
Global Program Analysis in an Interactive
Envi ronment

by Larry Melvin Masinter

SSL.80-1 JANUARY 1980

Abstract: See next page

This report reproduces a disserttion submitted to the Departent of Computer Science

and the Committee on Grauate Studies of Stanford University in parial fulfilment of the

requirements for the degree of Doctor of Philosophy.

Key words and phrases: programing environments. cross reference. flow analis,

type inferece. Lisp. progra maintenance. natura language interface to data bas.

XEROX
PALO ALTO RESEARCH CENTER

3333 Coyote Hil Road I Palo Alto I Caliornia 94304

Abstrct

This disscrttion dcscribes a programming tool. implemented in Lisp. callcd SCOPE. The basic

idea behind ScoPE can be stated simply: SCOPE analyzes a user's programs. rcmembers what it

sees. is able to answer questions based on the facts it remembers. and is able to incrcmentay
update thc data basc when a picce of thc program changes. A varicty of program infonnation

is available about cross rcfcrences. data flow and program organi7.aticil. Facts about programs

are stored in a data bas: to answer a question. SCOPE rctrieves and makes inferences basd on

infonnation in the data base. SCOPE is interactive because it keeps track of which par of the
programs have changed during the course of an editing and debugging sesion. and is able to
automatically and incrementally update its data bas. Because SCOPE perfonns whatever re
analysis is necesry to answer the question when the question is asked. SCOPE maintans the
ilusion that the data bas is always up to date-ther than the additional wait tie. it is as if
SCOPE knew the answer al along.

SCOPE'S foundation is a representauon system in which propertes of pieces of progras ca be

expred. The objects of SCOPE'S language are pieces of progrs, and in par.

definitions of symbols-.g.. the definition of a proedure or a data strcture. SCOPE doe not
model propertes of individua statements or expreions in the program: SCOPE knows only

individual facts about procedures varables data strctures and other pieces of a progr
which ca be asigned as the definiuon of symbols. The facts are relauons between the name
of a definiuon and other symbols. For example. one of the relauons that SCOPE keeps trk of

is Call: Call(FNl'FNil holds if the definiùon whose nae is FNi contans a ca to a
procedure named FNi"

SCOPE has two interfaces: one to the user and one to other progras. The user interface is an

English-like command language which allows for a unifonn command strcture and convenient

defaults: the most frequently used commands are the easiest to type. All of the power avaiable
with the command language is accesible Jirough the progra interface as well. The
compiler and varouš other uulities use the progra interf~"

u

Prefac:e

Th disseriuon is based on work thc author did as pan of the 11'TERUSP system (Teitelma

et aI. 1978). and in parcular. thc MAS1RSCOPE facilty. MASTSCOPE was designed and
implementcd enùrely by the author. lbe basic idca for MASlERSCOPE was originally suggested

by Warn Teitclman and a preliminar non-incremental version (called I:\TERSCOPE) was.' l
lhlplementcd by Philip C. Jackson: a tre strcture display program (called PRINTUClRE)
had previously been implementcd by Danny Bobrow. MASTSCOPE was first completed in
1975. and has been in use by many INTERUSP users since then. The systcm desribcd in this
dirttion. callcd SCOPE, is a generaizuon and extension of MASTCOPE. Whie
MASTSCOPE was designed to be a robust tool for use -by a lai:ge community, the emphas in

the desgn of SèOPE ha been on improved funcùonal. capabiliùes: some of the effciency and

robustnes has been sarificed for its additional capabilties There ar currntly no plan to
make SCOPE generay availe.

~

This work would not have been possible without the help of many people. I would like to
. thank in pancula

Warn Teitelmri for his early willngnes to set me free on a problem. and for being the
source of many of the idea which profoundly influenced this work;

Terr Winogrd, for hi patent and caful r~dings of muluple drft and hi suppon and

encouragement;

Danny Bobrow and Bruce Bucha as well as Peter Deuts Cordell Gre. Ron Kapla

and Beu SheiL. for litening and readig;

Bob Taylor and the Xerox Palo Alto Reseah Center for financia suppon and incenåves to
finaly be done; and

Caol Masnter. for ediung, proofreading. and sharing with me for what has been a ver long
åme.

Than you.

ui

Contents

1. Intrduction
1.1 Mouvauon
1.2 Overview
1.3 What SCOPE can do
1.4 Design philosophy
1.5 The setting
1.604 Some assumpuons a:id Iimitauons
1.71 Related work
1.8: Conclusions

2. Uses of SCOPE
2.1 Aid to program understanding and modfcauon
2.2 Checking for errors
2.3 Code improvements

3. Characteristics of SCOPE'S Representation System

3.1 Units and relations

3.2 Exhaustivenes
3.3 Opcrauonal corrpondence
3.4 Infcrence
3.5 Acces
3.6 Self awarnes
3.7 Conclusons

4. What SCOPE Knows About Prgr
4.1 Cross reference
4.2 Aow infonnon
4.3 Type informtion
4.4 Filing properes
4.5 Concluson

5. Progr Analysis Tecniques
5.1' Cros reference anysi
5.2 Aow analysis
5.3 Type infernce
5.4 Conclusions

6. Implementauon Notes
6.1 . Parr
6.2 Interpreter
6.3 Answering quesuons
6.4 Data bas
6.5 Conclusions

7. Future Dirtions
7.1 Improving the current implementaåon
7.2 Added capabi1ues
7.3 Beyond SCOPE

Appendices
I Rclauons Used in SCOPE
II The SCOPE Command Laguage
II The SCOPE Intermediate Qucry Language
IV Templates for Computing Cross Reference
V t\ Sample Program

Bibliography

1
1

2
4
7
9
11
14
15

17
17
2S
28

31
32
33
33
3S
37
37
38

39
39
40
44
46
47

48
48
49
S1
S3

54
54
SS
S6
S9
61

62
62
64
6S

67
75
82
84
86

98

IV

Lis of Figure

1-1 Overview of SCOPE

1- 2 Pcrlis' Perils

2- i Tre strcwre of functon cals

3-1 Mapping between world and knowledge state

3- 2 Mapping between progr and SCOPE'S data bas

6-1 Implcmcntauon of SCPE

6- 2 Wha SCOPE knows about a relatn

3

U
19

31

31

54

56

v

ii

j

Chapter L-Introduction

1. MoTIV A TION

It is well known tht roftware is in a desper.le runc. It is unreliable. delivered late. unreve
(0 change. ineffcient and e:tpc~ive. Furtermorc, ~incc ii IS currenily lahor'iniensi\'e. (he situation will
runher deteroraie as dcmand incr"C and lahor co!\\ rise. Thus the industry r:iccs one of tw
choices: citJer increase ihe 1'mducti\"y 01 highh I rained, carefully 5dccled !ilislS or reduce the
trning reuiremenlS through aUlOmauon. (hereby broadeing the bas of qualfied users ¡Bazer 1975)

Programing is costly, measured by almost any mctrc. In partcular. the amount of
moncy spcnt annually in the Unitcd S~tCS on software mcasures in the bilions. ReceIitstudies
have shown that thc major expense is in maintaining existing progras rather than in wriung

new ones (lientz et al. 1978). Software is modificd either to currect mistakes in the original

implementation. to repond to new clements in the environment. or to improve performance or
maintanabilty. Such acåviues ar reportd to consume as much as 75-80 percent of systems

and programing resurces Regrdles of these facts many resarchers intereted in reducng
the cost of softare prouction do. not addres thc issue of modification of complex exisg
. progras but instead focus on initial progr dcvelopment.

Currntly. there ar two major themes in improving softwar proucton: improving the

stncture of the resulting softwar (to improve matltiinabilty and reliabilty). and automang
pan or al of the tak. As with other labor-intensive endeavors it is thought that automauon

might improve the softar prouction situauon by reducing mistaes and incrng
prouctivity. Efort in progr automation fall along a specm with reect to the deg of
automauon. While the goal of complete automation of the prograing tak is laudable. such

an approach is fa frm proucing praca rcsults (Bazer i 975). The alternative is to provide
tools which aid the progrer in the production and maintcnance: of softar. The set of

tools available to a programer form pan of the programing environment:

In nor usc, the word -enviromeni- rcferi iO the "aSlIrcg.te .of.so and ailtu
cotions tht inl1ucn~ the life of an individual. - The: prolr.mmer:s environment inl1uena: to &
laiie cxtet detcmines what son of I'roiem'l he: c: land ..111 wani '101 (a,i.;c. how far he Ca go. and

how fast If the: c:n"ironmeni is "coper.tive. :ind "helpful"-lhc intJrol"C1moJlhlsm is deliber.tethen
the: pl'ramer c: be more: ambitious and producti\.e. If not he ...11 ~f1end most of his tie and

cnc:y -righung" the S)St. which at lies seem.. hent on fnistriins hi~ besl cffon.\. rreiieJman 1969)

Whether a programmer is dealing with a toy problem or a highly complcx one. there is
widespread realii.ation that. for any uscrs of computers the programming language and its

compiler is only a small pan of thc cnvironment with which the programmer must deal; a
comp/ttt progr.iming environmcnt would include a vanety or ;iJJitjonal systcm aids and
supportivc faciliiies. I~TERLlSP is an examplc or a programing emironmcnt which attempts

. to he woperative and helpful by providing t";ciliiies and aids wliicli work with. nol against. the

programmer:

Cb:iptcr 1-lnlrocuction

The concept of a programing environment has added new dimensions to software res
Wilh tle advent of inieractive use of computers a programer ca pacipaie actvely in sofiwae
design and development It is no lontter realistic to view programing. as a proces of diste stps
sing at compoition. then alternaiin¡t betwee submittals and debugging lIe rcslis Insied it
becmes a dynaic proces with unclea demacations. Recent programing systems specficaly
designed 10 opeie interactively. ihe best cxample of which is I'iTERLISP. eiicmplify Ulis concept by
also iaking an active role in UlC programming proc. INTERLISP not only provides iools to the
promer, but it alo "watches" over the proc. giving aid whcrc ii ca by detecg loc errrs
and providing numerous "smrt" commands to hide unnecesry programing dctals Only a limte
attept is made. however. LO "undcrsd" lhe progr ¡Wilczynski 1975) ..

The goal of this work is to extend the I"'TERLISP environment to "understad" the

program. lñe parcular problem addresed i~ mainly that of maintenance of lare
systems-larger than can be comprehended in a single gestalt. The tools described here allow

the programer to intcrauvely inquire about relationships between pieces of large progras
without requiring the programmer to understad the whole. In this way, an attempt has been
made to break the "complexity barer" (Winograd 1975): the limit of the size of the system
with which a single programer is able to deal. The sae tools can also be used in severa
other ways. For example. some of the infonnauon they gather is also useful in improving
compiler optition.

I:

1.2 OVERVI

This dirtuon desribes the implementauon and chareristics of a prograing tool

caed SCOPE. The basic idea behind SCOPE ca be stated simply: SCOPE analyzes a usts

progr remembers what it sees, is able to answer questions basd on the facts it remember
and is able to incrementaly update the data bas when a piece of the progra changes A
varety of progr analysis techniques are use to extrct different kinds of infonnation frm
progra: examples include cros reference infonnauon, flow analysis, data type inference. and
program maintenance history. Facts about programs are stored in a data bas; quesuon

answering takes the fonn of retreval and inference based on information in the data bas, The
interative ,nature of the 'system is maintaned .

becuse SCOPE kees trk of which par of the

progrs have changed during the course of an ediung! debugging session. and is able to
automatically and incrementally update the data base. SCOPE maintans the ilusion that the

data base is always up to date, because SCOPE perfonns whatever re-analysis is neces to

anwer the question whenever a question is asked. Other than the additional wait ume, it is as

if SCOPE knew the answer all along.

SCOPE'S foundation is a representation system in which properties of pieces of programs

can be expressed. R~presentation systems are characterized by the entities they describe. the
k.ind of facts they can contain and the manncr in which the facts are derived. i1ie objects with

which SCOPF. deals arc pieces of programs, and in particular. definitions of symbols-c.g., the

2

(,lip.~r I-Iniroduclion

definiuon of a procedure. record type or macro. SCOPE does not modcl propertes of individual
statemcnts in the program. the micro-syntax of symbols, or the prcsncc of fonnatting: SCOPE

knows individual facts about proedure varables data suucturc and other pieces of a
progra which can bc asigncd as thc definition of sYmbols. The facts arc rclations betwee
the name of a definition and othcr symbols. For examplc. one of the relations that SCOPE

keeps track of is Call: Call(FNl'FNil holds if thc dcfinition whose name is FNi contans a
..

caJl to a proccdurc named FNz. lñe class of facts which SCOPE can rcmcmbcr is genera

enough to encode the results of many kinds of progra analysis. However. it is not the ir~st
genera imaginable: for cxample. intcuve verificauon systems (Moriconi 1978. Deuts 1973)

often allow asrtons which involve quatified expreons

SCOPE employs several different kinds of progr analysis techniques to extr

infonnauon frm the users progrms. While progr analysis is itself an importnt topic of
invesugation. the emphasis in this dissrttion is on the mechanism for providing asistace to
progrers rather th on the analysis tecniques themselves

Interace to ScPE

The SCOPE sytèm operate within the INTUSP environment. During a working seon.

as the user is ediung and debuggg a progr the us communicate to SCOPE vi a
commad language (Figure I-I). SCOPE is able to analyze the progra the usr is debuggg

and store a data base of fats about it. SCOPE use ,the data base to answer the usets quesons

edit

comma

. quer

Program Data base

Figurc i-i-o"crvicw .of SCOPE

3

Cbaptrr I-Introduction

SCOPE has two interfaces: one to the user and one to other progras. The user interface

is an English-like command-language which allows for a unifonn command strcture and

convenient defaults: the most frequently used commands are thc easiest to type. All of the
powcr available within the command language is accesible through the progra interfe as

well. The compilcr and various other uuliues use the progra interface.

1.3 WHAT ScOPE CAN DO

SCOPE makes available several different kinds of infonnauon about programs, such as
cross reference infonnauon. data flow infonnation (including summary infonnauon about
varables. side effects and data types), and filing informauon. lbe infonnauon SCOPE provides

can be used in several ways. For example, SCOPE can help the programmer to undcrstand an

unfamilar progra or to check for programming errors. This secuon is intended to give the
reader an overview of thc kinds of infonnauon that SCOPE provides and of applications of tht

infonnuon.

Cross reference

Informuon about the locuon of references to symbols is caed cro referece

information. Such infonnauon is usful when tring to understad or modfy a progr. For

exaple. a progrer who has changed a proedure BRK might want to find the plaes

where BRK is used. In ths siniuon, the progrer ca merely ask the queson:

... WHO CALLS BRK

and reeive the reons

(COMMAND SPACE LEADBL PUTWRD)

which lists the. places where BRK is caled. At no tie during an interactive seon is the user

reuired to do anythng special to make sure that the results are up-to-date. The only visbl~
effect that changing the progra has is that the resonse to a command to SCOPE might be

returned more slowly if much of the progra has changed since U1e last tie a question was
asked. Thus. if the user edits SPACE and changes it so that it no longer calls BRK, ScOPE

would subsequently resond with (COMMAND LEAD~L PUTWRD).

Cross rcfcrence informauon can be used to drive the INTRLlSP cditor so that, if one
wants to changc the way a ;Jicce of program works, it is simple to mak.e sure that all of the

uses of Ulat pil.ce arc caught Changing a data strcturc type is simplified by thc abilty to
dircct thc editor to those places which rcference the pans of that data structure. For example.

4

C1p.er l-ln'rocuction

~ EDIT WHERE ANY FIELD OF COMTYPE IS USED

wil invoke thc 1!''TERLISP editor sequcntially at those places which rcference any ficld of the

data strcwr type named eOMTYPE. giving thc user the opportnity to explore or modfy the
picce of progra which contans the reference:

GETVAL:
(create eOMTYPE TYPE ~ ARGTYP N ~ (eTOI aUF))
tty:
· ...interactive edit seson
.OK
FORMA TSET:

(fetch TYPE of VAL)
tty:
· ...interactive edit sesson
.OK
(fetch N of VAL)
tty:
· ...interactive edit sesson
.OK

The user is led sequentially thugh all of the references to the fields of COMTYPE: at eah
loction. the editor pauses to allow the usr to explore the surrundings modify the progr
or perform oU1er aconsven to (recrsvely) invoke SCOPE

Flow information

... the apücaáons ror inteura da now anysi which ar unrte to opti an
or rar grter imponace th GO improvement. Mos or thes applicitions rela to the de of
progi erors pro cIoii and improved laiuae degn (Ba 19

Another kind of infomiuon of which SCOPE keeps trk relates to progr flow. Aow

infonnauon reflects the dynamic propertes of the exection of progra while crss referece

infonnation relates to the ~tatic interrelauons of the strcture of pieces of progr

indepcndent of progr execuuon. (It is possible to "understand" cross reference even for
non-cxecutablc languages e.l. one data stcnire tye can reference another.) The flow

information which SCOPE computes includes the ways in which one proedure might ca

another. and the location where varables are bound. used. and assigned. Flow informauon ha
many applications: for example, flow propertes can be uscd for detccting programing errors

in aiding compiler optiizauon. and to provide useful information to thc progrer.

One common error in INTRUSP progras arscs from misiise of free variables. A free
variable is used in one procedure and declard in another: i.e identity of the varable is

. deLcrmincd by the run-time contcxt of the use. Detecting free variable errors is diffcult for a

programmer becJuse it oftcn involves cxamination of large portiuns of the program. SCOPE'S

flow information. which includes thc location whcre variables ;irc used trcely, where they are"

5

Giapier I-Inlroduciion

bound. and the possible calling chains. is suffcient to detect the possibilty of a free varable
error. At any timc during thc program dcvelopment proces. the programmcr can ask SCOPE to

check for frce varable errors using the CHECK command. For example. the command

~ CHECK FORMAT

might result in the waring:
ii r

BLANKS is used freely by SKIPBL, which can be reached
an entry. without BLANKS being bound.

f rom INDENT.

This warning messge means that there is a possible dynamic callng path which ca reac the

procedure SKIPBL in which the variable BLANKS is not defined.

Side effect infonntion

A parcular kind of flow infonnation which SCOPE provides is a summar of the side

ejJcts of procedures: SCOPE ca detennine. for a procedure. what types of data strcnires

might be changed as a result of a call to that procedure. The clasical use of side effect
infonnation is in program opumization. Many code trsformauons in an opumizng compiler

have preondiuons which are expresd in tenn of side effects and uses. In a language such as
Lisp which is strongly oriented toward short procedures. interprocedura infonnation is
importt when making code improvements

For exaple. the progr frgment:

(VAL~(GETVAL aUF))
(CT~(COMTYP BUF))
(DOCOMMAND CT VAL)

ca be rewritten as

(DOCOMMAND (COMTYP BUF) (GETVAL aUF))

if the varables VAL and C i are not used subsequently in the progra (or by DOCOMMANO)

and the expresons (COMTYP aUF) and (GETVAL aUF) ca be exchanged.

,

Type information

Yet another kind of information which SCOPE is able to provide concerns data types In

LIsP. variables do not have data type dcclarations asociated with them: rather. the objects that

are passed as the values of varables, storcd in ficlds of rccords or rcturned from procedures
may have data types associatcd with mcm. Even though" Us!' (usually) has no type
declarations. it is often possible to infer from the code somc restrictions on the possible ranges

6

C1'apier l-lnlrocluction

of varables If a "data tye" is constrcd to be a range of possible valucs (one of the may

possible intcllrctauons of "data type"). thcn SCOPE can be sad to perfonn data type inference.
For exple. SCOPE ca infer that the proedure:

(PUnlN
(LAMBDA (BUF OUT)

(for X in BUF do (PUTCH X OUT))

expccts BUF and OUT to be a list of charatcrs and fie namc respectively, and that PUTLIN

returns NIL. Thc type declaruons which ar so inferred arc useful both as infonnauon to the
progrer and as possble addiuonal infonnauon to the uSP compiler.

1.4 DFSGN Plm.SOPHY

The most importt constrnt on SCOPE'S design was that it should be a pratica tol of
genera uulity for us with alost all INTUSP progrs. In the cours of designing SCPE
. seera ises have ar whic have cruca1y afccted the way in which the syst work

This seon lays out some of thos design constris

NolIiDtte

A tol shoud not get in the way when it is not neeed Prgr anysis tols whi
reuire the progrer to input a lae boy of asertons about the progr in adtion to

the progr itslf wil1 not have muc succes as praca proing tols bese the
asons play no pan other th errr checkig in the progra development proes Th
cla ha be parly refuted by the incring popularty and succes of progrg

languges which enforce soia type checking such as PASCL. ALGOL 68. and MESA (Geske,

Morrs & Sattertwaite 19761. However. declarations in those languages contrbute to progr

effciency and aid in strage management as well as providing for static checking.

In adding progra inference capabilties to an existing language. it is importt not to
add to the burden of prograing. A large progr is in fact a mine 9f

informauon-infonnation which any competent progrmer might he ab!e to infer. given
suffcient tie. The goal of this work has bee to embody that capability within the
programer's mecanica asstat. It is possible to build an asistant which ca infer
relauonships from the progra as writtn without requiring the user to make addiuonal

asrtons.

7

Chapter I-Introduction

Correct, but imprecise

It is possible to take an intractablc problem (automatic progra creation and

modification) and turn it into a tractable one (a programmcr's assistant) by building an aid

rathcr than an automatic device. Toe "low road" to automatic programming has had high
payoff to real, ~rogrammers today,

Ii !

!\ spccialization of this rule is as follows, It is now recognized that proving simple
propcnies of even small programs is often eithcr not decidable or else computationally

infeasiblc (Jones & Muchnick 1977). It is m:cessry to take a hcuristic appröach to
understanding in ordcr to make headway: thus. program analysis almost al~ays rcsults in

. approximate assenions. For cxamplc. in computing flow information. it is impossible to tell if

a panicular path through a program wil actually be taken: it might be that the test in a
conditional is always false.

Benefit for cos

To achieve acceptance of any programming tool. the benefit of using the tool must exceed

the cost. However. cost should not be measured in computer cycles. It has generally been the
trend that manpower costs have increased, while the cost of machine cycles has decred.
With the advent of personal computers. the notion of computc.r time as a limited resurce may

well become obsolete-imagine being acused of wasting cycles on a hand-held calculator. In

designing programmer tools, it is importt to minimize the time that the user needs to spend

to perform a given tak: when the tak is performed with computer assistace. then the tie

the user must wait for a resonse remains critical. Because SCOPE only perfonns analysis.as a

direct result of a user's request, the user always has the choice of waiting for SCOPE'S resons

or abortng the computation.

Unifonn interlace to multiple sources of infonnatioD

SCOPE provides a uniform way in which diverse kinds of program infonnation ca be

used together. The syncrgistic effect of multiple sources of. knowledge within a single
framework has become evidcnt with the use of SCOPE. For example. in the command WHO ON

FORMAT is CALLED BY WHO THAT BINDS BLANKS. flow information (BINDS) is used in

conjunction with tiing information (ON FORMAT) and cross rcference informauon (CALLED).

8

Cñcr I-Introduction

1.5 TIlE SETG
. . . (lISPsl core ocl'ics i;me kind of ICXL optimum in the Sface of p~raing laguage

given mat swc: fricuon dirages purey notauonal chge . . . LISP sull ha opcion feare
unmached by other IaguagCl lht make It a convenient vchide for higher level sYStc for syboli
copuwion and for anfic: inlcJligenc: (McCy 19781

Lisp systems have been used for highly imeraùve progrming for more than a decde.
During that tie. specal propcrt~" of thc Lisp language have enabled a cert~ rtyle of

interative progrmming to develop.. Sandewall (1978) has written an exccllent survey arle
desbing th style of progra development.

In parlar, INTÚSP is a progring environment in wide use within the arfici
intellgence community for a varety of applicauon progra It is a complcte progring

envirnment with sophiscated debugging tools, multiple extensions to the basic Lisp languge,
a lae subroutie libra, and varous tols for improving effciency of user's progra

Whle a SCPE-like faity could be of gret utiity in environments other th II,

seer chrics or the LiSP stle of progrming had parcula impact on the ea or

implementaon and the utity of the relt for SCOPE

Impact or enYirollt on utit

Fir 1N is an intmzctiv~ environment. The cl of progrer astace and
intetive reeval tols or whi SCOPE is a reretave does not mae much sens in a

bai ennment. It is ony in the contet of usg the computer as an active tol with whi
to build pro tht an inteve ast ca be of us A syst for anwerig quesons

about progr orgizon maes an effecve tol only if the queson-anering pro is
eaer and faste th perfonnng the sae ta without asisce.

Scncly, SCPE is intede for use in the development of medium- 10 lare-scae

.pro 'It is unneces to provide infrmtion retreval capabi1ues for short .progr. . . .
which ca be unde~ by simple examÌDauon. SCOPE is most useful when the prora ha

grwn so lare that the progrer caot gr it as a whole. I/IRUSP. through its

increenta stle, anows the development of program which ca eaily exceed the gr of a
.

single progrer, in that sense. SCOPE fils a re need.

Finy, the power of SCOPE is amplified grtly by being cmbedded in an integrated

cnvironment such as I/lRLlSP. It is importt that facts about the program arc available

within the: dcbugger and editor. so that the informauon is always at the fingcrtps of the

progr.mcr. Without this intcgration. the qucstion-answering proccss might fail tù be easier or
quicker than obtaining the sac infunnatiun without asistance. For example. J cross reference

9 .

Cbapler I-Inlroduction

listing on the desk might at times be more convenient than interrpung an ediUßg seion to
invoke a spccial purpose question-answering progr

Impact of cnvironment on case of implementation

Several other qualiues of Lisp and INTRLISP made the development of SCOPE eaier.
LIsp has a simple representauon of programs which is easy to analyze. The extensions to the
syntax of Lisp contained in IJlRUSP did not pose major additional problems in providing

accurate analysis rouunes.

