specification, illegal syntax, e.g. in Interlisp-10, two ;s etc.

43 - USER BREAK Error corresponding to “hard” user-interrupt character. See page 9.17.

44 - UNBOUND ATOM
Unbound atom error. When this occurs, a variable (atom) was used which had
neither a stack binding (wasn’t an argument to a function nor a PROG variable)
nor a top-level value. The “culprit” ((CADR ERRORMESS)) is the atom. Note
that if DWIM corrects the error, no error occurs and the error number is not set
However, if an error is going to occur, whether or not it will cause a break, the
error number will be ser.

45 - UNDEFINED CAR OF FORM

Undefined function error. When is occurs, a form was evaluated whose function
position (CAR) does not have a definition as a function. Culprit is the form.

46 - UNDEFINED FUNCTION _
This error is generated if APPLY is given an undefined function. Culpritis (LIST

9.25

- RN s e et e e kv o s e e e o o e i e A e e

Error List) (

FN ARGS)
47 - CONTROL-E The user typed Control-E.

48 - FLOATING UNDERFLOW
(Interlisp-D) Underflow during floating-point operation.

49 - FLOATING OVERFLOW
(Interlisp-D) Overflow during floating-point operation.

50 - OVERFLOW (Interlisp-D) Overflow during integer operation.

51 - ARG NOT HARRAY ’
(Interlisp-D) Signaled by hash array operations when given an argument that is not
a hash array. (In Interlisp-10, this still triggers error 28, ARG NOT ARRAY). O

. 52 - TOO MANY ARGUMENTS C
(Interlisp-D) Signaled when too many arguments are given to a lambda-spread,
lambda-nospread, or nlambda-spread function.

In additibn, many system functions, e.g.. DEFINE, ARGLIST, ADVISE, LOG, EXPT, etc, also generate
errors with appropriate messages by calling ERROR (se= page 9.14) which causes error number 17.

)

9.26

CHAPTER 10

BREAKING, TRACING, AND ADVISING

It is frequently useful to be able to modify the behavior of a function without actually editing its definition.
Interlisp provides several different facilities for doing this. By “breaking” a function, the user can cause
breaks to occur at various times in the running of an incomplete program, so that the program state can
be inspected. “Tracing” a function causes information to be printed every time the function is entered or
exited. These are very useful debugging tools.

“Advising” is a facility for specifying longer-term function modifications. Even system functions can be
changed through advising.

10.1 BREAKING FUNCTIONS AND DEBUGGING

Debugging a collection of LISP functions involves isolating problems within particular functions and/or
determining when and where incorrect data are being generated and transmitted. In the Interlisp system,
thare are three facilities which allow the user to (temporarily) modify selected function definitions so that
he can follow the flow of control in his programs, and obtain this debugging information. All three
redefine functions in terms of a system function, BREAK1 (see page 9.11).

BREAK modifies the definition of a function FN, so that whenever FN is called and a break condition
(defined by the user) is satisfied, a function break occurs. The user can then interrogate the state of the
machine, perform any computation, and continue or return from the call.

TRACE muodifies a definition of a function FN so that whenever FN is called, its arguments (or some other
values specified by the user) are printed. When the value of Fn is computed it is printed also. (TRACE
is a special case of BREAK).

BREAKIN allows the user to insert a breakpoint inside an expression defining a function. When the
breakpoint is reached and if a break condition (defined by the user) is satisfied, a temporary halt occurs
and the user can again investigate the state of the computation.

The following two examples illustrate these facilities. In the first example, the user traces the function
FACTORIAL. TRACE redefines FACTORIAL so that it print its arguments and value, and then goes on
with the computation. When an error occurs on the fifth recursion, a full interactive break occurs. The
situation is then the same as though the user had originally performed BREAK(FACTORIAL) instead of
TRACE(FACTORIAL), and the user can evaluate various Interlisp forms and direct the course of the
computation. In this case, the user examines the variable N, and instructs BREAK1 to return 1 as the
value of this cell to FACTORIAL. The rest of the tracing proceeds without incident. The user would then
presumably edit FACTORIAL to change L to 1.

+PP FACTORIAL

(FACTORIAL

10.1

Breaking Functions and Debugging

[LAMBDA (N)

(T (ITIMES N (FACTORIAL (SUB1 NJ)

(COND
((ZEROP N
L)
FACTORIAL
«TRACE(FACTQRIAL)
(FACTORIAL)
«FACTORIAL(4)
FACTORIAL:
N =4
FACTORIAL:
N =23
FACTORIAL:
N =2
FACTORIAL:
N=1
FACTORIAL:
N=20
U.B.A.
L
(FACTORIAL BROKEN)
:N
0
:RETURN 1

FACTORIAL =1
FACTORIAL =1
FACTORIAL = 2
FACTORIAL = 6
FACTORIAL = 24
24

-

In the second example, the user has constructed a non-recursive definition of FACTORIAL. He uses
BREAKIN to insert a call to BREAK1 just after the PROG label LOOP. This break is to occur only on the
last two iterations, when N is less than 2. When the break occurs, the user tries to look at the value of
N, but mistakenly types NN. The break is maintained, however, and no damage is done. After examining
N and M the user allows the computation to continue by typing OK. A second break occurs after the next
iteration, this time with N=0. When this break is released, the function FACTORIAL returns its value of

120.

«PP FACTORIAL
(FACTORIAL
[LAMBDA (N)

10.2

BREAKING, TRACING, AND ADVISING

(PROG ((M 1))
LOOP (COND
((ZEROP N)
(RETURN M)))
(SETQ M (ITIMES M N))
(SETQ N (SUB1 N))
(GO LOOP])
FACTORIAL
«BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2]
SEARCHING. ..
FACTORIAL
«FACTORIAL(5)

((FACTORIAL) BROKEN)
:NN

U.B.A.

NN

(FACTORIAL BROKEN AFTER LOOP)
:N

1

M

120

: 0K

(FACTORIAL)

((FACTORIAL) BROKEN)
N

0

: 0K

(FACTORIAL)

120

-

Note: BREAK and TRACE can also be used on CLISP words which appear as CAR of form, e.g. FETCH,
REPLACE, IF, FOR, DO, etc., even though these are not implemented as functions. For conditional
breaking, the user can refer to the entire expression via the variable EXP, e.g. BREAK ((FOR (MEMB
"UNTIL EXP))).

(BREAKO FN WHEN COMS — —) ‘ [Function]
. Sets up a break on the function FN; returns FN. If FN is not defined, returns (FN
NOT DEFINED).

BREAKO redefines FN as a call to BREAK1 (page 9.11), with an equivalent definition
of FN as BRKEXP, and WHEN, FN, COMS as BRKWHEN, BRKFN, BRKCOMS. Puts a
GENSYM defined with the original definition of #N on the property list of FN under
the property BROKEN . Puts (BREAKO WHEN coms) on the ptoperty list of FN
under the property BRKINFO (for use in conjunction with REBREAK). Adds FN to
the front of the list BROKENFNS.

If FN is non-atomic and of the form (FN1 IN FN2), BREAKOQ breaks every call

10.3

Breaking Functions and Debugging

to FN1 from within FN2. This is useful for breaking on a function that is called
from many places, but where one is only interested in the call from a specific
function, e.g., (RPLACA IN F00), (PRINT IN FIE), etc. It is similar to
BREAKIN described below, but can be performed even when FN2 is compiled or
blockcompiled, whereas BREAKIN only works on interpreted functions. If Fn1 is
not found in FN2, BREAKO returns the value (FN1 NOT FOUND IN FN2).

BREAKO breaks one function inside another by first calling a function which changes
the name of FN1 wherever it appears inside of FN2 to that of a new function, FN1-
IN-FN2, which is initially given the same function definition as Fn1. Then BREAKO
proceeds to break on FN1-IN-FN2 exactly as described above. In addition to
breaking FN1-IN-FN2 and adding FN1-IN-FN2 to the list BROKENFNS, BREAKO
adds FN1 to the property value for the property NAMESCHANGED on the property
list of FN2 and puts (FN2 . FN1) on the property list of #FN1- IN-FN2 under the
property ALIAS. This wiil enable UNBREAK to recognize what changes have been
made and restore the function FN2 to its original state.

If FNv is nonatomic and not of the above form, BREAKO is called for each member
of FN using the same values for WHEN, coMms, and FLE. This distributivity permits
the user to specify complicated break conditions on several functions. For example,

(BREAKO '(FOO1 ((PRINT PRIN1) IN (F002 F003)))
'(NEQ X T)
'(EVAL ?= (Y Z) OK))

will break on FOO1, PRINT-IN- FOOZ PRINT-IN-FOO3, PRIN1-IN-FO02 and
PRIN1-IN-FOQO3.

If FN is non-atomic, the value of BREAKO is a list of the functions broken.

(BREAK Xx) [NLambda NoSpread Function]
Nlambda nospread function. For each atomic argument, it performs (BREAKO
ATOoM T). For each list, it performs (APPLY 'BREAKO List). For ex-
ample, (BREAK FOO1 (FO02 (GREATERP N 5) (EVAL))) is equivalent to
(BREAKO 'FOO1 T) and (BREAKO 'FO02 '(GREATERP N 5) '(EVAL)).

(TRACE x) [NLambda NoSpread Function]
Nlambda nospread function. For each atomic argument, it performs (BREAKO
AToM T '(TRACE ?= NIL GO))!

