Global Program Analysis in an Interactive
Environment

by Larry Melvin Masinter

SSL-80-1 JANUARY 1980

Abstract: See next page

This report reproduces a dissertation submitted to the Department of Computer Science
and the Committee on Graduate Studies of Stanford University in partial fuifilment of the

requirements for the degree of Doctor of Philosophy.

Key words and phrases: programming environments, cross reference, flow analysis,

type inference, Lisp, program maintenance, natural language interface to data bases.

XEROX

PALO ALTO RESEARCH CENTER

3333 Coyote Hill Road / Palo Alto / California 94304

Abstract

This dissertation describes a programming tool, implemented in Lisp. called SCOPE. The basic
idea behind SCOPE can be stated simply: SCOPE analyzes a user's programs, remembers what it
sees, is able to answer questions based on the facts it remembers. and is able to incrementally
update the data base when a picce of the program changes. A variety of program information
is available about cross references. data flow and program organizatica. Facts about programs
are stored in a data base; to answer a question, SCOPE retrieves and makes inferences based on
information in the data base. SCOPE is interactive because it keeps track of which parts of the
programs have changed during the course of an editing and debugging scssion, and is able to
automatically and incrementally update its data base. Because SCOPE performs whatever re-
analysis is necessary to answer the question when the question is asked, SCOPE maintains the
illusion that the data base is always up to date—other than the additional wait time, it is as if
SCOPE knew the answer all along.

ScoPE’s foundation is a representation system in wh'ich properties of pieces of programs can be
expressed. The objects of SCOPE's language are pieces of programs, and in particular,
definitions of symbols—e.g., the definition of a procedure or a data structure. SCOPE does not
model! properties of individual statements or expressions in the program; SCOPE knows only
individual facts about procedures, variables, data structures, and other pieces of a program
which can be assigned as the definition of symbols. The facts are relations between the name
of a definition and other symbols. For example, one of the relations that SCOPE keeps track of
is Call; Call[FNl,FNZ] holds if the definition whose name is FN; contains a call 0 a
procedure named FN,.

ScoPE has two interfaces: one to the user and one to other programs. The user interface is an
English-like command language which allows for a uniform command structure and convenient
defaults; the most frequently used commands are the easiest to type. All of the power available
within the command language is accessible ihrough the program interface as weu. The
compiler and various other utilities use the program interface.

Preface

This dissertation is based on work the author did as part of the INTERLISP system [Teitelman,
et al. 1978], and in particular. the MASTERSCOPE facility. MASTERSCOPE was designed and
implemented entirely by the author. The basic idea for MASTERSCOPE was originally suggested
by, Warren Teitciman and a preliminary non-incremental version (cailed INTERSCOPE) was
’mplcmentcd by Phillip C. Jackson: a tree structure display program (cailed PRINTSTRUCTURE)
had previously been implemented by Danny Bobrow. MASTERSCOPE was first compieted in
1975. and has been in use by many INTERLISP users since then. The system described in this
disscrtation, called SCOPE, is a generalization and cxtension of MASTERSCOPE. While
MASTERSCOPE was designed to be a robust tool for use by a large community, the emphasis in
the design of SCOPE has been on improved functional capabilities: some of the efficiency and
robustness has been sacrificed for its additional capabilities. There are currently no plans to
make SCOPE generally available.

This work would not have been possible without the help of many people. | would like to
‘thank in particular:

Warren Teitelman, for his early willingness to set me free on a problem, and for being the
source of many of the ideas which profoundly influenced this work;

Terry Winograd. for his patient and careful readings of multiple drafts, and hxs support and
‘encouragement;

Danny Bobrow and Bruce Buchanan, as well as Peter Deutsch, Cordell Green, Ron Kaplan,
and Beau Sheil, for listening and reading;

Bob Taylor and the Xerox Palo Alto Research Center for fi nancxal support and incentives to
finally be done; and

Carol Masinter, for editing, proofreading, and sharing with me for what has been a very long
Thank you.

o

Contents

1. Introduction
1.1 Motivation
1.2 Overview
1.3 What SCOPE can do
Design philosophy
The setting
Some assumptions and limitations
Related work
Conclusions

2. Useﬁ of SCOPE

o

B

N Y
oaninp,

2.1 Aid to program understanding and modifcation

2.2 Checking for errors
2.3 Code improvements

3. Characteristics of SCOPE's Representation System
3.1 Units and reladons

3.2 Exhaustiveness

3.3 Operational correspondence
34 Inference

35 Access

36 Self awareness

3.7 Conclusions

4. What Scope Knows About Programs
4.1 Cross reference
42 Flow information
43 Type information
44 Filing properties
45 Conclusions

5. Program Analysis Techniques
5.1° Cross reference analysis
5.2 Flow analysis
5.3 Type inference
54 Conclusions

6. Implementation Notes
6.1 . Parser
6.2 Interpreter
6.3 Answering questions
6.4 Data base
6.5 Conclusions

7. Future Directions
7.1 Improving the current implementadon
7.2 Added capabilities
7.3 Beyond SCOPE

Appendices
I Relations Used in SCOPE
[The Scope Command Language
I1I The Scort: Intermediate Query Language
IV Templates for Computing Cross Reference
\' A Sampie Program

Bibliography

iv

CREOVeN——

67
75
82

86
98

1-2
2-1
3-1
32
6-1
62

List of Figures

Overview of SCOPE

Perlis’ Perils

Tree structurc of function calls

Mapping between worid and knowledge states
Mapping between program and SCOPE's data base
Implementation of SCOPE

What SCOPE knows about a relation

RPERER W

e g

Chapter 1—Introduction

1.1 MOTIVATION

It is weil known that software is in a desperate state. It is unreliable. delivered late. unresponsive
to change. inefficient. and cxpensive. Furthermore. since it 1s currenuy labor-intensive, the situation wiil
(unher deteriorate as demand increases and labor costs rise. Thus the industry faces one of two
choices: cither increase the productivity of highly (raned. carcfully sclected specialists or reduce the
traming requircments through automauon. thereby broademing the base of qualified users. [Baizer 1975]

Programming is costly, measured by almost any metric. In particular. the amount of
moncy spent annually in the United States on software measures in the billions. Recent “studies
have shown that the major expense is in maintaining existing programs rather than in writing
acw oncs [Lientz, ct al. 1978]. Software is modificd cither to correct mistakes in the original
implementaton. to respond to new ciements in the environment or to improve performance or
mainuinability. Such activities are reported to consume as much as 75-80 percent of systems
and programming resources. Regardless of these facts. many rescarchers interested in reducing
the cost of software production do_not address the issue of modification of complex existing
‘programs but instead focus on initial program dcvelopment

Currently, there are two major themes in improving software production: improving the
structure of the resulting software (to improve mainwinability and reliability), and automating
part or all of the task. As with other labor-intensive endeavors. it is thought that automation
might improve the software production situation by reducing mistakes and increasing
productivity. Efforts in program automaton fall along a spectrum with respect to the degree of
automation. While the goal of complete automation of the programming task is laudable, such
an approach is far from producing practical results [Balzer 1975]. The alternative is to provide
tools which aid the programmer in the production and maintenance of software. The set of
tools available to a programmer form part of the programming environment:

iIn normai uségc. the word “enviroument” refers to the “aggregate ‘of .social and cultural
conditions that influence the life of an individual.”™ The programmer's cnvironment influences, to0 &

large cxtent derermines. what sort of probiems he can (and will want 10) tackle. how far he can go. and

how fast If the environment is “cooperative™ and “helpful”—the anthropomorphism is deliberate—then

the programmer can be more ambitious and productive. If not. he will spend most of his time and
energy “fighung™ the sysiem. which at times scems bent on frustraung his best efforts. [Teiteiman 1969]

Whether a programmer is dealing with a toy problem or a highly complcx one, there is
widespread realization that, for any users of computers, the programming language and its
compiler is only a small part of the environment with which the programmer must deal; a
complete programming cnvironment would include a vanety of additional system aids and
supportive facilities. INTERLISP is an cxamplc of a programming cnvironment which attempts
-0 be cooperauve and helpful by providing facilities and aids which work with, not against, the

programmer:

Chapter 1—Introduction

The concept of a programming environment has added new dimensions to software research.
With the advent of interactive use of compulers a programmer can participale actively in software
design and development. It 1s no longer realistic to view programming as a process of discrete steps
staring al composition. then aliernating between submittals and dcbugging the results. Instead it
becomes a dynamic process with unclear demarcations. Recent programming sysiems specifically
designed 10 operate interactively. the best exampie of which is INTERLISP. exemplify this concept by
also laking an active role in the programming process. INTLERLISP not only provides tools to the
programmer. bul it also “watches” over the process. giving aid where il can by detecting local errors
and providing numerous “smart” commands to hide unnecessary programming details. Oniy a limited
atempt is made, however, to “understand” the program. [Wilczynski 1975]

The goal of this work is to extend the INTERLISP environment. 0 “understand” the
program. The particular problem addressed is mainly that of maintenance of large
systems—Iarger than can be comprehended in a single gestail. The tools described here allow
the programmer to interactively inquire about relationships between pieces of large programs
without requiring the programmer to understand the whole. In this way, an attempt has been
made to break the "complexity barrier” [Winograd 1975]: the limit of the size of the system
with which a single programmer is ablc to deal. The same tools can also be used in several
other ways. For example, some of the information they gather is also useful in improving
compiler optmization.

1.2 OVERVIEW

This dissertation describes the implementation and characteristics of a programming tool
called SCOPE. The basic idea behind SCOPE can be stated simply: SCOPE analyzes a user’s
programs, remembers what it sees, is able to answer questions based on the facts it remembers,
and is able to incrementally update the data base when a piece of the program changes. A
variety of program analysis techniques are used to extract different kinds of information from
programs; examples include cross reference information, flow analysis, data type inference, and
program maintenance history. Facts about programs are stored in a data base; question
answering takes the form of retrieval and inference based on information in the data base. The
interactive nature of the system is maintined because SCOPE keeps track of which parts of the
programs have changed during the course of an editing/debfxgging session, and is able to
automatically and incrementally update the data base. SCOPE maintains the illusion that the
data base is always up to date, because SCOPE performs whatever re-analysis is necessary to
answer the question whenever a question is asked. Other than the additional wait time, it is as
if SCOPE knew the answer all along. '

SCOPE's foundation is a representation system in which propertics of pieces of programs
can be expressed. Representation systems arc characterized by the entities they describe, the
kind of facts they can contain and the manner in which the facts arc derived. The objects with
which SCOPE deals arc picces of programs, and in particular, definitons of symbols—e.g., the

(3]

Chapter i—introduction

definition of a procedure, record type or macro. SCOPE does not model propertics of individual
statements in the program, the micro-syntax of symbals, or the presence of formatting; SCOPE
knows individual facts about procedures. variables, data structurcs, and other pieces of a
program which can be assigned as the definition of symbols. The facts are rclations between
the name of a definition and other symbols. For example. one of the relations that SCOPE
keeps track of is Cail: Call{FN,,FN,] holds if the definition whose name is FN, contams a
call w a procedurc named FN,. The class of facts which SCOPE can rcmcmbcr is gencral
enough (o encode the results of many kinds of program analysis. However, it is not the most
general imaginable: for cxample, interactive verification systems [Moriconi 1978, Deutsch 1973]
often allow assertions which involve quantified expressions.