Why not simplify?
Well chos and well desgned progra of modes size ca be used to crte a comfonable and

effecve interac to thos th ar bigger and les well done. (Kernighn &i Plauger 19761

I!IiERLISP is a large and complicatcd system. In the course of answering quesuons about

INTEUSP progrs. features of the language which make analysis diffcult ar often
found-non-unifonn interface to language features obscure or ambiguous semantics and
features whiCh violate common intuitive asumptions about program execuuon. For the mos

par the choice has been to deal with the language as it is rather than to attempt to fi it;
elegat solutions are elusive. There is a great temptauon to dism the complexity of
INTUSP as the result of bad design lack of design. or, as is actualy the ca. to many
designers and to clioose instead an aruficial language with cleaner semantics as the taget of

analysis There ar continuing effort to develop real programing languages with cleaer
setics (e.g.. CLU (Uskov, et al. 1977). ALPHARD (Wulf 1974). SCHE.\lE (Sussma & Steele

1975). and improvement to INTSP (Bobrow & Deutsh 1979)). Thes effort are laudable
and have made some progre in reent year. However, a certin amount of complexity is
inherent in any programing system of maturity, and tools are needed for deaJing with the
complexity. Simple languages are not realistic. No programing language wil be a panacea
which wm" simplify' the semanucs of all progras-programs are inherently complex.. In
addition. the univers of design objectives for programming languages is somewhat self-

contrdictory: there are always compromiscs (Hoare 1973, Wasserman 1975). Of the alternatives

for deaing with complexity. powerfl tools arc often more effective and pracucal than attempts

at simplification of the environment

The INTLISP system, though large and complicated. is written in LIsp using only the
primiuves in the INTRLISP Virtual Machine definition (Moore 1976) (referred to as "the
VM"). which is not nearly so large and complicated. The VM is the environment in which the

I!'TERLISP systcm is implcmcnted. It dcfincs a basic sct of abstract objects and LIsP functions

for manipulating thcm: thc rest of the I~Tr.RLlSP system is defined in tcnns ofthc primitives

10

C1ter I-Introduction

supplied in the VM. Somc of thc "built-in" propcrties which Scopc contains about INTUS
primitives (e.g.. sidc effcct infonnauon) were dcrived by using SCOPE to analyzc thc INTUSP

system above the VM.

l.6 SOME ASSU~PTONS AND04 IJMITA nONS

... stndad haliing-problem al'umenL'i show tlal no ;uch sy~cm can be coplete; exection lie
L'i noi a decdable propcny of':CllTenl programin~ languages, Iin addiiionl tle analysis of may
aJgorilh require considerable malhcmtic:l c.'tpcruse; aii cxpen ~ysicm would neces'ily include al

the leni"luCS in tle monumenw work of Knuth. The former is an absoluic IimiWion; tle Ia
csblishes a bonda beyond" which inteve asisiac.: from a progrmer or anyst is reui

(Wearet 1975a)

Any attept to design a progra which knows somcthing about other progra mus
necesly carfully skirt the computabilty problem: given almost any intereting propert of a

progr. it is almost always posble to comc up with an exaple where the value of th

proper is not computale for a large clas of progrs: almost every such proper is

reducible to a halting problem. For example. me values which a variable might ase ca
depend upon the reslt of a predicate which is posibly (but not decidably) always false: thus

ext deteron of the rage of values for the varable is not poble.

It is tberefore neces to limit the doman of inferences about progrs in a way whi
prerves many intereng properes Along the path to progrm undersdig. ther ar

seer obstales. It is as if a fancifu ladspe were beng explored (Figure 1-2), inspir by

Al Perl
Ther's a sed (obe) tJ ha retly coe into beng. and tlis is renition tht we ar

sulTDdec by mounta lh ar realy unbelievably diffcult or even impoble la sce. Inde ib
moUDwn ar so bad th at the moment one of the grea pics arund is LO show lh they ar
impcmble to sce. All we're able lO show is !ht one mountain i.'i as bad as anouc:.... This boeø
pele-t bother me i know-nlil I find out Wt tle vas majonty of the ia Wt we do no yet
know how to do ar Dot in thos caories (Perlis 197

The fim obstacles trvelers along the path to progra understanding encounter ar the
Mountans of Complexity. For example. many papers in the literature show either the
computauonal complexity or infeaibilty of varous flow analysis taks (Hecht & Ullman 1973,

Schaeffer 1973. Graham & Wegman 197~. Aho & Johnson 1976). One of thc reasons SCOPE is

able to skirt the Mountains of Complexity is by its choice of incrcmcntally updaúng the data

bas. An order n2 algorith might be computaúonally infeasible in a batch environment;

however. incremental update can oftcn reduce the complexity of the computation when a piece

of program is changcd to a manageable sizc. Thc next majur obstacle. labcllcd the Cliff of
Non-Dccidability. has a small Heuristic Gap winding through it By carcfully choosing the
Icind of informatiun rcponcd bad from the analyc;is routines and not attcmpting to be too
ambitious. it has bccn possible to providc useful results.

ii

C':ipier I-Inlroduclion

04

'-

I.

Mountai Of Coplty

~
Turing Tart

Figure i. 2-Perlis' Perils

12

('b:ipicr l-lniroduclion

Specifc limitations of analysis

'" In the re of LhiJ¡ thes we wil a.'ime lhl the only w:iy to chnge the stle of a progr is
by trfer of control or modficaon of a varble and thi no progra acc any asnchronouy
modfied da (Baning 1978)

For the reans outlined abovc. it has been nccesry to limit the kinds of analysis with
which SCOPE dcals. Onc place where this limitation has becomc quitc evidcnt has been in
dealing with theunconvcnuonal contrl strctures which arc available to Il\TIRLISP users (in
partcular. EVAL APPLY. and the .spaghctti stack features). Flow analysis or cvcn simple cro
reference infunnauon is diffcult to compute in the prescnce of those primiuves

(NTSP contans a complcx intcpt system which can in practice. cause user-defined
computauons to occur at aritr places in the computauon. Some uses of the intcmpt

syst ca violate the inwiuve interpretauon of the program to thc extent whcre alos no

. analysis would be possible: for examplc. following an asignmcnt X~Y. if an intcrrpt oc

which reigns y, thcn X-Y would be fal ThUs. most of the progr propenics inferr by

SCOPE ar asmcd to hold "unles an intcrrpt with intcrfcring side effec happens".

(NTUS als contans a sophiscated errr reovery mecanis whereby the
prograer ca specfy an aritr computation to be exectcd whcn an crrr of any given

type oc For example. the proer ca specify that the addiuon of two suings should
not caus an errr, but rather that the relt should merely be the concatcnauon of the two

sugs SCOPE'S type analysis however. ases that the INTUSP errr mecan is not

us to contiue compuwions which would normaly be in err.

Fmaly, INT is an interative system and one ca write INTUSP progr which
dcfine new proedures or data strcture types or modfy old ones The abilty" to do so is quite

powerf and makes it possible to write progrming tools within INTRUSP itself (mos of
the INTUSP environment, including the editor and debugger, is written in INTUSP).
Analysis of progras which modify their own codc is beyond th.e capab.illy of SCOPE. SCOPE

ases for example. thac procedure definitions do not change during progra execuon.

SCOPE is able to note when the capabilty to redefine or modify exisung programs is used and

is able to warn the user when its anlysis may be incomplete.

Anyone who attcmpts automauc progra analysis. whethcr that analysis be vcrificauon,

peñoiiance analysis, or measurcment of complexity. faces many problems. Only a few of

those problcms have becn solvcd hcrc: what is provided arc fundamcntal mcchanisms for

embedding the solutions to those problems (insofar as Scopc can use a varicty of program

analysis techniques). and. for gracefully not solving them (by rclying on' correct but imprecise

infonnation. and by knowing when its analysis is possibly incorrect).

13

(n:ipier I-Introduction

Only INTERP

While a ScoPE-like facilty could be built for other languages. SCOPE currently only works

for INTERLlSP progras, The fundacntal idea of an interactive asistat which is able to
answer questions about a program is clearly relevant to any programing language. The
partcular representauon scheme used by SCOPE to represent propertes of pieces depends only~ .
on the ability to split up the user's program into separatcly produced par which have
separable semantics. Rowever. whilc many of the individual rclationslcnown to SCOPE are

applicable to most c?nventional programming languages (e.g.. cross referenc.e):, somc of them

relate to features which are rarely found in non-LIsp systems. For example. SCOPE'S check for

misuse of free variable analysis is uscful only in systems with dynamic binding and SCOPE'S

type analysis is applicable only to languages with a run-time type system. To implement a
SCOPE-like system for other languages would require studying the real infonnation needs of

the programmers of those languages to determine which kinds of analysis are most appropriate.

1.7 RETE won

Work related to SCPE and desribed within the literature falls into two rough categories:

that which attaks a similar problem. and that which uses related techniques. In the former

category are other effort along the spectr of "automatic prograing", from interative
programing environments to automatic progrming system The category of related
techniques includes 'Nork on verification, flow analysis and type inference.

Although the idea of interauve tools to aid progrmers is not new, complete, integrted
programing environments have only recently become popular. Teitelman (1969, 1972) was an

early proponent of a complete programming environmenL Mitchell (1970) and Swinehan

(1974) proposed interactive programing environments for A.1gol-ike languages. Severa tools
avaiable under the UNIX operaung system (Dolatta ct al. 1978. Feldman 1979) are diected
toward the prograing language C. Model (1979) has desribed interative tools aimed at
monitoring more complex procesing syste

There have been several calls for "smarter" assistance to the expert programmer, which go

a step beyond interactive ediung and debugging tools. Winograd (1975) proposed a unified

programming environmcnt in which automatic program synthesis and analysis are mixed. Rich

Shrobe and Watcrs (Rich & Shrobc 1978: Rich. Shrobe & Waters 1979: Waters 1979) are
attcmpting :0 build a much morc ambitious programmcr's apprentice which can model a

programmcr's goal structure and relate the structure of thc program to thc semantics of the

domain in which Ù1e program is operating. Shrobe (Shrobe 1979) describes a systcm called

14

Cbaøtcr l-lniroduetioa

REASON for providing "common sense" side effect analysis to aid programers in
undcrstading thcir programs. Thc most significant diffcrencc betwecn thesc works and SCOPE

is that thcy dcal with infoiial reaning about programs. and thc intcntions of the

programcrs SCOPE.. on the othcr hand. concentrntes on formally definable propcrtes of
progras. Clearly, a trc "progrmer's apprentice" would have thc abilty to mix both kinds

of knowledge.
..

Resarers in progra verificauon attempt to provide mecanical asistancc for proving
that progr ar corrL Verificaon shar with progra asistace the chater of

exuaung infonntion frm progras. lntcrncuve. increcntal verification systcms such as the
one desribed by Moriconi (1978) share with SCOPE the mechanisms of change propagtion.

although the clas of asnions tht they deal with is on the one hand, morc complex. and on

the other, not as broaci

Finay, global flow analysis is a fritfl approac to progra optimization (e.g. (Banning

1979: Ba 1977, 1978)). SCOPE provides a fraework in which flow anysis ca be plaed

Many rehen are .acvely invesgaung flow anysi tecniques and applications in may
differt fonn and in parla interprredura flow analysis (Rosen 1979). Fosck aid

0sei (1976) have applied da now anysi to detecg errs in progr

1.8 CONQ.tJON
The pr stdy of thos who ar coceed wi the arfi is the way in whi th

adWin of mea to envieDu is brought abut-and c:ua to th is the pro of dep
ii (Sim 19)

The 'major contrbution of th work is that it mows a pragmati approh to the
constction of a progrmer's astaL In order to delineate an approach to designing

progrer asstats a set of desgn criteria is first outlined-importt criteria which a
~ iifu prograer asistat tool should sausfy. Secançi a deign which meets the criteria is

desbed.' Finally. an implementation of'the design provides some validation 'that (a) the
design crteria are in fact desirable. and (b) the design satisfies the design criteria.

It sees to. be common within the computer science literature that an author wil
introduce the reader to a parcular problem and then proceed to prescnt a solution which is

simply asserted to solve thc problem at hand without furter evidence (Kling &. Scacchi 1979).

Whilc the programming tools describcd in this disscrtuon have not undergone rigorous tests

to detcrmine whcther they improve productivity, a subset of thesc facilities have been in use
for several ycars within the I~ERI.SP uscr community and.. as indicated by thc results of an
informal survey. many i~RLlSP uscrs have found them invaluable. While no controlled study

15

Chp"~r I-Introduction

has been performed by which one could make strong claims of increased programer
productivity, there is good evidcnce that at lcast the programmers themselves have found some

benefit

16
.

Chapter 2-Uses of SCOPE

SCOPE'S rage of applications is broad and it can help prograers in many different

ways. In this chaptcr. a few typica applicauons of SCOPE arc discussd. An analogy ca be

drawn to programing languages: if SCOPE were a programing language. this chapter would
contan some examplcs¡ út thc kinds of progr onc could write in iL

I:

The examples in this chapter ar basd on the FORMAT progr given in Appendi V;
the program is a ualation (from RA TFR into INTRUSP) of a text fonnatter which appe
in Kernighan and Plauger. Sofi'N Tools (1976). It was chosn becuse it is well-wrttn

(being an. example in a text on wriung goo progra) and more than a few lines long. 'The
code is re1auvely wcll docented (every rouUDe has a commcnt which indictates wha it do)
and there . is a fairly lengthy doentaon on the operauon of the progra. The progr
acepts text to be fonnaued intersersd with fonnatung commands tellng it what the output
is to look. like. The reder must employ a litte imagination: as progrs go. FORMAT is st
quite shan and some of the problems ilustrted in this chter could be perfonned as siply
either by hand or with a siple tet editor. SCOPE is intended to help progrers who must
dea with system whi ar an. order of magniwde more complicaed

Th chapter di thre ar wher SCOPE is of genera uulity: within thos ar

parcul applications to INT wil al be desribed: (1) helping the progrer to
understad or modfy a lare progra th was written by somebody else or writt a loog

tie ago, (2) cheCing for prograing errrs and (3) improving the qualty of compiled

cod

2.1 AID TO PROGRAM UNDERANDING AND MODIFCATION

SCOPE ca help progrers who are tring to undcrstad .or change a lare or
unfamilar program ín'severa ways explained in detal in sections. 2.1.1 through 2.1.5 below.

SCOPE can (1) present summaries of the graph of interrelations of pieces of progra, (2) show

how a picce of program is used, (3) answer questions about progr flow, (4) answcr questions

about sidc effecti and (5) answcr questions about data. types

The set of lnform;ition which SCOPE ca provide to the user is complctcly directed by the

queries asked: therc is no fixed table of information which is displaycd. ßccause SCOPE is

intcractive and its cummand language simple. SCOPE is responsive to the necds of the user.

Thc difference hctwcen trying to understand a prugr::m with a summary uf possibly useful

infomiatiun ~nd usmg ll¡c kind of intcr::ctivc response that ScorE provides is like the

17

Chapier 2-lIse of SCOPE

difference between debugging with a core dump and debugging with an interacuve debugger.

Just as the interactive debugger is a much more fincly tuncd effcicnt tool. SCOPE is much
more useful than anyone stauc display of infonnation would be. While carefully written
documentation would provide guidelines for the program reader, program documcntauon is
often out of date. inconsistent, or incomplete. In the absence of carful docmentauon, ScOPE

II can be of gret asistance in understanding a progra and in fact, having access to a masve

set of documentation, no matter how complete, is not as convenient as being able to
interauvely ask and receive immediate answers to specific quesuons

SCOPE can also be used to generate progra documentation. For example, SCOPE ca be
used to generate cro reference Iisungs or lengthy šummares of progr propertes or to
annotate progrs with type declaruons. (Some INTUSP usrs have used MASTCOPE to
prouce cro-reference docmentauon in lieu of flow char required by their fundig
agencies.) However. such docmentauon is stauc-it doe not change when the progr

changesand inconvenient-one must sea the documentation to fid an anwer rather th
asking ditly. SCOPE-added type declaruons often obscre the simplicity of the code and ar

al not as usful as interauvely available' informtion.

Display of progr stct

A sutaly prite veron of the ca grah prode a usñll doceuiaon and deUÏ ai
(Ryde 199) .
In working with large progr a progrmer may los trk of the hieray which

defines his progr stcture. SCOPE can aid the user by dilaying a tr stctu which

concisly shows the interrelauons of the pieces of a progr. For example, the commd
SHOW PATHS FROM FORMAT would print the following tree strcwre of calls shown in Figure

2- 1. (A similar figure appea in Kemigan & Plauger, p. 245.)

Ths display shows, for example. that the funcuon FORMAT ca the functions
FORMATINIT. COMMAND, 7~X.T, SPACÈ, CHARBUFFER' 'and GETLIN: FORMATINIT ca

CHARBUFFER. and COMMAND calls BRK, GETTL, SPACE. COMTYP, GETVAL. and FORMATSET.

Only cals to the user's own functions are inc1uded-system funcuons are not tred or

displayed. For example, FORMAT also calls the system functions CAR and IGREATERP. but

SCOPE knows that CAR and IGREATERP are INTLlSP system funcuons and does not display

them in resons to the SHOW PATHS command. .

18

(n:ipler 2-tses o(SCOPIo

1. FORMAT FORMATINIT CHARBUFFER
2. COMMAND BRK FORMATPUT PHEAD SKIP
3.

I I PUTTL PUTDEC
4.

I I PUTC
5.

I PUTC
6.

I PUTL! N PUTCH
7.

I SKIP
8.

I PFOOT PUTTl (3)9.
I SKIP

10. GETTl SK ¡PBl SK I PBl (10)11.
I SCOpy

12. SPACE BRK (2)
13.

I PHEAD (2)
14.

I SKIP
15.

I PFOOT (8)
16. COMTYP
17. GETVAl SKIPBL (10)
18.

I CTOI
19. FORMATSET
20. TEXT lEADBL BRK (2)
2t. I UNDERL SCOPY
22. I CENTER WIDTH
23.

I FORMAT PUT (2)
24.

I PUTWRD SPREAD
25. J I BRK (2)
26. I I SCOpy
27. I J WIDTH
28.

J I FORMATlENGTH
29. I GETWRD
30. SPACE (12)
3t. CHARBUFFER
32. GETlIN

Figu 2-1- Tree stctre of function cù

The numbers in braces () after a name are backward references indicating that the tr

for that function was cxpanded on a previous line. For example. the call trce of BRK is not

expanded on line 12 because BRK's tree (which shows that it cans FORMA TPUT) had bee

.displayed on linc 2. Backward rcfcrences ar necesry becuse the call tree is actually a ca
graph: thc strcture of function calls. ca fonn an arbitrry directed grph.

In addition to displaying a tree structurc of function calls. SCOPE can display an inverted

trce: that is. onc which shows how givcn functions can be reachcd. For examplc. the command

SHOW PATHS TO BRK would display thc following structure:

1. BRK
2.
3.
4.
5.

COMMAND FORMAT
SPACE FORMAT
I COMMAND (1)
LEAOBL TEXT FORMAT
PUTWRD TEXT (4)

iq

Chapter 2-Uscs or SCOI)E

This display shows. for example, that BRK is called by COMMAND. SPACE. LEADBL, and

PUTWRD, while COMMAND is called by FORMAT.

SCOPE'S SHOW PATHS command has sevetal other opuons which allow the progrer

flexibilty in controllng the nature of the strcture displayed. The various opuons of SCOPE'S

SHOW PATHS command are listed in Appendix II.

The SHOW PATHS command allows the user to obtan a concise overview of the strcwre

of.a program from a number of different viewpoints. Often. the can strcture of a large system
is too complex to be clear from anyone display of its strcture: that the perspecuve from
which the progra is viewed is not fixed but rather determined by the prograer is criucay

importt in the usefulness of the display. When a single strcture is too complex to be

displayed in anyone orientauon. an interactive display which allows multiple perspecuves ca

help in understanding of the structure. An analogy can be drawn to computer aided desgn
faci1ues. in which an interative display of a strcture being designed (a circuit, a building. or

a shp) is much more useful in understadig the structure than anyone drwig.

Cross reference

SCOPE ca be used as an interauve index when browsing through a lae progr

Often. the key to understading a piece of progr (e.g., a subrouune or a data strcwr) is to

see how that piece is used. Program documentauon generaly includes descriptions of how a

program works and what various picces do but raely includes desripuons of the ways in
which those pieces are employed. In reading an unfamilar program the reader may come
across a short procedure which perfonns a simple action. It may be perfectly clear how th
procedure works. but the reader sulI has no clear idea of why the procedure is there at al

Only by examining some of the uses of the procedure wil its applications become evident
SCOPE can help by allowing the program browser immediate access to the places which refer to

a given piece of program, through SCOPE'S SHOW or EDIT commands

For example. when browsing the FORMAT progr the progr reader encounters a
procedure GETTL:

,

(GETL
(LAMBDA (BUF TTL) (.copyiiiltfrombufronl)

(wh i 1 e aUF: l-=BLANK and BUF: l-=TAB and BUF: l-=NEWLINE
do BUF+-aUF:: 1)

BUF+-(SKIPBL BUF)'
(if BUF:l=SQUOTE or BUF:l=OQUOTE

then BUF"SUF:: 1)

(SCOpy BUF TTL J)

20

Clapier !-lsc o(SClWE

Apparcntly. GETTl acccpts a list aUF. lCmoves any initial blanks. tabs. or ncw-Iinc clcments
c,llIs SK I PBl. rcmovcs any quotc ch,iractcrs and thcn calls SCOPY. Whilc it may be cvident
what GETTl does (it cupies a "titlc" from onc placc to another) it is not evidcnt anywhere
ncarby wh.l'it doc iL Only by seing how GETTl is uscd is thc rcason for it made clear. The
SCOPE command

\ .
~. SHOW WHERE GETTU :1S CALLED

wil display the contcxt of the calls to GETTL:

(i n COMMAND :)
(GETTL aUF HEADER)
(GETTl aUF FOOTER)

Thc resulting display shows that GETTL is called twice. once with TTL the HEADER and once
with TTL the FOOTER. It also shows that GETTL is used as a subprocedure to only one other

routine (COMMAND).

While SCOPE'S SHOW command prints out the immediatc context of the us of the

symbols asked abouL someumcs a more thuruugh examinauon of thc context uf use of a piece
of progr is necesry. In such ca the prugnumer might employ the SCOPE ED IT

command in ordcr to use the interacuvc editor to more thoroughly explore the surrundigs of
the reference. ThUs. after the command

~. EDIT WHERE GETTL is CALLED

th usr is placed in the editor pointing at the ñm occurrnce of GETTl in the COMMAND

routine. COMMAND has a fairly lengthy set of cas in a claus

(SELECTQ (COMTYP aUF) --).

The two ocun"nces of GETTL appear in distinct claus:

(SELECTQ --

(HE (GETTL aUF HEADER))
(FO (GETTL aUF FOOTER))--). '

The documentation of the program opcratiun indicates that the fnrmattcr has two commands
he and to. which respcctively sct thc title line on the top of thc printcd pagc and on the
bulltln. Putting these c1ucs to~cthcr. it is possible to infer that HEADE R and FOOTER are two

buffers which arc lIsed to store the current lines for thc pagc head and fOoL and that GETTl is

a routine which cxtracto; a title from a command line.

"Ilirough the usc lIf the rcfcrcnce information which SCOI'I pro\'idcs. thc programmer can

!I

Cbapier 2-liscs of SCOPE

answer questions which arse when examining a program: Why is this here? What does it do?

Cross reference when making changes

suppo you have to conven a 50line Fonr pror. fro one coputer to anoter. and
you need to find aU the FORMAT stteents LO mae sure they are suitale for the new maine.
How would you do it?

One pobility is to get a listing and mark it up with a red penciL. But it doen't we much ¡
imagination to se what's wrong with red-penciling a hundra pages of computer paper. It's mindles ¡
and boring busy-work. with IOLS of opponuniues for errr, And even afte you've found al the
FORMA T stteenLS. you stl ca't do much. beus the red maks aren't mache rele.

(Kerigha & Plauger 1976. p, 1)

Many program changes involve widely scattered ponions of the program text: making

those changes is diffcult because the programmer is uncertin that he has caught all of the
places which need to be changed.

For example, the FORMAT program currently maintains two separte varables whie

fonnatting: CURPAG is the currnt output page number. while NEWPAG is the number of the

next page. Suppose that the programer wants to change the progr using only one varble;
rather than two (this is Exercis 7-5 in Kernighan & Plauger). The programer would lie to
find and edit the places where CURPAG and NEWPAG might be used. First, the progrer

might use SCOPE'S SHOW command to get an overview of the ways in which the varbles ar

usd:

~ SHOW WHERE ANY USE NEWPAG OR CURPAG
FORMATINIT :

(SETQ CURPAG 0)
(SETQ NEWPAG t)

COMMAND :
(SETQ CURPAG (FORMATSET CURPAG VAL (ADDt CURPAG)

(IMINUS HUGE) HUGE))
(SETQ NEWPAG CURPAG)

PHEAD :
(SETQ CURPAG NEWPAG)
(~ETQ NEWPAG (ADDt NEWPAG))
(PUTTL HEADER, CURPAG)

PFOOT :
(PUTTL FOOTER CURPAG)

done

The user decides that the proper change is to eliminate CURPAG and to replace

occurrnces of CURPAG with NEWPAG-1. The command to SCOPE to EDIT WHERE ANY USE

CURPAG makes the change simple. Because SCOPE does the book.kecping, making sure that

every referencc is examined. and prescnting them one by one to the programer, the change is

much les risky.

22

Ch:ipter 2-Cscs o(snwF.