For each list argument, CAR is the function to be traced, and CDR the forms the
user wishes to see, i.e., TRACE performs:

(BREAKO (CAR LisT) T (LIST 'TRACE '?= (CDR LiST) 'GO))

For example, (TRACE FOO1 (FO002 Y)) will cause both FOO1 and F0O2 to be
traced. All the arguments of FOO1 will be printed; only the value of Y will be
printed for FOO2. In the special case that the user wants to see only the value,

!The flag TRACE is checked for in BREAK1 and causes the message “FUNCTION :” to be printed instead
of (FUNCTION BROKEN).

10.4

BREAKING, TRACING, AND ADVISING

he can perform (TRACE (rFuncTION)). This sets up a break with commands
(TRACE ?= (NIL) GO).

Note: the user can always call BREAKO himself 1o obtain combination of options of BREAK1 not directly
available with BREAK and TRACE. These two functions merely provide convenient ways of calling BREAKO,
and will serve for most uses.

(BREAKIN FN WHERE WHEN COMS) [NLambda Function]
BREAKIN is an nlambda function. WHEN and coms are similar to wHEN and

coms for BREAKO, except that if wHEN is NIL, T is used. wHERE specifies where
in the definition of Fn the call to BREAK1 is to be inserted (see below).

If FN is a compiled function, BREAKIN returns (FN UNBREAKABLE) as its value.

If ¥~ is interpreted, BREAKIN types SEARCHING. .. while it calls the editor.
If the location specified by WHERE is not found, BREAKIN types (NOT FOUND)
and exits. If it is found, BREAKIN puts T under the property BROKEN~IN and
(WHERE WHEN coMms) under the the property BRKINFQ on the property list of
FN, and adds FN to the front of the list BROKENFNS. '

Multiple break points, can be inserted with a single call to BREAKIN by using a list
of the form ((BEFORE ---) --- (AROUND ---)) for wrERE. It is also possible
to call BREAK or TRACE on a function which has been modified by BREAKIN, and
conversely to BREAKIN a function which has been redefined by a call to BREAK
or TRACE.

BREAKIN enables the user to insert a break, i.e., a call to BREAK1, at a specified location in an interpreted
function. For example, if FOO calls FIE, inserting a break in FOO before the call to FIE is similar to
breaking FIE. However, BREAKIN can be used to insert breaks before or after PROG labels, particular
SETQ expressions, or even the evaluation of a variable. This is because BREAKIN operates by calling the
editor and actually inserting a call to BREAK1 at a specified point inside of the function.

The user specifies where the break is to be inserted by a sequence of editor commands. These commands
are preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to determine what to do once the
editor has found the specified point, i.e., put the call to BREAK1 BEFORE that point, AFTER that point,
or ARQUND that point. For example, (BEFORE COND) will insert a break before the first occurrence
of COND, (AFTER COND 2 1) will insert a break after the predicate in the first COND clause, (AFTER
BF (SETQ X &)) after the Jast place X is set. Note that (BEFORE TTY:) or (AFTER TTY:) permit
the user to type in commands to the editor, locate the correct point, and verify it for himself using the
P command if he desires, and exit from the editor with OK.2 BREAKIN then inserts the break BEFORE,
AFTER, or AROUND that point.

For BREAKIN BEFQRE or AFTER, the break expression is NIL, since the value of the break is irrelevant.
For breakin AROUND, the break expression will be the indicated form. In this case, the user can use the
EVAL command to evaluate that form, and examine its value, before allowing the computation to proceed.
For example, if the user inserted a break after a COND predicate, e.g., (AFTER (EQUAL X Y)), he
would be powerless to alter the flow of computation if the predicate were not true, since the break would

2A STOP command typed to TTY: produces the same effect as an unsuccessful edit command in the
original specification, e.g., (BEFORE CONDD). In both cases, the editor aborts, and BREAKIN types (NOT
FOUND).

10.5

Breaking Functions and Debugging

not be reached. However, by breaking (AROUND (EQUAL X Y)), he can evaluate the break expression,
i.e., (EQUAL X Y), look at its value, and return something else if he wished.

The message typed for a BREAKIN break, is ((FN) BROKEN), where FN is the name of the function
inside of which the break was inserted. Any error, or typing control-E, will cause the full identifying
message to be printed, e.g., (FOO BROKEN AFTER COND 2 1).

A special check is made to avoid inserting a break inside of an expression headed by any member of the
list NOBREAKS, initialized to (GO QUOTE *), since this break would never be activated. For example,
if (GO L) appears before the label L, BREAKIN (AFTER L) will not insert the break inside of the GO
expression, but skip this occurrence of L and go on to the next L, in this case the label L. Similarly, for
BFFORE or AFTER breaks, BREAKIN checks to make sure that the break is being inserted at a “safe”
place. For example, if the user requests a break (AFTER X) in (PROG --- (SETQ X &) --.), the
break will actually be inserted AFTER (SETQ X &), and a rnessage printed to this effect, e.g., BREAK
INSERTED AFTER (SETQ X &).

(UNBREAK Xx) [NLambda NoSpread Function]
Nlambda nospread function. It takes an indefinite number of functions modified
by BREAK, TRACE, or BREAKIN and restores them to their original state by calling
UNBREAKO. Returns list of values of UNBREAKO.

(UNBREAK) will unbreak all functions-on BROKENFNS, in reverse order. It first
sets BRKINFOLST to NIL.

(UNBREAK T) unbreaks just the first function on BROKENFNS, ie. the most
recently broken function.

(UNBREAKO FN —) [Function]
Restores FN to its original state. If #N was not broken, value is (NOT BROKEN)
and no changes are made. If FN was modified by BREAKIN, UNBREAKIN is called
to edit it back to its original state. If FN was created from (FN1 IN FN2), (ie.,
if it has a property ALIAS), the function in which FN appears is restored to its
original state. All dummy functions that were created by the break are eliminated.
Adds property value of BRKINFO to (front of) BRKINFOLST.

Note: (UNBREAKO '(FN1 IN FN2)) is allowed: UNBREAKO will operate on
(FN1-IN-FN2) instead. _

(UNBREAKIN FN) [Function]
Performs the appropriate editing operations to eliminate all changes made by
BREAKIN. FN may be either the name or definition of a function. Value is FN.
UNBREAKIN is automatically called by UNBREAK if FN has property BROKEN-IN
with value T on its property list.

(REBREAK Xx) [NLambda NoSpread Function]
Nlambda nospread function for rebreaking functions that were previously broken

without having to respecify the break information. For each function on X,

. REBREAK searches BRKINFOLST for break(s) and performs the corresponding
operation. Value is a list of values corresponding to calls to BREAKO or BREAKIN.

If no information is found for a particular function, returns (FN - NO BREAK

- 10.6

BREAKING, TRACING, AND ADVISING

INFORMATION SAVED).

(REBREAK) rebreaks everything on BRKINFOLST, so (REBREAK) is the inverse
of (UNBREAK).

(REBREAK T) rebreaks just the first break on BRKINFOLST, i.e., the function
most recently unbroken.

(CHANGENAME FN FROM TO) [Function]
Changes all occurrences of FROM to TO in FN. FN may be compiled or
blockcompiled. Value is FN if FROM was found, otherwise NIL. Does not perform
any modifications of property lists. Note that FROM and TO do not have to be
functions, e.g., they can be names of variables, or any other literals.

(VIRGINFN FN FLG) [Function]
The function that knows how to restore functions to their original state regardless
of any amount of breaks, breakins, advising, compiling and saving exprs, etc.
It is used by PRETTYPRINT, DEFINE, and the compiler. If FLe=NIL, as for
PRETTYPRINT, it does not modify the definition of F~ in the process of producing
a “clean” version of the definition; it works on a copy. If FLe=T, as for the
compiler and DEF INE, it physically restores the function to its original state, and
prints the changes it is making, e.g., FOO UNBROKEN, FOO UNADVISED, FOO
NAMES RESTORED, etc. Returns the virgin function definition.

10.2 ADVISING

The operation of advising gives the user a way of modifying a function without necessarily knowing how
the function works or even what it does. Advising consists of modifying the /nterface between functions as
opposed to modifying the function definition itself, as in editing. BREAK, TRACE, and BREAKDOWN, are
examples of the use of this technique: they each modify user functions by placing relevant computations
between the function and the rest of the programming environment.

The principal advantage of advising, aside from its convenience, is that it allows the user to treat functions,
his or someone else’s, as “black boxes,” and to modify them without concern for their contents or details
of operations. For example, the user could modify SYSOUT to set SYSDATE to the time and date of
creation by (ADVISE 'SYSQUT ' (SETQ SYSDATE (DATE))).

As with BREAK, advising works equally well on compiled and interpreted functions. Similarly, it is
possible to effect a modification which only operates when a function is called from some other specified
function, i.e., to modify the interface between two particular functions, instead of the interface between
one function and the rest of the world. This latter feature is especially useful for changing the interna/
workings of a system function.

For example, suppose the user wanted TIME (page 14.14) to print the results of his measurements to the
file FOO instead of the teletype. He could accomplish this by (ADVISE '((PRIN1 PRINT SPACES)
IN TIME) 'BEFORE '(SETQQ U F00))

Note that advising PRIN1, PRINT, or SPACES directly would have affected all calls to these very
frequently used function, whereas advising ((PRIN1 PRINT SPACES) IN TIME) affects just those

10.7

Implementation of Advising

calls to PRIN1, PRINT, and SPACES from TIME.