SCOPE employs several different kinds of program analysis techniques w0 extract
information from the user's programs. While program analysis is itself an important topic of
investigation. the emphasis in this dissertation is on the mechanism for providing assistance to
programmers, rather than on the analysis techniques themseives.

Interface to SCOPE

The SCOPE systém operates within the INTERLISP environment. During a working session,
as the user is editing and debugging a program, the user communicates to SCOPE via a
command language (Figure 1-1). SCOPE is able to analyze the program the user is debugging
and store a data base of facts about it. SCOPE uses the data base to answer the user’s questons.

m oo Scope
. g
&__/

edit
- query

A4

Program Data base

Figure 1-1—Overview of SCOPE

Chapter 1—Introduction

SCOPE has two interfaces: one to the uscr and one to other programs. The user interface
is an English-like command-language which allows for a uniform command structurc and
convenient defaults; the most frequently used commands are the casiest 0 type. All of the
power available within the command language is accessible through the program interface as
well. The compiler and various other utilities use the program interface.

1.3 WHAT SCOPE CAN DO

SCOPE makes available several different kinds of information about programs, such as
cross reference information, data flow information (including summary information about
variables, side effects, and data types), and filing information. The information SCOPE provides
can be used in several ways. For example, SCOPE can help the programmer (o understand an
unfamiliar program or to check for programming errors. This section is intended to give the
reader an overview of the kinds of information that SCOPE provides and of applications of that
information.

Cross reference

Information about the locah'on of references to symbols is called cross reference
information. Such information is useful when trying to understand or modify a program. For
example, a programmer who has changed a procedure BRK might want to find the places
where BRK is used. In this situation, the programmer can merely ask the question:

«. WHO CALLS BRK
and receive the response
(COMMAND SPACE LEADBL PUTWRD)

which lists the places where BRK is called. At no time during an interactive session is the user
required to do anything spccial to make sure that the results are up-to-date. The only visible -
effect that changing the program has is that the response 0 a command to SCOPE might be
returned more slowly if much of the program has changed since the last time a question was
asked. Thus, if the user cdits SPACE and changes it so that it no longer calls BRK, SCOPE
would subsequently respond with (COMMAND LEADBL PUTWRD).

Cross reference information can be used to drive the INTERLISP cditor so that, if one
wants to change the way a picce of program works, it is simple to make sure that all of the
uscs of that picce are caught Changing a data structurc type is simplified by the ability to
direct the cditor to those places which reference the parts of that data structure. For example,

Chapier |—Introduction

~. EDIT WHERE ANY FIELD OF COMTYPE IS USED

will invoke the INTERLISP cditor sequentially at those places which reference any field of the
data structure type named COMTYPE, giving the user the opportunity to explore or modify the
picce of program which contains the reference:

GETVAL:
(create COMTYPE TYPE « ARGTYP N « (CTOI BUF))
tty:
* ..nteractive edit session ..
*0K
FORMATSET:
(fetch TYPE of VAL)

. tty:
* ..interactive edit session ...
*0K
(fetch N of VAL)
tty:
* _.interactive edit session ...
*0K

The user is led sequentally through all of the references to the fields of COMTYPE; at each
location, the editor pauses to allow the user to explore the surroundings, modify the program,
or perform other actions—even to (recursively) invoke SCOPE.

Flow information

.. the applications for interprocedural data flow analysis which are unrelated to opummnon are
of far greater importance than Gode improvement. Most of these applications reiate to the detection of

programming errors, program documentation, and improved language design. [Barth 1977]

Another kind of information of which SCOPE keeps track relates to program flow. Flow
information reflects the dynamic properties of the execution of programs. while cross reference
information relates to the static interrelations of the suucture of pieces of programs
independent of program exccution. (It is possible to "understand™ cross reference even for
non-executable languages, e.g., one data structure type can reference another.) The flow
information which SCOPE computes includes the ways in which one procedure might call
another, and the location where variables are bound. usced. and assigned. Flow information has
many applications: for example, flow propertics can be used for detccting programming errors,
in aiding compiler optimization, and to provide useful information to the programmer.

One common error in INTERLISP programs ariscs from misuse of free variables. A free
variable is used in one procedurc and declared in another; the identity of the variabie is
‘decrmined by the run-time context of the use. Detecting free variable errors is difficult for a
programmcr because it often involves cxaminaton of large portiuns of the program. SCOPE's.
flow information. which includes the location where variabics are used freely. where they are

Chapter 1—Introduction

bound. and the possible calling chains, is sufficient to detect the possibility of a free variable
error. At any time during the program development process, the programmer can ask SCOPE to
check for free variable crrors using the CHECK command. For example, the command

«. CHECK FORMAT
might result in the warning: l'] }
It

BLANKS is used freely by SKIPBL, which can be reached from INDENT,
an entry, without BLANKS being bound.
This warning message means that therc is a possible dynamic calling path which can reach the
procedure SKIPBL in which the variable BLANKS is not defined.

Side effect information

A particular kind of flow information which ScopE provides is a summary of the side
effects of procedures: SCOPE can determine. for a procedure, what types of data structures
might be changed as a result of a call to that procedure. The classical use of side effect
information is in program optimization. Many code transformations in an optimizing compiler
have preconditions which are expressed in terms of side effects and uses. In a language such as
LisP which is strongly oriented toward short procedures, interprocedural information is
important when making code improvements.

For example, the program fragment:

(VAL~(GETVAL BUF))
(CT+(COMTYP BUF))
(DOCOMMAND CT VAL)

can be rewritten as
(DOCOMMAND (COMTYP BUF) (GETVAL BUF))

if the variables VAL and C. are not used subsequently in the program (or by DOCOMMAND)
and the expressions (COMTYP BUF) and (GETVAL BUF) can be exchanged.

Type information

Yet another kind of information which SCOPE is able to provide concerns data types. In
LISP, variables do not have data type declarations associated with them; rather, the objects that
are passed as the values of variables, stored in fields of records or returned from procedures
may have data types associated with them. Even though- l.isp (usually) has no type
declarations. it is often possible to infer from the code some restrictions on the possible ranges

Chagier 1—Introduction

of variables. If a "data type” is construcd to be a range of possible valucs (one of the many
possibic interpretations of “data type™). then SCOPE can be said to perform data type inference.
For exampie, SCOPE can infer that the procedure:
(PUTLIN
[LAMBDA (BUF 0QUT)
(for X in BUF do (PUTCH X 0UT])

expects BUF and OUT to be a list of characters and file name respectively, and that PUTLIN
reeurns NIL. The type declarations which are so inferred are useful both as information to the
programmer and as possible additional information to the LISP compiler.

L4 DESIGN PHILOSOPHY

The most important constraint on SCOPE’s design was that it should be a practical tool of
general utility for use with almost all INTERLISP programs. In the course of designing SCOPE,
~several issues have arisen whichr have critically affected the way in which the system works.
This section lays out some of those design constraints.

Non-intrusive

A tool should not get in the way when it is not needed. Program analysis tools which
require the programmer to input a large body of assertions about the program in addition to
the program itself will not have much success as practical programming tools, because the
assertions play no part other than error checking in the program development process. This
claim has been partially refuted by the increasing popularity and success of programming
languages which enforce strict type checking such as PASCAL, ALGOL 68, and MEsA [Geschke,
Morris & Satterthwaite 1976]. However, declarations in those languages contribute to program
efficiency and aid in storage management as weil as providing for static checking.

In adding program inference capabilities to an existing language, it is important not to
add to the burden of programming. A large program is in fact a mine of
information—information which any competent programmer might be able to infer, given
-sufﬁcicm tme. The goal of this work has been to embody that capability within the
programmer’s mecchanical assistant. It is possible to build an assistant which can infer
relationships from the program as written without requiring the user to make additional

assertons.

Chapter !—Introduction

Correct, but imprecise

It is possible to takc an intractable probiem (automatic program creation and
modification) and turn it into a tractabie one (a programmer’s assistant) by building an aid
rather than an automatic device. The "low road” to automatic programming has had high
payoff to real' grogrammers today.

i

A spccialization of this rule is as follows. It is now recognized that proving simple
properties of even small programs is often cither not decidable or clse computauonally
infeasible [Jones & Muchnick 1977]. It is necessary to take a heuristic approach o
understanding in order to make headway: thus. program analysis almost always results in
‘approximate asscrtions. For cxample, in computing flow information, it is impossible to tell if
a particular path through a program will actually be taken; it might be that the test in a
conditional is always false.

Benefit for cost

To achieve acceptance of any programming tool. the benefit of using the tool must exceed
the cost. However, cost should not be measured in computer cycles. It has generally becn the
trend that manpower costs have increased, while the cost of machine cycles has decreased.
With the advent of personal computers, the notion of computer time as a limited resource may
well become obsolete—imagine being accused of wasting cycles on a hand-held calculator. In
designing programmer tools, it is important to minimize the time that the user needs to spend
to perform a given task: when the task is performed with computer assistance, then the time
the user must wait for a response remains critical. Becanse SCOPE only performs analysis .as a
direct result of a user's request, the user always has the choice of waiting for SCOPE's response
or aborting the computation.

Uniform interface to muitiple sources of information

SCOPE provides a uniform way in which diverse kinds of program information can be
used together. The synergistic effect of multiple sources of .knowledge within a single
framework has become evident with the use of SCOPE. For example. in the command WHO ON
FORMAT IS CALLED BY WHO THAT BINDS BLANKS, flow information (BINDS) is used in
conjunction with filing information (ON FORMAT) and cross reference information (CALLED).