SCOPE'S abilty to interatively locatc references to a symbol is partcularly useful when

changing a data structure: in a conventional programming systcm. a changc to a data strcture

often can ripple through the systcm. taking largc amounts of timc and lcaving residual bugs
SCOPE'S EDIT WHERE command c:in be used when changing a data structure to find all of the

places which refcr to the data strcture or any of its par

!/ r

Changing :i name

One spccific applicauon of cross reference infonnation is in cffcienüy making global
progr. manipulauons. For examplc. programmers occaionally want to bc able to chage the

. name of a symbol in a proram. perhaps becuse the old name is not as intuitive. or it
conflct with a new name: Pcrfonning this operation using a progra editor is diffcult for
severa reans. First. finding the placcs where the symbol is referenced may be ineffcient.

involving scnning of many source ties of text. Cross referencc information ca be of us in

reducing the number of plaes that need to be examined. Secondly. in a language where the

sae naes ca be usd for differet purposes it is neces to look for the use of sybols
in a pancula semantic context. rather th employing a simple text substitution rule. To aid

i

the progrmer in this ta SCOPE includes a RENAME facilty which automaticay penn

al of the neces actions to renae a symbol: the SCOPE commd

~. RENAME THE FUNCTION COMMAND TO BE ProcessCommand

will (a) give COMMAND's definiuon as a function to ProcessCommand. and (b) invoke the

INTUSP editor on all locuons which reference COMMAND as a proedure. changing them to
ProcessCommand but leaving alone the ocrrnces of thc symbol COMMAND us as a

. varable.

Flow information

SCOPE also' provides summary informa~on about progra flow which is useful when

tring to undcrstand a large or unfamilar progra. Flow infonnatión includes facts about the

wa in which one proedure cans another, as wen as infonnauon about the use of varables

In LJsp progras, it is often useful to be able' to dcterminc if the valuc of a function is

used or if it is called only for its cffccts (c.g.. as with an output routinc). LIsp, unlike many
langu:igcs. does not enforce any distinction bctween procedurcs Jnd functions. SCOPE, during

flow analysis. distinguishes between J CALL FOR EFFECT and a CALL FOR VALUE. so that a

programmer can easily ask about the ways in which J procedure is used. For example, SCOPE

wil tcll thc uscr whether the value of the proccdure GETTL is evcr used in rcsponse to the

query is GETTL CALLED FOR VALUE: the NO resl10nsc indicates that the vallie returned by

2.

Chapter i-usc or SCOPE

GETTL is not used but is merely an accidental byproduct.

The reader of the procedure GETTL is left with some quesuons. One might renably

gues that the values BLANK. TAB, NEWLINE. SQUOTE. and DQUOTE ar constats. However.
the command:

04 ~. SHOW WHERE THE VARIABLES USED FREELY BY GETTL ARE SET

I: wil quickly confirm the gues:

(i n FORMATINIT :)
(SETQ BLANK (QUOTE i))
(SETQ TAB (QUOTE i))
(SETQ NEWLINE (QUOTE i

))
(SETQ SQUOTE (QUOTE i'))
(SETQ DQUOTE (QUOTE i"))

Apparntly.o the varables are all set iniualy in the routine FORMA TIN IT and never chged

elswhere

Side effec

SCPE anyzes the side effects of proedure durig flow analysi in addiuon to the
informuon it collects about proedur cañs and the use of varables SCOPE'S side effec

informuon is alo useful to progrers deaing with unfamilia code bec the c;e's
. meaing ca be understo much more rey if it is posble to be su that proedur
mentioned have no invisible side-effects If the progrer is examining a funcuon GETTL
and wants to undersd how GETTL's subfuncuons might affect the exection st of tJe

progr. the query WHAT CAN BE CHANGED BY WHICH FUNCTIONS THAT ARE CALLED BY

GETTL can be used. This wil cause SCOPE to print out a summar of the side effects of any of

the procedure referred to inde GETTL:

SCOpy - CAR

This dilay indicates that the SKIPBL rouune, which is also caled by GETTL. ha no side

effects but that the SCOPY routine has possible side effects: namely, SCOPY ca modfy the"
CAR of some list Le.. perfonn RPLACA's.

Type information

The results of type analysis can also help in the understanding of a poorly documented
procedure: knowing me typcs of variables providcs importnt clues as to how a progra wil
execute. In strongly typed languages type declarations are an importt kind of documentauon,

u

(lJaplcr 2-lsc of SCOPE

but in languagcs in which type dcclarations are not oftcn used. it is diffcult to dctcnninc the

types of variables or thc types of thc valucs rcturned by proccdurcs. Knowing that a valuc is a
numbcr rathcr than a list ca be a critical piccc of infonnation in understanding an unfamilia

rouunc. This is especially importnt whcn thc samc language primitive is uscd to mea
different operations, depcnding on the type of itS arguments, e.g.. many programing
languages use the symbol .. +" to denote both integcr addition and floating point addiuon
while some evcn us the sae symbol for string concatenation and addition of non-sar

(ary) quanuties

SCOPE provides type infonnauon in several diffcrent ways. First. the user can ask SCOPE

about the types of the arments of a procedure and the value the procedurc return e.g.,

GETTL EXPECTS WHICH ARGUMENTS TO BE WHAT wil display the types of GETTls

arments:

BUF LIST
TTL LIST

while WHAT TYPE DOES SKIPBL RETURN wil show tht SKIPBL return a LIST.

Second. SCOPE'S type infonntion ca be used to find the type of a given fann The usr

ca point in the INTUSP editor to an expresion and as SCOPE to show the type which th

expreon is expted to be frm its context. as well as the type which it is inferrd to be
frm its internal strcture For example, the expreion (BUF: l=BLANIC) is known to be of

type BOOLEAN. (The type BOOLEAN mea an vaue which is either NIL or T.)

2.2 CHCXING FOR ERORS

Erors which involve examinauon of the whole of a large progra ar diffcult for people

to find. but eay for SCOPE. Examples of errors which SCOPE can detect include the misse of

fr varables and violauon of modularty constrints: other errors which SCOPE could ealy be

programed to detect include uninitiized variables and type violauons.

Misuse of dyn:imic variables

SCOPE can hclp with the misuse of dynamic variables. a common crror in Lisp progrs.

Many LIsP systcms allow dynamic binding of variables: that is. a proccdurc can reference a
variablc. and the identity of the refcrenccd variable is dctcrmincd by thc run.timc context in

which (hc procedure i~ callcd. Whilc dynamic binding is "quitc powcrfl. it oftcn leads to
programming errors. Indecd. incorrcct usc of free variables is one of the most common errors

in i'TI'Rl-SP programs. ~rrors occur because the inccrf;icc to a rouiinc (ii'i inccr::ctions with

!5

Chapter 2-Use or SCOPE

the "outside world") includes not only its aruments but also any other data strcnires to
which it might refer (e.g.. properties of atoms or values of free variables). The global progra

analysis perfonned by SCOPE can detet possible misuse of dynamic varables

For example, suppose that the prograer decides that the set of "blan" charters to

be ignored in a command line should be a pareter of the FORMAT routine. Then FORMAT,

SKIPBL. and GETTL might be coded as follows:

(FORMAT
(LAMBDA (STDIN STDOUT BLANKS)....))

(GETL
(LAMBDA (BUF TTL) (-copyiztl~frmburiotd)

(while BUF:1 memb BLANKS do BUF~BUF::l)
.. ..))

(- ttxiromriu main progr)

(SKIPBL
(LAMBDA (BUF)

(if BUF: 1 memb BLANKS
then (SKIPBL BUF:: 1)

else BUF))

Th chage is fie, unles there is a caing path to SKIPBL along which the varle BLANKS
is nol bound. In tht ca BLANKS wil be uninitialized SCOPE'S "loc-free" errr chec

would detec such a bug.

(- si ip bli)

One problem with SCOPÈ's errr checking is that tle errr check is only an

approximauon. For example, consider the following two funcuons:

(CALLR
(LAMBDA NIL

(i f conditoni then (PROG(FREEVAR) (CALLEE))
else (CALLEE))

and

(CALLE
(LAMBDA NIL _

(i r condilioni then FREEVAR
el se NIL))

Suppose that CALLER is an entr (it is externally accesible), and CALLEE is not In th
situation. SCOPE wil report that there is a possible progra error bccause tlere is a way for

CALLER to reach CALLEE without FREEVAR being bound. However. if condilioni implies
conditioni_ no actual program execution would actually use FREEVAR incorrectly. (Although
this example may seem contrved. analogous but more complcx examples havc occurred in real

INTRLISP programs.) In this example. it is cvident thai any furtcr rcfinement of the error

26

Ch:JlIh.'r 2-l:sc o(S('WE

check would requirc mechanical analysis that condiliolli implies coiiditioni-in gcnera. not a
decidable quesuon.

Expcriencc has shown. however. that SCOPE'S crrr signaL. evcn whcn not accurate, is an

importnt warning for the programmer. Good programming pracucc dictatcs that prograers

should avoid constrcts which arc crror pronc. and thus. even though the above situation is
not technically an errr. it is wise for thc programmer to fix it anyway-if SCOPE ca't
understand that it is not in errr. very oftcn. neither can prograers.

While dynólic varables arc peculiar to Lisp systems. a similar kind of analysis is often
usful in othcr programing languages. For exåmple. the signal mechanism in the MES

languge (Mitchell ct al. 1978) shares many of thc charateristics of dynólic variables in that
the execuon context of the proedurc which rascs a signal dctennines which catch phra wil
be invoked. Errs involving signals which might not be caught are similar in nanire to the
errrs involving dynamic varables and an esntilly identica errr mechanism ca be

employed to diover them

Checking import and export

There ha bee grwing reognition that modularzation. the constning of inteons

between separtely developed pieces of progra is an effective mechanis for improving the
flexibilty and comprehensibilty of a system while allowing the shortening of its development
tie (Pamas 1972ab). (Morrs 1973). While many reent languages provide mecan for
enforcng progrmer-declad constrnts on the intcractions bctween progrs, many older
langua~ including Lisp, do nOL SCOPE, however. can be used to find violauons of us

declared constrnts on the cross rcference: that is, the uscr ca declare for a given package

that it exports a 5Ct of symbols (they are available extcrnally) and that it imports another set of

symbols. The export of a package is the set of symbols defincd internally which ar usd
outside. the import. the set of symbols defined outside which are used inside. -re exp.0rt and
import of a package can be computed dircctly frm the cross reference inforration that SCdE'
storcs. If the user has given SCOPE a declaration of cxport and import. SCOPE can check if
any additional cross. package refercnces have becn made. and warn the programer.
alternatively. SCOPE can be used to create the initial export and import declarations from the

actual cross.references which exist Thc programmcr can dccide if the fonnal separtion of
componcnts is wort the cffort In some caes. e.g.. whcn duing sm;ill "throw away" progra
extra mechanisms for enforcing modu!;irity arc cumbersumc. Whcn an intcracti'..e mechanism

such as SCOPE is available. the cnforccmcnt of such cunstrainis liecomes an administrtive
decision r:ith~r than a tcchnical unc. l11is tlexibility lO eithcr cnforce constraints or not is
grcatcr than that found in progr:imming systems which aiiwmaiic;i1h enforce modularity

,-

Chapter 2-Usc of SCOPE

constrts

Type violations

While SCOPE'S type inference mechanism is designed to infer the types of variables and

procedures, it ca also be used for type checking. Type checking provides asurance that the

programer has not supplied pareters of an incorrect type to a procedure. For examp1e.

given the procedure: '.
(LAMBDA (X)

. .. (¡PLUS X 3)

. . .. (CAR X) ...)

SCOPE wil infer from the ¡PLUS that X must be of type NUMBER. When SCOPE se the
expreion (CAR X), it wil infer that X must be of type LI ST. If the value of X canot be
changed between the CAR and the ¡PLUS. then SCOPE wil deduce that X mus(be both a

NUMBER and a LIST: however, there is no value which is in the intersection of those two

types Thus. SCOPE wil deduce that. X is of type NON E. Typc-hecking thus can be performed
by checking the relts of type inference for items whos type is NONE.

i

2. CODE IMROVE

One applicauon of the kind of information which SCOPE can provide is code optition

performed by a compiler. In th application. SCOPE provides infonnation diectly to the

compiler rather than to a progrer. There are three ways in which SCOPE can help improve

the quality of compiled code. Firs SCOPE'S flow and side effect infonnation can be used when

performing code improvements: many common progra optiizations have precondiuons
which are expreed in term of the effects and us of the expresions involved. Second, the

type info~uon which SCOPE ~erives ca be used when compilng. Third. SCOPE ca help the

progrer organize hi progra into blocks and to check for errrs in compiler declartions
Thes applications are explained below.

Code trfonnations

Ther ar many different aspects to code opumizauon. Tradeoffs exist for any given

optiization between how much it costs to implement and the amount of improvement

possible: in some situations, code optimization is not wort while. Many transfonnations for
code improvcment (in optimizing compilers and elsewhere) can be exprcssed in terms of code

movement: that is. given two pieces of program. certin optimizations can be perfonned if it
docs not matter in which order thc pieces are evaluatcd ((¡\lIen & Cocke 1971), (¡\ho &

28

(ñpltr 2-Usc or SCOPE

Ullman 1977)). While it is diffcult to accurately characterize whcn the order of evaluation of
two expreions can be exchangcd. therc is an approximation which works quitc well: it is
pennissible to switch the order of evaluaúon of two fonns if thc effects of one are indcpcndent

of the usagc of thc othcr. ScoP~'s effect and usagc analysis computcs infonnaúon which could
bc used by an optimizing compilcr when performing codc transfonnations. Given two
expresions ei and ei. 81 followcd by e2 is equivalent to 82 followcd by e1 whcn the effects

of e1 arc disjoint from thc usage of e, and vice vers: i.e.. ncithcr can change something the
other uses

.4

!:

For exaple. thc progr fragment:

(VAL~(GETVAL BUF))
(CT~(COMTYP BUF))
(OOCOMMANO CT VAL)

ca be retten as

(OOCOMMANO (COMTYP BUF) (GETVAL BUF))

if the varbles VAL and CT ar not used subsequently in the progr (or by OOCOMMANO)
i

and the expreons (COMTY~ BUF) and (GETVAL BUF) ca be exchanged ScPE's

information that COMTYP has no effects that the GETVAL caot change anything us by
COMTYP, and that OOCOMMANO doe not use VAL or CT frly mea tht the trformon

ca be mae.

Usini type declarations

Type delaruons are used in many progrming languages to aid the compiler in
;\"neraung effcient code for various constrcts in the progrming language. This is esecy
. -ie for constrcts which involve opcrators which are "overloaded", i.e.. which have different

meaings d~pending on the types of the operands For example, in many prograing
languages the operator "+" is used for additio.. of a' variety of data types

If the type of the opcrands is known at compile time. the compiler can generate more

effcient code, e.g.. .linking the code dircctly to the spccific operation which is requested, rather

than a more complicated routinc which must test the nature of its arguments before
proceding.

Block compilation

SCOPE'S information can be used to improve program pcrformance by aiding the

programmcr ìn scp:irating J program into tightly couplcd componcnts. f:-lERLlSP, as well as

Z9

Chter i-Use or SCOPE

many other systems. provides facilues for grouping together a set of code. Generay, ca
within a block arc much les expensive than calls across block boundaes and often blocks are

allocd in conuguous memory spaces and automauc memory management treats them as a

uniL Given a lare progra SCOPE is quite useful when anempung to separte progr into

blocks becuse of its capabilues of quickly showing the inter-block flow strctu Fro

SCOPE'S flow propertes it is posble to find connected components of a progrbsets of

the procedure which have no interauons with any other procedure

In INTSP, SCOPE ca provide addiuonal asistace. The INTUSP block compiler
makes certn restrctions on consttcts which are lega inside blocks; SCOPE'S CHECK

commd wil check for violation of those constrnts

30

Chapter 3-haracteristics of SCOPE's Representation System

SCOPE remembcrs facts about thc programs that it analyzes. ¡\ system for remembering
facts is often callcd a "rcprescntation frework". a scaffolding into which facts can be placed.
In general. a "represcntauon" is a disullation of aspCtts of thc world. Suppose a "snapshot" of
the world in a partcular state is taken at somc instant in timc. Call this statc world-state.
'flrough some mapping M. a rcprcscntation (call it knowledge-state) is crcatcd which
corrsponds to world-state. Knowledge-state c..rrcsponds with world.state in the sens
that quesuons about world-state may bc answcred by dircct observation of the world state

or by quesuoning of the corresponding knowledge-state (Fig. 3-1).

M
world-state) Knowledge-state

observation ask quesuon

V M' V
Reslt) Answer

Figur 3-1: Mapping betwee world and knowledge sttes (fro (Bobro 1975)

In SCOPE. the world which is being modeled is the progra under development: its ste

is the currnt verson of the progr as it is being modified by the prograer (Fig. 3-2).

anysi
) SCOPE'S data baspror

I obseaton. execution
V

Reslt

query

V
) Answer

Figure 3-2: Mapping between program and SCOPE'S data base

Much recent work in artficial intclligence has focused on devcloping reprcsentation
systcms for encoding knowledge about the rcal world within a computer systcm. Several lines

of rescarch have conccntratcd on devcloping general purposc rcprescntation systems which

provide ã rcady-made frmeworK for rcprcsenting facts. pcrforming infcrcnccs based on those
facts. and changing thc mcmory (Jf the system bascd on the changes to thc re;,il world: gcncral

purposc rcprcscntation systems include KRI. ¡Bobrow & Winugrad 1976j. K La'!' ¡Brachman

31

(1:iplcr .'\Ii:r.(,ll.risli('s or SClWE's R~prcscni:ilion Syslem

1978), and FRL (Robert & Goldstein 1977).

Real world represcntation systems encounter many diffcult reprcscntauon problems The
small domain of simple predicate facts about progras with which SCOPE dcals is much more
specializcd and thus it was possible to build a special representation system to hold SCOPE'S

knowledge about its world.
i) r

Bobrow (1975) characterizes represcntation systems along several different dimensions:

SCOPE'S representation system wil be described in tenns of the dimensions outlined below:

- Units and relations: What is being represented? How do objects and relationships in the
world correspond to units and rclations in the model?

Exhaustiveness: Does the model represent not only the trth. but the whole trth?-

-

Operational correspondence: In what ways do the operations in the representation

correspond to acuons in the world?

Inference: How can facts be added to the knowledge state without furter input from the

world?

-

,. Access How are units and strctures linked to provide acces to appropriate facts?

Selfawarenes What knowledge doe a system have explicitly about its own strcttre and

operaon?

,.

3.1 UNI AN RELTIONS

The objects with which SCOPE deals are pieces of progras. and in parucular, defiitions

of symbols. The "grain" of SCOPE'S knowlcdge is delibcrately coar: SCOPE doe not model

propertes of individual statcments in the program, the micro-syntax of symbols. the presence

of formatting infonnaLion. etc. SCOPE knows individual facts about procedures. variables data

strcture and other pieces of a program which can be asigned as the definiuon of symbols

The knowledge SCOPE has about definitions of symbols is a sct of propertiesimple
,

relations derivcd from analysis of the pieces. The relations fonn a class of "approximate

assertons" (Cousot & Cousot 1979, Wegbrcit 1975bj. which hold about individual pieces of

programs. Relations are of the fonn R(syml'".,symJ. i.e.. a predicate dcfined on a set of
symbols. For example, a simple flow re!..tion is MayCall; thc assertion MayCall(A,B) holds
if the procedurc B can be callcd by the procedurc A. t\nothcr rclation derived from type-
analysis is Returns: Returns(F,T) holds if the valuc of ihe function F is of type T,
Different relations dCJI wiLh diffcrcnl kinds of infonn..tion. For ihc most part relations in

:n

Chapier .~h:r:i~lerislic: of snWE's Represeniaiion SyslC!

SCOPE are 1. 2 or 3 place predicates. For example. a onc-place prcdicate might be
Recu rsive(F). meaning that the funcuon F can call itslf. Thc predicate

ExpectsArg(F,A,T) is a three-place predicate which means that the funcuon F expec its
argmcnt A to be of type T. (Appcndix I contans a complctc list of SCOPE'S rc1auons.)

The summary infonnauon which the analysis routines providc is of a highly strctccd
and restrcted nature. e.g. arbitrary verification conditions could not be rcprecntcd in this
fonnalism. This is an importnt diffcrcnce bctwccn SCOPE and vcrification systcms for proving

progras corrt; most verification systems can rcpresnt. for example. arbitrry quanufied

prediClte caculus equauons in their internal rcprescntauon of program propertes

3.2 ExUAUSTVEN

A reprcntauon system is exhausuve with respect to a propert if. for any objec the
property is always storcd explicitly with the ~bjcct whenever the objec has the propert. In a

non-ehausúve reprentauon syste: the absence of a fact in the knowledge bas do not
signify th the fact is not tne. The importnt ditincúon is whether it is posble to mae
inferees about the absee of informaåon.

A related chsú of represntaúon system IS Its currcy; tht is whether the
knowledge bas is always "up to date". A syste ca be exaustve even if it only wil conta

the "whole trth" afer some finite amount of computauon.

SCPE'S reresntation system is exhaustive. It is possible to make inferences basd on the
absence of a propert in SCOPE'S data base and. in fact. for most applications thos inferees

are thc most common. For example. the relauon MayCall(A,S) denotes that a can to A may
reult in a cal to B: however. in many applications it is most useful to know what things A

doe not ca

However. SCOPE'S knowledge is hardly ever "up to datc". ThUs, unul some query is made

which requires knowing about callng relauons which might involve A. no analysis of A wil be

perfonned: if A changes then re-analysis wil be postponed until necesry. In this way, SCOPE

avoids the computational problems nonnally found in exhaustive represcntation systems which .

reuire all infonnation to be up to date.

3.3 OPERA TlO~Ai. CORRF.sroNnE:'lCE

In J general representation system. operations on the model-statc arc m;idc to rcflect

:\3

Chapter 3-h:ir:cteristics of SCOPE's lleprcsenl:iiion System

changes in the world. A major design problem in modeling actions is updating the
rcprcsentation with rcspect to a chain of changcs caused by a single action-situations where
one change causes another change which in turn causes a third.

In the world of programs. actions are program changes. SCOPE modifes its state of
knowledge about a progr:im to rcflect changes to the progr:im by propagation of changes from

on~ tCOPE relation to another. Whcn remcmbered infonnation is the rcsult of computations
using values which may changc. it is necessary :0 propagate the changcs. One of the most
imponant features of SCOPE is its abilty to maintain thc ilusion that what it knows always
reflects the current state of a program. cven during an intcractivc cditing and debugging
session. In this case. "ilusion" is not being used in a pcjorative se~se: rather, it is an esntial
propeny. To maintain the ilusion of being up to datc. SCOPE detccts when the definition of a

symbol has changed. and maries the data base appropriatcly. When a question is asked which
requircs a partcular facL SCOPE first chccks to sec if the infonnation in its data bas is no

longer valid. and performs whatever reanalysis is necess before answering the question.

The concern for change propagation is actually on~ of computational complexity. As

Moriconi (1977) points out when desribing his incrementa verification system, incrementa
systems respond to changes by ensuring that the final problem solution is consistent and by
keeping intat as -much suU-valid work as prauca. Both the user and system persective on

how this happens is importL From the user's viewpoint, the system keeps intat still-valid
work without redoing previous work. In acality, however. a limited amount of reprocesg

may be desirble.

There is a spectrm of ways in which program analysis systems can keep intact still-valid

work. At one end of the spectrm is the most straightforward way to respond to

changes-simply redo everything. Although this "batch" approach conveys an incrementa view

to the user, it is often too ineffcienL For cxample. answering a simple cross reference question
WHO CALLS Faa after a change would require re-scanning the entire program-much too

costly for a very largc progra. The approaçh at the 'other end of the spectrm would be to
isolate the cxact impact of changes and not redo any still-valid previous work. This too ca be

highly ineffcient since it may require as much work (or more) to figure out how to modify the

data that it would to rccompute iL _

Thc strategy employcd by SCOPE Iics somewhere between thcse cndpoints. Prgras in

INTERLISP fall naturally into "chunks"-namcly. dcfinitions of symbols. e.g., thc dcfinitions of

proccdures. data striicturc types. macros. When any part of a dcfinition changcs. SCOPE

rccomputes any information which dcpends on that dcfinition: SCOPE docs not note what the

change was.

J.

C1ler .JnxtC!riic o(SCOl.Io:'s RC!pr~nl:i.io. S,stem

When a chged definition is realyzed SCOPE nouccs whcther the infonntion

computed has changed (by comparing the reult of thc analysis against the preious
infonnation in the data bas). If the computcd infonnation has changed. the changes ar

propagatcd to any relations which might dcpend on the changcd rclauons

Re-anysis and change propagation is trggc~d by queries to SCOPE which require the

infonnation to be up-co-date SCOPE limits the ~hids of analysis it pcrfonns in respons to a

query to thos tht ar neces to aner the query.

ii t
!

For exaple. suppose the usr origiriålly had the following set of proedure with side
effec:

(F1 (LAMBDA (X Y) (X:FIELOI · Y)))
(F2 (LAMBDA (X Y) (X:FIEL02 · Y) (Y:FIELOI . 3) (F1 X 3)))
(F3 (LAMBDA (A B) ... (F 2 A B) ...)) .

SCPE'S side effect su informon indicate that proedure Fl ca change a FIEL01

element, prore F2 ca chge FIELD1 and FIEL02. and F3 the sae.

If the usr edts F 1. it is neces to rempute all of the properes which depd on
the defition of F 1. Suppo the progrer changed F 1'5 definition to be

(l:1 (LAMBDA (X Y) (X:FIELD2 . Y))).