Advice can also be specified to operate after a function has been evaluated. The value of the body of the
original function can be obtained from the variable ! VALUE, as with BREAK1. For example, suppose the
user wanted to perform some computauon following each SYSIN, e.g., check whether his files were up
to date. He could then: (ADVISE 'SYSOUT 'AFTER '(COND ((LISTP IVALUE) --))).3

10.2.1 Implementation of Advising

After a function has been modified several times by ADVISE, it will look like:

(LAMBDA arguments
(PROG (!VALUE)
(SETQ !VALUE
(PROG NIL
advicel

advice before

advicen
(RETURN BODY)))
advicel

advice after

advicem
(RETURN !VALUE)))

where BODY is equivalent to the original definition.* Note that the structure of a function modified by
ADVISE allows a piece of advice to bypass the original definition by using the function RETURN. For
example, if (COND ((ATOM X) (RETURN Y))) were one of the pieces of advice BEFORE a function,
and this function was entered with X atomic, Y would be returned as the value of the inner PROG,
!VALUE would be set to Y, and control passed to the advice, if any, to be executed AFTER the function.
If this same piece of advice appeared AFTER the function, Y would be returned as the value of the entire
advised function.

The advice (COND ((ATOM X) (SETQ !VALUE Y))) AFTER the function would have a similar effect,
but the rest of the advice AFTER the function would still be executed.

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and RETURN, (called ADV-PROG, ADV-
SETQ, and ADV-RETURN) in order to enable advising these functions.

3After the SYSIN, the system will be as it was when the SYSOUT was performed, hence the advice must
be to SYSOUT, not SYSIN. See page 14.3 for complete discussion of SYSOUT.

*If FN was originally an EXPR, BODY is the body of the definition, otherwise a form using a GENSYM
which is defined with the original definition.

: 10.8

BREAKING, TRACING, AND ADVISING

10.2.2 Advise Functions

ADVISE is a function of four arguments: FN, WHEN, WHERE, and WHAT. FN is the function to be modified
by advising, wHAT is the modification, or piece of advice. WHEN is either BEFORE, AFTER, or ARQUND,
and indicates whether the advice is to operate BEFORE, AFTER, or AROUND the body of the function
definition. WHERE specifies exactly where in the list of advice the new advice is to be placed, e.g., FIRST,
or (BEFORE PRINT) meaning before the advice containing PRINT, or (AFTER 3) meaning after the
third piece of advice, or even (: TTY:). If wHERE is specified, ADVISE first checks to see if it is one of
LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly. Otherwise, it constructs an appropriate
edit command and calls the editor to insert the advice at the corresponding location.

Both wHEN and WHERE are optional arguments, in the sense that they can be omitted in the call
to ADVISE. In other words, ADVISE can be thought of as a function of two arguments (ADVISE FN
WHAT), or a function of three arguments: (ADVISE FN WHEN WHAT), or a function of four arguments:
(ADVISE FN WHEN WHERE WHAT). Note that the advice is always the /ast argument. If wHEN=NIL,
BEFORE is used. If waere=NIL, LAST is used.

(ADVISE FN WHEN WHERE WHAT) ' [Function]
FN is the function to be advised, WHEN=BEFORE, AFTER, or AROUND, WHERE
specifies where in the advice list the advice is to be inserted, and WHAT is the piece

- of advice.

If PN is of the form (FN1 IN FN2), FN1 is changed to FN1- IN-FN2 throughout
FN2, as with break, and then FN1-IN-FN2 is used in place of FN. If FN1 and/or
FN2 are lists, they are distributed as with BREAKO, page 10.3.

If FN is broken, it is unbroken before advising.
If Fv is not defined, an error is generated, NOT A FUNCTION.

If FN is being advised for the first time, i.e., if (GETP FN 'ADVISED)=NIL,
a GENSYM is generated and stored on the property list of #N under the property
ADVISED, and the GENSYM is defined with the original definition of FN. An
appropriate S-expression definition is then created for FN.5 Finally, FN is added -
to the (front of) ADVISEDFNS, so that (UNADVISE T) always unadvises the last
function advised (see page 10.10).

If FNv has been advised before, it is moved to the front of ADVISEDFNS.

If wHEN=BEFORE or AFTER, the advice is inserted in FN’s definition either
BEFQRE or AFTER the original body of the function. Within that context, its
position is determined by WHERE. If wHERE=LAST, BOTTOM, END, or NIL, the
advice is added following all other advice, if any. If wHERE=FIRST or TOP,
the advice is inserted as the first piece of advice. Otherwise, WHERE is treated
as a command for the editor, similar to BREAKIN, e.g., (BEFORE 3), (AFTER
PRINT).

5Using private versions of PROG, SETQ, and RETURN, so that these functions can also be advised.

109

R

-

Advise Functions

If wWHEN=AROUND, the body is substituted for * in the advice, and the
result' becomes the new body, e.g., (ADVISE 'FOO 'AROUND '(RESETFORM
(OUTPUT T) *)). Note that if several pieces of AROUND advice are specified,
earlier ones will be embedded inside later ones. The value of WHERE is ignored.

Finally (LIST WHEN WHERE WHAT) is added (by ADDPROP) to the value of
property ADVICE on the property list of FN, so that a record of all the changes is
available for subsequent use in readvising. Note that this property value is a list
of the advice in order of calls to ADVISE, not necessarily in order of appearance
of the advice in the definition of FN.

The value of ADVISE is FN.

If FN is non-atomic, every function in FN is advised with the same values (but
copies) for WHEN, WHERE, and WHAT. In this case, ADVISE returns a list of
individual functions.

Note: advised functions can be broken. However if a function is broken at the time it is advised, it is first
unbroken. Similarly, advised functions can be edited, including their advice. UNADVISE will still restore
the function to its unadvised state, but any changes to the body of the definition will survive. Since the
advice stored on the property list is the same structure as the advice inserted in the function, editing of
advice can be performed on either the function’s definition or its property list.

(UNADVISE x)

(READVISE x)

[NLambda NoSpread Function]
An nlambda nospread like UNBREAK. It takes an indefinite number of functions and
restores them to their original unadvised state, including removing the properties
added by ADVISE. UNADVISE saves on the list ADVINFOLST enough information
to allow restoring a function to its advised state using READVISE. ADVINFOLST
and READVISE thus correspond to BRKINFOLST and REBREAK. If a function
contains the property READVICE, UNADVISE moves the current value of the
property ADVICE to READVICE.

(UNADVISE) unadvises all functions on ADVISEDFNS in reverse order, so that
the most recently advised function is unadvised last. It first sets ADVINFOLST to
NIL.

(UNADVISE T) unadvises the first function of ADVISEDFNS, i.e., the most recently
advised function.

[NLambda NoSpread Function]
An nlambda nospread like REBREAK for restoring a function to its advised state
without having to specify all the advise information. For each function on Xx,
READVISE retrieves the advise information either from the property READVICE
for that function, or from ADVINFOLST, and performs the corresponding advise
operation(s). In addition it stores this information on the property READVICE if
not already there. If no information is found for a particular function, value is
(FN - NO ADVICE SAVED).

(READVISE) readvises everything on ADVINFOLST.

(READVISE T) readvises the first function on ADVINFOLST, i.e., the function
most recently unadvised.

10.10

BREAKING, TRACING, AND ADVISING

A difference between ADVISE, UNADVISE, and READVISE versus BREAK, UNBREAK, and REBREAK, is
that if a function is- not rebroken between successive (UNBREAK)’s, its break information is forgotten.
However, once READVISE is called on a function, that function’s advice is permanently saved on its -
property list (under READVICE); subsequent calls to UNADVISE will not remove it. In fact, calls to
UNADVISE update the property READVICE with the current value of the property ADVICE, so that the
sequence READVISE, ADVISE, UNADVISE causes the augmented advice to become permanent. Note
that the sequence READVISE, ADVISE, READVISE removes the “intermediate advice” by restoring the
function to its earlier state.

(ADVISEDUMP X FLG) [Function]
Used by PRETTYDEF when given a command of the form (ADVISE ...) or

(ADVICE -.-). If rFLe=T, ADVISEDUMP writes both a DEFLIST and a
READVISE (this corresponds to (ADVISE ---)). If FLe=NIL, only the DEFLIST
is written (this corresponds to (ADVICE ---)). In either case, ADVISEDUMP copies
the advise information to the property READVICE, thereby making it “permanent”
as described above.

10.11

Advise Functions

10.12

CHAPTER 11

FILE PACKAGE

Most implementations of Lisp treat symbolic files as unstructured text, much as they are treated in most
conventional programming environments. Function definitions are edited with a character-oriented text
editor, and then the changed definitions (or sometimes the entire file) is read or compiled to instail those
changes in the running memory image. Interlisp incorporates a different philosophy. A symbolic file
is considered as a database of information about a group of data objects—function definitions, variable
values, record declarations, etc. The text in a symbolic file is never edited directly. Definitions are edited
only after their textual representations on files have been converted to data-structures that reside inside
the Lisp address space. The programs for editing definitions inside Interlisp can therefore make use of the
full set of data-manipulation capabilities that the environment already provides, and editing operations
can be easily intermixed with the processes of evaluation and compilation.