Chapter |—Introduction

1.5 THE SETTING

. [LISP's] core occupics some kind of local optimum in the space of programming languages
given that static (ricuon discourages purcly notauonal changes. . LISP suil has operational {eatures
unmatched by other languages that make it a convcnient vehicle for mghcr level systems for symboiic
compuation and for artifical intciligence. [McCarthy 1978)

LisP systems have been used for highly interactive programming for more than a decade.
During that time, special properties of the [ISP language have cnabled a certain ftyle of
interactive programming (0 deve!opl Sandewall [1978] has written an excellent surve)E(articie
describing this style of program development

In particular, INTERLISP is a programming cnvironment in wide use within the artificial
intelligence community for a variety of application programs. It is a complcte programming
environment with sophisticated debugging tools. muitiple extensions to the basic LISP language,
a large subroutine library. and various tools for improving efficicncy of user's programs.

While a Scope-like facility could be of great utility in environments other than LISP,
several characteristics of the LISP style of programming had particular impact on the ease of
implementation and the utility of the result for SCOPE.

Impact of environment on utility

First, INTERLISP is an interactive environment. The class of programmer assistance and
interactive retrieval tools of which SCOPE is a representative does not make much sense in a
batch environment. It is only in the context of using the computer as an active tool with which
to build programs that an interactive assistant can be of use. A system for answering questions
about program organization makes an effective tool only if the question-answering process is
easier and faster than performing the same task without assistance.

Secondly, SCOPE is intended for use in the development of medium- (o large-scale
programs. It is unnecessary to provide mfomauon retrieval capabilities for short programs
which can be understood by simple examination. SCOPE is most useful when the program has
grown so large that the programmer cannot grasp it as a whole. INTERLISP. through its
incremental style, allows the development of programs which can easily exceed the grasp of a
single progranuner': in that sense, SCOPE fills a real need. '

Finally, the power of SCOPE is ampiified greatly by being embedded in an infegrated
cnvironment such as INTERLISP. It is important that facts about the program arc available
within the debugger and cditor. so that the information is always at the fingertips of the
programmer. Without this integration, the question-answering process might fail to be casier or
quicker than obtaining the samc infurmativn without assistancc. For cxample. a cross reference

Chapter |—Introduction

listing on the desk might at times be more convenient than interrupting an editing session to
invoke a special purpose question-answering program.

Impact of environment on ease of implementation

Several other qualities of LISP and INTERLISP made the development of SCOPE easier.
LISP has a simple representation of programs which is casy to analyze. The cxtensions to the
syntax of LISP contained in INTERLISP did not pose major additional problems in providing
accurate analysis routines.

Why not simplify?
Well chosen and well designed programs of modest size can be used to create a comfortable and

effective interface to those that are bigger and less well done. [Kemighan & Plauger 1976]

INTERLISP is a large and complicated system. In the course of answering questions about
INTERLISP programs. features of the language which make analysis difficult are often
found—non-uniform interface to language features, obscure or ambiguous semantics, and
features which violate common intuitive assumptions about program execution. For the most
part, the choice has becn to deal with the language as it is rather than to attempt to fix it;
elegant solutions are elusive. There is a great temptation to dismiss the complexity of
INTERLISP as the result of bad design. lack of design, or, as is actually the case, too many
designers, and to choose instead an artificial language with cleaner semantics as the target of
analysis. There are continuing efforts to develop real programming languages with cleaner
semantics (e.g.. CLU [Liskov, et al. 1977], ALPHARD [Wulf 1974], SCHEME [Sussman & Steele
1975], and improvements to INTERLISP [Bobrow & Deutsch 1979]). These efforts are laudable
and have made some progress in recent years. Howe;rer. a certain amount of complexity is
inherent in any programming system of maturity, and tools are needed for dealing with the
complexity. Simple languages are not realistic. No programming language will be a panacea
which will simplif'y ‘the semantics of all programs—programs are inherently complex. In
additon. the universe of design objectives for programming languages is somewhat self-
contradictory; there are always compromiscs [Hoare 1973, Wasserman 1975]. Of the alternatives
for dealing with complexity, powerful tools are often more effective and practical than attempts
at simplification of the environment

The INTERLISP system, though large and complicated. is written in LISP using only the
primitives in the INTERLISP Virtual Machine definition [Moore 1976] (referred to as "the
VM"). which is not nearly so large and complicated. The VM is the environment in which the
INTERLISP system is implemented. It defines a basic set of abstract objects and Lisp functions
for manipulating them; the rest of the INTERLISP system is defined in terms of the primitives

10

Chapter 1—Introduction

supplied in the VM. Some of the "built-in" properties which Scope contains about INTERLISP
primidves (e.g.. side effcct information) were derived by using SCOPE to analyze the INTERLISP
system above the VM.

1.6 SOME ASSUMPTIONS AND, LIMITATIONS

.. standard halting-problem arzuments show that no such system can be complete: exccution lime
is not a decidabie propenty of‘curremt programming languages. |[In addiuon] the analysis of many
algonthms requires considerable mathematical expertise; an expent svsiem wouid necessarily include ail
the techniques in the monumental work of Knuth. The former is an absolute limitation: the latter
cstablishes a boundary beyond' which interactive assistance from a programmer or analyst is required.

[Wegbreit 1975aj

Any attempt to design a program which knows somcthing about other programs must
necessarily carefully skirt the computability problem: given almost any interesting property of a
program, it is almost always possible to come up with an example where the value of that
property is not computable for a large class of programs; almost every such property is
reducible to a halting problem. For example, the values which a variable might assume can
depend upon the result of a predicate which is possibly (but not decidably) always false; thus,
exact determination of the range of values for the variable is not possibie.

It is therefore necessary to limit the domain of inferences about programs in a way which
preserves many interesting properties. Along the path to program undcrstanding, there are
several obstacies. It is as if a fanciful landscape were being explored (Figure 1-2), inspired by
Alan Perlis:

There's a second [obmde]. that has recently come into being, and this is recognition that we are
surrounded by mountains that are reaily unbeiievably difTicuit or even impossible lo scale Indeed, the
mountains are so bad that at the moment one of the greatest gamces around is to show that they are
impossible t0 scale. All we're able o show is that one mountiin is as bad as another.... This bathers

people—it bothers me | know—untl | find out that the vast majonty of the lasks that we do not yet
know how 1o do are not in those categories. [Peris 1977)

The first obstacles travelers along the path to program understanding encounter are the
" Mountains of Complexity. For example, many papers in the literature show either the
computational complexity or infeasibility of various flow analysis tasks [Hecht & Ullman 1973,
Schaeffer 1973, Graham & Wegman 1976, Aho & Johnson 1976]. One of the reasons SCOPE is
able to skirt the Mountains of Complexity is by its choice of increcmentally updating the data
base. An order n® algorithm might be computationally infeasiblc in a batch environment;
however. incremental update can often reduce the compiexity of the computation when a piece
of program is changed to a manageable size. The next major obstacle. labelled the Cliffs of
_ Non-Decidability. has a small Heuristic Gap winding through it By carefully choosing the
kind of information reported back from the analysis routines and not attempting to be too
ambitious. it has been possible to provide uscful results.

11

Chapter 1—Introduction

o
Clitfs of Non-Detidability \ .
\ Godel Fage)
e" T,\ \
Oln 3’ NP
Mountains Of Complexity
Turing Tarpit

Figure 1-2—Perlis’ Perils

Chapter 1—Introduction

Specific limitations of analysis
. In the rest of this thesis we will assume that the only way to change the state of a program is

by transfer of control or modification of a variabie and that no programs access any asynchronously

modified data [Banning 1978]

For the reasons outlined above. it has been neccessary to limit the kinds of analysis with
which SCOPE deals. Onc place where this limitation has become quite cvident has been in
dcaling with the unconventional control structures which arc available to INTERLISP users (in
particular, EVAL. APPLY, and the spaghetti stack fcatures). Flow analysis or even simple cross
reference information is difficult to compute in the presence of those primitives.

INTERLISP contains a complex interrupt system which can. in practice, cause user-defined
computations 0 occur at arbitrary places in the computation. Some uses of the interrupt
system can violate the intuitive interpretation of the program to the extent where almost no
“analysis would be possibie: for example, following an assignment X«Y, if an intcrrupt occurs
which reassigns Y, then X=Y would be false. Thus, most of the program properties inferred by
SCOPE are assumed to hold “unless an interrupt with interfering side effects happens”.

INTERLISP also conuins a sophisticated error recovery mechanism whereby the
programmer can specify an arbitrary computation to be executed when an error of any given
type occurs. For example, the programmer can specify that the addition of two strings should
not cause an error, but rather that the result should merely be the concatenation of the two
strings. SCOPE’s type analysis, however, assumes that the INTERLISP error mechanism is not
used to continue computations which would normally be in error.

Finally, INTERLISP is an interactive system. and one can write INTERLISP programs which
define new procedures or data structure types, or modify old ones. The ability” to do so is quite
powerful, and makes it possible to write programming tools within INTERLISP itself (most of
the INTERLISP environment, including the cditor and debugger, is written in INTERLISP).
Analysis of programs which modify their own codc is beyond the capability of SCOPE. SCOPE
assumes, for example, that procedure definitions do not chaﬁgc during program execution.
SCOPE is able o note when the capability to redefine or modify existing programs is used and
is able to wamn the user when its analysis may be incomplete.

Anyone who attempts automatic program analysis. whether that analysis be verification,
performance analysis, or measurcment of complexity, faces many problems. Only a few of
those problems have been solved here; what is provided arc fundamental mcchanisms for
embedding the solutions to those problems (insofar as Scope can use a varicty of program
analysis techniqucs). and. for gracefully nor solving them (by relying on correct but imprecise
information. and by knowing when its analysis is possibly incorrect).

13

Chapter |—introduction

Only INTERLISP

While a Scope-like facility could be built for other languages. ScoPE currently only works
for INTERLISP programs. The fundamental idea of an interactive assistant which is able to
answer questions about a program is clearly relevant to any programming language. The
particular represemauon scheme used by SCOPE to represent properties of pieces depends only
on the ability to sphr. up the user's program into scparately produced parts which have
separable semantics. }f[owevcr. while many of the individual relations known to SCOPE are
applicable to most conventional programming languages (e.g.. cross reference), some of them
relate to features which are rarely found in non-LISP systems. For example, SCbPE's check for
misuse of free variable analysis is useful only in systems with dynamic binding and SCOPE’s
type analysis is applicable only to languages with a run-time type system. To implement a
ScoPE-like system for other languages would require studying the real information needs of
the programmiers of those languages to determine which kinds of analysis are most appropriate.