When asked any queson about side effec SCOPE firs checks to se if its knowlede is
up to da. In th ca it knows th F 1 '5 side effec infonnauon is posbly wrong. sice F 1

ha ben edited. When SCPE realyzes F1, it nouces that the set of side effec of Fl have
ben chged to. Beus side effect informon is propagated during anlysi SCOPE knows

that its side effect infonnauon for F 2 (and for any other proccdure which calls F 1) is posbly
incorrt as welL and mus be realyzed However. when SCOPE renalyzes FZ, it note th

the despuon of the posble side effects of F Z have not changed and thus the change n~

not be propagaed ther is no. re to reyze F3.'

3.4 INCE

The relations defined by SCPE'S anlysis rouunc: ar. for thc most part independent of

each othcr. in the sens that onc doe not detennine any other. For example. the Call cro
refefCnce relation. which says that onc procdure mcntions another. cannot bc deduced from

any combinauon of othcr relauons. Thcre arc some ca. however. whcrc SCOPE employs

translation rulcs which dcfinc one relation in tcnns of othcrs. Therc an: two reasons why the
capability to definc onc rclation in terms of othcrs is important. First. somc of SCOPE'S

35

Ch:ipter 3-Cb:r:cterislics or SCOPE's Represciil:ilion System

relauons which arc of intcrcst to the user are not output directly by thc analysis routines

Second. this capabilty a1low.s for a rcduction in the sizc of SCOPE'S data bas.

The partcular facts that a uscr might wish to know are not necessarily thc facts which

SCOPE'S analysis rouunes represenL For example. the SCOPE relation NotlocalFree is used

for detecting errors involving dynamic variables. (NotLocaIFree(VAR) means that VAR is
used in a situation where it. is possibly not dynamically bound.) NotLocalFree is not
computed directly from the analysis routines. but rather is computcd from the relation Entry
and the flow analysis rclation Ref Free. (Entry(FN) means U1at the uscr has declared FN to

be an externally available procedure: RefFree(FN, V AR) means that a call to FN can reslt

in a free use of V AR.)

A relation which is defined in terms of other relations is referred to in the data bas
literature as a view the imponat characteristic of views is that the uscr of the data bas doe

not know which infonnauon is stored directly, and which is derived from the stored
informauon. When applicauons are indcpendent of the fonnat of the stored infonnauon,
changing the fonnat of the stored infonnauon or adding new infonnation is simplified

SCOPE implements views by providing the abilty to define new relauonships in tenn of

the old. For example, the relation MightSetUnkown(FN) (which means that FN can
perform an asignment to a varable whose idenuty is only known at run-tie) is defied as

the disjunction of several MayCall relations. (Tere are nine primitive funcuons in INT
which perfonn the asignment of variables whose identity is only detennined at run-tie.) The
relation !MayCall (which meas that one procedure can reach another) is defined as the
triuve closur or the flow relauon. MayCali.

One pareter of a view is an indication whether the new relation should be recomputed

every tie a request is made or if it should be remembered (and forgotten if the infonnation

from which it was computed changes). For example. U1e NotlocalFree relation is not stored
but is computed when necessa. On the other hand. SCOPE'S !MayCáli relauon, once

computed. is remembered between SCOPE queries (until a change ocurs which invalidates it).

Thc choice between storing infonnation and rccomputing it affccts the cffciency and
storage space of the systcm. Several factors enter in making U1e decision. Thc major
considcrauons are the relative frequency of a relation changing with respect to the frcqucncy

that it is intcrrogated, and U1e simplicity of computing thc rclation. NotlocalFree is simple

to compute from Ref Free and Entry and so is not storcd dircctly. Ref Free is not as simple

to compute and is intcrrogatcd frcquently wiU1 respcct to how oftcn it changes. and so is
storcd. !MayCall is diffcult to compute but is also asked about infrequently: it is stored, but

36

Cbplcr 3-C1i:r:ctcrist it' or SCOPE's RC1resnt:ilion Sysiem

if a change ocurs which might affec it thc cntire relation is disarded.

Fact ar addcd to SCOPE'S data bas without fu~er progr analysis by dcducg

rclations according to its rclation dcfinition tables. SCOPE docs not employ a gcncral-purpos
infercnce mechanism. but rathcr simplified infcrcnce techniques. bccause the asertons have a

partcularly simple Fonn. The procdure fo~ computing defined rclations are attahed to the
relations which are so defined. In addition. whcn a new relauon is defined. the dependcncies

,.

arc propagated so that each relauon has an assoiat::d table of othcr rclauons which must be

checked after. changes

3.5 ACC

An importt feature of a rèprcntation system is the mechanism by which informaåon

can be reuieved. Gencral reprentation systems often contain mecanisms whic help in
improving the effciency of quesuon answering by atthment of links in criuca ar

In SCOPE. the doman is simple enough that the strightforward model of relationa da
bas reuieval could be usd as the way in which quesuons ar answered. There is litte nee
for maring (which might be need to handle queries now outsde of SCOPE's capabilåes

like "which functions use succesive approximation" ref. Rich cS Shrobe 1976)) or for may of
the other complicauons found in genera-purpose repreentation systes.

The mecism by which informtion' is reuieved from SCOPE'S data bas is a quer.
SCOPE'S intermediate query language is desribed in Appendix II. Generay, a query cons

of a predicate calculus equauon which the data base wil instauate or reec

3.6 SEL AWAR

The final relevant dimension along which reprecntation systems are often placed is the
dimcnsion of sclf-awareness-how much doe thc represcntation system know about its own
opcrauons. SCOPE is not self-aware. in the sensc that thcre arc any rclations which desribe the

state of its own data bas (of course. SCOPE has been used to analyze SCOPE. but it was not

aware that it was opcraung on itsclf). Thcre are two places. however. wherc SCOPE conta

infonnation about its own state of knowledgc .ad processing. First in ordcr to improve the

effciency of query 'handling. SCOPE has a rough idea of thc effciency of different ways of

procc~sing queries, (Query nptimi7.3tion in SC'OPF is discussed in Chapter 6.) Second. SCOPE

"1cnows what it doesn't k.now". i.e.. it is able to decidc. whcn answenng J question. that the

information stored is out of date or non-cxisicnt-a minor furm of sclf awarenes.

37

Chaptcr 3-h:r:cicrislics or SCOPE's Rcprcscniation System

3.7 CONCLUSIONS

A system. such as SCOPE which attempts to encode knowlcdge about another system must

naturally take a simplistic and incomplete view of the world it is attcmpting to modeL. No

desption ca complctely encapsulatc all that is knowable nor is this a reanable goal for
the reducuon of infonnauon content within the representauoß is both a strngth and a

~

weaknes. The distillauon of a few interesung facts from all possible facts can reduce an
infonnation management problem to a trctable size. So it is with thc view of progr which
SCOPE embodies: the view of progrs and knowledge about them is intenuona11y and
necessly limited.

Neverteles SCOPE'S representation framework is adequate for handling the jobs to
which it has been applied. The notion of simple relauons which involve the definiuon of

symbols has been adequate to summarze the results of cross-reference. type anysis and flow
analysis (although not the gener flow-analysis symbolic expresions of Rosen (~979D. The

inferencc and aces mecanis have been powerful enough to provide useful informuon to
prograers about their progr

38

Chapter 4-What SCOPE Knows About Programs

SCOPE collects information about progrs while analyzing them. This chaptcr diss

in dctail the diffcrcnt kinds of information SCOPE collects and thc meaning of the informtion.
lbe progr propenies known to SCOPE fall roughly into four catcgories-cross reference,
data flow. type. and tiing-cach of which is diussed below. A comprehensive list of the

progra propenies is in Appcndix i.

4.1 CROSS REF

Cro rcference informauon is informuon about the locauon of references to symbols A
"reference'. is a mcntion of a symbol in a way which indicates some dependence on the
meaing of the symboL. Referece infonnation is oftcn computcd using simple text proesng

techniques However. reference infonnation computed this way is not always accurate becus

crss reference informauon is not jus a textual propeny of the pmgra-a referece may not
.be diretly evident frm the progr's text. For example. in 1:'TEus (and in other langues
which allow maro) "hidden" references ca ocur because of maro expanons; it is
neces to par the pro and expand ma before the references becme evident.

There ar two applications of cr referece which may help c1afy its meaing. Fir
referece infonnauon ca be usd to elim obsolete pieces of a progra If X has a
definiuon, no other definition refer to X. and X is not extcrnally avaible. then X's definition
has no effect on the meaing of the progra and ca be reoved Second, refernce

informauon ca be usd to find the repercssons of a change to a piece of a progra.In
. order for the programer to be awar of thc effect of a change. those par of the progr
which refer to the chged pan must be check cd for intcractions (a more rigorous check for

interacuons is usually not possible). If a definition changes. only definitions which refer to the
changcd dcfiniuon wil be affected. Of co~rs second ordcr cffccts müst also :bë considered; if

one pan of the progr çhanges it may caus a chain of effects which reaches many other
par. Examinauon of the first order references may reveal to the programer which references

require furter trcing.

Cross reference in INT

l~lERUSP has many diffcrcnt typcs of symbol definitions (e.g_ functions. rccord types.
macros. cdit commands) and cach possible interation between one typc of symbol and another

must be rcprcscnlcd by a scpar;itc rclation. SCOI'I: maintains sevcral rclations which denote

diffcrcnt kinds uf rcfercnces. ¡\ refcrcncc to a proccdure is dcnotcd by thc Call' rclation. A

39

Cli:iptcr .lWli:it SCOPE Knows Ahout Programs

rcference to a variable is denoted by the Use relation. References to rccords (data strctures)
and their fields are denotcd by the UseAsRecord and UseAsField relations respectively.
The relation FieldOf between a record and a field meas that the field is defined as par of

the record. Other cross reference relations analyzed by SCOPE are Editlnvoke. EditCall,
TopLevelCalI. MacroCalI. and FileCall.

04

Obstructions to exact information

Cross rcference in INTLISP is not as simple as it might seem at first glance becus
some. rNTERUSP features interfere with thc gathering of exaa cross reference infonnauon:

when the features are used the dependence of one piece of program on another is not evident

from the text of the code. There are two categories of features in INTUSP which obstrct
exact infonnauon.

First, there are those features which. when misused. wil causc programs not to work in
the way one nonnally expects: the I!\'TUSP intcrrpt system. which can cause arbitr us

defined computations to occur at arbitrar places in the computauon, (2) the INTLISP errr-
handling mechanism, which ca be modfied by the programer to redefine what happens at
what would nonnally be an error, and (3) thos facilties in Il'USP which alow
programers to dynamically modfy their progras (e.g.. pure, DEFINE, or EeITF). The
answers SCOPE gives ar made with the implicit asumpuon that thes features are DOt use to

change exisUDg pieces of progr

The second type of obstrcuon to exact infonnauon involves the abilty in LIsP to invoke

arbitrry procedures or asign aritr varables. For example. given a caB to the function

EVAL. detennining what dcfiniuons might be referred to in the execuuon of the ca is

diffcult Fortnately, only a few of the primitives in the foundations of INTRLISP contrbute

to inaccurate cross reference infonnauon. and these primitives are used infrequently. SCOPE

notes when these primitives are used. and is able to war the user when its analysis may.be..

incomplet~

4.2 FLOW INFORMA nON

Data flow analysis has becn studied extcnsively in the Iitcrature of global progr
optimization. Exccution of a program normally implics thc input of data. operations on it, and

the output of the rcsults of these operations in a sequencc dctermincd by the program and the

data. llie scqucnce of cvents is a now of data from input lU output. Data now information is

derivcd not from an exccution of the program bcing analyzed but rather from a static analy.sis
of the program. It is a summary of informatiiin J\Jílalilc at specific program statcmcnts

4/1

Chiipier4-Whiii SCOPE Kno\l§ .\hoUII)To~r:ms

dcrivcd by propagatig thc semantics of individual statcmcnts through the progra in a

manncr whicl reflccts thc control strcture.

In proedural languages it is necesry to summarize thc flow propertes of procedure

bodies so that thc summar infonnauon can be uscd at the point of call. There acwally ar
many differcnt summar propcrtes of programs which can be dcrived using flow analysis
techniques Flow propcrtes include possiblc proccdùrc callng sequences. use of variables and
side effects The general techniques for compuLing flow infonnation remain the sae
indepcndent of the kind, of. infonntion being computed.

Side effects

A parlar data flow property relatcs to side effects. The execution of a proedure ca
cause changes to the ron-time Stte of the progra in addition to any values which might be

direy reorted as a reslt. Thes changes arc called side effec (prcsumably to disungui

them frm the main effts of a program). Side effects present serious problems in progr
undedig since modtiåons .of shard data strcture allow global interaons whi ar
diffcut to undersd, even for experienced progrmers In addition. inferece of the tyes
of complex stre reir knowledge of the posible side effects of a procedure ca For

exple. in the pro

LST~A P+Q)
aUF-t SKIPUNTIL aUF LST)
Y-LST:l

it is only posible to iDfer that Y is an integer if SKIPUNTIL can be guarantce not to modfy

the COR field of LST.

Difernce; beiwei:n flow and cross rtference properties

Row propertes may resemble cros referencc propertes even though their interpretauon

rets on different foundauons. For example. the mcntion of one procedure by another is an. .
importnt cross re(ercnce property: the possibilty that onc proccdure might invoke another
direcy during cxecution is a flow propcrty. Cross rcfcrcnce is morc inclusive that flow: there
ar more ways in which a procedurc can be mcntioned than in a direct call (c.g.. the situation

of onc procedure p:iing anothcr as an argument). 1-1ow propertics thus rcflect characteristics

of the set of possible cxecutions of a piece of progr. rather lIan the depcndcncy of the
pieces. However. in many largc programs. thcrc is an exact correspondcncc of the cross
refcrence and flow relations betwcen procedures.

'l1

i

Chapter 4-What SCOPE Knows "haul I'rograms

Flow information for INP

The INTERLISP flow propertes of which SCOPE keeps track include procedure ca
" AayCall). variable use (Bind. Ref. and Set). use of records and fields (Fetch. Replace,

and Create). and genera information about data strcture use and effects (Uses, Affects).
This set of flow propertes, while not, c,xhaustive, is suffcient for the current applications of
SCOPE.

Because LIsP is primarly an applicauve language which encourages shoit procedures the

emphasis in data flow analysis techniques differs from that of more sequentially organized

languagcs such as FORTRN and ALGOL Because procedure calls and recursive procedure ar

common. it is importt to deal correctly with those constrcts: because long sequences of
intenwined GO's are uncommon. it is possible to allow a great deal of imprecision when those

constrcts are encountered.

Variable use

SCOPE'S flow infonnation includes relations which desribe the way in which, procedur

use variables Varables in INfP can be bound in a PROG or LAMBDA. either internaly to

a funcuon or as an arument. For flow analysis it is neces to split funcuons up into
"fraes" which corresnd to PROG or LAMBDA bindings For example, the. progr

(COM2
(LAMBDA (BUF)

(PROG ((W (WIDTH BUF)) (BLANKS (LIST TAB SPACE)))
. .. (COM3 W 3) ... J)

binds the varable BUF in its top level fre, and the varables Wand BLANKS in an interior
fre.

SCOPE generates names for the interior fraes so that they can be identified: .in this ca- .
.the top fre is the name of the;ftlncuon COM2, while the first frae is called COM2: 1. The

SubFrame relation holds between a frae and its subfres e.g.

SubFrame(COM2, COM2: 1). The SubFrame relauon is built-in in SCOPE,
Le.. SCOPE doe

not need to store any data to repreent it.

SCOPE seartes flow infonnation relaung to procedure calls (MayCall) and varable us

(Bind. Ref. and Set) for each frae. ThUs. SCOPE knows that the Bindr rclation holds

between COM2 and BUF. and also betwcen C~j,,2: 1 and Wand BLANKS. SCOPE is able to tell

that the call to COM3 in COM2 wil occur under the COM2 : 1 frame. i.e.. at a time when W and

BLANKS are bound. This information is necessary to detcct possiblc misuse of frce variables: if

the call to COM3 occurred outside of tile binding of BLANKS and if COM3 uses BLANKS freely.

42

Chllter 4-Wb:il SCOPE Knows About Progrms

there would be a possible free varable error.

Although flow infonnation is computcd separatcly for each fre. most applications only

rcquire infonnauon on how the cntire procedure behaves. In general. the summar flow
bchavior for a proccdure can be computed from the specific infonnauon for its fraes. For

example. the MayCall relatiò~ can be, formally dcfined as SubFrame. 0 MayCalir the
composition of the closure of SubFrame with MayCallr '¡bus. MayCall(COM2, COM3)

holds becuse SUbFrame(Cdrt2, COM2: 1) and MayCallr(COM2: 1.COM3) hold.

Side effects in INTUSP

Another kind of flow infonnation SCOPE maintains is a characterization of the effec of a

procedure as wen as the external state upon which the procedure relics This charterition

consits of a finite set of elements: each clement desribes some pan of the state of the
progr execution which can be changed or used. The INTERUSP Vinual Machine definiuon

(Moore 1976) defines "fields" which ar clements of data structurcs in INTLlSP. Some of
thes fields are directly acesible to the programer. e.g_ CAR and COR fields of a CONS cell

or the PROPLIST field of an atom. while some are only accesible indiretly, e.g.. the ENO-
OF-FILE field of an open file or the CONSC.OUNT field for the system. For ea pritive

operaon in INT. SCOPE has a desption of the fields the priitive might use and the
fields it might modify. For example. RPLACA modifies the CAR field while CAR use the CAR

field of a CONS-cell: GETPROP uses PROPLIST, CAR. and COR, SETF ILEPTR mOdfies a
fie's POSITION and FILEPO¡NTER, while PRINT both uses and modifies POSITION and
FILEPOINTER as well as modifying FILECONTENTS. (To reduce the burden of crating the

initial data base of uses and effects some distinct fields are grouped together in SCOPE'S iniua

data base. For example. SCOPE does not distinguish between any of the diffcrcnt ficlds in a
readtable. In addiuon. a number of fields arc grouped together under OTHER. Finally, there is

a use/effect category called ANY which subsumes every other ficld. This is uscd for primiuves
which can have unknown side effects on the progra. e.g.. the Il'LlSp-iO function CLOSER

èan modfy aritr memory locuons)

SCOPE'S characterization of side effects is very rough. For example. SCOPE makes no

distinction bctwecn one CA R field and anothcr, because therc is no analysis of possible
strcture sharing. SCOPE assumcs that any two strcturcs can bc shared. However, this

characterization is suffcient for enabling many compiler optiizations (Steele 1978), and al
prcsnts useful program docmentation.

Unusual control structures

SCOPE'S analysis of progr.Jm now does not deal with some of the miire unusual control

J3

Cb:ipi(!r .iWh:il SCOPE Knows Aboul Progr:uns

strctures allowed in INTRLISP. For example, SCOPE'S flow analysis routines do not currently

deal with ERRORSET used in tandem with intcnuonal errors or with RETFROM. During

analysis, SCOPE keeps a relation UsesUnusualControlStructures. so that, wh~n

responding to a request to check for programing errors. SCOPE can war when its analysis
might be incorrect SCOPE also. maintans the relations MightSetUnknown and
MightCallUnknown so that it is always known when an arbitrry variable might be set or an
arbitrar fonn evaluated: these relauons ar used to avoid maKing compiler transfonnauons

which might be incorrect and to temper error messages. For example. if a procedure binds a
varable which is apparntly not used by any routine called beneath it, but there is some path
to a procedure which MightCaliUnkn,own, then SCOPE ca add a caution to its waring
messge whic~ indicates that the unknown procedure might be the one which use the given
varable. Some flow analysis algorithms in the litcrature are able to analyze flow relauons more

accurately in the presence of proedure valued variables. In INTRUSP, however, the ca
where procedure variables are used and where the range of values can be detennined for those

procedures is actually quite smal

4.3 TYE INORMTION

The defmition of "type inference" as it is used in the literature depends on whether the
laguage for which the inference is being perfonned is strongly typed or alows dynac type

For strngly typed languages a varable or function value ca be of one and only one tye;
furter. there is a predcfied finite set of existing types. Type inference in strongly tyd
languages is the proces of chooing the corrt type for each varable or procedure. Laguges
like LIsp, SET and APL, however, allow dynamic types Such languages do not a priori have
typed varables. but allow any varable to. asume any value. For example. in LIsp the sae
varable can be used both to store a list at one ume and a number at another. The "tye" of a
variable is thus similar to a range spccificauon. An analogy to type inference in dynamcay. .
typed languages would be the specficauon, ìn a FORTRAN progr. of the numeric rages of

values for all of the varables. For some varables it is not possible to draw any inferences

about the rage of values (the values can asme any value allowed by the implementation)

while other variables can be restricted to a small range. Type inference of this nature ca be

perfonned in a heuristic manner: Since "any value" is a legiumate rage specificauon. a
lcgiumate (but useles) result of type inference might be that every valuc is within the rage
"any value". The goal of type inference is to improvc the restrictions asigned to values as
much as is computationally feasible.

44

(1uquer-lWhal SClWF. Knows ,\boull~rolr:ms

Type information in INTEP

When SCOPE analyzes a progr it dctennincs sub-rangcs within which values must
remain in ordcr for the progr to executc correctly. Summary type infonnation for a funcåon

includes the rage of values cxpectcd for each argumcnt (ExpectsA rg). thc range of values
which might be rcturned (Returns). the range of values assigned to free variables during its
execuuon (SetFreeType). and the rage of values expected of any free variables
(E;pectsF ree).

In INTUSP. the strcture of the set of values that a variable can assume is much more
complex than a simple number line and the desriptions for sets of values are thus necesly

more complex. As with side effects the characterizauon of the ranges of values for varables
and proedure can be desribed in a multitude of ways: while any desription scheme can be

refined, the undecdable propeny of rage analysis prevents any desription from being
completely accurate. The type desripuons ar expresed using an extension of INTUSP's
DECL package (Teitelman et aL 1978. p. 24.53).

Briefly, the type despuon language allows range desripuons to be a specific list of
constats: for example. a value which is either NIL or T ca be desribed as (MEMQ NIL T).
The naes of INTUSP'S basic data type ca be usd as type desripuons: for exple.
tloaung point numbers ar desribed by FLOATP and literal atoms by LITATOM. A ty
despuon ca provide a precate which elements of the type must sausfy: for exaple.

(LITATOM SATISFIES (NTHCHAR X l)a'A) denotes the set of litera atoms whos fi
chter is the letter "A". Type despuons ca be a set of altemauve types: for example.

(ONEOF LITATOM FLOATP) denote the set of values which are eithcr litera atoms or
floanng point numbers A complex tye ca be "named" and the name used intercangably
with its definition: for example. NUMBER is defined as (ONEOF FLOA TP F UP)-either a

floaUDg or a fixed point numbcr.) Type desptions for composite data strctures (e.g.. records
and CONS cells) can include rescuons on the types of the ñclds: for cxample. (LISTP WITH

CAR FLOAT~) desribes list cells whos CAR field contains a floaUDg point number. Type
decarauons can be reursive: for example LIST, the type of "proper" lists is declard as

(LISTP WITH COR LIST). The type mechanism allows for abstrct type declarations via the
SUBTYPE mcchanism: for eX41mplc. the declaration of FILENAME is merely (SUBTYPE.

LITA TOM). This declarauon says that a FILENAME is a k.ind of a litcral atom. without giving

any other infonnation about the rcsmction. lñe type mechanism c:in dcducc that if X is a file

name. it is also a litcral atom. However. ÙlC importncc of a FILENAME is that certn
I:-TtRLlSr primitivcs expect to be passcd a ficn:ime (specitically thc input-output funcuons).
Finally, thc typc ANY subsumcs all othcr typcs. and NONE dcnotcs thc empty, set.

.i5

Oiaptcr 4-Whal SCOPE Knows Aboul Progrms

4.4 FILING PROPERTl

The word "filing" is used here to denote those organizational propertes of the progra
which are independent of the mca"ning of the program. e.g.. which piece was edited by whom

at what tie. These propertes have little to do with the meaning of the progra but rather
about the proces with which the program is created and maitaned.

Filng in INTERLIP

Filng propertes in INTRUSP include those which the progammer has communicated to

SCOPE or the programing system: these include properties about which pieces of the progr
belong in which fie (the Contain relauon) as well as infonnation about which piece was

edited by whom at what ume (the Edited relation). In addiuon. the Entry relation, which
desbes a declaration the user has made about his program, is clased under fig.

Proper interpretauon of filing infonnauon also has subtle complications. For example, the

SCOPE relauon Contain denotes the relation between a file and the names which it defies If
Contain(FILE,NAME,OEFTYPE) is the relation which denotes that definition of NAME as a
OEFTYPE is stored on the file named FILE there are several different priciples which might

be implied:

(1) Loadig FILE wil mod the defmition of NAME as a OEFTPE.

(2) Loading FILE wil cause NAME's defiiuon to be completely specfied (No pan of

NAME's definition is not on FILE)

(3) Changing the definition of NAME as a OEFTYPE means that previous extern
represntauons of FILE are obsolete.

(4) FILE contans the entire current definition of NAME.

Relation (4) is the most common instace of Contain in the INTUSP file package and .
al is the most strightforward: (4) implies that (1), (2), and (3) hold.

These different meanings for Contain are mutually independent: all combinations of (1),

(2) and (3) ca be achieved in the INTUSP fie package. Represenung these different

relations complicates SCOPE'S interface to the fie package.

.l

Cbllllter .$Wh:t SCOPE Knows ,\boui Progrms

4.5 CONa.iiSIONS

The progr propertes with which SCOPE dea are by no means all-inclusve; the
posble summar propertes of progr arc without number. 'The choices for SCOPE were

made becus they met pancula needs and showed the varety of progra propertes. which
could be deat with in a single reprentauon scheme. In each instace. the information SCOPE

deal with ha the charteristic that corrcct) :iJut possibly inaccurate) information can bei i
gaered for any progr; increaing acray is available at addiuonal computauona expense.