Interlisp is thus a “resident” programming environment, and as such it provides facilities for moving
definitions back and forth between memory and the external databases on symbolic files, and for doing
the bookkeeping involved when definitions on many symbolic files with compiled counterparts are being
manipulated. The file package provides those capabilities. It removes from the user the burden of keeping
track of where things are and what things have changed. The file package also keeps track of which files
have been modified and need to be updated and recompiled.

The file package is integrated into many other system packages. For example, if only the compiled version
of a file is loaded and the user attempts to edit a function, the file package will attempt to load the
source of that function from the appropriate symbolic file. In many cases, if a datum is needed by some
program, the file package will automatically retrieve it from a file if it is not already in the user’s working
environment.

Some of the operations of the file package are rather complex. For example, the same function may
appear in several different files, or the symbolic or compiled files may be in different directories, etc.
Therefore, this chapter does not document how the file package works in each and every situation, but
instead makes the deliberately vague statement that it does the “right” thing with respect to keeping
track of what has been changed, and what file operations need to be performed in accordance with those
changes.

For a simple illustration of what the file package does, suppose that the symbolic file FOO contains the
functions FOO1 and FOO2, and that the file BAR contains the functions BAR1 and BAR2. These two files
could be loaded into the environment with the function LOAD:

« (LOAD 'F00)

FILE CREATED 4-MAR-83 09:26:55
FOOCOMS

(DSK}F00. ;1

« (LOAD 'BAR)

FILE CREATED 4-MAR-83 09:27:24
BARCOMS

(DSK}BAR. ;1

11.1

Now, suppose that we change the definition of FO02 with the editor, and we define two new functions,
NEW1 and NEW2. At that point, the file package knows that the in-memory definition of FO02 is no
longer consistent with the definition in the file FOO, and that the new functions have been defined but
have not yet been associated with a symbolic file and saved on permanent storage. The function FILES?
summarizes this state of affairs and enters. into an interactive dialog in which we can specify what files
the new functions are to belong to.

+ (FILES?)
FOO...to be dumped.
plus the functions: NEW1 NEW2

want to say where the above go ? Yes
(functions)
NEW1 File name: BAR
NEW2 File name: ZAP

new file ? Yes
NIL

The file package knows that the file FOO has been changed, and needs to be dumped back to permanent
storage. This can be done with MAKEFILE.

~(MAKEFILE 'FO00)
{DSK}FO00. ;2

Since we added NEW1 to the old file BAR and established a new file ZAP to contain NEW2, both BAR and
ZAP now also need to be dumped. This is confirmed by a second call to FILES?:

+ (FILES?)

BAR, ZAP...to be dumped.
FOO...to be listed.
FOO...to be compiled
NIL

We are also informed that the new version we made of FOO needs to be listed (sent to a printer) and
that the functions on the file must be compiled.

Rather than doing several MAKEFILEs to dump the files BAR and ZAP, we can simply call CLEANUP.
Without any further user interaction, this will dump any files whose definitions have been modified.
CLEANUP will also send any unlisted files to the printer and recompile any files which need to be
recompiled. CLEANUP is a useful function to use at the end of a debugging session. It will call FILES?
if any new objects have been defined, so the user does not lose the opportunity to say explicitly where
those belong. In effect, the function CLEANUP executes all the operations necessary to make the user’s
permanent files consistent with the definitions in his current core-image.

« (CLEANUP)
FOO...compiling {DSK}FQO. ;2

BAR...compiling {DSK}BAR. ;2

11.2

FILE PACKAGE

ZAP...compiling {DSK}ZAP.:1

In addition to the definitions of functions, symbolic files in Interlisp can contain definitions of a variety
of other types, e.g. variable values, property lists, record declarations, macro definitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations, the
file package uses the concept of a typed definition, of which a function definition is just one example. A
typed definition associates with a name (usually a litatom), a definition of a given type (called the file
package type). Note that the same name may have several definitions of different types. For example, a
litatom may have both a function definition and a variable definition. The file package also keeps track of
the files that a particular typed definition is stored on, so one can think of a typed definition as a relation
between four elements: a name, a definition, a type, and a file.

Symbolic files on permanent storage devices are referred to by names that obey the naming conventions
of those devices, usually including host, directory, and version fields. When such definition groups are
noticed by the file package, they are assigned simple root names and these are used by all file package
operations to refer to those groups of definitions. The root name for a group is computed from its full
permanent storage name by applying the function ROOTFILENAME; this strips off the host, directory,
version, etc., and returns just the simple name field of the file. For each file, the file package also has a
data structure that describes what definitions it contains. This is known as the commands of the file, or
its “filecoms”. By convention, the filecoms of a file whose root name is x is stored as the value of the
litatom xCOMS. For example, the value of FOOCOMS is the filecoms for the file F0O. This variable can
be directly manipulated, but the file package contains facilities such as FILES? which make constructing
and updating filecoms easier, and in some cases automatic. See page 11.32.

The file package is able to maintain its databases of information because it is notified by various other
routines in the system when events take place that may change that database. A file is “noticed” when it
is loaded, or when a new file is stored (though there are ways to explicitly notice files without completely
loading all their definitions). Once a file is noticed, the file package takes it into account when modifying
filecoms, dumping files, etc. The file package also needs to know what typed definitions have been changed
or what new definitions have been introduced, so it can determine which files need to be updated. This
is done by “marking changes”. All the system functions that perform file package operations (LOAD,
TCOMPL, PRETTYDEF, etc.), as well as those functions that define or change data, (EDITF, EDITV,
EDITP, DWIM corrections to user functions) interact with the file package. Also, typed-in assignment
of variables or property values is noticed by the file package. (Note that modifications to variable or
property values during the execution of a function body are not noticed.) In some cases the marking
procedure can be subtle, e.g. if the user edits a property list using EDITP, only those properties whose
values are actually changed (or added) are marked.

All file package operations can be disabled with FILEPKGFLG.

FILEPKGFLG [Variable]
The file package can be disabled by setting FILEPKGFLG to NIL. This will turn
. off noticing files and marking changes. FILEPKGFLG is initially T.

The rest of this chapter goes into further detail about the file package. Functions for loading and storing
symbolic files are presented first, followed by functions for adding and removing typed definitions from
files, moving typed definitions from one file to another, determining which file a particular definition is
stored in, and so on.

11.3

Loading Files

11.1 LOADING FILES

The functions below load information from symbolic files into the Interlisp environment. A symbolic file
contains a sequence of Interlisp expressions that can be evaluated to establish specified typed definitions.
The expressions on symbolic files are read using FILERDTBL as the readtable.

The loading functions all have an argument LDFLG. LDFLG affects the operation of DEFINE, DEFINEQ,
RPAQ, RPAQ?, and RPAQQ. While a source file is being loaded, DFNFLG (page 5.9) is rebound to LDFLG.
Thus, if LoFLe=NIL, and a function is redefined, a message is printed and the old definition saved.
If LDFLG=T, the old definition is simply overwritten. If LDFLG=PROP, the functions are stored as
“saved” definitions on the property lists under the property EXPR instead of being installed as the active
definitions. If LDFLG=ALLPROP, not only function definitions but also variables set by RPAQQ, RPAQ,
RPAQ? are stored on property lists (except when the variable has the value NOBIND, in which case they
are set to the indicated value regardless of DFNFLG).

Another option is available for users who are loading systems for others to use and who wish to suppress
the saving of information used to aid in development and debugging. If LDFLG=SYSLOAD, LOAD will:
(1) Rebind DFNFLG to T, so old definitions are simply overwritten; (2) Rebind LISPXHIST to NIL,
thereby making the LOAD not be undoable and eliminating the cost of saving undo information (See page
8.22); (3) Rebind ADDSPELLFLG to NIL, to suppress adding to spelling lists; (4) Rebind FILEPKGFLG to
NIL, to prevent the file from being “noticed” by the file package; (5) Rebind BUILDMAPFLG to NIL,
to prevent a file map from being constructed; (6) After the load has completed, set the filecoms variable
and any filevars variablest to NOBIND; and (7) Add the file name to SYSFILES rather than FILELST.

Note: All functions that have LDFLG as an argument perform spelling correction using LOADOPTIONS
as a spelling list when LDFLG is not a member of LOADOPTIONS. LOADOPTIONS is initially (NIL T
PROP ALLPROP SYSLOAD).

(LOAD FILE LDFLG PRINTFLG) [Function]
Reads successive expressions from rFmE (with FILERDTBL as readtable) and
evaluates each as it is read, until it reads either NIL, or the single atom STOP. Note
that LOAD can be used to load both symbolic and compiled files, Returns FILE
(full name). '

If PRINTFLG=T, LOAD prints the value of each expression; otherwise it does not.

(LOAD? FILE LDFLG PRINTFLG) [Function]
Similar to LOAD except that it does not load FILE if it has already been loaded, in

which case it returns NIL.

Note: The test is whether the root name of FILE has a FILEDATES property (page
11.13).

LA filevars variable is any variable appearing in a file package command of the form (FILECOM *
VARIABLE) (see page 11.30). Therefore, if the filecoms includes (FNS * FOOFNS), FOOFNS is set to
NOBIND. If the user wants the value of such a variable to be retained, even when the file is loaded with
LDFLG=SYSLOAD, then he should replace the variable with an equivalent, non-atomic expression, such
as (FNS * (PROGN FOOFNS)).