1.7 RELATED WORK

Work related to SCOPE and described within the literature falls into two rough categories:
that which attacks a similar problem, and that which uses related techniques. In the former
category are other efforts along the spectrum of "automatic programming”, from interactive
programming environments to automatic programming systems. The category of related
techniques includes work on verificadon, flow analysis and type inference.

Although the idea of interactive tools to aid programmers is not new, complete, integrated
programming environments have only recently become popular. Teitelman [1969, 1972] was an
early proponent of a complete programming environment. Mitchell [1970] and Swinehart
[1974] proposed interactive programming environments for Algol-like languages. Several tools
available under the UNIX operating system [Dolatta, et al. 1978, Feldman 1979] are directed
toward the programming language C. Model [1979] has described interactive tools aimed at
monitoring more complex processing systems.

There have been several calls for “smarter” assistance to the expert programmer, which go
a step beyond interactive editing and dcbugging tools. Winograd [1975] proposed a unified
programming environment in which automatic program synthesis and analysis are mixed. Rich,
Shrobe and Waters [Rich & Shrobe 1978: Rich. Shrobe & Waters 1979: Waters 1979} are
attempting :» build a much more ambitious programmer's apprentice which can model a
programmer’s goal structurc and relate the structurc of the program to the scmantics of the
domain in which the program is operating. Shrobe [Shrobe 1979] describes a system cailed

14

1
3
y

Chapter l—lnn’}oduction

REASON for providing “common sense” side ecffect analysis to aid programmers in
understanding their programs. The most significant difference between these works and SCOPE
is that they deal with informal reasoning about programs. and thc intcntions of the
programmers. SCOPE, on thc other hand. concentrates on formally definable propertics of
programs. Clearly, a truc “programmer’s apprentice” would have the ability to mix both kinds
of knowledge.

Researchers in program verification attempt to provide mechanical assistance for proving
that programs are correct Verification shares with program assistance the character of
extracting information from programs. Intcractive, incremental verification systems such as the
one described by Moriconi [1978] share with SCOPE the mechanisms of change propagation,
although the class of assertions that they deal with is, on the one hand, more complex, and on
the other, not as broad.

Finally, global flow analysis is a fruitful approach to program optimization (... [Banning
1979: Barth 1977, 1978]). SCOPE provides a framework in which flow analysis can be placed.
Many researchers are actively investigating flow analysis techniques and applications in many
different forms and in particular interpmcedural flow analysis [Rosea 1979]. Fosdick and
Osterweil [1976] have applied data flow analysis to detecting errors in programs.

1.8 CONCLUSION _ .

The proper study of those who are concerned with the artificial is the way in which that
adaptation of means (0 environments is brought about—and central (o that is the process of design
itself [Simon 1969)

The ‘major contribution of this work is that it shows a pragmatic approach to the
construction of a programmer's assistant In order to delineate an approach to designing
programmer assistants, a set of design criteria is first outlined—important criteria which a
usefu) programmer assistant tool should satisfy. Second, a design which meets the criteria is
described.” Finally. an implementation of ‘the design providﬁ- some validation that (a) the
design criteria are in fact desirable. and (b) the design satisfies the design criteria.

It seems to. be common within the computer science litcrature that an author will
introduce the reader to a particular problem and then proceed to present a solution which is
simply asserted to solve the problem at hand without further evidence [Kling & Scacchi 1979].
While the programming tools described in this disscrtation have not undergone rigorous tests
to determine whether they improve productivity, a subset of thesc facilities have been in use
for several years within the INTERLISP user community and. as indicated by the rcsults of an
informal survey, many INTERLISP uscrs have found them invaluable. While no controlled study

15

Chapter l—Introduction

has been performed by which one could make strong claims of increased programmer
productivity, there is good cvidence that at least the programmers themsclves have found some

benefit.

16

Chapter 2—Uses of SCOPE

SCOPE’s range of applications is broad and it can hclp programmers in many different
ways. In this chapter. a few typical applications of SCOPE arc discussed. An analogy can be
drawn to programming languages. if SCOPE were a programming language, this chapter would
contain some examples .,'u!*' the kinds of programs onc could write in it

The examples|:in this chapter are based on the FORMAT program given in Appendix V;
the program is a translation (from RATFOR into INTERLISP) of a text formatter which appears
in Kernighan and Plauger, Sofiware Tools [1976]. It was chosen because it is well-written
(being an' example in a text on writing good programs) and more than a few lines long. The
code is relatively well documented {every routine has a comment which indictates what it does)
and there is a fairly lengthy documentation on the operation of the program. The program
accepts text to be formatted, interspersed with formatting commands teiling it what the output
is to look like. The reader must employ a little imagination; as programs go, FORMAT is still
quite short and some of the problems iilustrated in this chapter could be performed as simply
either by hand or with a simple text editor. SCOPE is intended to help programmers who must
deal with systems which are an order of magnitude more complicated.

This chapter discusses three areas where SCOPE is of general utility; within those areas,
particular applications to INTERLISP will also be described: (1) helping the programmer to
understand or modify a large program that was written by somebody eise or written a long
time ago, (2) checking for programming errors, and (3) improving the quality of compiled
code.

21 AID TO PROGRAM UNDERSTANDING AND MODIFICATION

SCOPE can help programmers who are trying to understand .or change a large or
unfamiliar program in several ways explained in detail in sections 2.1.1 thrbugh 2.1.5 below.
SCOPE can (1) present summaries of the graph of interrelations of pieces of program, (2) show
how a picce of program is used, (3) answer questions about program flow, (4) answer questions
about side effects, and (5) answer questions about data types.

The set of information which SCOPE can provide to the uscr is completely directed by the
querics asked: therc is no fixed table of information which is displayed. Because SCOPE is
interactive and its command language simple, SCOPE is responsive to the necds of the user.
The difference between trying to understand a program with a summary of possibly useful
information and using the kind of intcractive response that SCOPE provides is like the

Chapter 2—Uses of SCOPE

difference between debugging with a core dump and debugging with an interactive debugger.
Just as the interactive dcbugger is a much more fincly tuned efficient tool, SCOPE is much
more useful than any one static display of information would be. While carefully written
documentation would provide guidelines for the program reader, program documentation is
often out of date. inconsistent, or incomplete. In the absence of careful documentation, SCOPE
can be of great assistance in understanding a program and in fact, having access (0 a massive
set of documentation, no matter how complete, is not as convenient as being able to
interactively ask and receive immediate answers (o specific questions.

SCOPE can also be used to generate program documentation. For example, SCOPE can be
used to generate cross reference listings or 1éngthy summaries of program properties, or to
annotate programs with type declarations. (Some INTERLISP users have used MASTERSCOPE to
produce cross-reference documentation in lieu of flow charts required by their funding
agencies.) However, such documentation is static—it does not change when the program
changes—and inconvenient—one must search the documentation to find an answer rather than

~ asking directly. SCOPE-added type declarations often obscure the simplicity of the code and are

also not as useful as interactively available informaton.

Display of program structure
A suitably printed version of the cail graph provides a useful documentation and debugging aid.

[Ryder 1979]

In working with large programs, a programmer may lose track of the hierarchy which
defines his program structure. SCOPE can aid the user by displaying a tree structure which
concisely shows the interrelations of the pieces of a program. For example, the command
SHOW PATHS FROM FORMAT would print the following tree structure of calls shown in Figure
2-1. (A similar figure appears in Kernigan & Plauger, p. 245))

This display shows, for example, that the function FORMAT calls the functions
FORMATINIT, COMMAND, TEXT, SPACE, CHARBUFFER"and GETLIN; FORMATINIT calls
CHARBUFFER. and COMMAND calls BRK, GETTL, SPACE, COMTYP, GETVAL, and FORMATSET.
Only calls to the user's own functions are included—system functions are not traced or
displayed. For example, FORMAT also calls the system functions CAR and IGREATERP, but
SCOPE knows that CAR and IGREATERP are INTERLISP system functions and does not display
them in response to the SHOW PATHS command.

18

Chapter 2—Uises of SCOPE

1.FORMAT FORMATINIT CHARBUFFER
2. COMMAND BRK FORMATPUT PHEAD SKIP

3. | | | PUTTL PUTDEC
4, | | PUTC
5. | | PUTC

6. | | PUTLIN PUTCH

7. | | SKIP

8. | | PFOOT PUTTL (3}
9. | | SKIP

10. | GETTL SKIPBL SKIPBL {10}

11. | | SCOPY

12. | SPACE BRK (2}

13. | | PHEAD (2}

14, | | SKIP

15. | | PFOOT (8}

16. | COMTYP

17. | GETVAL SKIPBL (10}

18. | cToI

19. | FORMATSET

20. TEXT LEADBL BRK {2}

21. | UNDERL SCOPY

22, CENTER WIDTH

23. FORMATPUT (2}

24. PUTWRD SPREAD

25, | BRK (2}

26. | SCOPY

27. | WIDTH

28. | FORMATLENGTH

29, GETWRD

3o. SPACE {12}

31. CHARBUFFER

32. GETLIN

Figure 2-1—Tree structure of function calils

The numbers in braces { } after a name are backward refcrences indicating that the tree
for that function was cxpanded on a previous line. For cxample, the call trec of BRK is not
expanded on line 12 because BRK's tree (which shows that it calls FORMATPUT) had been
-displayed on line 2. Backward references are necessary because the call rree is actually a call
graph. the structure of function calls can form an arbitrary directed graph.

In addition to displaying a tree structure of function calls, SCOPE can display an inverted
tree: that is. onc which shows how given functions can be reached. For example, the command
SHOW PATHS TO BRK would display the following structure:

1.8BRK COMMAND FORMAT

2. SPACE FORMAT

3. | COMMAND (1}
4 LEADBL TEXT FORMAT
5 PUTWRD TEXT (4}

Chapter 2—Uses of SCOPE

This display shows, for example, that BRK is called by COMMAND, SPACE, LEADBL, and
PUTWRD., while COMMAND is called by FORMAT.

SCOPE's SHOW- PATHS command has several other options which allow the programmer
flexibility in controlling the nawurc of the structure displayed. The various options of SCOPE's
SHOW PATHS command are listed in Appendix IL

The SHOW PATHS command allows the user to obtain a concise overview of the structure
of a program from a number of different viewpoints. Often, the call structure of a large system
is too complex to be clear from any one display of its structure; that the perspective from
which the program is viewed is not fixed but rather determined by the programmer is critically
important in the usefulness of the display. When a single structure is too complex to be
displayed in any one orientation, an interactive display which allows multiple perspectives can
help in understanding of the structure. An analogy can be drawn to computer aided design
facilities, in which an interactive display of a structure being designed (a circuit, a building, or
a ship) is much more useful in understanding the structure than any one drawing.