47

Chapter 5-Program Analysis Techniques

SCOPE employs several differcnt kinds of analysis; each kind of analysis is perfonned by a

separate analysis module. This chapter discusses thc mcthod of progra analysis (in genera
and as perfonned by SCOPE) and some of thc problems involved.

In general. program analysis takes a piece of progra, and computcs a set of relauons
.,

which hold for that piece. Analysis begins with a parse tree of the picb~ of progra being

analyzed. Each analysis routine "walks down" the parse trec. generating new assenions at each
node in the tree. It is sometimes necess to do ",orne global searching (e.g.. to find all of the

labels in a block) and often necessary to keep track of "state". In many respects anysi
resembles symbolic exccution: the analysis routines trace through the code as an interpreter

might, although all alternative branches are explored.

In Lisp, the pare trees for programs are easily obtained as the S-expresion

representation of the program. Usp is one of the few programming languages which has a
natural representation of program as data For other languages. more compli~ated analysis is

neces to obtan a par tree. Funhermore. the basic synta for LIsp is very simple; LI
progrs consist of nested "fonns" where each form is a list and the head of the list is either a

specia token or a procedure nae.

5.1 CRoss REFENCE ANALYSI

For cros reference analysis, the pare tree gives indications of the use and idenuty of
symbols. Even in languages like ALGOL it is simple to distinguish a proedure reference,
although in some languages there might be ambiguity, e.g.. in FORTRN it is not posible to
immediately tell the difference between a reference to a global array and a function ca.

Cross reference analysis in ScOPE

While SCOPE use the basic metod of recrsive descent analysis of the parse trees of Lis

programs. special problems are encountered. Through the years Lisp systems and lNTUSP in

partcular have acquired many syntacuc extensions. There are several ways that syntauc
extensions have been implementcd; the way in which they were implemented affects the
complexity of analyzing them. Somc syntactic extcnsions were implcmented as "macros", e.g.,

one syntactic constrct would have a description of how it was to be translated in terms of
regular Lisp expressions. In such a case. SCOPE'S analysis can merely translate and analyze the

translation. On thc 0ther hand. some of the extcnsions. e.g.. the LIsP constrcts PROG. AND,

OR, are implemented using "FE X"P R s" tspccial forms for which the arguments arc passed

unevaluatcd). with the LIsp compiler extcndcd to handle them as special cases. In general.

.lR

Chapter 5-'roltr.m ,\iilysis Techniques

thre choices arc available for handling syntactic additions: (1) extend the analysis routines to

include knowlcdgc of me additions: (2) treat the extcnsions as macros: or (3) provide a way to
asiatc with each form a data strcture which desribes fcatures of thc syntatic form. Choice

1 makcs analysis routincs morc complex. Choicc 2 is not always possible: for example. while is

always possible to trnslate an AND expresion into an equivalcnt CONDo a COND cannot in

genera be translated intol/"7Jre primitive operations. Choicc 3 rcquircs the user to specify new

templates for eah new syntacuc cxtension and thus is burdensome.

SCOPE us tcmplatcs when perfonning cross referencc analysis (choice 3). but expands
macs (choice 2) when performing all other types of program analysis. In a few instances (for

simplicity or becse macro expansion is not possible). SCOPE'S analysis routines cOtltan, -
spial purpose code for LIsP syntatic addiuons (choicc 1). The strcture of me templates in

SCOPE is desribed in Appendi iv.

Even without tcmplates simple crss refcrence analysis on LIsP fonns reui
undertanding of the '.arument type" of varous funcuons. becusc the text of the fucuon
doe not determine whether the arments to called funcuons arc LAMBDA or NLAMBDA.

Thus even if a funcuon has no template or simplification. it is neces to reember if it

expets its argents to be evaluad. . For this rcasn. SCOPE maintains a re1aåoD

NLam bda(FN) which denotes th FN expects unevaluatcd arents

Muliiple imysi rouiinn

INTSP ha many differet kids of symbol definiuons. each with a separ synta
Differnt anysi rouånes are reuire for eah of them. For example. record dec1auoDS

must be analyzed searately to find their cros reference relauons. Editor commands "top
level" commands compiler macs. and templatC5 each rcquire a separatc analysis rouune to
determine the cro reference relauons in which they are involved. In some caes the analysis
of cr refercnce in definitions of symbols wac; available as part of the ImëUSP

environment: for exaple. tte INTLISP reord package itsclf provid~ suffcient infonnauoD
to compùtc the FieldOf cross reference relation. Some. of thc I:-TERLISP "co~mands", e.g.'

top level commands (LISPXMACROS) and debugger commands (BREAKMACROS) require use

of SCOPE'S function-cross reference routines

5.2 FLOW ANAL YSL

The litcr:iturc contains several algorithms for computing interprocedural flow information,

and work is continuing on developmcnt of effcicnt tcchniques fRoscn 1979. Bart 1977,

Banning i 9791. r..ch of the ;ilgorithms for flow analysis uscs a diftcrenl computJtional strategy,

Jnd \:omputcs somewhat difrcrcnl information. înc techniques for flo.. :in¡,lysis rcpresent

.iq.

Ch:ipler 5-Progrnl A n:lysis Techniques

tradeoff between computauonal expense and expected quality of computcd infonnation. 'lle
most appropriatc algorithm for a parcular application wil dcpcnd on the valuc placed on the

quality of infonnauon computed.

I.

The differences in interproccdural flow analysis algorithms revolve around thc handling of

the summary of properties of sub-procedures. One importt characterisuc of intcrprocedura
flow analysis is the nature of the summary infonnation computed for each procdure. In
partcular. the flow algorithms described by Bart (1977) and Banning (1979) use simple binar
relauons to represent the summar flow infonnation for a proccdure. The flow algorith
desribed by Rosen (1979), however,. I,se a more complicatcd represntation.

In compuung flow infonnauon, it is importnt to disunguish between two categories;

those propertes which "may" hold and those which "must" hold. The disunction becomes

importnt when tracing flow through conditionally executed code. For example, a varable is
extrneous if there is no way in which it might be used. A us which only happens in some
executions wil still imply that the varable is not useles. On the other hand, an asignment to
a varable is e~trneous if. during any subsequent path through the progr the varable wil
be reigned. In this ca, the asignment must occur in every posble subseuent pat.

..

Flow analysi in ScPE

In the rage of flow analysis techniques SCOPE'S algorithm reslts in relauvely por

quality flow infonnation. but with low computauonal overhead. SCOPE ~ its relauona

rerentauon scheme for handling the intennediate summar propertes of procedur
SCOPE'S analysis is simplified because all of the flow propertcs SCOPE computes ar "may"
propertes For example. the Ref relation denotes only tht a varable may be ~ed with a
function. In order to compute Ref, SCOPE needs only to accumulate the varable references it
sees during the recursive examination of the progr

SCOPE'S flow anysis nouces procedure cals (for MayCall). binding and use of varables. .
(for Bind, Ref, and Set), use .of-records and fields (for Fetch. Replace. and Create), and
use of data strctures (for Uses and Effects). Analysis stans with the LAMBDA-expreon
definition of the procedure. and nouces the variables bound as arguments. Th.cn analysi

examincs the body of the procedure. Built-in INTRLISP control primiuvcs (c.
g.. caND and

AND) are traversed recursively: at procedurc calls. SCOPE nouces the proccdure (for MayCaU)

and then analyzes the arguments (unless the procedure is known to be a FEXPR by the
NLambda rclauon). Variable assignmcnts are detectcd at SE TQ's. SCOPE also recognizes the

appropriate context for rccord packagc accesses. Whcn a new sct of bindings is cncountered (as

an intcrnal PRaG or LAMBDA). SCOPE generates an appropriate frame name to associate with

subscquent propcrties.

50

(11:1pl~r 5-'roi:r:ni :\Ilalysis Techniques

Sidc effects are acumulatcd in a separatc applicatiun of thc flow analysis routines; no

notic is takcn of fraes or framc namcs when accumulating information for Uses and

Affects. ßccause SCOPE is not currently ablc to analyzc strcture sharing. sidc cffec analysis

consists mcrely of accmulaung thc uses and effcctS of ílny I:-TERI.SP primitives which occur

in the definition of the function bcing analyzed.

Applying flow information

Most applications of flow infonnation ílrc bascd on thc accumulated effccts of a set of

functions reachablc via a chain of calls (MayCall): this is expressed using the corresponding
augmentcd flow rclations For cxamplc. thc preconditions for must codc trnsfonnuons ar
gcneraly expred in terms of thc !Uses relation (= MayCall. 0 Uses) rather than what
any individual function might us. In addiuon. when applying SCOPE's flow informauon, it is

neces to take into acount the possiblc use of unusual control strcture. For example. the .
corrt test to determine if two procedure applications can be interchanged is:'

. There is no da stcture which one use (!Uses) and the othcr modifies (!Affects).

If one proedure ha unknown references (i.e_ it rUses ANY). the othcr must have no

effec at al (i.c. ther is no. value the othcr !Affects): similary, if one of them ha

unknown side effec (Leo it !Affects ANY). thc other us no clta stctre

Ther is no field which one ca reference (!Fetch) and the othcr modify (!Replace).

There is no varle which one function ca set (SetFree) which the other us

(Ref Free).

.

.

.

. If one proedure ca modfy an arbitr variablc (!MightSetUnknown), the other

canot refcrence (Ref Free, !MightUseUnknown) any variable.

. Neither one use unusual control strctures (!MightCaIiUnknown

!UsesUnusualCont rolSt ructu res).

+

S.3 TYE INCE

For strongly typed languages. a variable or function value can be of one and only one
type. Type analysis can be performed by application of a small sct of niles. (Gordon et aL

(1977. pp. 36-40) desbe êl 5ystcm which pcrforms type infercnce in a strongly typd
language.) Algorithms for dctcrmin:uion of type in typeless language havc becn desribed by

Tenenbaum (1974) ami Kaplan and Ullman (1978). Juncs and Muchnick (1979) desribe a

method fur type infcrencc in a simplified 1.ISI'-likc language which allows sidc effects
Gcncr:illy. type inÎcrcncc algurithms employ t'nO techniqucs. Both stJrt with the assumption

51

Chapier ~Progr:ini Analysis Techniques

that the progra is to operate correctly. and attcmpt to infer the ranges of variables and

procedurcs starúng from that asmption. The two techniques uscd are forward iiiference and
backward inference.

Forward inference across a single statcment taes the a priori asumptions of varable

types. and modifies them by the possible cffects that the statemcnt might have. For example.
after the statement X"'SIN(THETA), it can be assumed that X is a floaung point number in

the range (0,1).

Bakward inference, on the other hand. taes the a posteriori asumptions of varable

types and strengthens them according to any additional requircmcnts that the statement might
imply. For exaple, acoss the sae statement X"'SIN(THETA) it can be inferred tht THETA

must be a number.

Sequences of statements are analyzed by chaining the infonnation propagauon ac
them. For example. given the scquence X"'SIN(THETA); Y"'X+L. forward inference reslts in
the additional asrton that Y is a floaung point number in the rage (1,2).

Type inference in ScOPE

SCOPE'S type inference sta with a sirplificauon of the defiition of the funcuon to be

analyzed. Mapping funcuons and PROG's are transfonned into (possibly recursive) intern
funcuons (Moore 1975), macros ar expanded. and whenever possible. complex expreons ar

put into a canonical fonn. For example. SELECTQ's are transformed into an equivalent CONO.

The simplificauon is perfonned so that the ret of the type analysis is not filled with spec
ca for eah syntactic extension to INTSP.

SCOPE'S tye inference routine is given a set of pre-conditions, a set of post-conditions

and a .for. Its. job is to propagate the pre-conditions forward and the post-conditions

backwards in a symbolic execution of the fonn, gencraung new conditions for proper
execuuon. SCOPE us the type infonnation for called functions (ExpectsA rg and
Retu rnsType) when a procedure call is found. and A ffects to possibly modify the types in

the. preence of side effects. For example. in analyzing the fonn

(SETQ W (WIDTH BUF))

the precondiuon that aUF is a LIST is inferred because WIDTH expects its first argument to be

a-LIST: the postcondition that W is a LIST is inferred because WIDTH returns a LIST. Any
preconditions which dcscribe the type of W arc rcmovcd from thc dcrivcd postconditions. If
WIDTH had side effects. e.g.. if WIDTH could change the COR ficld of some list, then. the

S2

f.p.cr ~'roi=r:m Arnlysis Techniques

preonditions would be '.weakened" by rcmoving any asrtons about COR's of any lis

strctu
Recursive proedure ar more diffcult to analyze. To analyze a systcm of munia1ly

recursive proedure SCOPE first invents new '.abstrt" data types which corrpond to the
ExpectsArg and RetumsType of each of thc procedure. SCOPE thcn perfonns type
analysis to compute new' typcs. i f the new typcs do not mention the' old types they ar

relaced as the values of ExpectsArg and ReturnsType. If the new types do mention
themslves they are usd as the definitions of recursive data strcture (cf. Joncs & Muchnick
1979).

C omplicaiions

Although it is posble to convert an aritr P ROG into. a collection of rersive

funcuons not all of the uasformauons arc made. In panicular. SCOPE'S type analysis do not
perform well when faced with GO.s which cxtend acss PROG boundaes or RETURN.s which

. ocr insde compuwions In such siwauons the only preconditions generated ar thos
which ca be infer by the pro up to the first label or GO. while the only pos-
conditions infer ar thos derved by the dijuncton of post-conditions of al of the
embedded RETURN exreons The ty of the values manipulated by a progr. is a more
pre deption of the opetion or the progr than SCOPE'S simple flow anysi and for

that ren ty anysi is more stngly affected by the same obstales to exac infoimon.

In parcula, ty infeme inde PROG's is diffcult, becus of the posibilues of a GO or

RETURN. A RETURN or GO embeded within an expresion indicates tht any subseuent
execuon may condiuona1Iy not be execute It is eaier to derive informauon from a mapping

functon th frm the equivalent PROG.

5.4 CÒNCÖÑS

A varet of progra analysis tecniques ar employed in SCOPE. Among the possble

techniques reponed in thc literature. SCOPE'S analysis methods tcnd to be those which provide

suffcient qualty of infonnauon without cnonnous compulauonal expense. ThUs, for example.'

SCOPE do not analyze strcture sharng when characterizing side cffects becausc (a) SCOPE'S

weak dieriz.tion of side effccts is suffcient for many applications (c.g.. compiler
improvement). and Cb) the quality of infonnation derived from statc.of-thc-art tcchniques is
not suffciently better to warrnt the extr effort

53

Chapter 6-lmplementation Notes

SCOPE is implemented in severa par (Figure 6-1). Users communicate to SCOPE via the

SCOPE command language. The Parser parses the command language and produces queries:

the Interpreter interprets the pard strcwre and produces queries. The

QueryProcessing module use SCOPE'S relation-descripuon tables to cause any requird
progra analysis and to trnslate the input queries into data base access. Tl DataBase
module acceses and maintans the data base of facts. Each of these par is discussd below.

- _ SS _ --- - -- "--

(

I

I

J

I

\

\
"

quer

\
\

1 .

I

L

I

I

I

J
./

edit

anal
relts

ne
que

Program Data Base
'- --- -- ~

Fiiur 6-l""linplcmcntation or SCOPE

6.1 PARER
You ca't stte soeting simple to an- unknowledgeable mecica repient and expe it to

alter ilS bevior in major - ways. (Stadi 19711

The interface to SCOPE is in two pans, First, an EngliSh-like command language is

available for casual interactive use. (SCOPE'S command language is desribed in Appendix II.)

Second. a fonnal query languagc is available for morc cffcicnt acccss to primitive operations.

(The formal query language is dcscribcd in !\ppcndix \II.) SCOPE'S command language

54

Oapicr 6-lniplcnicntation Notes

procesr trnslates qucries in the SCOPE command language into thc fonnal query language.

SCOPE'S command language procesor employs a top-down recursivc desccnt algorith

with lookahead and panial backtrcking. In parallel to the" top-down pars. a bottm-up
scanner looks for adverbs and prcpositional phrases which arc attached to the components

which they most likcly to modify. Language tables desribe the clases of nouns verbs

modificrs. etc.. along with atthments which indicate how thc words arc to be intcrpreted.
The command language is simple enough so that a morc sophisticatcd parser is not neces.

SCOPE'S language was dcsigncd so that. while it is a very limttcd subset of Englis. any

command which is accepted is interprcted with a meaning which corresponds to the intuitive

mcaning of thc English sentcnce. SCOPE'S command language language was designed to be

comprehensive and flcxible. with frequcntly used commands kcpt as simple as possible.

Spellni corrcton

If a command cannot be pared. SCOPE attempts to correct spellng by retring the par

.with a "fuzz match" of tenninal symbols in the parse trce. (Thc standard INTUSP spellng
correction routines arc used to select probable respellngs among the cadidate generated by

SCOPE.) Only one misspellng pcr phrae is cillowed as a compromise between the exU'e of
looking for all posible missellngs and merely giving up and saying that the command was
not parble. Becausc of the combinatorial explosion of possibilties. looking for multiple
mispellings would probably take much longer than the time it would tae the user to

reognize the errr. corrt it, and fe-type the command.

6.2 INTREl

Once a command has becn parsed and an internal representation of its strcture
generated. SCOPE trnslates thc parsed strcturc into a retreval request. In general. a noun-

phra corrponds to a quantified referent, while a verb' corresponds to a" relauon.

Quanuficauon is asumed to take a left-right preccdence.

SCOPE'S command processor translates the command language input of thc uscr into a

fonnal qucry of thc data base. Uscr programs can directly intcrfacc with thc data base using
thc same fonnal query language. The formal query language consists of first order prcdicate

calculus equations. For examplc. WHICH FUNCTIONS THAT BIND X CALL Y translates into

thc formal query (find Z suCh
that (AND (Bind Z 'X) (Bind Z 'V))).

55

Chapler l-lniplcllcnlalion Noles

6.3 ANSWERI:\G QLESTIONS

Once SCOPE has a query cxpresscd in its formal qucry languagc. it must first update its
knowledge- about the uscr's program as neccssary to corrcctly answcr the quesuon. and

secondly, direct the data base module to retrieve the required information. In ordcr to do this
processing, SCOPE needs to consult its general knowlcdge about the relations it maintains.

What SCOPE knows about relations

There are two kinds of facts SCOPE knows: facts about a particular progra and facts

about programs in general. Thc facts SCOPE knows about a particular program are instaces of

relations bctwcen the picces of that progra: the facts SCOPE knows about programs in genera

are the rules it has which tell it how to process those relations. For cxample, SCOPE may know

that the proccdure COMMAND can cause the procedure PHEAD to be called-a fact about a

partcular program. SCOPE knows. that the !MayCall relation (used to expres facts about one

procedure eventually callng another) is the transitive closure of MayCall-a general piece of
informtion which is indcpendent of any specific progr.

SCOPE knows severa general properues about eah of the relations with which it dea

(Figure 6~2). For each rclation. it knows the types of each element which ca be involved in
the relation, the manner of derivauon. whether the relation is stored in the data bas and
information about propagating changes These elements are discussd in detal below.

RelationName(arguments)
test and generate procedures (if built in)
translation rule (if computed)
analysis routine name (if direc result of analysis)
data base info rmation (if not always recomputed)
dependency information
change propagation information

Figure 6-2-What SCOPE knows about a relation

Relation argments

SCOPE rclations are facts which relate one piece of program to another. Eah relation has

a number of arguments. With cach relation. SCOPE storcs a dcscription of thc kind of elements

which can be in each argumcnt position. For examplc. thc Edited rclation relates a name. a

type. a person. and a date.

56

(ñ:ipicr b-Iniplcnicni:ilron Noles

Buili-in relations

Somc relations arc "built-in"-no information is stored in SCOPE'S data bas but rather,

thc relauon "knows" how to solvc itsclf. For example. the SubFrame relation
"is built-in;

attched to thc SubFrame rclation is a pointcr to a routine which can tcst if unc frae is a
dircct desendcnt of anothcr. and anothcr routinc which. givcn thc name uf a frame. return

the name of the frame's parent.

Traiislaiion rules

Often. onc relation is dctincd in tcrms of other relations. Thcre are two reasns why th

is desble.

First. thc relations which ocur in diffcrent contcxts arc not necesrily the sae. There
are thrcc differcnt situations in which rclations occur: (1) relations are used to expres queries:

for example. thc question WHO CAN CALL WIDTH in the SCOPE command language is
exprcsd as the qucry (find X suchthat (MayCall X 'WIDTH)): (2) relations ar
dcrivcd as the reult of of progra analysis: the flow analysis rouune determines for any

procedure. the 5Ct of ather procdure tht it may call: and (3) infonnation is store in

SCOPE'S data bas in tcrms of relations. The relations used in thes thre different ways ar not

necesly the sae. For cxample. thc !MayCall rclation can be used in a query, but is not
dcrived as a diret relt of analysis: rather, SCOPE must perfonn some procesing to dere
!MayCall from Mayeall.

The second reason it is desirable to be able to dcfine one relation in terms of other
rclauons is because thc relations in SCOPE'S data base may actually be quite different frm

both the relauons available for query and the relations derived from analysis: agai a
translauon is necessary.

To perfonn thc trnsformation from one relation to !lOother, SCOPE employs iranslation

rules, which tell how one relation can be derived from another. Each of thc relations which

can be uscd in a query have a translation rule which says how that relation can be derived

from cither other query rclations or from the relations storcd in the data base. For example.. . .
!MayCall's translation rule says that !MayCall = MayCall.

Relations dcri\'ed from analysis

Sume rclations arc nol computed in terms of others. but arc the dircct result of analysis.
For these relaiiuns. SCOPE stores the name of me anlysis routine and me pruper way of
in\Oking the analysis program.

5i

Cbapter 6-lmplemcnlliion Notes

Data base injôrmation

Some relations are not stored at all: rather SCOPE merely recomputes the informtion
whenever a question is asked. Other relations are stored. and must be updated if the progra
has changed since the last tie a quesuon was asked. For relations which are stored, SCOPE

must know where the infonnauon is stored, i.e., .th¡ name of the data base in which it reides
II

Dependency information

A second kind of general knowledge SCOPE has tells it how one relauon depends on other

informauon. SCOPE'S dependency rules are used when a pan of the progr has changed

Changes to the progra require SCOPE to update any incorrec facts in its data bas. To help

SCOPE to do so, eah relauon in the data base has a dependency rule which indicates other

relations or definitions upon which this relauon depends. In order to simplify change
propagauon. the dependency rules are actually inverted-tored along with the relations which
are depended upon.

Change propagation injörmtion

Beuse SCOPE propagates changes only when neces, SCOPE must reember the
specific informtion about what is out of date in its data bas. For this purose SCPE
maita a set of invalid tables Eah relauon in the data bas has a pointer to one or more of
the invalid tables Before performing a retreval SCOPE first propagates the invald tables bas

on the dependency rules and then updates any relauons which ar invalid acordig to the

tables

How SCOPE proceses quenes

SCOPE receives a query as the result of procesing a user's command or diretly from the
progr interface. Oftn the infonnauon required is not directly stored in SCOPE'S data pas

but must be computed. The computations SCOPE perfonns are pure deduction: given a query,

and the data bas of facts. SCOPE use a set of deductive rules (the relation definitions) to

produce an answer to the query. Transfonnation of the input query into tenns which the data

base stores is strightforward. Each relauon is either primitive (stored in the data bas and

computed by analysis rouunes) or computed. For direct computed relauons. there is a simple
trnsfonnation which wil turn the high-levcl query into a low-level query via substituuon.
Each complex computed relauon has an attached procedure for computing it, as well as
informauon abc~t its dependency.

58

Chapicr ~Implcnicnlalion Notes

When a picce of progr changes. it is necessary to mark any infonnatIon which depends

on the definition of that picce as invalid. and then to subsequently mark any infonnauon
which might depend on the invalid infonnation as invalid in turn. Each relauon has maers

which indicate which of its argmcnts are the names of definiuons upon which thc relauon
depends. In addition. direct computcd relations clearly depend on thc relations in their
definitions. Complex computed relations havc separate tables which list the other relations

upon which they depend. When SCOPE processes a query, it firs checks to see if there is any
piece of progr desribed in the data basc which must be reanalyzed or if any of the

computed and stored relauons must be recomputed. For each definiuon type and type of
analysis. there is a table of names of pieces which have changed and for which the analysis has
not been performed.

6.4 DATA BA

Once a query has been trslated and proçcssed, the DataBase module retreves the
required infonnuon frm the data bas. While the wa'l in which informtion is retreved is
bes desbed usng the relauonaJ model of data bas (Codd 19701. the implementauon of the

SCOPE data bas differs frm the implementation of lare relationa data bas for seera"

reans Firs SCOPE'S da bas is usualy small and does not requir mecanisms which ver
large data.bas reuire Although reident memory space is at a premium for 1¡.'T us
the amount of di space taken by a SCOPE data bas is small enough tht minimizng the si

of the da bas was not imponaL Secnd. many of SCOPE'S retions ar bina, and a

spec format for binary relations could be employed to advantagc. Third the kind of retreval
requests involved ar oftn significantly more complex than that normy found in data bas
system

SCOP~ stores relations indcxed by each clement which can be used as an acces key. For

example. the Call relation ca be used for queries "WHO DOES X CALL.... which require an

index on the firs arment to Call. and also for queries "WHO CALLS X", which require an

index on the second argmenL For binary relauons. the index can actually contain the relation

infonnauon itself: Le.. accesing the Call relation on the first argumcnt FOO wil rcuieve the
list of functions which. FOO can call. For relations with more than two arguments. the index
can eithcr contan pointers to a common "tuplc" table which contans thc elemcnts in eah
instancc of a relation or can contain thc niples themselvcs. Only one of the indices nceds be

prccisc: the others can bc used as "hints" which must bc checked. For example. the
Edited(NAME.DEFT'f PE,PERSON,DA TEl relation can hc acc~ssed hy eithcr NAME or
PERSON. The NAME index contains a list of instances of (DEFTY PE.PERSON.DA TE),

..hile the PERSON index contains only J list uf NAMEs. Sum\. indii:cs c;in hc sharcd hctwcen

59

C1apter 6-inplcmcntalion Notcs

similar relations because of the capabilty of using "hints"; for example, the V A R index for

SetFree and Ref Free is shared-the index contains a list of functions for each varable
which might either set or reference them freely. In order to access SetFree or Ref

Free

relations by their V AR argument it is necesry to prunc the clements in the index to be the

functions which are in the forward index.