114

FILE PACKAGE

(LOADFNS FNS FILE LDFLG VARS) [Function]
Permits selective loading of definitions. FNs is a list of function names, a single

function name, or T, meaning to load all of the functions on the file. FILE can be
either a compiled or symbolic file. If a compiled definition is loaded, so are all
compiler-generated subfunctions. The interpretation of LDFLG is the same as for
LOAD.

If FLE=NIL, LOADFNS will use WHEREIS (page 11.10) to determine where the
first function in FNs resides, and load from that file. Note that the file must
previously have been “noticed” (see page 11.12). If WHEREIS returns NIL, and
the WHEREIS package (page 23.40) has been loaded, LOADFNS will use the
WHEREIS data base to find the file containing FN.

VARS specifies which non-DEFINEQ expressions are to be loaded (i.e., evaluated):
T means all, NIL means none, VARS means to evaluate all variable assignment
expressions (beginning with RPAQ, RPAQQ, or RPAQ?, see page 11.37), and any
other atom is the same as specifying a list containing that atom.

If vaARs is a list, each element in VARS is “matched” against each non-DEF INEQ
expression, and if any elements in VARS “match” successfully, the expression
is evaluated. “Matching” is defined as follows: If an element of VARS is an
atom, it matches an expression if it is EQ to either the CAR or the CADR of
the expression. If an element of VARs is a list, it is treated as an edit pattern
(page 17.13), and matched with the entire expression (using EDIT4E, page
17.57). For example, if vArs was (FOOCOMS DECLARE: (DEFLIST & (QUOTE
MACRO))), this would cause (RPAQQ FOOCOMS --.), all DECLARE:s, and all
DEFLISTs which set up MACROs to be read and evaluated.

If vars is a list and (FNTYP vARs) is true (VARS is a function definition),
then LOADFNS will invoke that function on every non-DEF INEQ expression being
considered, applying it to two arguments, the first and second elements in the
expression. If the function returns NIL, the expression will be skipped; if it returns
a non-NIL litatom (e.g. T), the expression will be evaluated; and if it returns a
list, this list is evaluated instead of the expression. Note: The file pointer is set to
the very beginning of the expression before calling the vARs function definition,
so it may read the entire expression if necessary. If the function returns a litatom,
the file pointer is reset and the expression is READ or SKREAD. However, the file
pointer is not reset when the function returns a list, so the function must leave it
set immediately after the expression that it has presumably read.

LOADFNS returns a list of: (1) The names of the functions that were found; (2) A
list of those functions not found (if any) headed by the litatom NOT-FQUND:; (3)
All of the expressions that were evaluated; (4) A list of those members of VARS
for which no corresponding expressions were found (if any), again headed by the
litatom NOT-FOUND:. For example,

« (LOADFNS '(FOO FIE FUM) FLE NIL '(BAZ (DEFLIST &)))
(FOO FIE (NOT-FOUND: FUM) (RPAQ BAZ -.-) (NOT-FOUND: (DEFLIST

&)))

(LOADVARS VARS FILE LDFLG) [Function]
Same as (LOADFNS NIL FILE LDFLG VARS).

11.5

Storing Files

(LOADFROM FILE FNS LDFLG) [Function]
Same as (LOADFNS FNS FILE LDFLG T).

Once the file package has noticed a file, the user can edit functions contained in the file without explicitly
loading them. Similarly, those functions which have not been modified do not have to be loaded in order
to write out an updated version of the file. Files are normally noticed (i.e., their contents become known -
to the file package; see page 11.12) when either the symbolic or compiled versions of the file are loaded.
If the file is not going to be loaded completely, the preferred way to notice it is with LOADFROM. Note
that the user can. also load some functions at the same time by giving LOADFROM a second argument, but
it is normally used simply to inform the file package about the existence and contents of a particular file.

(LOADBLOCK FN FILE LDFLG) [Function]
Calls LOADFNS on those functions contained in the block declaration containing
FN (See page 12.14). LOADBLOCK is designed primarily for use with symbolic files,
to load the EXPRs for a given block. It will not load a function which already has
an in-core EXPR definition, and it will not load the block name, unless it is also
one of the block functions.

(LOADCOMP FILE LDFLG) [Function}]
Performs all operations on FILE associated with compilation, i.e. evaluates all
expressions under a DECLARE: EVAL@COMPILE (see page 11.26), and “notices”
the function and variable names by adding them to the lists NOFIXFNSLST and
NOFIXVARSLST (see page 16.16).

Thus, if building a system composed of many files with compilation information
scattered among them, all that is required to compile one file is to LOADCOMP the
others.

(LOADCOMP? FILE LDFLG) - [Function]
Similar to LOADCOMP, except it does not load if file has already been loaded, in
which case its value is NIL.

11.2 STORING FILES

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE) [Function]
Makes a new version of the file FILE, storing the information specified by FILE's
filecoms. Notices FILE if not previously noticed (see page 11.12). Then, it adds
FILE to NOTLISTEDFILES? and NOTCOMPILEDFILES.3

OPTIONS is a litatom or list of litatoms which specify options. By specifying certain
options, MAKEFILE can automatically compile or list FILE. Note that if FILE does
not contain any function definitions, it is not compiled even when OPTIONS specifies

_2Except if FILE has on its property list the property FILETYPE with value DON' TLIST, or a list containing
DON'TLIST.

3Except if FILE has on its property list the property FILETYPE with value DON'TCOMPILE, or a list
containing DON'TCOMPILE. Also, if FILE does not contain any function definitions, it is not added to
NOTCOMPILEDFILES, and it is not compiled even when oPTIONS specifies C or RC.

. 11.6

P e im a—

FILE PACKAGE

C or RC. The options are spelling corrected using the list MAKEFILEQPTIONS. If
spelling correction fails, MAKEFILE generates an error. The options are interpreted

as follows:

C
RC

LIST

CLISPIFY

NOCLISP

FAST

REMAKE

NEW

After making rFmLe, MAKEFILE will compile FILE by calling
TCOMPL (if C is specified) or RECOMPILE (if RC is specified).
If there are any block declarations specified in the filecoms for
FILE, BCOMPL or BRECOMPILE will be cailed instead.

If F, ST, STF, or S is the next item on OPTIONS following C or
RC, it is given to the compiler as the answer to the compiler’s
question LISTING? (see page 12.1). For example, (MAKEFILE
"FOO '(C F LIST)) will dump FOQ, then TCOMPL or BCOMPL
it specifying that functions are not to be redefined, and finally list
the file.

After making FLe, MAKEFILE calls LISTFILES to print a
hardcopy listing of FILE.

MAKEFILE calls PRETTYDEF with CLISPIFYPRETTYFLG:T
(see page 16.20). This causes CLISPIFY to be called on each
function defined as an EXPR before it is prettyprinted.*

MAKEF ILE calls PRETTYDEF with PRETTYTRANFLG =T (see page
16.20). This causes CLISP translations to be printed, if any, in place
of the corresponding CLISP expressions, e.g., iterative statements,
record expressions, PRINTOUT forms, etc.

MAKEFILE calls PRETTYDEF with PRETTYFLG=NIL (see page
6.54). This causes data objects to be printed rather than
prettyprinted, which is much faster.

MAKEFILE “remakes” rme: The prettyprinted definitdons of
functions that have not changed are copied from an earlier version
of the symbolic file. Only those functions that have changed are
prettyprinted. See page 11.10.

MAKEFILE does not remake FILE. If MAKEFILEREMAKEFLG=T
(the inidal setting), the default for ail calls to MAKEFILE is to
remake. The NEW option can be used to override this defauit.

REPRINTFNS and SOURCEFILE are used when remaking a file, as described on

page 11.10.

*Alternatively, if FILE has the property FILETYPE with value CLISP or a list containing CLISP,
PRETTYDEF is called with CLISPIFYPRETTYFLG reset to CHANGES, which will cause CLISPIFY to
be called on all functions marked as having been changed. If FiLE has property FILETYPE with value
CLISP, the compiler will DWIMIFY its functions before compiling them (see page 12.9).

11.7

Storing Files

If a remake is not being performed, MAKE F ILE checks the state of FILE to make sure that the entire source
file was actually LOADed. If FILE was loaded as a compiled file, MAKEF ILE prints the message CAN'T
DUMP: ONLY THE COMPILED FILE HAS BEEN LOADED. Similarly, if only some of the symbolic
definitions were loaded via LOADFNS or LOADFROM, MAKEFILE prints CAN'T DUMP: ONLY SOME OF
ITS SYMBOLICS HAVE BEEN LOADED. In both cases, MAKEFILE will then ask the user if it should
dump anyway; if the user declines, MAKEF ILE does not call PRETTYDEF, but simply returns (FILE NOT

DUMPED) as its value.

The user can indicate that FILE must be block compiled together with other files as a unit by putting a list -
of those files on the property list of each file under the property FILEGROUP. If FILE has a FILEGROUP
property, the compiler will not be called until all files on this property have been dumped that need to

be

MAKEF ILE operates by rebinding PRETTYFLG, PRETTYTRANFLG, and CLISPIFYPRETTYFLG, evaluat-
ing each expression on MAKEF ILEFORMS (under errorset protection), and then calling PRETTYDEF. The
user can add expressions to MAKEF ILEFORMS to implement his own options.