Cross reference

SCOPE can be used as an interactive index when browsing through a large program.
Often. the key to understanding a piece of program (e.g., a subroutine or a data structure) is to
see how that piece is used. Program documentation generally includes descriptions of how a
program works and what various picces do but rarely includes descriptions of the ways in
which those pieces are cmployed. In reading an unfamiliar program, the reader may come
across a short procedure which performs a simple action. It may be perfectly clear how that
procedure works, but the reader still has no clear idea of why the procedure is there at all
Only by examining some of the uses of the procedure will its applications become evident.
SCOPE can help by allowing the program browser immediate access to the places which refer to
a given piece of program, through SCOPE's SHOW or EDIT commands.

For example, when browsing the FORMAT program, the program reader encounters a
procedure GETTL:

(GETTL
[LAMBDA (BUF TTL) (* copy title from buf to 1tl)
(while BUF : 1~=BLANK and BUF:1~=TAB and BUF: 1~-=NEWLINE
do BUF«BUF::1)
BUF«(SKIPBL BUF)
(if BUF:1=SQUOTE or BUF:1=0QUOTE
then BUF«BUF::1)
(SCOPY BUF TTL])

Chapter 2—=U'ses of SCOPE

Apparently, GETTL accepts a list BUF, removes any initial blanks, tabs. or new-line clements,
calls SKIPBL. removes any quote characters. and then calls SCOPY. While it may be cvident
what GETTL does (it copics a "title” from one place to another) it is not evident anywhere
ncarby why it does it Only by sceing how GETTL is used is the reason for it made clear. The
Scop: command

~. SHOW WHERE GETTL /IS CALLED
will display the context of the calls to GETTL:

{in COMMAND :}
(GETTL BUF HEADER)
(GETTL BUF FOQTER)
The resulting display shows that GETTL is called twice. once with TTL the HEADER and once
with TTL the FOOTER. It also shows that GETTL is used as a subprocedure to only one other

routinc (COMMAND).

While Scorr's SHOW command prints out the immediate context of the use of the
symbols asked about. sometimes a more thorough examination of the context of use of a piece
of program is nccessary. In such cases the programmer might employ the SCOPE EDIT
command in order to use the intecractive cditor to more thoroughly cxplore the surroundings of
the reference. Thus, after the command

~, EDIT WHERE GETTL IS CALLED

the user is placed in the cditor pointing at the first occurrence of GETTL in the COMMAND
routine. COMMAND has a fairly lengthy sct of cases in- a clause

(SELECTQ (COMTYP BUF) --).

The two occurrences of GETTL appear in distinct clauses:

(SELECTQ --

(HE (GETTL BUF HEADER))
(FQO (GETTL BUF FOOTER))

The documentation of the program operation indicates that the f'unnat.lcr has two commands,
he and fo. which respectively sct the title line on the top of the printed page and on the
bottom. Putting these clues together, it is possible to infer that HEADER and FOOTER are two
buffers which are used to store the current lines for the page head and foot, and that GETTL is
a routinc which cxtracts a tide from a command line.

Through the usc of the reference information which SCort: provides. the programmer can

Chapter 2—Uses of SCOPE

answer questions which arise when examining a program: Why is this here? What does it do?

Cross reference when making changes

Suppose you have to convert a 5000-line Fortran program from one computer to another, and
vou need lo find all the FORMAT statements, (o make sure they are suitable for the new machine
How would you do it?

One possibility is to get a listing and mark it up with a red pencil. But it doesn't take much,
imagination to see what's wrong with red-penciling a2 hundrea pages of computer paper. It's mindless/
and boring busy-work. with lots of opportunities for error. And even after vou've found ail the
FORMAT statements, you still cant do much, because the red marks aren’L machine readable.
[Kemmighan & Plauger 1976, p. 1]

Many program changes involve widely scattered portions of the program text: making

those changes is difficult because the programmer is uncertain that he has caught all of the
places which need to be changed.

For example, the FORMAT program currently maintains two separate variables while
formatting: CURPAG is the current output page number, while NEWPAG is the number of the
next page. Suppose that the programmer wants to change the program using only one variable
rather than two (this is Exercise 7-5 in Kernighan & Plauger). The programmer would like to
find and edit the places where CURPAG and NEWPAG might be used. First, the programmer
might use SCOPE’'s SHOW command to get an overview of the ways in which the variables are
used:

«. SHOW WHERE ANY USE NEWPAG OR CURPAG
FORMATINIT :
(SETQ CURPAG 0)
(SETQ NEWPAG 1)
COMMAND :
(SETQ CURPAG (FORMATSET CURPAG VAL (ADD1 CURPAG)
(IMINUS HUGE) HUGE))
(SETQ NEWPAG CURPAG)
PHEAD :
(SETQ CURPAG NEWPAG)
(SETQ NEWPAG (ADD1 NEWPAG))
. (PUTTL HEADER CURPAG)
PFOOT :
(PUTTL FOOTER CURPAG)
done

The user decides that the proper change is to eliminate CURPAG and to replace
occurrences of CURPAG with NEWPAG-1. The command to SCOPE to EDIT WHERE ANY USE
CURPAG makes the change simple. Because SCOPE does the bookkceping, making sure that
every reference is examined, and prescnting them one by one to the programmer, the change is
much less risky.

()
"

Chapter 2—Uses of SCOPFE,

SCOPE's ability to interactively locate references to a symbol is particularly useful when
changing a data structurc; in a conventional programming system, a change o a data structure
often can ripple through the system. taking large amounts of time and leaving residual bugs.
Scort:’s EDIT WHERE command can be used when changing a data structure to find all of the
places which refer to the data structure or any of its parts.

K
Changing a name

One specific application of cross reference information is in efficiently making global
program manipulations. For examplc-, programmers occasionally want to be able to change the
- name of a symbol in a program, perhaps becausc the old name is not as intuitive, or it
conflicts with a new name. Performing this operation using a program editor is difficult for
several reasons. First. finding the places where the symbol is referenced may be inefficient,
involving scanning of many source files of text. Cross reference information can be of use in
reducing the number of places that need to bc examined. Secondly. in a language where the
same names can be used for different purposes. it is necessary to look for the use of symbols
in a particular semantic context, rather than cmploying a simple text substitution rule. To aid
the programmer in this task, SCbPE includes a RENAME facility which automatically performs
all of the necessary actions to rename a symbol; the SCOPE command

~, RENAME THE FUNCTION COMMAND TO BE ProcessCommand

will (a) give COMMAND'’s definition as a function to ProcessCommand, and (b) invoke the
INTERLISP editor on all locations which reference COMMAND as a procedure, changing them to
ProcessCommand but leaving alone the occurrences of the symboi COMMAND used as a

vanable.

Flow information

SCOPE also" provides summary information about program flow which is useful when
trying to understand a large or unfamiliar program. Flow information includes facts about the
way in which one procedure calls another, as well as information about the use of variables.

In LISP programs. it is often uscful to be able to determine if the value of a function is
used or if it is called only for its cffects (c.g.. as with an output routine). LISP, unlike many
languages. does not cnforce any distinction between procedures and functions. SCOPE, during
flow analysis. distinguishes between a CALL FOR EFFECT and a CALL FOR VALUE, so that a
programmecr can casily ask about the ways in which a procedure is used. For example, SCOPE
will tell the user whether the value of the procedure GETTL is cver used in response to the
query IS GETTL CALLED FOR VALUE: the NO response indicates that the value returned by

Chapter 2—Uses of SCOPE

GETTL is not used but is merely an accidental byproduct

The reader of the procedure GETTL is left with some questions. One might reasonably
guess that the values BLANK, TAB, NEWLINE, SQUOTE. and DQUOTE arc constants. However,
the command:

«. SHOW WHERE THE VARIABLES USED FREELY BY GETTL ARE SET
will quickly confirm the guess:

{in FORMATINIT :}
(SETQ BLANK (QUOTE %))
(SETQ TAB (QUOTE %))
(SETQ NEWLINE (QUOTE %

)
(SETQ SQUOTE (QUOTE %'))
(SETQ DQUOTE (QUOTE %"))
Apparently, the variables are all set initially in the routine FORMATINIT and never changed
elsewhere.

Side effects

SCOPE analyzes the side effects of procedures during flow analysis, in addition to the
information it collects about procedure calls and the use of variables. SCOPE's side effect
information is also useful to programmers dealing with unfamiliar code because the code’s
.meaning can be understood much more readily if it is possible to be sure that procedures
mentioned have no invisible side-effects. If the programmer is examining a function GETTL
and wants to understand how GETTL’s subfunctions might affect the execution state of the
program, the query WHAT CAN BE CHANGED BY WHICH FUNCTIONS THAT ARE CALLED 8Y
GETTL can be used. This will cause SCOPE to print out a summary of the side effects of any of
the procedures referred to inside GETTL:

SCOPY - CAR

This display indicates that the SKIPBL routine, which is also called by GETTL, has no side
effects but that the SCOPY routine has possible side effects; namely, SCOPY can modify the
CAR of some list, i.e.. perform RPLACA’s. :

Type information

The results of type analysis can also help in the understanding of a poorly documented
procedure; knowing the types of variables provides important clues as to how a program will
execute. In strongly typed languages type declarations are an important kind of documentation,

24

Chapter 2—Uses of SCOPE

but in languages in which type declarations are not often used, it is difficult to determine the
 types of variables or the types of the values returned by procedurcs. Knowing that a value is a
number rather than a list can be a critical piece of information in understanding an unfamiliar
routine. This is cspecially important when the samc language primitive is used to mean
different operations, depending on the type of its arguments, e.g., many programming
languages use the symbol “+" to denote both integer addition and floating point addition
while some even use the same symbol for string concatenation and addition of non-scalar

(array) Quantities.

SCOPE provides type information in several different ways. First. the user can ask SCOPE
about the types of the arguments of a procedurc and the value the procedure returns, e.g.,
GETTL EXPECTS WHICH ARGUMENTS TO BE WHAT will display the types of GETTL's
arguments:

BUF -- LIST
TTL -- LIST

while WHAT TYPE DOES SKIPBL RETURN will show that SKIPBL returns a LIST.