In the proces of developing SCOPE, three separte versions of SCOPE'S indexing sceme

were implemented. each of which maintans the index in a different place. One
implementation stores the index in the INTRLlSP address space (using the INTUSP funcuon
GETHASH). The second stores indices in a scparate addres space (using the "swapped arys"

of the PDP- 10 implementauon of I~'TRLISP). A third implementation uses a has table stored

in an external file as the index. Thes three implementations span a continuum of speed and
memory requirements. The first can be accessed quickly, but consumes memory-a resource
which is scarce for INTEUSP users. The last is slower but requires only a smal amount of

resident space. The second implementation lies between the others in both aces tie and

storae space.

Beuse of the varations in storage method some relations ar eaer to "solve" th

others; for example, it 'is eaier to retreve the set of functions which Call another funcon
than it is to find the set which Bind a given varable (becuse the V AR index of Bind is
stored with a hint). Asiated with e~h retreval method for a relauon is a "diffculty ratig".
When SCOPE receives a retreval request, SCOPE rewrttes the query to improve the effciency of

retreval Given a request which reuire the mutual sausfacuon of several factors, SCOPE fi
ranks the clause by their restrctive power, and evaluates the most restrctive clause fit For

example. SCOPE responds to a request to fid the set of functions which Bind BLANKS and
also Call SKIPBL by retreving the callers of SKIPBL first and testig each one for the Bind

relation with BLANKS rather than the other way around.

SCOPE'S query procesing is sinple compared to query procesg in convenuonal data

bas because SCOPE'S relations generally bave the property that for any relation, the numbe.

of instances of the relation involving a given item is qui.te small (average over all relations is
less than 10), an~ thus the result of a re~auonal query can be asumed to fit within memory.

Furtermore, no complex mcchanm is needed to minimize fie acceses to intennediate data
strctures: SCOPE can use simple linked lists in Lisp for intermediate reslts during data bas

retreval

60

Ch:ipic~r n-lniplcnicnl:ilioR Notes

6.5 CONa.USIONS

For thc most par thc implementation of SCOPE is suaightfoward. Perhaps the most

interesting and novel part of SCOPE'S implcmentation is its mcchanism for changc propagation.

SCOPE is a fairly largc progr-on tle order of 200 pages of INTERLISP code. Approximately

20% of the code is the command languagc parser and intcrpretcr. anothcr 20% makes up query
procesing and thc data basco The analysis routincs comprise ~n~ther 30%. Thc rest of thc code

consists of interface to INTUSP. the program strcture printer. crror checking rouunes and
other utiiues

61
.

Chapter 7-Future Directions

SCOPE is by no means the end of the road. There are many directions in which it could
be extended and improved. This chapter desribes some of the directions for research for
which SCOPE can provide a point of deparre. 'These fall into three categories: (1)
improvements to thc currcnt implementation of SCOPE: (2) additional analysis techniques and
applications: and (3) ways of improving programmer productivity which are beyond ScoPE-like

faci1ues

7.1 l:IPROVING TIlE CURRE.'iT IMPLEMENTATION

While there are several areas where the current implementation of SCOPE could be

improved. the most importnt areas which need improvement are the user interface and the
data bas.

Improving the uscr intcnac:e
Since this work ha.~ nOl foc on natura laguage undersding. a rage of siple teiques

ha ben used to provide the level or perronnce required.. This approach appea to be viale
where unrescted diog is nOl the goa. and in domans where there is avaible a sefonn
tecnic: laguage with a low de of ambiguity, (Davi 1978)

The user interface to SCOPE (and MASTRSCOPE) has been succesfully used by INTSP

programmers. However, the general problem of natural language understading is far frm

being solved. Even within SCOPE'S limited domain. problems have been encountered. For

example. commands which use the conjunction "and" may be misinterpreted due to "and"'s
. inherent. ambiguity.

The problem of presenting a consistent. easy-to-use interface to a casual uscr of SCOPE is

quite similar to thc problem which confronts the designer of an intcrface to a convenuonal

data base systcm. The present interface to SCOPE could be extended in several ways. One way

to extend SCOPE would be to provide a more extensive gramar. thus allowing grater

freedom in how queries are expresed.

Natural languagc interfaces for question-answering systems have becn explorcd by many
researchers (e.g.. Hendrix (1977). ßurton (1976). Woods (1977). S.Kaplan (1979)): many diffcult

problems have becn uncovcred. some of them solved. SCOPE could bencfit from the
improvemcnts which these works represent

Howevcr. two important problems exist with the use of aiiy natural language interface.
First. no currcnt natural language interfacc "understands" the user very welL. cvcn in domains

III

Cbler 7-Future Direttions

as limted as SCOPE'S. In may resects SCOPE'S domain resmbles that of the LUNAR sytem

(Woo 19771: in both instaces thc user is manipulating a data bas of facts about objec (in
SçoPE. progra and in LUNAR. moon rocks) and many of the sae problem arse e.g.
diffculties with conjunctions clipsc and relving the scopc of quantifiers (Vanlehn 19781.

Second. a nanira language interface tends to lure the user into attbuting grr powers to
the systcm than wartcd. Transcpts of MASTCOPE seions revea many usrs stubling
into this piûa11. As with other nawra-language systerrs, some users would infer proesg
capabilties which were not prent, e.g. they would expect MASTCOPE to aner such
quesuons as "Why doen't my progr work'! and. rrore seriousy, "Who depnds on the
form of X'!. The na lague approac does aIõw uscrs to form a siple model of the
caabilties of the sy

Alteve interfac which would not reuire the abilty to undersd natu langue
include query by exple and grphica inteifes Unfortnaly. such interfaces lac the
simplicity of use and undersdig and the concisnes of expreon provided by a nani
lague inte

ImproyiDl the data ba

Whe MAPE was cafuy desgned to be reonsve to lN us soe of
the effen was saced. for geerty in the implementauon of SCOPE, and in par.

in the implementation of the SCOPE da bas and inference modes Fortnaely, effen
and generty in da ba design is an ar whi is being thoroughy exlore by other

reers (e.g. (Syst R 1976), (M 1977: ScPE'S data bas modules could profit by

may of the tecques now being invesga

Backaruad computaion

One dion whicl was briefly explore in SCOPE was the use of backgrund
computaon"to update SCOPE'S data bas. As persna computers beome more commonp~e,

it is poble to employ the unusd ume ("between the keystrkes") to perfonn computation

which might be of .u in the future. In SCOPE, for example. it is posible to reyze changed

pan of the progr "in the backgrund". Such analysis may never be used. for example. if

the progr changes ag before any quesuon is asked. However, if the computer has no
other tak to pcrform. background analysis ca speed SCOPE'S repons even when the
progr doe undergo major changes betwecen SCOPE queries

63

i

(,h:iiÎt~r 7-Futurc Dir~ctions

7.2 ADDED CAPABIUTES

Thc most' importt additional capabilties from which SCOPE would benefit are the
abilty to deal e~ctivcly with many different programmcrs on thc sac projccL and addiuonal

analysis tools.

Multiple users

A serious deficiency with the current design for SCOPE as a practical programer's
assistaIit"is that it is designed for use by only a single programmer. In lare-sce softar
developmenL learns of prograers frequently work together on a single. very lare
program-just the kind of progra whcre SCOPE is most usefuL. Extending SCOPE to be a

useful tool in a multi-persn project involves solving some diffcult problems. One problem is
that programmers would like to have a view of thc system which included summaries of the
publicly available part of his colleague's programs. while seeing all of thcir own. Mechanis
which allow muluple users to share a set of data but which limit access for individual users
would be required to allow SCOPE to be used easily by a tea.

Other kinds of analysis and appliC3tioDs

Many progra analysis tools exist which could be integrated with SCOPE. In pancula,
analysis of progra performce (Wegbreit 1975a) and chaacterition of strctue shg

(Jones & Muchnick 1979) ar attrtive possibi1ues

Some researhers in automatic prograing have pursed automatic data StIcwr
selection (Low 1976) based on a characterization of how the data structure is uscd. Such data

strcture selection could be made based on global analysis provided by SCOPE, where the data

strctures could change incrementally as the program was developed.

Other tools which can profit from the availability of global analysis include progr
tcsting aids (c.g.. path constrint generators and constrint solvers). maintcnance tools which

validatc modifications. tools for pcrfonnance and software quality asurance (e.g.. tools for

estimating execution timc and for simplc mctrics of software quality), program stadads
enforcers (which enforcc project naming convcntions. commenting convenuons and detect
error-prone constrcts), and finally program restructuring tools (Ramamoorty & Ho, 1977).

6-

(1i:ipter 7-l:ulure l)reclions

7.3 BEYOl\'D SCOPE

There are severa dirccuons which deservc invesugauon but are beyond simple

improvements to thc capabi1ues of SCOPE. These include programer assistants which provide

more knowlcdgeable aid, and new directions for programing languages

Undcrscinding progr.immer intentions

While thc kinds of analysis which SCOPE pcrforms relatc to the semanucs of the progr
insofar as SCOPE understands dependency.of-computauon for cros reference and the execuon

propenies of the progra for flow analysis. a more ambiuous project would be to anyze
progra to dctcrmine the programmer's conccpt of what thc program doc It is likely th

such understading would require understading of the more formal propertes of pro
such as SCPE provides

ImpliCltions (or progrmmini lanlWlle desp

One propert of an eaily understoo and modfied progra is locality (Gooenough &
Shafer 1976). A progr pos locality when it is unneces to look very fa away to
undersnd any pancular piece of code. Many of the effort in progrming language desgn
have focused on providing progrng languages which encourage locity. Compute

langues ca never succeed completely in the goal of providing for locity of infonnuon,
however, as the one-dimensional natu of computer program listings almost always lea to

the placng of related par of a progr in widely separted locuons. Such scparuon leads

to errrs as the prograer may make asmpuons about the execution of a piece of progr
which ar no longer tIe.

SCOPE provides a way around the one dimensional nature of progrming languages by
providig an inter:uve index to the intcrrelauonships of pieces of programs. The "proximty"

of one piecc of progra to anoUler is no longer related to their physical separauon with a
lisung, but raUler to the amount of diffculty in finding thc related texts. Because SCOPE makes

finding related picccs of program easy. it effcctively brings diffcrent picces of the progr
closer together. and improves _ locity by increasing the connecuvity of the progr

Rule-baed or production systems

The ultite impediment 10 furthcr discover)' was the lack of rules tht could rean abot.

modfy, dclcte. and synthcsi.:e other rulcs. rLcnat & Hars 1978)

Applications of SCOPE-like tools to rule-based programming languages holds much
promise: the rcquircmcnL for locality in the programming language wcakcns whcn the

65

(ñapler 7-Fulure Direciions

programmer has good global analysis tools availablc. and global program infonnation improves

the attractivenes of languages with pattcrn-directcd invocation (Waterman & Hayes-Roth 1978,

Davis & King 1975). One of the major disdvantages of producuon systems up to now has
bcen the diffculty of dcbuggng them, becuse of unforeeen interacuons between old and

ncw rules
..

Beyond progr:ing languages

Even in a prograing cnvironmcnt enhanced by SCOPE, it remains the cas that the

progrm itself is the "trth" about the computation. and the information with which SCOPE

deals is merely derived summary information: that is. the program is captured completely in its

listing. A progrming cnvironment could be imagined in which no single canonica
representation of the progra exists. The progrmer creates varous desripuons of the
proces to be invoked and exaines the progra from varous viewpoints but does not rely
on a single disunguished external reprentation. In such a systcm. a program is not its listing;

the lisung is merely one of many possible external form

66

Appendix I-Relations Used in SCOPE

In SCOPE, asrtons about progras are expresed in tenns of relations. This secuon lits

those relauons, and briefly describes each one.

1.1 AUBREIA nONS

The desription of a relauon may contan some of the following abbreviauons:

Abbreviation Meaini

cros-reference propertycrossre

flow

ty~

.fiing

buili-in

dara flow propert.

ty" inerence propert.

orguona propert rc1ang to tie syem

Buit-in relation. (Built-in relatons are not derived via analysi or stre
but ramer ar hadled by proedure insde SCOPE.)

Deved via the quer given

Resons on number of solutions

= qury

I-I. I-n. ".1

1. NOTATION

When deang with bina relauons, it is poible to do some symbolic manipulations on
the relations themlves

Given two binar.relauons R and P, RoP, the composiuon of R with P, is the relauon

defined by

(RoP)(X, VI. :: 3 Z S.t. R(X,Z) 1\ P(Z, VI

Composition is called "join'. in the dara bas literature. Relauons ca be added:

(R+P)(X,VI = R(X,V) V P(X,VI

or subtrted:

(R-P)(X,V) = R(X,V) 1\ ~P(X,YI

or combined (intersected):

67

\
i

I Appendix I-Rcl:ilions lIsed in SCOPE

(R'P)(X,Yl = R(X,Yl /\ P(X,Yl.

Given a binar relation R. R., the transiuve closurc of R, is a new binar relation given by~

R. = I + R + RoR. + RoRoR + ...

where I is the idenuty.

I ;\

Flow rclations which dea with individual fres are disunguished by a subscript r. Flow

relations written R! are defined as MayCall. .. R. Le.. the composiuon of the triuve
closure of MayCall with the relation R.

1.3 RETION ARGUME

Eah arment of a n-place relation has a clas which desribes the arument. For
example, the relation Use relates functions and varables, and is desribed as Use(FN, V ARl.

The clas of relauona arments ar:

FN

VAR

FRAME

a funcon.

RECORD

RELD

EC

TC

MACRO

N

TYPE

NAME

a varle.

a fre-e. a set of bindigs generated by a PROG or LAMBDA

exreon.
a reordan Interlis declaed data stcnire

a field of a rerd

an edtor commd.

an lnterlisp top level command (also known as a LISPXMACRO).

A compiler ma.
. .

. a number-any integer.

a desripuon of a Lisp data type (a rage of values).

the namè of an arbitrry item. This is uscd in relations which have a

searte "arument" which is the kind of definition NAME is supposd
to be.

DEFTY PE

FILE

thc type of NAME.

a collecuon of dcfiniùons (which corresponds to an external filc in the
filing system).

68

:\PPl'ndi:\ I-Rdaiiiins l'ro in SCUl''':

USAGE

PERSON

DATE

a VM "ficld" name.

thc login namc of a programmer.

a datc specification.

1.4 SCOPE'S RELA TIONS

Bclow is a list of the relations SCOPE knows. Along with each rclation are thc clements it

relates and a brief dcfiniuon.

* Cross reference relations

Call (FNl'FNi) crossref
FN i menuons FNi as a function.

Use(FN, V AR) crossref

FN menuons V A R as a varable.

NLam bda(FN)

FN is a proedure which taes its arments unevaluated. When chged it is
neces to mark invald any propert of any calcr (Call) of FN.

UseAsField(FN,FIELD) crossref
The body of FN mcnuons FIELD as a record field.

UseAsRecord(FN,RECORD) crossref
The body of FN mentions RECORD as a record name.

FieldOf(FIELD,RECORO) cross-ref
FIELD is a field of RECORD.

Accessfn(RECORD,FN) .crossref
RECORD uses FN as an aces funcuon.

Editinvoke(ECl'ECi) cross-ref
l)enoq:s when one editor command invokes another.

EditCall(EC,FN) cross-ref
Thc edit command EC invoices the function FN.

TopLeveICall(TC,FN) cross-ref
l1ic top-lcvcl command (LISPXMACRO) TC invoices the function FN.

n4

Appendix I-Relations L1se in SCOPE

MacroCall(MACRO,FN) crossref
The compiler macro MACRO invokes the funcuon FN.

FileCall(FILE,FN) crossref
The iniualizuon of the fie FILE invokes the funcuon FN.

* Flow relations ,i t.l i

SubFrame(FRAMEI'FRAMEil built-in I-n
The top level fre of a given lùncuon is the lùncuon itslf: the set of fres of

a funcuon FN is fFR : SUbFrame.(FN,FR)l. The SubFrame relation is i-n:

given a fre. it ca have muluple subframes, but any fre has at most one

parent. The "top level" of a funcuon is also a fre which binds arguents of the
funcuon. Interior fraes correspond to internal PROG and LAMBDA bindings
When performing flow anlysis SCOPE makes up i. fre naes", one for ea

inteal PROG or LAMBDA whjch binds varables so tht flow relations of
MayCall, Ref, and Bind ca be idenuficd seartely for ea fre. The value:.

of a FRAME is a fre name; fre names have the formt FN: n :m: . .. where
FN is the nae of the top funcuon and ea level of binding add another inteer

onto the ta Th format is chosen so tht tetig Subframe(X, Y) is poble

without any data bas retteval as is fidig the "parnt" of a given fre.

BindrlFRAME, V AR) flow

Denotes tht the varable V AR is bound in the fre FRAME. Th retion
ases with a fre the names of the varbles bound with it.

Bind(FN, V AR) flow .
FN contans a bindig of the varable VAR. Note tht Bind = SubFrame 0
Bindr Le. that Bind is the composiuon of the trsiuve closre of SubFrame
composed with Bindr

MaYCallr(FRAME,FN) flow
A ca to FN may occu under fre FRAME.

MaYCall(FNl'FNil llow
MayCall = SubFramee 0 MayCallr Again. the relation nonnally used for
retteval relates one functon with another. however, the calls ar actualy
separted by the fres in which they ocr.

!MaYCall(FNI'FNi) llow
!MayCall = MayCall., This means that there is some callng path from FNi to
FNz'

. 70

Appendix I-Rel:iiions llsc in SCOPE

Refr(FRAME, V AR) flow

Thc variable V AR is refcrenced in frae FRAME.

Setr(FRAME, V AR) llot'
An asignm..:it (SETQ) of the variablc V AR is made within frame FRAME.

RefFreerrFRAME,VAR). RefFree(FN,VAR) flow
Mcans that the variable V AR is used freely below FRAME. Ref Freer and the

rclation RefFree(FN, V AR) can be computcd using Bind and Reference with

the rccursive equauons

RefFree(FN, V A R) = RefFreerrFN, V AR)

and

Ref Freer = (Refr + (SubFrame+MayCalir)oRefFreer) - Bindf"

That is. a frae use a varable freely if it doen't bind that variable. and either
the frame references the varable. or some subfre or callcd funcuon use the
varable frly.

SetFreerCFN,VAR). SetFree(FN,VAR) flow
Similar to .RefFree, with Set used rather th Ref.

~

"

Ref(FN,VAR) flow
The functon FN references somewhere the value of the varable V AR..
Ref=SubFrame oRefr

Set(FN, V A R) flow

The funcuon FN references somewhere the value of the varable V AR..
Set=SubFrame oSetr

Recu rsive(FN) flow

FN ca ca itslf. i.e.. !Call(FN,FN).

CaIlForValue(FNI'FNi) flow, crossref
The value returned by FNi might be used within f7N1. This relation includes a
combinauon of flow and cross rcfcrcncc infortation: that is. it means that FNi
refers to FNi (Le.. the cross refcrcncc rclation Call). but in a context where it
cannot be detcnnincd that the valuc of FNi wil be discarded (a flow propeny).

Fetch(FN,FIELD) llow
The field FIELD is acccssed by ÚlC function FN. Thcre is no nced to compute on
a framc-by-frame basis.

Replace(FN,FIELD) flow
lñe field FIELD is assigned by the function FN.

71

AppeDdix I-Relations l'scd in SCOPE

Uses(FN,USAGE) flow
The function FN directly uses the value of the data structure field USAGE. This
relation is built-in for system functions (Le., not derived frm analysis).

Affects(FN,USAGEl flow
The function FN ca directly modify the
relation is built. in for system funcuons

data strcture field USAGE. Th
.4

Cre~teRecord(FN,RECORDl flow
An instace of the record type RECORD is created by the funcuon FN.

· Unusual conscts:

Mi9htSetUnknownr(FRAME), MightSetUnknown(FN) flow
FRAME contans a cal to one of the funcuons SET, SAVESET. SETSTKARG,

SETTOPVAL, SETATOMVAL, ISET, ISAVESET, ISETTOPVAL, or ISETATOMVAL

whos~ firSt arment is not quoted: this mean that some varible wil be asgned

by the ca but SCOPE do not know the idenuty of the varle.

MightRefUnknownrlFRAME), MightRefUnknown(FN) flow
FRAMe conta a cal to one of the functions EVALV. STKARG.

GETATOMVAL, or GETTOPVAL whos fIrst arent is not quote; th mea

tht some varle wil be acesd by the cal but SCOPE doe not know the

identity of the vanable.

UsesUnusualControlStructures(FNl flow
FN use an ERRORSET. RETTO. RETFROM, RESUME. ENVEVAL, STKEVAL,

RETEVAL, SETCLINK, or SETAL INK. These are the "spaghett stk" priitives

in Interlisp, which allow flow of control reges which differ radicay frm
nonnal procedure cal and return. Most of SCOPE'S error analysis assues tht

these priiuves ar not usd; th relauon is used to tes if a waring mesge
must be generad that an analysis might not be corrt.

MightCaIlUnknownr(FRAME), MightCaIlUnknown(FN) flow
FN contains a constrct which wil cause exccuuon of code which is determed

.

at run tie: in parcular. a call to EVAL, APPLY, APPLY., ENVAPPL Y.

ENVEVAL, or a mapping funcuon in which the functional argument is not quoted.

....'-

Appendix I-Relations Used in SCOPE

* Type inference relations

ExpectsArg(FN,N,TYPEl type n-m-j
The function FN expects its Nth argument to be within TY PE.

ExpectsFree(FN, V AR,TYPEl type
The function FN expects the variable V A R to be of type TY PE to work correctly.

SetFreeType(FN,VAR,TYPEl type
At the termination of the procedure FN, the variable V AR has been set (freely) to

TYPE.

Returns(FN,TYPEl type
The value of FN is of type TY PE.

* Filng relations

Contain(FILE,NAME,DEFTYPEl filing
This can be broken down into separate relations. for each type, Le.. there is a
relation Containt(FILE,NAMEl = Contain(FILE,NAME,t).

Entry(FNl filing
FN is declared to be an entr funcuon. Entry is an extrnsic propeny of

functions: the declaration of whether a function is intended to be an entr is
something which is an attrbute .of the fie on which that function resides

Edited(NAME,DEFTYPE,PERSON,DATE filing n-m-j-j
Says that NAME's definition as a DEFTYPE was last edited by PERSON on
DA TE. Extrnsic propeny, stored by watching editor. Given a NANIE and a
DEFTYPE. PERSON and DATE are unique.

UserFunction(FNl filing
SCOPE distinguishes between Interlisp system functions and user funcuons, by

keeping track of which functions the uscr has noticed upon loading.

* Miscellaneous built.in relations

After(DA TEI'DA TEil built-in
Basic predicate for comparing dates.

Covers(TYPEI'TYPEil built-in
TYPEi is a subset of TYPE1, e,g.. Covers(NUMBER,INTEGER).

73

¡APpendix I-Rel:itions llse in SCOPE

Disjoint(TY PEl' TY PEzl built-in
TY PEi and TY PEi are disjoint (no value is in both).

Meet(TYPEl'TYPEi,TYPE;J built-in
TY P~ = TY PEi n TY PEi.

74

Appendix II-The SCOPE Command Language

The user communicates with SCOPE via an English-like command languagc. Through the

commands. the user can interrogate SCOPE'S database and perform other operations. The basic

building blocks of the language are specifications of sets-sets of functions, sets of variables,
etc. ¡\ se(can be specified in a variety of ways, either explicitly, d,g,. THE FUNCT ION NAMED

FOO. or implicitly. c.g.. ANY FUNCTION THAT DOES NOT CALL F IE. The specifications of sets

correspond to English nouns and noun phrases.

The relations between sets are denoted in the SCOPE command language by verbs and

prcpositions. For example. the verb CALL is used (0 talk about the Call cross reference
relation. Noun and verb phrases. plus a few additional words, form English-like sentence

commands. For example, U1e command

~ WHICH FUNCTIONS ON FOO USES X FREELY

wil print out the list of funcuons contained in tl fie FOO which use the varable X freely.

The command

~ EDIT WHERE ANY FUNCTION CALLS ERROR

wil direct U1e lNTERLISP editor at those places in functions which mention the funcuon

ERROR, pointing at each succesive expression where ERROR actually ocurs

11.1 NOUN PHRAES

Noun phrases are used in U1e SCOPE command language to denote an object or a set of

objects. and consist of three par: (l) a detenniner, e.g.. A, THE: (2) a noun, e.g.,

FUNCT IONS; and (3) a restriction. e.g., CALLED BY FOa. The first pan of (he noun phras can

also be a, simple pronoun, e.g.. WHO. The part of the noun phrase in the SCOPE command
language are explained below.

Dctcnniners

Thc dcterminer in an English noun phrase is used for a variety of purposes: in SCOPE, it

is used (0 mark a noun phrase as a question. or in a syntactic role (0 introducc the noun
phrase. The detcrminers recognizcd by SCOPE include A. THE. ANY. SOME. WHICH and

WHAT.