(MAKEFILES OPTIONS FILES) [Function]
Performs (MAKEFILE FILE opPTIONS) for each file on FILES that needs to be
dumped. If FLES=NIL, FILELST is used. For example, (MAKEFILES 'LIST)
will make and list all files that have been changed. In this case, if any typed
definitions for any items have been defined or changed and they are not contained
in one of the files on FILELST, MAKEFILES calls ADDTOFILES? to allow the
user to specify where these go. MAKEFILES returns a list of all files that are made.

(CLEANUP FILE; FILE; --- FILEy) [NLambda NoSpread Function]
Dumps, lists, and recompiles (with RECOMPILE or BRECOMPILE) any of the
specified files (unevaluated) requiring the corresponding operation. If no files are
specified, FILELST is used. CLEANUP returns NIL.

CLEANUP uses the value of the variable CLEANUPOPTIONS as the OPTIONS
argument to MAKEFILE. CLEANUPOPTIONS is initially (LIST RC), to indicate
that the files should be listed and recompiled. If CLEANUPOPTIONS is set to (RC
F), no listing will be performed, and no functions will be redefined as the resuit
of compiling. Alternatively, if FILE, is a list, it will be interpreted as the list of
options regardless of the value of CLEANUPOPTIONS.

(FTLES?) [Function]
Prints on the terminal the names of those files that have been modified but not
dumped, dumped but not listed, dumped but not compiled, plus the names of any
functions and other typed definitions (if any) that are not contained in any file.
If there are any, FILES? then calls ADDTOFILES? to allow the user to specify
where these go.

(ADDTOFILES? —) [Function]
Called from MAKEFILES, CLEANUP, and FILES? when there are typed definitions
that have been marked as changed which do not belong to any file. ADDTOFILES?
lists the names of the changed items, and asks the user if he wants to specify where
these items should be put. If user answers N{(o), ADDTOFILES? returns NIL
without taking any action. If the user answers], this is taken to be an answer
to each question that would be asked, and all the changed items are marked as
dummy items to be ignored. Otherwise, ADDTOF ILES? prints the name of each

- 11.8

FILE PACKAGE

changed item, and accepts one of the following responses:

A file name or a variable whose value is a list
Adds the item to the corresponding file or list, using ADDTOF ILE.

If the item is not the name of a file on FILELST, the user will be asked
whether it is a new file. If he says no, then ADDTOFILES? will check
whether the item is the name of a list, i.e. whether its value is a list. If
not, the user will be asked whether it is a new list.

line-feed
Same as the user’s previous response.

space Or carriage return
Take no action.

] The item is marked as a dummy item by adding it to NILCOMS. This tells
the file package simply to ignore this item.

[The “definition” of the item in question is prettyprinted to the terminal,
and then the user is asked again about its disposition.

(ADDTOFILES? prompts with “LISTNAME : (7, the user types in the name
of a list, i.e. a variable whose value is a list, terminated by a). The item
will then only be added to (under) a command in which the named list
appears as a filevar. If none are found, a message is printed, and the user
is asked again. For example, the user defines a new function FO03, and
when asked where it goes, types (FOOFNS). If the command (FNS *

- FOOFNS) is found, FOO3 will be added to the value of FOOFNS. If instead
the user types (FOOCOMS), and the command (COMS * FOOCOMS) is
found, then FO03 will be added to a command for dumping functions that
is contained in FOOCOMS.

Note: If the named list is not also the name of a file, the user can simply
type it in without parenthesis as described above.

@ ADDTOFILES? prompts with "Near: (", the user types in the name
of an object, and the item is then inserted in a command for dumping
objects (of its type) that contains the indicated name. The item is inserted
immediately after the indicated name.

(LISTFILES FILE; FILE, --- FILEy) [NLambda NoSpread Function]
Lists each of the specified files (unevaluated). If no files are given, NOTLISTEDFILES
is used. Each file listed is removed from NOTLISTEDFILES if the listing is com-
pleted. For each file not found, LISTFILES prints the message "FILENAME NOT
FOUND" and proceeds to the next file. LISTFILES calls the function LISTFILES1
on each file to be listed. The user can advise or redefine LISTFILES1 for more
specialized applications.

(Interlisp-10) LISTFILES uses the function TENEX (page 22.6) to tell the operating
system to print the file. LISTFILES calls LISTFILES1 which calls TENEX
with (CONCAT 'LISTS rFILENAME LISTFILESTR), where LISTFILESTR is

11.9

Remaking a Symbolic File

initially “*””. The user can reset LISTFILESTR to specify subcommands for the
list command, or advise or redefine LISTFILES1.

(Interlisp-D) LISTFILES1 is initially defined as EMPRESS (page 18.17).

(COMPILEFILES FILE; FILE; --- FILEy) [NLambda NoSpread Function]
Executes the RC and C options of MAKEFILE for each of the specified files
(unevaluated). If no files are given, NOTCOMPILEDFILES is used. Each file
compiled is removed from NOTCOMPILEDFILES. If FILE, is a list, it is interpreted
as the oPTIONS argument to MAKEFILES. This feature can be used to supply
an answer to the compiler’s LISTING? question, e.g., (COMPILEFILES (STF))
will compile each file on NOTCOMPILEDFILES so that the functions are redefined
without the EXPRs definitions being saved.

(WHEREIS NAME TYPE FILES FN) [Function]
TYPE is a file package type. WHERE IS sweeps through all the files on the list FILES
and returns a list of all files containing NAME as a TYPE. WHERE IS knows about
and expands all file package commands and file package macros. TYPE=NIL
defaults to FNS (to retrieve function definitions). If FILES is not a list, the value
of FILELST is used.

If FN is given, it should be a function (with arguments NAME, FILE, and TYPE)
which is applied for every file in FILES that contains NAME as a TYPE. In this case,
WHEREIS returns NIL.

If the WHEREIS package (page 23.40) has been loaded, WHEREIS is redefined so
that FILES=T means to use the whereis package data base, so WHERE IS will find -
NAME even if the file has not been loaded or noticed. FILES=NIL always means
use FILELST.

11.2.1 Remaking a Symbolic File

Most of the time that a symbolic file is written using MAKEFILE, only a few of the functions that it
contains have been changed since the last time the file was written. Rather than prettprinting all of
the functions, it is often considerably faster to “‘remake” the file, copying the prettprinted definitions of
unchanged functions from an earlier version of the symbolic file, and only prettyprinting those functions
that have been changed.

MAKEF ILE will remake the symbolic file if the REMAKE option is specified. If the NEW option is given,
the file is not remade, and all of the functions are prettprinted. The default action is specified by the value
of MAKEFILEREMAKEFLG: if T (its initial value), MAKEF ILE will remake files unless the NEW option is
given; if NIL, MAKEFILE will not remake unless the REMAKE option is given.

Note: If the file has never been loaded or dumped, for example if the filecoms were simply set
up in memory, then MAKEFILE will never attempt to remake the file, regardless of the setting of
MAKEF ILEREMAKEFLG, or whether the REMAKE option was specified.

When MAKEFILE is remaking a symbolic file, the user can explicitly indicate the functions which are
to be prettyprinted and the file to be used for copying the rest of the function definitions from via the
REPRINTFNS and SOURCEFILE arguments to MAKEF I LE. Normally, both of these arguments are defaulted
to NIL. In this case, REPRINTFNS will be set to those functions that have been changed since the last

i 11.10

FILE PACKAGE

version of the file was written. For SOURCEFILE, MAKEF ILE obtains the full name of the most recent
version of the file (that it knows -about) from the FILEDATES property of the file, and checks to make
sure that the file still exists and has the same file date as that stored on the FILEDATES property. If it
does, MAKEF ILE uses that file as SOURCEFILE. This procedure permits the user to LOAD or LOADFROM a
file in a different directory, and still be able to remake the file with MAKEF ILE. In the case where the most
recent version of the file cannot be found, MAKEF ILE will attempt to remake using the original version of
the file (i.e., the one first loaded), specifying as REPRINTFNS the union of all changes that have been made
since the file was first loaded, which is obtained from the FILECHANGES property of the file. If both of
these fail, MAKEF ILE prints the message “CAN'T FIND EITHER THE PREVIOUS VERSION OR THE
ORIGINAL VERSION OF rmLe, SO IT WILL HAVE TO BE WRITTEN ANEW”, and does not remake
the file, i.e. will prettyprint all of the functions.

When a remake is specified, MAKEF ILE also checks to see how the file was originally loaded (see page
11.12). If the file was originally loaded as a compiled file, MAKEF ILE will automatically call LOADVARS
to obtain those DECLARE: expressions that are contained on the symbolic file, but not the compiled
file, and hence have not been loaded. If the file was loaded by LOADFNS (but not LOADFROM), then
LOADVARS will automatically be called to obtain any non-DEF INEQ expressions.

Note: Remaking a symbolic file is considerably faster if the earlier version has a file map indicating where
the function definitions are located (page 11.38), but it does not depend on this information.

11.3 MARKING CHANGES

The file package needs to know what typed definitions have been changed, so it can determine which
files need to be updated. This is done by “marking changes”. All the system functions that perform file
package operations (LOAD, TCOMPL, PRETTYDEF, etc.), as well as those functions that define or change
data, (EDITF, EDITV, EDITP, DWIM corrections to user functions) interact with the file package by
marking changes. Also, typed-in assignment of variables or property values is noticed by the file package.
(Note that if a program modifies a variable or property value, this is not noticed.) In some cases the
marking procedure can be subtle, e.g. if the user edits a property list using EDITP, only those properties
whose values are actually changed (or added) are marked.