Second, SCOPE's type information can be used to find the type of a given form. The user
can point in the INTERLISP editor to an expression and ask SCOPE to show the type which that
expression is expected to be from its context. as well as the type which it is inferred to be
from its internal structure. For example, the expression (BUF : 1=BLANK) is known to be of
type BOOLEAN. (The type BOOLEAN means an walue which is either NIL or T.)

2.2 CHECKING FOR ERRORS

Errors which involve examination of the whole of a large program are difficult for people
to find, but easy for SCOPE. Examples of errors which SCOPE can detect include the misuse of
free variables and violation of modularity constraints: other. errors which SCOPE could easily be
programmed to detect include uninitalized variables and type violations.

Misuse of dynamic variables

SCOPE can help with the misuse of dynamic variables. a common crror in LISP programs.
Many LISP systems ailow dynamic binding of variables: that is. a procedurc can reference a
variable, and the identity of the referenced variabic is determined by the run-time context in
which the broccdurc is called. While dynamic binding is ‘quite powerful. it often leads to
programming crrors. Indeed. incorrect use of free variables is one of the most common errors
in INTERLISP programs. Errors occur because the interface to a routine (its interactions with

Chapter 2—Uses of SCOPE

the "outside world") includes not only its arguments but also any other data structures to
which it might refer (e.g., properties of atoms or values of free variables). The global program
analysis performed by SCOPE can detect possible misuse of dynamic variables.

For example, suppose that the programmer decides that the set of “blank" characters to
be ig_nored in a command line shouid be a parameter of the FORMAT routine. Then FORMAT,
SKIPBL, and GETTL might be coded as foilows:

(FORMAT
[LAMBDA (STDIN STDOUT BLANKS) (* text formatter main program)
(GETTL
[LAMBDA (BUF TTL) (* copy title from buf to 1))
(while BUF:1 memb BLANKS do BUF-BUF::1)
(SKIPBL
[LAMBDA (BUF) (* skip blanks)

(if BUF:1 memb BLANKS
then (SKIPBL BUF::1)
elsa BUF]) :
This change is fine, unless there is a calling path to SKIPBL along which the variable BLANKS
is not bound. In that case, BLANKS will be uninitialized. SCOPE's "local-free” error check

would detect such a bug.

One problem with SCOPE's error checking is that the error check is only an
approximation. For example, consider the following two functions:

(CALLER
[LAMBDA NIL
(if condition, then (PROG(FREEVAR) (CALLEE))

else (CALLEE])

and

(CALLEE
[LAMBDA NIL)
(if condition, then FREEVAR

else NIL])

Suppose that CALLER is an entry (it is externally accessible), and CALLEE is not In this
situation. SCOPE will report that there is a possible program error because there is a way for
CALLER to reach CALLEE without FREEVAR being bound. However, if condition, implies
condition,, no actual program execution would actually use FREEVAR incorrectly. (Although
this example may seem contrived, analogous but more complex examples have occurred in real
INTERLISP programs.) In this example, it is cvident that any further refinecment of the error

26

Chapter 2—Uses of SCOPE)

check would require mechanical analysis that condition, implies condition)—in general, not a
decidable question.

Experience has shown, however. that SCOPE's error signal. cven when not accurate, is an
important warning for the programmer. Good programming practice dictates that programmers
should avoid constructs which arc crror prone. and thus. even though the above situation is
not technically an error. it is wise for the programmer (o fix it anyway—if SCOPE can't
understand that it is not in error. very often. ncither can programmers.

While dynamic variables are peculiar to LISP systems. a similar kind of analysis is often
useful in other programming languages. For example. the signal mechanism in the MESA
language [Mitchell. ct al. 1978] shares many of the characteristics of dynamic variables in that
the execution context of the procedurc which raises a signal determines which catch phrase will
be invoked. Errors involving signals which might not be caught are similar in nawre to the
errors involving dynamic variables, and an esscmially'« identical error mechanism can be
employed to discover them.

Checking imports and exports

There has been growing recognition that modularization, the constraining of interactions
between separately developed pieces of program. is an effective mechanism for improving the
flexibility and comprehensibility of a system while allowing the shortening of its development
time [Parnas 1972a,b]. [Morris 1973]. While many rccent languages provide mechanisms for
enforcing programmer-declared constraints on the interactions between programs, many older
languages. including LiSP, do not. SCOPE. however, can be used to find violations of user-
declared constraints on the cross reference: that is, the user can declare for a given package
that it exports a set of symbols (they are available externally) and that it imports another set of
symbols. The export of a package is the set of symbols defined internally which are used
outside, the import the set of symbols defined outside which are used inside. The cxport and
import of a package can be computed directly from the cross reference information that SCOPE
stores. If the user has given SCOPE a declaration of exports and imports, SCOPE can check if
any additional cross-package refercnces have been made. and wam the programmer;
alternatively. SCOPE can be uscd to create the initial export and import declarations from the
actual cross-references which cxist The programmer can dccide if the formal separation of
components is worth the cffort In some cases. e.g.. when doing small "throw away” programs,
extra mechanisms for enforcing modularity arc cumbersome. When an interactive mechanism
such as SCOPE is available. the enforcement of such constraints becomes an administrative
decision rather than a technical one. This flexibility to cither enforce constraints or not is
greater than that found in programming systems which automatically enforce modulanty

Chapter 2—Uses of SCOPE

constraints.

Type violations

While SCOPE’s type inference mechanism is designed to infer the types of variables and
procedures, it can also be used for type checking. Type checking provides assurance that the
programmer has not supplied parameters of an incorrect type to a procedure. For examp1e,

v

given the procedure:

(LAMBDA (X)
... (IPLUS X 3)
.. (CAR X) ...]
Scope will infer from the IPLUS that X must be of type NUMBER. When SCOPE sees the
expression (CAR X), it will infer that X must be of type LIST. If the value of X cannot be
changed between the CAR and the IPLUS, then SCOPE will deduce that X must be both a
NUMBER and a LIST; however, there is no value which is in the intersection of those two
types. Thus, SCOPE will deduce that X is of type NONE. Type-checking thus can be performed
by checking the resuits of type inference for items whose type is NONE.

23 CODE IMPROVEMENTS

One application of the kind of information which SCOPE can provide is code optimization
performed by a compiler. In this applicatdon, SCOPE provides information directly to the
compiler rather than to a programmer. There are three ways in which SCOPE can help improve
the quality of compiled code. First, SCOPE’s flow and side effect information can be used when
performing code improvements; many common program optimizations have preconditions
which are expressed in terms of the effects and uses of the expressions involved. Second, the
type information which SCOPE derives can be used when compiling. Third, SCOPE can help the
programmer organize his program into blocks and to check for errors in compiler declarations.
These applications are explained below.

Code transformations

There are many different aspects to code optimization. Tradeoffs exist for any given
optimization between how much it costs to implement and the amount of improvement
possible; in some situations, code optimization is not worth while. Many transformations for
code improvement (in optimizing compilers and clsewhere) can be expressed in terms of code
movement; that is, given two pieces of program, certain optimizations can be performed if it
does not matter in which order the pieces are evaluated ([Allen & Cocke 1971), [Aho &

Chapter 2—Uses of SCOPE

Ullman 1977]). While it is difficult to accurately characterize when the order of evaluation of
two cxpressions can be exchanged. there is an approximation which works quite well: it is
permissible to switch the order of evaluation of two forms if the effects of one are independent
of the usage of the other. SCOPE’s cffect and usage analysis compdtcs information which could
be used by an optimizing compiler when performing code transformations. Given two
expressions e, and e,. e, followed by e, is equivalent to e, followed by e, when the effects
of e, arc disjoint from the usage of e, and vice versa: ic.. ncither can change something the
other uses.

For cxample, the program fragment:

(VAL~(GETVAL BUF))
(CT~(COMTYP BUF))
(DOCOMMAND CT VAL)

can be rewritten as
(DOCOMMAND (COMTYP BUF) (GETVAL BUF))

if the variables VAL and CT are not used subsequently in the program (or by DOCOMMAND)
and the expressions (COMTYP BUF) and (GETVAL BUF) can be exchanged. SCOPE's
information that COMTYP has no effects, that the GETVAL cannot change anything used by
COMTYP, and that DOCOMMAND does not use VAL or CT freely means that the transformation

can be made.

Using type declarations

Type declarations are used in many programming languages to aid the compiler in
zvnerating efficient code for various constructs in the programming language. This is especially
.~ue for constructs which involve operators which are "overloaded”, i.e.. which have different
meanings depending on the types of the operands. For example, in many programming
languages, the operator "+" is used for addition, of a’ variety of'.data types.

If the type of the opcrands is known at compile time, the compiler can generate more
efficient code, e.g., linking the code directly to the specific operaton which is requested, rather
than a more complicated routinc which must test the nature of its arguments before

proceeding.
Block compilation

Scorg's information can be used to improve program performance by aiding the
programmer in scparating a program into tighdy coupled componcnts. INTERLISP, as well as

Chapter 2—Uses of SCOPE

many other systems, provides facilities for grouping together a set of code. Generally, calls
within a block are much less expensive than calls across block boundaries, and often blocks are
allocated in contiguous memory spaces and automatic memory management (reats them as a
unit. Given a large prdgram, SCOPE is quite useful when attempting to separate programs into
blocks because of its capabilities of quickly showing the inter-block flow structures. From
SCOPE's flow properties, it is possibie to find connected components of a program—subsets of
the procedures which have no interactions with any other procedure.

In INTERLISP, SCOPE can provide additional assistance. The INTERLISP block coinpiler
makes certain restrictions on constructs which are legal inside blocks; SCOPE's CHEGK
command will check for violadon of those constraints.

Chapter 3—Characteristics of SCOPE’s Representation System

SCOPE remembers facts about the programs that it analyzes. A system for remembering
facts is often called a “representation framework”. a scaffolding into which facts can be placed.
In general, a "representation” is a distillation of aspects of the world. Suppose a "snapshot” of
the world in a particular state is taken at some instant in time. Call this statc worid-state.
Through somc mapping M. a representation (call it knowledge-state) is crcated which
corresponds to world-state. Knowledge-state corrcsponds with world-state in the sense
that questions about world-state may be answered by direct observation of the world state
or by questioning of the corresponding knowledge-state (Fig. 3-1).

M
worid-state > Knowledge-state
observation ask question
v M’ v
Result > Answer

Figure 3-1: Mapping between world and knowledge states (from (Bobrow 1975)

In SCOPE. the world which is being modeled is the program under development; its state
is the current version of the program as it is being modified by the programmer (Fig. 3-2).