75

Nouns

Appendix II-The SCOPE CommaniJ l.:nguage

The nouns available in the SCOPE command languagc are the names of the types of

symbols-FUNCTION. VARIABLE. RECORD, FILE. MACRO, COMMAND and FIELD. (Of cours.

various abbreviations and alternate phrasings are allowed.) Noun phrases denote objects or
collections of objects: these objects have a type, Le., the type of symbol which is/ienoted. The

major purpose of the noun within the noun phrasc is to spccify what type of symbol is being

denoted: if there is no noun. the type is detcrminC'd from context. C.g.. in WHO IS CALLED BY

X. the type of thc noun phrase WHO is FUNCTION. since only functions can be called. Nouns

may occur in eithcr singular or plural form. although the SCOPE parser does not disunguish

number except to resolve ambiguous parings.

Restrictions

The last part of the noun phrase in the SCOPE command language is a specification of the

range of values denoted by the phrase. and may take a variety of fonns:

NAMED ~

IN expression

~ predicate

The simplest way to specify a set consisting of a single symbol is by the

name of that symboL. For example, THE FUNCTION NAMED FOO. A

name. used alone, taes the role of a "proper noun" in Englis: thus

FOO is allowed for ANY NAMED FOO. Of course. there is some danger of

ambiguity in the SCOPE command language, e.g., if the programer has
a function named ANY. The NAMED constrct can be used to avoid the

ambiguity .

Because SCOPE is available at any time in the INTERLISP environment,

one powerful feature is the abilty to refer to the interactive environment

from inside a SCOPE command. The I N phrase allows the user to give a

LIsP expression to be evaluated. and have the value treated as a list of

the elements of å set. For example. THE FUNCTIONS IN (FILEFNSLST

'FOO) denotes the set of values returned by evaluating (FILEFNSLST

, FOO).

Another way in which the embedding of SCOPE inside Lisp provides
power is the abilty to write arbitrary Lisp predicates as a "test" for set
membership in the specification of a SCOPE command language noun
phmse. Thc spccification represcnts all elements for which the value of
"predicate" is non-NIL. For example, the phrase ANY ~ GElD denotes

clements which have a LIsP definition.

76

Appendix II-The SCOPE Comm:ind L:iii~uage

Another way of specifying the range of denotation of a noun phrase is to give a rclation

which must hold for the set of objccts denoted:

verb I NG .!
verbED BY .! Refers to the set of all objccts which have the relation denoted by verb

with some element of the set dcnoted by .!. The notation "verb I NG" is

uscd gencrically to mean any of SCOPE'S verbs phrases (described in

Section 11.) in the prescnt participlc form. For example, USING ANY IN

FOOVARS FREELY specifies the set of functions which uses freely any

variable in the value of FOOVARS: CALLED BY X spccifies the set of

functions called by the function X.

EDITED (BY personl (AFTER datel (BEFORE datel
Restrcts the set denoted to include only objects which were last edited

by the persn specified or during the interval specified. Uses thc Edited

relation.

Sets may also be specified with relative clauses introduced by the word THAT, e.g., THE

FUNCTIONS THAT BIND X.

(FIE LD) OF records This denotes the field names of the records specified, the FieldOf

relation.

ON A PAT H pathoptions
Refers to the set of functions which would be printed by the command
SHOW PATHS pathoPtions. For example, IS FOO BOUND BY ANY ON A

PATH TO 'PARSE tests if FOO is bound above the funcuon PARSE.
PathoPtions are explained in detal later.

RECURSIVE Those functions which satisfy Recursive. The word RECURSIVE may
actually occur between the detennincr and the noun in a noun-phras.

NOT restrction This allows the restrction of a noun phras -to be complcmented, e.g.,
THE FUNCT IONS NOT CALLED BY FOO or ANY NOT IN FOOVARS X.

Conjunctions

The role of conjunctions in English is complcx: in SCOPE, only noun phrases may be
joined by the conjunctions AND and OR to denotc the corresponding intersection and union of

the components. Fur example. CALLING X OR Y specifics thc set of all functions which call
the function X or the function Y.

77

Appendix II-The SCOPE Command Language

Because of SCOPE'S limited understanding of conjunctions. it often fails to follow the
correct intcrpretation in English. For example. "CALLING X AND Y" would. in English, be
interpreted as those things which both call X and call Y: however, SCOPE interprets the phrae

as "CALLING (X AND Y)". .where (X AND Y) is necessarily the empty set (in SCOPE'S world,

an object cannot have two different names).

11.2 VERB PHRASFS

Within the SCOPE command language, verbs are used to denote the relations between sets.

For example, the verb "CALL" corresponds to the SCOPE relation Call; the user query "WHO

CALLS FOO" corresponds directly to finding the set of all X such that Call(X,FOO) holds
Sometimes. adverbs are used to modify the meaning of the verb to denote a different relauon.
For example, the verbs USE. SET,. SMASH and REFERENCE all may be modified by the adverb

FREEL Y. Verbs can occur in the present tense (e.g., USE, CALLS. BINDS. USES) or as present

or past paniciples (e.g.. CALLING, BOUND, TESTED). The verbs (with their modifiers) which

are recognized by the SCOPE command procesr are:

verb

CALL

MAY CALL

CALL FOR VALUE

CALL FOR EFFECT

CALL INDIRECTLY

CALL SOMEHOW

USE

USE FREELY

SET

SET FREELY

CHANGE

REFERENCE

REFERENCE FREELY

BIND

FETCH

RE PLACE

USE AS FIELD

USE AS A RECORD

inteflrctatioD

Call
MayCall
CallForValue
MayCalI . CallForValue

Call - MayCall

!MayCall
Ref + Set, UseAsField, UseAsRecord,

Uses (interpretation depends on context)
Ref Free + SetFree

Set
SetFree
Affects
Ref
Ref Free
Bind
FetchField
ReplaceField
UseAsField
UseAsRecord

78

Appendix II-The SCOPE Command Language

CREATE

CONTAIN

RETURN

EXPECT

Cl'eate
Containt. whcrc t is dctermined from context

ReturnsType
ExpectsA rg

Unfortunately, it was not possible to choose intuitive names for all of SCOPE'S relations:

for example. the fine distinction between CALL (the cross referencc relation) and MAY CALL

(the flow relation) is not evident in the casual presentation of the SCOPE command language.

The SCOPE command language actually allows more complicated constructs when dealing

with verbs which denotc more than two place predicates. For example. thc verb EXPECTS is

useö to denote the Expects type-inference relation. The verb EXPECTS has not only a subject

and object, but also a modificr TO BE, e.g.. WHO EXPECTS ITS FIRST ARGUMENT TO BE

LlSTP. In this example, "ITS FIRST ARGUMENT" is a special noun phrase which is taen as
a representation for the value i in the relation Expects.

11.3 COMMDS

Commands are sentences in the SCOPE command language which direct SCOPE to answer

questions or perform varous operations. Commands to SCOPE may take the fonn of a quesuon

or an imperative.

Questions

Quesuons in the SCOPE command language have the sae format as an English sentence
with a subject (a noun phrase), a verb phrase (one of SCOPE'S verbs or IS or ARE), and an

object (another noun phrase). Any of the noun phrases in the question can have a question-
determiner, c.g.. WHO or WHICH. For example. SCOPE wil respond to the question WHICH

FUNCT IONS CALL X with the list of functions that caB X. The verb phrase in the question

may be in the ,present tense (e.g., CALL, BIND, TEST. SMASH) or pasive (e.g., in the

command WHO is CALLED BY WHO). (Other variants are also recognized, e.g., WHO DOES X

CALL. IS FOO CALLED BY FIE, etc.)

The intcrpretation of the command depcnds on the number of question clcments present.

If there is no qucstion clement, the command is treatcd as an assertion and SCOPE rcsponds

either T or NIL. depending on whethcr the asscrtion holds. Thus. SCOPE wil respond to the
qucstion DO ANY IN MYFNS CALL HELP with T if any function in MYFNS ca11s the function

HE LP, and NIL otherwise. If thcrc is onc question elemenL SCOPE will respond with thc list of

items for which the assertion would be true. For example MYFN BINDS WHO USED FREELY

BY YOURFN results in the list of variables bound by MYFN which are also used freely by

79

Appendix II-The SCOPE Command I.an2uage

YOUR F N. If therc is more than onc question clemcnt SCOPE wil display a table of possible

rcsults:

+- WHO BOUND BY
FLGX RECFNl
VAR3 --- REMTOP
VARK --- LISTER

WHOM is USED
RESUL TX

--- GET RES L T

--- VARKUSER

FREELY BY WHO ON MYFILE

This means that FLG is bound by RECFN 1 and is used freely ~y(RESULTX, that VAR3 is

bound by REMTYP and is used freely by GETRSL T, etc.

Imperatives

EDIT WHERE !! vcrb-phrase QQ
Invokes the INTRLISP editor on each expression where me relauon
specified by vcrb-phrase actually occurs, e,g., EDIT WHERE ANY CAllS

ERROR.

SHOW WHE RE !! verb-phrase QQ

Similar to the EDIT command. but merely prints out the expressions
without callng the editor. (Note that this is different from the SHOW

PA THS command which displays a tree strcture.)

DESCRIBE QQ Prnts out a summary of potentially useful infonnation about the item
denoted by QQ. For example, the command DESCRIBE THE FUNCTION

PRINTARGS might print out

PRINTARGS(N; FLG)
binds: TEM,lST,X
calls: MSRECORDFILE,SPACES,PRINl
call ed by: PRINTSENTENCE ,MSHELP, CHECKER

which shows that PRINTARGS has two arguments Nand FlG, binds

internally the variables T EM, LST and X, calls MSRECORDF I lE,

SPACES and PRINl and is called by PRINTSENTENCE. MSHELP, and

CHECKER.

CHECK !! Tens SCOPE to check for various abnonnal condiuons in the functions or
files specified bY.!!.

RENAME !! TO BE !!

Instrcts SCOPE to (a) copy the definition of the first symbol to the
sccond, and (b) change any place that referenccs thc first symbol to
instead reference the second.

80

:\ppendix II-The SCOPE Command l.anguage

SHOW PATHS patll0Ptions

Causes SCOPE to display a trce structure of the CALL rclation, according

to the pathoptions: path options consists of any number of the following:

FROM !! Display CALLs which originate with elements of !!.

TO !! Display the CALLs leading to clcmcnts of!!. If TO is given before
FROM (or no F ROM is given). the trce is invcrtcd. Whcn both FROM

and TO are given. the first one indicates a set which must be
displayed while thc second restricts thc paths that wil be traced,
C.g.. thc command SHOW PATHS FROM X TO Y wil trace the
elcmcnts of the set CALLED SOMEHOW BY X AND CALLING Y

SOMEHOW.

AVOIDING QQ Do not display any element of QQ. For examplc. SHOW PATHS TO

ERROR AVOIDING ON FILE2 wil not display (or trace) any
function on FILE2.

MARKING QQ Adds an astcrisk to the display of elcments of QQ. For example, the

command SHOW PATHS TO SCINTERPRET MARKING ANY THAT

B I NO X wil identify, in the tree of calls which can reh
SCINTERPRET, thosc functions which bind the varble X.

11.4 CONCLUSIONS

SCOPE'S command processor, as it was first used in MASTRSCOPE, enabled MASTERSCOPE

users to find a workable sct of commañds which gave thcm the results they nceded: however,

in order to make MASTERSCOPE even more rcsponsive to queries of casual uscrs. transcripts of

several hundrcd MASTERSCOPE sessions were recorded (with pennission). Scanning thes

typescripts oftcn revealed reasonable. sentence strctures which MASTERS~OPE rejected. These

sentence structures were added to the command language although they wcrc not documented.
The SCOPE command language is actually more extensive than this documentation indicates:
however, a brief documcntation of a working subset of the language seems better than a
complex documcntation of all possible commands.

81

Appendix III-The SCOPE Intermediate Query Language

While the natural language interface for SCOPE is convcnient for casual use, SCOPE

provides a more formal interface for programs which wish to query SCOPE'S data bas. Other
programs which use SCOPE do not usually need to go through the SCOPE command parer
cvery time a query is made. The intermediate qucry language resembles a first-order predicate

calculus language with conjunctions. quantifiers, and base assertions corresponding to SCOPE'S

relations.

* Queries

(F I NO bindings predicate)
Generally, a SCOPE query asks SCOPE to find a set of quanuues

bindings is a list of variables to be fillcd in with the namcs of symbols,
and predicate is a predicate which should be satisfied. e.g.. (F I NO (X Y)

(AND (MayCall X Y) (Bind X 'FOO) (UseFreely Y 'FOO)).

* Predicates

(relationname vc l£ ...)

The basc fonn of a predicate involving one of SCOPE'S relauons. l£ is

either a varable which has been "bound" in an enclosing FIND or else a

constat (A l£ ca also be a set specificauon as outlined below.)

(AND predicate predicate ...)

(OR predicate predicate ...)

(NOT predicate ...)

SCOPE allows predicates to be joined by the normal logical conjuncuons

to fonn new predicates.

(FORALL bindings predicate)
(THEREIS bindings predicate)

These have the same fonn as the FIND query, but are .the correspondig
existentially and universlly quantined predicates.

(MEMBER ~ LISP-expression)

(SA TI S FIE S var LIsp-predicate)
These predicatcs allow a simplc escape to the Lisp environment, by

specifying respectively that the variable is an clement of the list given by

the MEMB E R cxpression. or that the LIsP functional prcdicate given

rcturns non-N I L when passed the valuc of the variable as an argument

82

I

.\ppeiidi\ II-The SCOPE Inleriiediale Query Language

(INvar~ This spccifics that the variablc var is an clcment of the sct set, where set- --
is a sct specification. as outlincd below.

* Set specifications

In addition to predicatcs. the ScorE query language allows specification of sets of
clements. These arc specified in sevcral constructive ways:

(SETOF binding predicate)
For example. .(SETOF X (C a 11 X 'E RROR)), The binding is a variable

which wil be used within predicate; the SE TOF spccification denotes the

set of values for which predicate wil hold.

(UNION set set ...)

(INTERSECTION set set ...)

(COMPLEMENT set)
Sets can be joined with the normal set theory conjunctions to form new
sets.

* Using sets within queries

A convenient abbreviation in the SCOPE intennediate query language is the abilty to use

set specifications as the arguments to predicates. to avoid making up unnecesry variable.
names. A standard trnsformation is performed to expand the abbreviation: a predicate

(relation ..1. set ..2..) is transfonned into (THEREIS X (AND (IN X set) (relation ..1. X
..2..))) where X is a "new" varable.

83

Appendix IV-Templates for Computing Cross Reference

When computing cross reference for procedures. SCOPE associates with each special LIsP

fonn a templafe which dcscribes mc pattcrn of a function's evaluation. In SCOPE. a template is

a list strcture containing any of the following atoms:

PPE If an expression appears in this location, there is most likely a

parenthcsis error.

The expression at this location is evaluated nonnally.EVAL

NIL The cxpression occuring at this location is not evaluated. For example,
the template for QUOTE is (N I L . PPE).

FUNCT ION The expression at this point is used as a functional argument For

example, the template for MAPC is (EVAL FUNCTION FUNCTION .

PPE).

An atom at this location is used as a record field.

An atom at this location is used as a record name.

An atom at this location is a variable which is bound.

An atom at this location is used as a function.

FIELD

RECORD

BIND

CALL

In addition to the above atoms which occur in templates, there are some "special forms"
which are lists keyed by meir first element

template Any part of a template may be preceded by two periods which specifies

that the template should 'be repeated an indefinite number (n:;O) of
times to fill out me expression. For example, the template for COND

might be (.. (.. EVAL)) while the template for SELECTQ is (EVAL

., (NIL .. EVAL) EVAL).

(BOTH template template)
Analyze the current expression twice, using each template in turn.

(IF test template template)

Apply test to the current expression at analysis time, and if the result is

non-NIL. use the first tcmplate. otherwise the sccond. For example, (IF

LISTP (RECORD FIELD) FIELD) specifics that if the current
expression is a list, then the first elcment is a rccord name and the
sccond element a field name, otherwise it is a field name.

84

.\PP4'IIJí\ 1\- h'inpl:ili', ror (i'IIPUlilii: (ru,~ llcrcrcnce

Templatcs llay bt Lhangcd and new templates defined. Whencver the template for a
tunction chaJ\gt~. SCOI'F knows that it must reanalj ie any procedure whosc analysis might be

affected by Ù1e template.

~

I;

MS

Appendix V-The FORMAT Program

The following program is used as an example in the text of this dissertuon. The progra
and its documentation was taken fairly directly from Kernighan and Plauger. Software Tools

(1976), and was chosen as an example of a particularly well-written program. In translating the
program from RA TrOR into lNTERLISP, a few liberties were taken-since INTRLISP does not

.4

manipulate character strings or arrays of characters as efficiently as lists, lists of characters are

used instead of the character arrays in the original source: this caused the 'jnternal structures of

some of the routines to change. Since INTERLlSP does not have call by reference, the callng

strcture of a few of the routines were modified to return their values rather than pcrfonn

assignments to reference arguments. Outside of those changes. the program is taken intat,

commcnts included.

This example is a text formatter-a program for neatly formatting a document on a
suitable printer. It produces output for devices like tenninals and line printers, with autom~uc
right margin justification, pagination, page numbering and titling. centering, underlining"
indenting, and multiple line spacing. The FORMAT program is quite conventional. It accepts

the text to be formatted, interspersed with fonnatting commands tellng FORMAT what the

output is to look like. A command consists of a period. a two-letter name, and perhaps some
optional infonnation. Each command must appear at the beginning of a line, with nothing on
the line but the command and its arguments. For instace,

.ce

centers the next line of output, and

.sp 3

generates three blank lines.

By default, FORMAT fills output lines, by packing as many input words as possible onto

an output line before pr4nting it The lines are also justifed (right margins. made even) by
insertng extra spaces into the filled line bcfore output Filing can be turned off by the no-fill
command

.nt

and thereafter lines wil bc copicd from input to output without any rearrangement Filing ca
be turncd back on with the fill command

.fi

86

Appi'nili:l V-Thi' FOR:\1AT Ilro2rain

'The action of forcing out a partially collected line is called a break. The break concept
pervades FORMAT: many commands implicitly cause a break. To force a break explicitly, for

exam pic. to separate two paragraphs. use

.br

Of course you may want to add an extra blank line between paragraphs. The space
command

.sp

causes a break, thcn produces a blank line. To get 11 blank lines use

.sp n

By default output wil be single spaced, but the line spacing can be changed at any tie:

.15 n

scts line spacing to n. (n= 2 is double spacing.) The .15 command does not cause a brea.

The begin page command . bp causes a skip to the top of a new page and also cause a

break. If you use

.bp n

the next output page wil be numbered n. The current page length ca be changed (without a

break) with

.pl n

To center the next line of output,

.ce
line of text to be centered

The .ce command causcs a break. You can center n lines with

.ce n

and. if you don't like to count lincs, say

.ce 1000
lots of lines

tv be centered

.ce 0

The lines between the .ce commands will be centered.

87

Appendix V-The FOllMAT Program

Underlining is much the sae as centering:

.ul n

causes the next n lines to be unerlined upon output But .ul does not cause a break. so words
In filled text may be underlined.

The indent command controls the left margin:

.in n

causes all subsequent output lines to be indented n positions. The command

.rm n

sets the right margin to fL The traditional paragraph indent is produced with temporary indent

command:

.ti n

breaks and sets the indent to position n for one output line only.

To put running header and footer utles on every page, use .he and .fo:

.he this becomes the top of page (header) title

.fo this becomes the bottom of page (footer) title

The title begins with the first non-blank after the command. but a leading quote wil be
discarded if present, so titles that begin with blanks can be produced. If a title contans the
character #, it wil be replaced by the current page number.

Since absolute numbers are often awkward, FORMAT allows relative values as command
arguments. All commands that allow a numeric argument n also allow + n or -n instead. to
signify a change in the current value.

88

Appendix V-The FOllMAT Program

The FORMAT program

Here is the FORMAT program in its entirety. (Note that the program is presented in its
"CLisp" form (Teitelman i 973). while examples in the text of this disserttion are in stadad

S-cxpression notation: SCOPE automatically invokes the CLisP processor before analyzing or

presenting code to the programmcr):

(DEF INEQ

(FORMA TINIT
(LAMBDA NIL (- initialize variables/or FORMAT)

(- - mis program constants - -)

PAGEWIDTH"60
PAGELEN..66

(- width o/page)
(-length o/page)

PAGENUM'" #
COMMAND.. ' % .

(- character which signal page number in looter and Moer)
(- character which signals beginning ojcommtnd)

MAXLINE"200
MAXOUT..200
INSIZE"200

HUGE..iOOOOooO

(- mtximum size 0/ intern buer)

(- miimum size %utputline)
(- miimum size o/inputline)

. (- a YU large integer)

(- - specio clitm - -)

NEWLINE"'%

TAB'" %
SQUOTE'" %'
DQUOTE'" %"
PLUS'" +
MI NUS'" -
UNDERLINE'" %
BlANK"'%
BACKSPACE'" %

(- end o/line(carge re))

(- tab charater)
(- single quote)
(- double quote)
(- plus sign)
(- minus sign)
(- underline charater)
(- a space character)
(- bac/ce)

(- - page/ormlling variablu ._)

FIlL"T
LSVAi..i
INVAL"O
RMVAL..PAGEWIDTH
TIVAL"O
CEVAL"O
UL VAL"O
CURPAG"O
NEWPAG..i
LI NENO"O
PL VAL ..PAGE LEN

(- fill ifT)
(- currt line spcing)

(- currnt indent: GE 0)

(- CUTTent right margin)

(- cUTTentltmporary indenr)
(- numbc'r 0/ lines to center)
(- number 0/ lines to underline)
(- CUTT'nI output page number)

(- nrxt output page number)
(- next line 10 be printed)

(- page length in lines)

89

Appendix V-The FOI~!\AT Program

M 1 V A L.. 2 (to margin be/ore and including heaer)
M 2 V A L .. 2 (to margin after header)
M3 VA L .. 2 (to margin after last text line)

M4VAL..2 (to boiiom margin. including/ooter)
BOTTOM..PL VAL -M3VAL -M4VAL (to last live line on page)

HEADER..(CHARBUFFER MAXLINE) (to lop o/page title)

FOOT E R..(CHARBUF FE R MAXLIN E) (to bollom o/page title)

(to to output common variables to to)

OUT P+-O

OUTW+-O
OUTWDS..O
OUTBUF..(CHARBUF FE R

(to last char position in OUTBUF)
(to width o/iext currently in OUTBUF)
(to number 0/ words in OUTBUF)

MAXOUT) (to output buffer)

(to to used only by SPRE.4 " ")

DIRFLG..NIL

(" " used by TEXT" ")

WRDBUF..(CHARBUFFER INSIZE) ("buffr/orword

J)

(FORMAT
(LAMBDA (STDIN STDOUT)

(PROG ((INBUF (CHARBUFFER INSIZE)))
(FORMAT INIT)
(whi 1 e (GETLIN INBUF STDIN)-=' EOF

do (if INBUF: l=COMMAND
then (COMMAND INBUF)

else (TEXT INBUF)
(if LINENO gt 0.

then (SPACE HUGE)

(" text /ominer ma progra

(" it's a commind
(" it's text)))

("flus lat outpuO))

(COMMAND
(LAMBDA (BUF) _ (" peifomi/omiatting commid)

(PROG (VAL: eT)
(CT..(COMTYp BUF))
(VAL..(GETVAL BUF))
(SELECTQ eT

(FI (BRK) FILL..T)
(NF (BRK) FILL..NIL)
(BR (BRK))
(LS LSVAL..(FORMATSET LSVAL VAL 1 1 HUGE))
(HE (GETTL BUF HEADER))
(FO (GETTL aUF FOOTER))
(SP SPVAL..(FORMATSET SPVAL VAL 1 0 HUGE)

(SPACE SPVAL))

90

Appendix V-The FOR!\1AT Program

(BP (if LINENO gt 0
then (SPACE HUGE))

CURPAGp(FORMATSET CURPAG VAL CURPAG+l
(-HUGE) HUGE)

NEWPAGpCURPAG)

(PL PLVAL~(FORMATSET PLVAL VAL PAGELEN
Ml VAL+M2VAL+M3VAL+M4VAL+l HUGE)

BOTTOMpPL VAL -M3VAL -M4VAL)

(IN INVA~f(FORMATSET INVAL VAL 0 0 RMVAL-l)
TIVALp INVAL)

(RM RMVAL~(FORMATSET RMVAL VAL PAGEWIDTH TIVAL+l
HUGE))

(TI (BRK)
T IVAL~(FORMATSET TIVAL VAL 0 0 RMVAL))

(CE (BRK)
TEVAL~(FORMATSET CEVAL VAL 1 0 HUGE))

(UL ULVAL~(FORMATSET ULVAL VAL 0 1 HUG E))

(- unknown command))

(COMTYP
(LAMBDA (BUF)

(- Kernighan & Plaugher must convert from chacters
10 codes for commands Ii can be simpler in Li)

(U-CASE (PACK- BUF:2 BUF:3))

(- decode comman type)

(GETAL(LAMBDA (BUF) (- evUDeoptiona numeriarent)
(PROG (ARGTYP)

(while BUF:l-=BLANK and BUF:l-=TAB and BUF:l-=NEWLINE
do BUF~BUF:: 1)

(BUF~(SKIPBL BUF))
(ARGTYP~BUF : 1)
(if ARGTYP=PLUS or ARGTYP= MINUS

then BUFpBUF::l)
(RETURN (create COMARG

TYPE p ARGTYP
N p (CTOI BUF)))

(FORMATSET
(LAMBDA (OLDVAL VAL DEFVAL MINVAL MAXVAL)

VALp(if VAL: TYPE=NEWLINE
then DE FVAL

elseif VAL:TYPE='+
then OLDVAL+VAL: N

elseif VAL:TYPE='-
then OLDVAL -VAL: N

e1se

(- return new valuefor paraeter)

(- default value)

(- rtlatiYe +)