The various system functions which create or modify objects call MARKASCHANGED to mark the object as
changed. For example, when a function is defined via DEFINE or DEFINEQ, or modified via EDITF, or
a DWIM correction, the function is marked as being a changed object of type FNS. Similarly, whenever a
new record is declared, or an existing record redeclared or edited, it is marked as being a changed object
of type RECORDS, and so on for all of the other file package types.

The user can also call MARKASCHANGED directly to mark objects of a particular file package type as
changed:

(MARKASCHANGED NAME TYPE REASON) [Function]
Marks NAME of type TYPE as being changed. REASON is a litatom that indicated
how NAME was changed. MARKASCHANGED recognizes the following values for

REASON:
DEFINED Used to indicate the creation of NAME, e.g. from DEFINE.
CHANGED Used to indicate a change to NAME, e.g. from the editor.

1L11

Noticing Files

DELETED Used to indicate the deletion of NAME, e.g. by DELDEF.
CLISP Used to indicate the modification of NAME by CLISP translation.

For backwards compatibility, MARKASCHANGED also accepts a REASON of T
(=DEFINED) and NIL (=CHANGED). New programs should avoid using these
values.

MARKASCHANGED returns NAME. MARKASCHANGED is undoable.

(UNMARKASCHANGED NAME TYPE) [Function]
Unmarks NAME of type TYPE as being changed. Returns NAME if NAME was
marked as changed and is now unmarked, NIL otherwise. UNMARKASCHANGED is

undoable.

(FILEPKGCHANGES TYPE LST) : [NoSpread Function]
If LsT is not specified (as opposed to being NIL), returns a list of those objects
of type TYPE that have been marked as changed but not yet associated with their
corresponding files (See page 11.14). If LsT is specified, FILEPKGCHANGES sets
the corresponding list (FILEPKGCHANGES) returns a list of al/l objects marked
as changed as a list of elements of the form (TYPENAME . CHANGEDOBJECTS).

Some properties (e.g. EXPR, ADVICE, MACRO, I.S.0PR, etc..) are used to implement other file package
types. For example, if the user changes the value of the property I.S.0PR, he is really changing an object
of type I1.S.0PR, and the effect is the same as though he had redefined the i.s.opr via a direct call to the
function I.S.0PR. If a property whose value has been changed or added does not correspond to a specific
file package type, then it is marked as a changed object of type PROPS whose name is (VARIABLENAME
PROPNAME) (except if the property name has a property PROPTYPE with value IGNORE).

Similarly, if the user changes a variable which implements the file package type ALISTS (as indicated by
the appearance of the property VARTYPE with value ALIST on the variable’s property list), only those
entries that are actually changed are marked as being changed objects of type ALISTS, and the “name”
of the object will be (VARIABLENAME KEY) where KEY is CAR of the entry on the alist that is being.
marked. If the variable corresponds to a specific file package type other than ALISTS, e.g. USERMACROS,
LISPXMACROS, etc., then an object of that type is marked. In this case, the name of the changed object
will be CAR of the corresponding entry on the alist. For example, if the user edits LISPXMACROS and
changes a definition for PL, then the object PL of type LISPXMACROS is marked as being changed.

11.4 NOTICING FILES

Already existing files are “noticed” by LOAD or LOADFROM (or by LOADFNS or LOADVARS when the
VARS argument is T. New files are noticed when they are constructed by MAKEF ILE, or when definitions
are first associated with them via FILES? or ADDTOFILES?. Noticing a file updates certain lists and
properties so that the file package functions know to include the file in their operations. For example,
‘CLEANUP will only dump files that have been noticed.

The file package uses information stored on the property list of the root name of noticed files. The
following property names are used:

. 11.12

FILE

FILECHANGES

FILEDATES

FILEMAP

FILE PACKAGE

[Property Name]

- When a file is noticed, the property FILE, value ((FILECOMS . LOADTYPE)) is

added to the property list of its root name. FILECOMS is the variable containing
the filecoms of the file (see page 11.21). LoADTYPE indicates how the file was
loaded, e.g., completely loaded, only partially loaded as with LOADFNS, loaded as
a compiled file, etc.

The property FILE is used to determine whether or not the corresponding file
has been modified since the last time it was loaded or dumped. CDR of the
FILE property records by type those items that have been changed since the last
MAKEFILE. Whenever a file is dumped, these items are moved to the property
FILECHANGES, and CDR of the FILE property is reset to NIL.

[Property Name]
The property FILECHANGES contains a list of all changed items since the file was
loaded (there may have been several sequences of editing and rewriting the file).
When a file is dumped, the changes in CDR of the FILE property are added to the
FILECHANGES property.

[Property Name]
The property FILEDATES contains a list of version numbers and corresponding file
dates for this file. These version numbers and dates are used for various integrity
checks in connection with remaking a file (see page 11.10).

[Property Name]
The property FILEMAP is used to store the filemap for the file (see page 11.38).
This is used to directly load individual functions from the middle of a file.

To compute the root name, ROOTFILENAME is applied to the name of the file as indicated in the
FILECREATED expression appearing at the front of the file, since this name corresponds to the name
the file was originally made under. The file package detects that the file being noticed is a compiled file
(regardless of its name), by the appearance of more than one FILECREATED expressions. In this case,
each of the files mentioned in the following FILECREATED expressions are noticed. For example, if the
user performs (BCOMPL '(FOO FIE)), and subsequently loads FOO.DCOM, both FOO and FIE will be

noticed.

When a file is noticed, its root name is added to the list FILELST:

FILELST

LOADEDFILELST

[Variable]
Contains a list of the root names of the files that have been noticed.

[Variable]
Contains a list of the actual names of the files as loaded by LOAD, LOADFNS,
etc. For example, if the user performs (LOAD '<NEWLISP>EDITA.COM;3),
EDITA will be added to FILELST, but <NEWLISP>EDITA.COM;3 is added
to LOADEDFILELST. LOADEDFILELST is not used by the file package; it is
maintained solely for the user’s benefit.

11.13

Distributing Change Information

115 DISTRIBUTING CHANGE INFORMATION

Periodically, the function UPDATEFILES is called to find which file(s) contain the elements that have
been changed. UPDATEFILES is called by FILES?, CLEANUP, and MAKEFILES, i.e., any procedure that
requires the FILE property to be up to date. This procedure is followed rather than update the FILE
property after each change because scanning FILELST and examining each file package command can be
a time-consuming process, and is not so noticeable when performed in conjunction with a large operation
like loading or writing a file.

UPDATEFILES operates by scanning FILELST and interrogating the file package commands for each file.
When (if) any files are found that contain the corresponding typed definition, the name of the element
is added to the value of the property FILE for the corresponding file. Thus, after UPDATEFILES has
completed operating, the files that need to be dumped are simply those files on FILELST for which CDR
of their FILE property is non-NIL. For example, if the user loads the file FOO containing definitions for-
FOO01, FOO02, and F003, edits FO02, and then calls UPDATEFILES, (GETPROP 'FOQ 'FILE) will be
((FOOCOMS . T) (FNS F002)). If any objects marked as changed have not been transferred to the
FILE property for some file, e.g., the user defines a new function but forgets (or declines) to add it to the
file package commands for the corresponding file, then both FILES? and CLEANUP will print warning
messages, and then call ADDTOFILES? to permit the user to specify on which files these items belong.

The user can also invoke UPDATEFILES directly:

(UPDATEFILES — —) [Function]
(UPDATEFILES) will update the FILE properties of the noticed files.

11.6 FILE PACKAGE TYPES

In addition to the definitions of functions and values of variables, source files in Interlisp can contain a
variety of other information, e.g. property lists, record declarations, macro definitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations, the
file package uses the concept of a typed definition, of which a function definition is just one example. A
typed definition associates with a name (usually a litatom), a definition of a given type (called the file
package type). Note that the same name may have several definitions of different types. For example, a
litatom may have both a function definition and a variable definition. The file package also keeps track of
the file that a particular typed definition is stored on, so one can think of a typed definition as a relation
between four elements: a name, a definition, a type, and a file.

A file package type is an abstract notion of a class of objects which share the property that every object
of the same file package type is stored, retrieved, edited, copied etc., by the file package in the same way.
Each file package type is identified by a litatom, which can be given as an argument to the functions that
manipulate typed definitions. The user may define new file package types, as described in page 11.20.

FILEPKGTYPES [Variable]
The value of FILEPKGTYPES is a list of all file package types, including any that
may have been defined by the user. ‘

The file package is initialized with the following built-in file package types:

11.14

FNS
VARS

PROPS

ALISTS

EXPRESSIONS

MACROS
USERMACROS
LISPXMACROS
ADVICE

FILEPKGCOMS

FILE PACKAGE

Function definitions.
(top-level) Variable values.

Property name/value pairs. When a property is changed or added, an object of
type PROPS, with “name” (LITATOM PROPNAME) is marked as being changed.

Note that some properties are used to implement other file package types. For

example, the property MACRO implements the file package type MACROS, the

property ADVICE implements ADVICE, etc. This is indicated by putting the

property PROPTYPE, with value of the file package type on the property list

of the property name. For example, (GETPROP 'MACRO 'PROPTYPE) =>

MACROS. When such a property is changed or added, an object of the corresponding

file package type is marked. If (GETPROP PrROPNAME 'PROPTYPE) =>

IGNORE, the change is ignored. The FILE, FILEMAP, FILEDATES, etc. properties-
are all handled this way. (Note that IGNORE cannot be the name of a file package

type implemented as a property).