- analysis .
pro > SCOPE'’s data base
observation, execution query
\" : v
Result > Answer

Figure 3-2: Mupping between program and SCOPE's data base

Much recent work in artificial intelligence has focused on devecioping representation
systems for encoding knowledge about the rcal world within a computer system. Several lines
of rescarch have concentrated on developing general purpose representation systems which
provide a ready-made framework for representng facts, performing infcrences bascd on those
facts. and changing the memory of the system based on the changes to the real world: general
purpose representation systems include Kri [Bobrow & Winograd 1976]. Ki.onE [Brachman

n

Chapter 3—Characteristics of SCOPIs Representation System

1978], and FRL [Roberts & Goldstein 1977]).

Real world representation systems encounter many difficult representation problems. The
small domain of simple predicate facts about programs with which SCOPE deals is much more
specialized and thus it was possible to build a special representation system to hold SCOPE’s
|

Bobrow [1975] characterizes rcprescntation systems along several different dimensions;
SCOPE's representation system will be described in terms of the dimensions outlined below:

knowledge about its world.

* Units and relations: What is being represented? How do objects and relationships in the
world correspond to units and relations in the model?

* [Exhaustiveness: Does the model represent not only the truth, but the whole truth?

* Operational correspondence: In what ways do the operations in the represcntation
correspond to actions in the world?

* [nference: How can facts be added to the knowledge state without further input from the
world?

* Adccess: How are units and structures linked to provide access to appropriate facts?

* Self-awareness: What knowledge does a system have explicitly about its own structure and
operation?

3.1 UNITS AND RELATIONS

The objects with which SCOPE deals are pieces of programs, and in particular, definitions
of symbols. The “grain” of SCOPE's knowledge is deliberately coarse; SCOPE does not model
properties of individual statcments in the program, the micro-syntax of symbols, the presence
of formatting information, etc. SCOPE knows individual facts about procedures, variables, data
structures, and other pieces of a program which can be assigned as the definition of symbols.

The knowledge SCOPE has about definitions of symbols is a set of properties—simple
relations dcrivcd' from analysis of the picces. The relations form a class of “approximate
assertions” [Cousot & Cousot 1979, Wegbreit 1975b] which hold about individual pieces of
programs. Relations are of the form R{sym,,...,sym . i-e. a predicate defined on a set of
symbols. For exampic, a simple flow relation is MayCall; the asscrtion MayCall[A,B] holds
if the proccdure B can be called by the procedure A. Another relation derived from type-
analysis is Returns: Returns{F,T] holds if the value of the function F is of type T.
Different relations deal with different kinds of information. For the most part. relations in

Chapter 3—Characteristics of SCOPE's Representation System

ScoPe are 1, 2 or 3 place predicates. For example. a onc-place predicate might be
Recursive[F], meaning that the function F can call el The predicate
ExpectsArg{F,A,T] is a three-placc predicate which means that the function F expects its
argument A to be of type T. (Appendix | conuins a complete list of SCOPE's rclations.)

The summary information which the analysis routines provide is of a highly structured
and restricted nature, e.g.. arbitrary verification conditions could not be represented in this
formalism. This is an important diffcrence between SCOPE and verification systems for proving
programs correct; most verification systems can represent. for example. arbitrary quantified
predicate calculus equations in their intcrnal representation of program properties.

3.2 EXHAUSTIVENESS

A representation system is exhaustive with respect to a property if, for any object, the
property is always stored explicitly with the object whenever the object has the property. In a
‘' non-exhaustive represcntation system, the absence of a fact in the knowledge base does not
signify that the fact is not true. The important distinction is whether it is possible to make
inferences about the absence of information.

A related characteristic of representation systems is its currency; that is, whether the
knowledge base is always “up to date”. A system can be exhaustive even if it only will contain
the "whole truth” after some finite amount of computation.

SCOPE's representation system is exhaustive. It is possible to make inferences based on the
absence of a property in SCOPE's data base and. in fact. for most applications those inferences
are the most common. For example, the relation MayCall(A,B] denotes that a call 10 A may
result in a call to B: however. in many applications it is most useful to know what things A

* does not cail

However. SCOPE's knowledge is hardly ever "up to date”. Thus, until some query is made
which requircs knowing about calling relations which might involve A. no analysis of A will be
performed: if A changes. then re-analysis will be postponed until necessary. In this way, SCOPE
avoids the éomputational problems normally found in exhaustive represcntation systems which -
rcqi:ire all information to be up to date.

3.3 OPERATIONAL. CORRESPONDENCE

In a general ropresentation system. operations on the modcl-state are made to reflect

13

Chapter 3—=Characteristics of SCOPL's Representation System

changes in the world. A major design problem in modeling actions is updating the
representation with respect to a chain of changes caused by a single action—situations where
one change causes another change which in turn causes a third.

In the world of programs. actions are program changes. SCOPE modifes its state of
knowledge about a program to reflect changes to the program by propagation of changes from
ong $COPE relation to another. When remembered information is the result of computations
using values which may change. it is necessary ‘o propagate the changes. One of the most
important features of SCOPE is its ability to maintin the illusion that what it knows always
reflects the current state of a program. cven during an interactive cditjng and debugging
session. In this case, "illusion” is not being used in a pcjorative sense: rather, it is an cssential
property. To maintain the illusion of being up t date, SCOPE detects when the definition of a
symbol has changed. and marks the data base appropriatcly. When a question is asked which
requires a particular fact, SCOPE first checks to sec if the information in its data base is no
longer valid, and performs whatever rcanalysis is necessary before answering the question.

The concern for change propagation is actually one of computational complexity. As
Moriconi [1977] points out when describing his incremental verification system, incremental
systems respond to changes by cnsuring that the final problem solution is consistent and by
keeping intact as -much still-valid work as practical. Both the user and system perspective on
how this happens is important. From the user’s viewpoint, the system keeps intact still-valid
~work without redoing previous work. In actuality.. however, a limited amount of reprocessing
may be desirable. '

There is a spectrum of ways in which program analysis systems can keep intact still-valid
work. At one end of the spectrum is the most straightforward way to respond to
changes—simply redo everything. Although this "batch” approach conveys an incremental view
to the user, it is often too inefficient. For cxample, answering a simple cross refercnce question
WHO CALLS FOO after a change would require re-scanning the entire program—much too
costly for a very large program. The approach at the ‘other end of the spectrum would be to
isolate the exact impact of changes and not redo any still-valid previous work. This too can be
highly inefficient since it may require as much work (or more) to figure out how to modify the
data that it would to recompute it)

The strategy employed by SCOPE lies somewhere between these cndpoints. Programs in
INTERLISP fall naturally into "chunks'—namely, definitions of symbols. ¢.g., the definitions of
procedures. data structure types. macros. When any part of a definition changes, Scope
recomputes any information which depends on that definition: SCOPE does not note what the

change was.

Chapter 3=Characteristics of SCOPE's Representation System

When a changed definition is rcanalyzed, SCOPE notices whether the information
computed has changed (by comparing the result of the analysis against the previous
information in the data base). If the computed information has changed, the changes are
propagated to any relations which might depend on the changed relations.

Re-analysis and change propagation is triggcrgd by queries to SCOPE which require the

information to be up-to-date. SCOPE limits the kinds of analysis it performs in response to a.

query to those that are necessary to answer the query.

For example, suppose the user odéin"ally had the following set of proccdufes with side
effects: :
(F1 [LAMBDA (X Y) (X:FIELD1 « Y)])
(F2 [LAMBDA (X Y) (X:FIELD2 « Y) (Y:FIELD1 « 3) (F1 X 3)])
(F3 [LAMBDA (A B) ... (F2 A B) ...]).
SCOPE's side effect summary information indicates that procedure F1 can change a FIELD1
element, procedure F2 can change FIELD1 and FIELD2, and F3 the same.

I the user edits F1, it is necessary to recompute all of the properties which depend on
the definition of F1. Suppose the programmer changed F1's definition to be

(F1 [LAMBDA (X Y) (X:FIELD2 « Y)]).

When asked any question about side effects. SCOPE first checks to see if its knowledge is
up to date. In this case, it knows that F1’s side effect information is possibly wrong, since F1
has been edited. When SCOPE reanalyzes F1, it notices that the set of side effects of F1 have
been changed too. Because side effect information is propagated during analysis, SCOPE knows
that its side effect information for F2 (and for any other procedure which calls F1) is possibly
incorrect as well, and must be reanalyzed. However, when SCOPE reanalyzes F2, it notes that
the description of the possible side effects of F2 have not changed, and thus the change need
not be propagated; there is no.reason to reanalyze F3.)

3.4 INFERENCE

The relations defined by SCOPE's analysis routines are. for the most part, indcpendent of
each other, in the sense that onc does not determine any other. For example, the Call cross
reference relation. which says that one procedurc mentions another, cannot be deduced from
any combination of other relations. There arc some cases. however, wherc SCOPE employs
translation rules which definc one relation in terms of others. There are (wo reasons why the
capability to define onc relation in terms of others is important. First, somec of SCOPE's

35

———

Chapter 3—Characteristics of SCOPE’s Representation System

relations which are of interest to the user are not output directly by the analysis routines.
Second, this capability allows for a reduction in the size of SCOPE's data base.

The particular facts that a user might wish to know are not necessarily the facts which
SCOPE's analysis routines represent. For example. the SCOPE relation NotLocalFree is used
for detecting errors involving dynamic variables. (NotLocalFree{VAR] means that VAR is
used in a situation where it is possibly not dynamically bound.) NotLocalFree is not
computed directly from the analysis routines. but rather is computed from the relation Entry
and the flow analysis rclation RefFree. (Entry[FN] means that the user has declared FN to
be an externally available procedure; RefFree[FN,VAR] means that a call to FN can result
in a frce use of VAR.)

A relation which is defined in terms of other relations is referred to in the data base
literature as a view: the important characteristic of views is that the user of the data base does
not know which information is stored directly, and which is derived from the stored
information. When applications arc independent of the format of the stored information,
changing the format of the stored information or adding new information is simplified.

SCOPE implements views by providing the ability to define new relationships in terms of
the old. For example, the relation MightSetUnkown[FN] (which means that FN can
perform an assignment to a variable whose identity is only known at run-time) is defined as
the disjunction of several MayCail relations. (There are nine primitive functions in INTERLISP
which perform the assignment of variables whose identity is only determined at run-time.) The
relation 'MayCall (which means that one procedure can reach another) is defined as the
transitive closure of the flow relation MayCall.