(- reltive -)
(- absolute)

VAL: N)

VALp(1M! N MAXVAL VAL)
VAL~(IMAX MAXVAL VAL))

91

App~ndix V-Th~ FOl~MAT Program

(TEXT(LAMBDA (I NBUF) (- proes text lines)
(PROG (I)

(if INBUF: l=BLANK 0 r INBUF: 1 =NEWLINEthen (LEADBL INBUF) (-movele/t,setTIVAL))
(if ULVAL gt 0

then (UNDERL INBUF WRDBUF) ~undulinmv
UL VAL+-UL VAL -1)

(if CEVAL gt 0then (CE NTE R INBUF) (- cenrerinv
(FORMATPUT INBUF)
CEVAL+-CEVAL-1

~lseif INBUF:1=NEWLINE
then (F ORMA T PUT I NBUF) (- all bÚlnk line)

e1seif FILL=NIL .
then (FORMATPUT INBU~)

e1 se (do (INBUF+-(GETWRD INBUF WRDBUF))
(if WRDBUF:1='EOS

then (RETURN))
(PUTWRD WRDBUF J)

(FORMA TPUT
(LAMBDA (BUF) (- putout line with

proper sping and indentinv

(i f LINENO=O or LINENO gt BOTTOM
then (PHEAD))

(for I from 1 to TIVAL do (PUTC BLANK))
TIVAL+-INVAL
(PUTLIN BUF STDOUT)
(SKIP (IMIN LSVAL-l BOTTOM-LINENO))
LI NENO+-L INENO+LSVAL

(if LINENO gt BOTTOM
then (PFOOTJ)

(PHEAO
(LAMBDA NIL

CURPAG+-NEWPAG
NEWPAG+-NEWPAG+l

(if M1VAL gt 0
then (SK IP M~VAL-J)

(PUTTL HEADE R CURPAG))
(SKIP M2VAL)
LINENO+-M1 VAL+M2VAL+l J)

(- put out page heaer)

(PFOOT
(LAMBDA NIL

(SKIP M3VAL)
(if M4VAL gt 0

then (PUTTL FOOTER CURPAG)
(SKIP M4VAL-1J)

(- put out page/ooter)

(PUTTL

92

Appendix V-The FOIf\IAT I'rogram

(LAMBDA (BUF PAGENO)
(on old BUF while BUF:l-='EOS do

(- put outiitlc line with optional page number)
(if BUF: 1 =PAGENUM

then (PUTDEC PAGENO 1)
else (PUTe BUF: 1))

(GETTL(LAMBDA (BUF TTL) (-copytitlefrombuftotd)
(wh; 1 e BUF: 1-=BLANK and BUF: 1-=T AB and BUF: 1-=NEWLINE do

BUF~BUF: : 1)
BUF~(SKIPBL BUF)
(if BUF: 1 =SQUOTE 0 r BUF: 1=DQUOTE

then BUF~BUF:: 1)

(SCOpy BUF TTL))

(SPACE
(LAMBDA (N) (- space" lines or to boiiom of pae)

(PROG NIL
(BRK)
(if LINENO gt BOTTOM

then (RETURN))
(if LINENO=O

then (PHEAD))
(SKIP (IMIN N BOTTOM+1-LINENO))
(LINENO~LINENO+N)
(i f LINENO gt BOTTOM

then (PFOOTJ)

(LEADBL(LAMBDA (BUF) (. delete It.ing blilc se Try.l)
(BRK)
(PROG ((CBUF BUF))

(for I from 1 whi 1 e BUF: 1=BLANK
do BUF~BUF::1 finally TIVAL~I-1)

(do (C B U F : 1 ~B U F : 1)

(if BUF:l='EOS
then (RETURN))

(CBUF~CBUF: : 1)
(BUF~BUF: : 1))

93

Appendix V-The FORMAT Program

(PUTWRD
(LAMBDA

(P ROG

(- put a word in OUTBUF; includes margin jutifcation)(WRDBUF)
(W LAST LLVAL NEXTRA)
(W~(WIDTH WRDBUF))
(LAST~(FORMATLENGTH WRDBUF)+OUTP+l)
(LLVAL~RMVAL-T IVAL)
(if OUTP gt 0 and (OUTW+W gt

then
LLVAL or LAST ge MAXOUT)

(- too big)

(- remember end ofWRDBUF)LAST ~(LAST -OUTP)
NEXT RA~LL VAL -OUTW+l
(SPREAD OUTBUF OUTP NEXTRA OUTWDS)
(if NEXTRA gt 0 and OUTWDS gt 1

then OUTP~UTP+NEXTRA)
(BRK)

(SCOpy WRDBUF (NTH OUTBUF OUTP+l))
(OUT P~LAST)
((NTH OUTBUF OUTP):l~ BLANK)
(OUTW~OUTW+W+ 1)
(OUTWDS~OUTWDS+l))

(WI DTH
(LAMBDA (BUF)

(PROG ((WIDTH 0))
(for X in BUF while X-='EOS
do (i f X=BACKSPACE

then WIDTH~(WIDTH-l)
elseif X-=NEWLINE

then WIDTH~(WIDTH+l)))
(RETURN WIDTH))

(BRK
(LAMBDA NIL

(if OUTP gt 0
then ((NTH OUTBUF OUTP): l~NEWLINE)

((NTH OUTBUF OUTP+l):l~'EOS)
(FORMA T PUT OUTBUF))

OUTP~O
OUTW~O
OUTWDS+-O)) .

(SPREAD
(LAMBDA (BUF OUTP NEXTRA OUTWDS)

(PROG (NE NHOLES I J NB)
(if NEXTRA le 0 or OUTWDS 18 1

then (RETURN))

(DIRFLG+--DIRFLG)
(NE~NEXTRA)
(NHOLES~OUTWDS-l)
(I~OUTP-l)
(J~(IMIN MAXOUT-2 I+NE))

94

(- flush preious line))

(- blank between word)
(- i for buk)

(- compute width of chater stng)

(- end cum1lljiled line)

(- spread words to justif right marin)

(-leave romfor NEWLINE. EOS)

:\ppcniJix V-The FOIl:\ IAT Program

(while I lt J do (NTH BUF J):1~(NTH BUF 1):1
(if (NTH BUF I):1=BLANK

then (if DIRFLG
then NB~(NE -1) INHOLES+1

else NB~NE INHOLES)
NE~NE -NB
NHOLES~NHOLES-1
(while NB gt 0 do

J ~J - 1

(NTH BUF J):1~BLANK
NB+-NB-1))

1+-1-1
J +-J - 1 J)

(CENTER
(LAMBDA (BUF) (- center

a line by setting TIVAL)

TIVAL~(IMAX (RMVAL+TIVAL+(-(WIDTH BUF)))/2 0))

(UNDERL(LAMBDA (BUF TBUF) (-undtrinea/ine)
(- - expand into TBUF. and then copy back into BUF - -)

(PROG ((OBUF BUF)
(OTBUF TBUF))

(do (OTBUF: 1"OBUF: 1)
(if OBUF:1=NEWLINE

then OTBUF: 2+-' EOS

(RETURN))
(OBUF +-OBUF : : 1)
(if OTBUF: 1-=BLANK and OTBUF: 1-=T AS

and OTBUF: 1-=BACKSPACE
then OTBUF: 2+-BACKSPACE

OTBUF: 3+-UNDERLINE
OTBUF~OTBUF: : 3

e1 se OTBUF~OTBUF:: 1)))

(SCOpy TBUF BUF))

(PUTLIN
(LAMBDA (BUF OUT)

(for X in BUF while X-='EOS do (PUTCH X OUT))

(FORMATLENGTH
(LAMBDA (STR)

(for 1 from 0 while STR:1-='EOS do STR~STR::1
finally (RETURN I))

95

App('ooix V-TII(' FORMAT Program

(SKIPBL
(LAMBDA (BUF)

(if BUF: I=BLANK or BUF: I=TAB
then (SKIPBL BUF::l)

else BUF))

(- slcip blalc)

(CTOI
(LAMBDA (BUF)

(bind I~O do (SELECTQ

(- convert string to integer)

BUF: i

((0 1 2 3 4 5 6 7 8 9)
I~I.l0+BUF: i BUF~BUF:: 1)

(RETURN I))

(SKIP
(LAMBDA (N)

(RPTQ N (PUTC NEWLINE))

(- oiitput N bltn/c lines)

)

(* used to return values from GETVAL)

(RECORD COMTYPE (TYPE. N))

(* Utiliies from earlier chapters)

(DEFINEQ

(SCOPY
(LAMBDA (FROM TO)

TO)
(do (TO: i~FROM:i)

(if FROM: 1 = ' E OS
then (RE TURN))

(TO~TO::i)
(FROM~FROM:: 1))

(- copy charatenfrm FROM to

(PUTDEC
(LAMBDA (N W)

(SPACES W-(NCHARS N) STDOUT)
(PRINI N STDOUT))

(. put decimt integer N in field width ge W)

96

Appendix V-The FO!l\lA l Program

(GETWRO
(LAMBDA (I N OUT) (- get non-blank wordlrom IN into

OUT and retum new IN)

(while IN:1=BLANK or IN:1=TAB do (IN~IN::1))
(wh i 1 e IN: 1-= 'EOS and IN: l-=BLANK and IN: l-=TAB

and IN: l-=NEWLINE
do (OUT: 1 ~ IN: 1)

(OUT~OUT::1)
(IN~IN::1))

OUT: 1~' EOS
IN))

)

(. interface to Interlisp)

(DEFINEQ

(PUTC
(LAMBDA (CHAR)

(PUTCH CHAR STDOUT))
(- output a single cMrører)

(PUTCH
(LAMBDA (CHAR OUT)

(PRIN1 (the CHARACTER CHAR) OUT))
(- pur char out on OUI

(CHARBUFFER
ELAMBDA (N)

(to N collect 'EOS))
(- initile vauelora CMrøter buer)

(GETLIN
(LAMaDA (BUF FILE)

(do (if BUF::1=NIL
then (BUF:: l~(NIL))

(if -(ERSETQ BUF:1~(READC FILE))
then (RETURN 'EOF)

elseif BUF:1=NEWLINE
then BUF: 2~' EOS

(RETURN))
(BUF~BUF:: 1))

(- rea a line 01 characters into BUF)

(- expand buffer ifnecesry))

)

(DECL TYPE CHARACTER
(ONEOF (LITATOM SATISFIES (EQ (NCHARS X) 1))

(MEMQ EOF EOS))

97

..

Key to abbreviations:
ACM
BBN
CACM
ISIIRR

JACM
IlCAI
MIT-AI-TR

~ :

Xerox P ARC
POPL
SlGPLAN

SRI
STAN -CS

Bibliography

Association for Computing Machinery
Bolt ßeranek and Ncwman Inc., Cambridge. MA
Communications of the ACM
Technical repon. University of Southern California Infonnation
Sciences Institute. Marina del Rey, CA
Journal of the ACM
International Joint Confcrence on Artificiallntellgence
Technical report. Artificial lntellcgence Laboratory, Massachusetts
Institute ofTechnolo!!y. Cambridge, MA
Xerox Palo Alto Resedrch Ccntcr. Palo Alto, CA
ACM Symposium on Principles of Programming Languages

ACM SIGPLAN Notices, Special lnterest Group on Programmig
Languages
SRI International, Menlo Park. CA
Technical report, Computer Science Deparuent, Staford
University, Stanford, CA

(Aho & Johnson 1976)

'A. V. Aha and S. C. Johnson. "Code Generation for Expressions with Common
Subexpressions". Second POPL, Jan. 1976.

(Aho & Ullan 1977)
A. V. Aho and Jeffrey D. Ullman. Principles o/Compiler Design. Addison-Wesley,

1977.

(Allen & Cocke 1971)

F. E. Allen and 1. Cocke. "A Catalogue of Optiizing Transfonnations". in Design
and Optimization 0/ Compilers. R. Rusten, ed., Prentice-HalL, 1971.

(Allen 1975)

F. E. Allen. "Interprocedural Analysis and the Information Derived by It" in
Programming Methodology: Lecture Noles in Computer Science, Volume 23,

Springcr-Verlag. Heidelberg, Germany, 1975.

(Balzer 1972)

R. M. Balzer. Automatic Programming. ISIIRR -73- i, Sept 1972.

(Balzer 1975)

R. M. Balzer. Imprecise Program Specifcatioii, ISIIRR -75- 36, Dec. 1975.

98

Bihlio2raphy

(Banning 1978)

1. P. Banning. ¡f Method for Determining the Side Effects of Procedure Calls.
STAN-CS-78-676, Nov. 1978.

(Banning 1979)

1. P. Banning. "An Effcient Way to Find the Side Effects of Procedure Calls and

the Aliases of Variables." Sixth POPL, Jan. 1979.

(Bart 1977)

1. M. Bar. A practical interprocedural data flow analysis algorithm and its
applications. Ph.D. disserttion, Computer Science Tech. Repon 770520, D.C.
Berkeley, May 1977.

(Bar 1978)

1. M. Bar. "A Pracucal Interprocedural Data Flow Analysis Algorithm". CACM
21:9, Sept 1978.

(Bobrow 1975)
D. G. Bobrow. "DI-ensions of Representation". Representation and Understanding,

D. G. Bobrow and A. Collns (eel.), Academic Pres 1975.

(Bobrow & Winograd 1976)
D. G. Bobrow and T. Winograd. An Overview of KRL. a Knowledge Representation

Language. Xerox PARC CSL-76-4. July 1976. Also in Cognitive Science 1:1, Jan.
1977.

(Bobrow & Deutsh 1976)

D. G. Bobrow and L.P.Deutsh. "Extending Interlisp for Modularization and
Effciency". Proc. EUROSAM 79, Lecture Notes in Computer Science 72,
Springer- Verlag 1979.

(Brachman 1978)
R. 1. B,rachman. A Structural Paradigm for Representing Knowledge. BBN Report

No. 3605, May 1978.

(Bunon 1976)

Richard C. Burton, Richard R. Semantic Grammar: An Engineering Technique for

Consrrucring Narura! Language Understanding Systems. BßN Report No. 3453,
Dec. 1976.

99

Ilbliography

rCodd 1970)

E. F. Codd. "A Relational Model of Data for Large Shared Data Banks". CACM
13:6, June 1970.

rCousot & Cousot 1979)

P. Cousot and R. Cousot "Systematic Design of Program Analysis Frameworks".

Sixth POPL Jan. 1979.

(Davis & King 1975)

R. Davis and 1. King. An Overview of Production Systems. STAN-CS-75-524, Oct
1975.

(Davis 1978)

R. Davis. "Knowledge Acquisition in Rule-Based Systems - Knowledge About
Representations as a Bais for System Constrction and Maintenance". Pattern
Directed Inference Systems. D. A. Watennan and F. Hayes-Roth (eds.), Academic

Pres 1978.

(Duts 1973)
L. P. Deutsh. An Interactive Program Verifier. Xerox PARC CSL-73-1, May 1973.

(Dolatta° et al. 1978)

T. A. Dolotta R. C. Haight, and J. R. Mashey. ''Te Programer's Workbench".
Bell System Tech. Journal 57:6, JuL.-Aug. 1978.

(Feldman 1979)

Stuar 1. Feldman. "MAKE--a program for maintaining computer program".
Software Practice & Experience 9:4, Apri 1979.

(Fosdck & O~terweil. 1?76)
L D. Fosdick and L. 1. Osterwei1. "Data flow analysis in software reliabilty".
ACM Computing Surveys, 8:3. Sept 1976.

(Goodenough & Shafer 1976)
1. B. Goodenough and L. H. Shafer. A Study of High Level Language Features.

Softech. Inc., ECOM-75-0373-F. Available as NTIS AD-A021 206 and 207, Feb.

1976.

100

llhliography

(Gordon et al. 1977)

M. Gordon. R. Milner, and C. Wadswort. Edinburgh LeF. Internal Report CSR-
11-77 (Part I). Dept Computer Science, University of Edinburgh, Sept 1977.

(Graham & Wegman 1976)
S. L. Graham and M. Wegman. "A fast and usually linear algorithm for global
flow analysis". JACM 23:1, Jan. 1976.

(Hecht & Ullman 1973)

M. S. Hecht and J. D. Ullman. "Analysis of a Simple Algorithm for Global Data
Flow Problems." (First) POPL, Oct. 1973.

(Hendrix 1977)

Gary G. Hendrix. The Lifer ManuaL. Technical Note 138. AI Center, SRI

Intemauonal, Feb. 1977.

(Hoare 1973)

C. A. R. Hoare. Hints on Programming Language Design. STAN.CS-73-403, De.
1973.

(Jones & Muchnick 1977
Niel D. Jones and Steven S. Muchnick. "Even simple progras are ha to

analyze". JACM 24:2, Apri 1977.

(Jones & Muchnick 1979)

Niel D. Jones and Steven S. Muchnick. "Flow Analysis and Optiiztion of LISP-

like Strctures". Sixth POPL, Jan. 1979.

(S.Kaplan 1979)

Samuel 1. Kaplan. Cooperative Responses from a Portable Natural Language Data

Base Query System PhD Disserttion, University of Pennsylvania, 1979.

(Kaplan & Ullman 1978)

M. A. Kaplan and 1.D.Ullman. "A General Scheme for the AutomaUc Inference of

Varable Types". Fifh POPL, 1978.

(Kernighan & Plauger 1976)

B. W. Kernighan and P. 1. Plauger. Software Tools. Addison-Wesley, 1976.

101

IJbliography

(Kling & Scacchi 1979)

Rob King and Walter Scacchi. "The 000 Common High Order Programming
Language Effort (DoD-1): What Wil the Impacts Be?" SIGPLAN 14:2, Feb. 1979.

(Lenat & Harrs 1978)

D. B. Lenat and G. Harrs. "Designing a Rule System that Searhes for Scientific

Discoveries". Pattern-Directed Inference Systems, D. A.,Waterman and F. Hayes.
Roth (eds.), Academic Pres. 1978.

(Lientz et aL. 1978)

B. P. Lientz E. B. Swanson, and G. E. Tompkins. "Characteristics of Applicauon

Software Maintenance". CACM 21:6, June 1978.

(Liskov et aL. 1977).
B. Liskov et al. "Abstraction Mechanisms in CLU". CACM 20:8, Aug. 1977.

(Low 1976)
J. R. Low. Automatic Data Structure Selection: An Example and Overview.

University of Rochester, Computer Science Deparent Technica Report 14, Sept

1976.

(McCay 1978)
J. McCy. History of Programming Languages Confrence, SIGPLAN 13:8, Aug.

1978.

(Milman 1977)
Y. Milman. "An Approach to Optial Deign of Storage Parameters in
Databases". CACM 20:15, May 1977.

(Mitchell 1970)

J. G. Mitchell. The Design and Construction of Flexible and Effcient Interactive
Programming Systems. PhD thesis, Computer Science Departent, Caregie-

Mellnn University, Pittburgh, June 1970.

(Mitchell et aL. 1978)

1. G. Mitchell, W. Maybury, and R. Sweet. Mesa Language ManuaL. Xerox PARC

CSL-78- 1, Feb. 1978.

102

Bihliography

(Model 1979)

M. i. Modcl. Monitoring System Behavior in a Complex Computational

Environment. STAN-CS-79-701, Jan. 1979.

(Moore 19751

J S. Moore. Introducing heration into the Pure Lisp Theorem Prover. Xerox PARC

CSL -74- 3, March 1975.

(Moore 1976)

J S. Moore. The Interlisp Virtual Machine Specifcation. Xcrox PARC CSL-76-5,

Scptember 1976.

(Moriconi 1977)

Mark S. Moriconi. A System for Incrementally Designing and Veriing Programs.
ISIIRR-77-65, Nov. 1977.

. (Moriconi 1978)
M. S. Moriconi. A Designer/Verifer's Assistant. SRI Tech. Repon CSL-80, Oct
1978.

(Morrs 1973)

1. Morrs. "Protecuon in programing languages". CACM 16:1, Jan. 1973.

(pamas 1972a)

D. L. Paras. "A Technique for Software Module Specificauon with Examples".

CACM 15:5, May 1972.

(pamas 1972b)

D. L. Parnas. "On the Criteria to be Used in Decomposing Systems into Modules".

CACM 15:12. De. 1972.

(perlis 1977)

Alan Perl is. Kcynotc speech. Perspectives on Computer Science. Acadcmic Press,

1977.

(Ramaroorty & Ho 1977)

C. V, Ramamoorthy and S, F, Ho, "Testing Large Software with Automated
Software Evaluation Systcms", Current Trends in Programming Methodology,

Vulume 1/: Prugram Validatiun. R. T. Yeh. (cd.). Prentice-Hall, 1977

IlJ

Bibliography

(Rich & Shrobe 1976)

Charles Rich and Howard E. Shrobe. Initial Report on a Lisp Programmer's

Apprentice. MIT - AI - TR - 354, Dec. 1976.

(Rich & Shrobe 1978)

Charles Rich and Howard E. Shrobe. "Iniual Report on a Lisp Prograer's

Apprentice", IEEE Software Engineering SE-4:6, Nov. 1978.

(Rich, Shrobe & Waters 1979)

Charles Rich, Howard E. Shrobe, and Richard C. ,Waters. "Overview of the
Programmer's Apprentice". Sixth JJCAI, Aug. 1979.

(Robert & Goldstein 1977)
R. B. Robert and i. P. Goldstein. The FRL Primer, MIT-AI 408, July 1977.

(Rosen 1979)

Ba K. Rosen. "Data F10w Analysis for Procedural Lagauges". JACM 26:2,

Apr. 1979.

(Ryder 1979)

B. G. Ryder. "Constrcung the Call Graph of a Progr". IEEE Transactions on

Software Engineering SE-5:3, May 1979.

(Sandewal 1978)

E. Sandewal1. "Prograing in the Interauve Environment: The LISP

Experience". ACM Computing Surveys 10:1, Marh 1978.

(Sattertwaite 1975)

E. H. Sattertwaite. Source Language Debugging Tools. STAN-CS-75-494, May

1975.

(Schaeffer 1973)

M. A. Schaeffer. Mathematical Theory of Global Program OptimizatiofL Prenuce-

HalL, 1973.

(Shrobe 1979)

H. E. Shrobe. "Dependency Directed Reasoning in the Analysis of Programs
Which Modify Complex Data Strctures", Sixth JJCAI, Aug. l979.

104

Bihliography

(Simon 1969)

Herbert A. Simon. The Sciences of the Artifcial. M IT Press, 1969.

(Standish 1971)

T. A. Standish. "PPL - an Extensible Languagc that Failed". SIGPLAN 6:12. Dec.

1971.

(Steele 1978)

G. L. Steele. RABßIT - a Compiler for SCHEME. Mlr-Al-TR-474, May 1978.

(Sussman & Steele 1~75)
G. 1. Sussman and G, L. Steele. SCHEAIE: An Interpreter for Extended Lambda
Ctilculus. MIT-AI 349, De. 1975.

(System R 1976)

M. M. Astrahan, M. W. B1asgen, D. D. Chamberlin, et al. "System R: Relational

Approach to Database Management". ACM Transactions on Database Systems 1:2,

June 1976.

(Swinehart 1974)

D. C. Swinehart COPILOT: A Multiple Process Approach to Interactive
Programming Systems. ST AN-CS-74-412, July 1974.

rreitelman 1969)

W. Teitelman. "Toward a Programming Laboratory". JJCAI 69, May 1969.

rreitelman 1972)

W, Teitelman. "Automated Programmcring - The Programmer's Assistant", Proc.

AFIPS Fall Joint Computer Conference, De. 1972.

rreitelman' 1973)

W. Teitelman. "CLISP - Converstional LISP", Third JJCAI, Aug. 1973.

. rreitelman et al. '1978)

W, Teitelman et al. Interlisp Reference Manual. Xerox PARC, Dec. 1978.

rrenenbaum 1974)
Aaron M. Tenenbaum. Type Determination in Very High I.eve/ Languages.
Courant Compucer Science Report it 3. Report NSO- 3, Courant Institute, New

York University, Oct 1974.

lfS

Bibliography

(Ullman 1975)

1. D. Unman. "/\ Survey of Data Flow Analysis Techniques." Proceedings Second

USA-Japan Computer Conference, Tokyo, Aug. 1975.

(Vanlehn 1978)

Kurt A. Vanlehn.

June, 1978.

Determining the Scope of Engish Quantifers. MIT-AI-TR-483,
ii r

(Wasnnan 1975)
A. i. Wassennan. "Issues in Programming Laguage Deign--An Overview".

SIGPLAN, July 1975.

(Waters 1979)

R. C. Waters. "A Method for Automauca11y Analyzing Progras". Sixth JJCAI,

Aug. 1979.

(Waterman & Hayes- Roth 1978)
D. A. Waterman and F. Hayes-Roth (eds). PatternDireted Inference Systems
Academic Pres 1978.

(Wegbreit 1975a)

B. WegbreiL "Mechanical Progr Analysis". CACM 18:9, SepL 1975.

(Wegbreit 1975b)

B. WegbreiL "Property Extracuon in Wen-Founded Propert Sets", IEEE
Tranactions on Software Engineering. SE- 1:3, SepL 1975.

(Wilczynski 1975)

D. Wilczynski. A Process Elaboration Formalism for Writing and Analyzing

Programs. ISI/RR -75- 35, OeL 1975.

(Winograd 1975)

T. Winograd. "Breaking the Complexity Barer Again". SIGPLAN 10:1, Jan.
1975.

(Wulf 1974)

W. A. Wulf. Alphard: Towards a Language to Support Structured Programs.
Tecnical report Computer Science Deparent, Caregie-Mellon University,
April 1974.

106

Bibliography

(Yonke 1975)

Martn D. Yonke. A Knowledgeable. !.anguage-lndependeni Sysiem for Program
Construction and Modifcation. ISIIRR -75-42. Oct. 1975.

107