Alists (association lists); a list of dotted pairs accessed via ASSOC and PUTASSOC.

A variable is declared to have an association list as its value by putting on its
property list the property VARTYPE with value ALIST. In this case, each dotied
pair on the list is an object of type ALISTS. When the value of such a variable
is changed, only those entries in the a-list that are actually changed or added
are marked as changed objects of type ALISTS (with “name” (LITATOM KEY)).
Objects of type ALISTS are dumped via the ALISTS ar ADDVARS file package
commands.

Note that some alists are used to “implement” other file package types. For
example, the value of the global variable USERMACROS implements the file package
type USERMACROS and the values of LISPXMACROS and LISPXHISTORYMACROS
implement the file package type LISPXMACROS. This is indicated by putting on
the property list of the variable the property VARTYPE with value a list of the form
(ALIST rFLEPKGTYPE). For example, (GETPROP 'LISPXHISTORYMACROS
'"VARTYPE) => (ALIST LISPXMACROS).

Expressions.

Objects of type EXPRESSIONS are written out via the P file package command,
and marked as being changed via the REMEMBER programmers assistant command
(page 8.13).

Compiler macros. See page 5.17.

User edit macros. See page 17.48.

(values in) LISPXMACROS and LISPXHISTORYMACROS. See page 8.19.
Advice. See page 10.7.

File package commands/types. New file package types and commands can be
defined as explained on page 11.20 and page 11.32.

11.15

Functions for Manipulating Typed Definitions

RECORDS Record declarations. Sée page 3.1.

FIELDS Fields of records. The “definition” of an object of type FIELDS is a list of all the
record declarations which contain the name. See page 3.1.

I1.S.0PRS Iterative statement operators. See page 4.5.

TEMPLATES Masterscope templates. See page 13.1.

FILES Files. Files may be treated like other typed definitions.

FILEVARS Filevars. See page 11.30. |

11.6.1 Functions for Manipulating Typed Definitions

The functions described below can be used to manipulate typed definitions, without needing to know -how
the manipulations are done. For example, (GETDEF 'FOO 'FNS) will return the function definition of
FOO, (GETDEF 'FOO 'VARS) will return the variable value of FOO, etc. All of the functions use the
following conventions:

ey

(2)

(3
4)

Any argument that expects a list of litatoms will also accept a single litatom, operating as though it
were enclosed in a list. For example, if the argument FILES should be a list of files, it may also be

a single file.

TYPE is a file package type. TYPE=NIL is equivalent to TYPE=FNS. The singular form of a file
package type is also recognized, e.g. TYPE=VAR is equivalent to TYPE=VARS.

FILES=NIL is equivalent to FILES=FILELST.

SOURCE is used to indicate the source of a definition, that is, where the definition should be found.
SOURCE can be one of:

CURRENT Get the definition currently in effect.
SAVED Get the “saved” definition, as stored by SAVEDEF (page 11.18).
FILE Get the definition contained on the (first) file determined by WHERE IS (page 11.10).

Note: WHEREIS is called with FILES=T, so that if the WHEREIS package (page
23.40) is loaded, the WHEREIS data base will be used to find the file containing the
definition.

? Get the definition currently in effect if there is one, else the saved definition if there
is one, otherwise the definition from a file determined by WHERE IS. Like specifying
CURRENT, SAVED, and FILE in order, and taking the first definition that is found.

a file name or list of file names
Get the definition from the first of the indicated files that contains one.

NIL In most cases, giving SOURCE=NIL (or not specifying it at all) is the same as giving
?, to get either the current, saved, or filed definition. However, with HASDEF,
SOURCE=NIL is interpreted as equal to SOURCE=CURRENT, which only tests if

. 11.16

FILE PACKAGE

there is a current definition.
(5) Al functions which make destructive changes are undoable.

The operation of most of the functions described below can be changed or extended by modifying
the appropriate properties for the corresponding file package type using the function FILEPKGTYPE,
described on page 11.20.

(GETDEF NAME TYPE SOURCE OPTIONS) [Function]
Returns the definition of NAME, of type TYPE, from SOURCE. For most types,
GETDEF returns the expression which would be prettyprinted when dumping
NAME as TYPE. For example, for TYPE=FNS, an EXPR definition is returned, for
TYPE=VARS, the value of NAME is returned, etc.

OPTIONS is a list which specifies certain options:

NOERROR GETDEF causes an error if an appropriate definition cannot be
found, unless OPTIONS is or contains NOERROR.

a string If oPTIONS is or contains a string, that string will be returned if
no definition is found. The caller can thus determine whether a
definition was found, even for types for which NIL or NOBIND
are acceptable definitions.

NOCOPY GETDEF returns a copy of the definition unless oPTIONS is or
contains NOCOPY.

NODWIM A FNS definition will be dwimified if it is likely to contain CLISP
unless OPTIONS is or contains NODWIM.

(PUTDEF NAME TYPE DEFINITION) [Function]
Defines NAME of type TYPE with DEFINITION. For TYPE=FNS, does a DEF INE;
for TYPE=VARS, does a SAVESET, etc.

For TYPE=FILES, PUTDEF establishes the command list, notices NAME, and then
calls MAKEFILE to actually dump the file NAME, copying functions if necessary
from the “old” file (supplied as part of DEFINITION).

(HASDEF NAME TYPE SOURCE SPELLFLG) [Function]
Returns NAME if NAME is the name of something of type TYPE. If not, attempts
spelling correction if SPELLFLG=T, and returns the spelling-corrected NAME.
Otherwise returns NIL.

(HASDEF NIL TYPE) returns T if NIL has a valid definition.

Note: if SOURCE=NIL, HASDEF interprets this as equal to SOURCE=CURRENT,
which only tests if there is a current definition.

(TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES SOURCE) [Function]

Returns a list of the types in POSSIBLETYPES but not in IMPOSSIBLETYPES for
which NAME has a definition. FILEPKGTYPES is used if POSSIBLETYPES is NIL.

11.17

Functions for Manipulating Typed Definitions

(COPYDEF OLD NEW TYPE SOURCE OPTIONS) [Function]
Defines NEW to have a copy of the definition of oLD by doing PUTDEF on a copy
of the definition retrieved by (GETDEF OLD TYPE SOURCE OPTIONS). NEW iS
substituted for oLp in the copied definition, in a manner that may depend on the
TYPE.

For example, (COPYDEF 'PDQ ‘'RST 'FILES) sets up RSTCOMS to be a copy of
PDQCOMS, changes things like (VARS * PDQVARS) to be (VARS * RSTVARS)
in RSTCOMS, and performs a MAKEFILE on RST such that the appropriate
definitions get copied from PDQ.

Note: COPYDEF disables the NOCOPY option of GETDEF, so NEW will always ha&e
a copy of the definition of oLD.

(DELDEF NAME TYPE) [Function}]
Removes the definition of NAME as a TYPE that is currently in effect.

(SHOWDEF NAME TYPE FILE) [Function]
Prettyprints the definition of NAME as a TYPE to FILE. This shows the user how
NAME would be written to a file. Used by ADDTOFILES? (page 11.8).

(EDITDEF NAME TYPE SOURCE EDITCOMS) _ [Function]
Edits the definition of NAME as a TYPE. Essentially performs (PUTDEF NAME
TYPE (EDITE (GETDEF NAME TYPE SOURCE) EDITCOMS)).

(SAVEDEF NAME TYPE DEFINITION) [Function]
Makes DEFINTTION (Or if DEFINITION=NIL, the definition of NAME as a TYPE that
is currently in effect) be the “saved” definition for NAME as a TYPE. If TYPE=FNS
(or TyPE=NIL), this consists of storing DEFINITION Oon NAME’s property list under
property EXPR, CODE, or SUBR. For TYPE=VARS, the definition is stored as the
value of the VALUE property. For other types, DEFINTTION is stored in an internal
data structure, from where it can be retrieved by GETDEF or UNSAVEDEF.

(UNSAVEDEF NAME TYPE —) [Function]
Makes the “saved™ definition of NAME as a TYPE be the definition currently in
effect. If TYPE=FNS (or TYPE=NIL), UNSAVEDEF will unsave the EXPR property
if any, else CODE or SUBR. UNSAVEDEF also recognizes TYPE=EXPR, CODE, or
SUBR, meaning to unsave the corresponding definition only.

(LOADDEF NAME TYPE SOURCE) ' [Function]

Equivalent to (PUTDEF NAME TYPE (GETDEF NAME TYPE SOURCE)). LOADDEF

is essentially a generalization of LOADFNS, e.g. it enables loading a single record
declaration from a file. Note that (LOADDEF rn) will give FN an EXPR definition,
either obtained from its property list or a file, unless it already has one.

(CHANGECALLERS oLD NEW TYPES FILES METHOD) [Function]
Finds all of the places where oLD is used as any of the types in TYPES and changes
those places to use NEw. For example, (CHANGECALLERS 'NLSETQ 'ERSETQ)
will change all calls to NLSETQ to be calls to ERSETQ. Also changes occurrences of
OLD to NEW inside the filecoms of any file, inside record declarations, properties,
etc.

- 11.18

FILE PACKAGE

CHANGECALLERS attempts to determine if oLD might be used as more than