One parameter of a view is an indication whether the new relation should be recomputed
every time a request is made or if it should be remembered (and forgotten if the information
from which it was computed changes). For example. the NotLocalFree relation is not stored
but is computed when necessary. On the other hand, SCOPE's 'MayCall relation, once
computed, is remembered between SCOPE queries (until a change occurs which invalidates it).

The choice between storing information and recomputing it affects the cfficiency and
storage space of the system. Several factors enter in making the decision. The major
considerations are the relative frequency of a relation changing with respect to the frequency
that it is intcrrogated, and the simplicity of computing the relation. NotLocalFree is simple
to compute from RefFree and Entry and so is not stored dircctly. RefFree is not as simple
to compute and is interrogated frequently with respect to how often it changes. and so is
stored. !MayCall is difficult to compute but is also asked about infrequently: it is stored, but

Chapter 3~ haracteristics of SCOPE’s Representation System

if a change occurs which might affect it the entire relation is discarded.

Facts are added to SCOPE's data basc without further program analysis by deducing
relations according to its rclation definition tables. SCOPY: does not employ a general-purpose
inference mechanism. but rather simplified inference techniques. because the assertions have a
particularly simple form. The procedures for, computing defined relations are attached to the
rclations which arc so defined. In addition. when a new relation is defined. the dependencies
are propagated so that each relation has an ‘associated tble of other relations which must be

checked after changes.

"~ 3.5 ACCEss

An important feature of a representation system is the mechanism by which information
can be retrieved. General represcntation systems often conuin mechanisms which help in
improving the cfficiency of question answering by attachment of links in critical areas.

In SCOPE. the domain is simple enough that the straightforward model of relational data
base retrieval could be used as the way in which questions are answered. There is little need
for matching (which might be needed to handle queries now outside of SCOPE's capabilities,
like "which functions use successive approximation” [cf. Rich & Shrobe 1976]) or for many of
the other complications found in general-purpose representation systems.

The mechanism by which information is retrieved from SCOPE’s data base is a query.
SCOPE’s intermediate query language is described in Appendix 11I. Generally, a query consists
of a predicate calculus equation which the data base will instantiate or reject.

3.6 SELF AWARENESS

The final relevant dimension along which represcntation systems are often placed is the
dimension of sclf-awareness—how much does the represcntation system know about its own
operations. SCOPE is not self-aware, in the sense that there are any relations which describe the
state of its own data base (of course. SCOPE has been used to analyze SCOPE, but it was not
aware that it was operating on itscif). There are two places. however, where SCOPE contains
information about its own state of knowledge and processing. First, in order to improve the
efficiency of query handling. SCOPE has a rough idea of the efficicncy of different ways of
processing querics. (Query optimization in SCOPE is discussed in Chapter 6.) Sccond, SCOPE
*xnows what it docsn’t know", i.c.. it is able to decide. when answering a question, that the
information stored is out of date or non-cxistent—a minor form of self awarencss.

»

Chapter 3—~Characteristics of SCOPE's Representation System

3.7 CONCLUSIONS

A system such as SCOPE which attempts to encode knowledge about another systemn must
naturally take a simplistic and incomplete view of the world it is attempting to model. No
description can completely encapsulate all that is knowable nor is this a reasonable goal, for
the reduction of information content within the representation is both a strength and a
weakness. The distillation of a few interesting facts from all pc;ssible facts can reduce an
information management problem to a tractable size. So it is with the view of programs which
SCOPE embodies: the view of programs and knowledge about them is intentionally and
necessarily limited. '

Nevertheless. SCOPE's representation framework is adequate for handling the jobs to
which it has been applied. The notion of simple relations which involve the definition of
symbols has been adequate to summarize the results of cross-reference, type analysis, and flow
analysis (although not the general flow-analysis symbolic expressions of Rosen [1979D. The
inference and access mechanisms have been powerful enough to provide useful information to
programmers about their programs.

18

Chapter 4—What SCOPE Knows About Programs

ScopPE collects information about programs while anaiyzing them. This chapter discusses
in detail the different kinds of information SCOPE collects and the meaning of the information.
The program propertics known to SCOPE fall roughly into four categorics—cross reference,
data flow. type. and filing—cach of which is discussed below. A comprchensive list of the -
program properties is in Appendix I '

4.1 CROSS REFERENCE

Cross reference information is information about the location of references to symbols. A
“reference” is a mention of a symbol in a way which indicates some dependence on the
meaning of the symbol. Reference information is often computed using simple text processing
techniques. However. reference information computed this way is not always accurate because
cross reference information is not just a textual property of the program—a reference may not
‘be directly evident from the program's text For example, in INTERLISP (and in other languages
which allow macros) "hidden™ references can occur because of macro expansions; it is
necessary to parse the program and expand macros before the references become evident

There are two applications of cross reference which may help clarify its meaning. First,
reference information can be used to climinate obsolcte pieces of a program. If X has a
definition, no other definition refers to X, and X is not externally available, then X’s definition
has no effect on the meaning of the program and can be removed. Second, reference
information can be used to find the repercussions of a change to a piece of a program. .In

" order for the programmer to be aware of the effect of a change. those parts of the program
which refer to the changed parts must be checked for interactions (a more rigorous check for
interactions is usually not possible). If a definition changes. only definitions which refer to the
changed definition will be affected. Of course, second order effects must also:bé considered; if
one part of the program changes, it may cause a chain of cffects which reaches many other
parts. Examination of the first order references may reveal to the programmer which references

require further tracing.

Cross reference in INTERLISP

INTERLISP has many different types of symbol dcfinitions (c.g.. functions. record types,
macros. cdit commands) and cach possible interaction between one type of symbol and another
must be represented by a scparate relauon. SCOPE matintains several relations which denote
different kinds of references. A reference to a procedure is denoted by the Call relation. A

39

Chapter 4—What SCOPE, Knows Ahout Programs :

reference to a variable is denoted by the Use relation. References to records (data structures)
and their ficlds are denoted by the UseAsRecord and UseAsField relations respectively.
The relation FieldOf between a record and a ficld means that the field is defined as part of
the record. Other cross reference relations analyzed by SCOPE are Editinvoke, EditCall,
TopLevelCall, MacroCall, and FileCalil.

L)
Obstructions to exact information

\

Cross reference in INTERLISP is not as simple as it niight seern at first glance because
some- INTERLISP features interfere with the gathering of exact cross reference information;
when the features are used the dependence of onc piece of program on another is not evident
from the text of the code. There are two categories of features in INTERLISP which obstruct
exact information.

First, there are those features which, when misused. will cause programs not to work in
the way one normally expects: the INTERLISP interrupt system. which can cause arbitrary user-
defined computations to occur at arbitrary places in the computation, (2) the INTERLISP error-
handling mechanism, which can be modified by the programmer to redefine what happens at
what would normally be an error, and (3) those facilities in INTERLISP which allow
programmers to dynamically modify their programs (e.g.. PUTD, DEFINE, or EDITF). The
answers SCOPE gives are made with the implicit assumption that these features are not used to
change existing pieces of program.

The second type of obstruction to exact information involves the ability in LISP to invoke
arbitrary procedures or assign arbitrary variables. For example, given a call to the function
EVAL. determining what definitions might be referred to in the execution of the call is
difficult. Fortunately, only a few of the primitives in the foundations of INTERLISP contribute
to inaccurate cross reference information, and these primitives are used infrequently. SCOPE
notes when these primitives are used. and is able to warn the user when its analysis may be

incomplete. : .

4.2 FLOW INFORMATION

Data flow analysis has been studied extensively in the litcrature of global program
optimization. Exccution of a program normally implics the input of data, operations on it, and
the output of the resuits of these operations in a scquence dectermined by the program and the
data. The scquence of events is a flow of data from input to output. Data flow information is
derived not from an exccution of the program being analyzed but rather from a static analysis
of the program. It is a summary of information available at specific program statcments

40

d
} i
Chapter 4=What SCOPF. Knows Ahout Programs

derived by propagating the semantics of individual statecments through the program in a
manner which reflects the control structure.

In procedural languages. it is necessary to summarize the flow properties of procedure
bodies so that the summary information can be used at the point of call. There actually are
many differcnt summary properties of programs- which can be derived using flow analysis
techniques. Flow propertics include possibic proccdixrc calling scquences. use of variables, and
side effects. The general techniques for computing flow informaton remain the same
indcpendent of the kind of information being computed.

Side effects

A particular data flow property relates to side effects. The execution of a procedure can
cause changes to the run-time state of the program in addition to any values which might be
directly reported as a result. These changes arc called side cffects (presumably to distinguish
them from the main cffects of a program). Side effects present serious problems in program
understanding since modifications .of shared data structurcs allow global interactions which are
difficult to understand, even for experienced programmers. In addition, inference of the types
of complex structures requires knowledge of the possible side effects of a procedure call. For

example, in the program

LSTe<A P+Q>
BUF~(SKIPUNTIL BUF LST)

YeLST:2

it is only possible to infer that Y is an integer if SKIPUNTIL can be guaranteed not to modify
the COR field of LST.

Difference between flow and cross reference properties

Flow properties may resemble cross reference propérties even though their interpretation
resss on different foundations. For cxample, the mention of one procedure by another is an
important cross reference property: the possibility that onc procédurc might invoke another
dircctly during cxccution is a flow property. Cross reference is more inclusive that flow; there
are more ways in which a procedure can be mentioned than in a direct call (c.g.. the situation
of one procedurce passing another as an argument). Flow properties thus reflect charactenistics
of the set of possible exccutions of a picce of program rather than the dependency of the
picces. However. in many large programs. there is an cxact correspondence of the cross
reference and flow relations between procedures.

41

{
Chagter 4—What SCOPY, Knows About Programs

Flow information for INTERLISP

The INTERLISP flow properties of which SCOPE keeps track include procedure calls
~+AayCall). variable usc (Bind, Ref. and Set). use of records and ficlds (Fetch, Replace,
and Create). and general information about data structure use and effects (Uses, Affects).
This set of flow properties, while not. egchausdve, is sufficient for the current applications of
SCOPE. : i

Because LISP is primarily an applicative language which encourages short procedures, the
emphasis in data flow analysis techniques differs from that of more sequentially organized
languages such as FORTRAN and ALGOL. Because procedure calls and recursive procedures are
common, it is important to deal correctly with those constructs; because long sequences of
intertwined GO's are uncommon, it is possible to allow a great deal of imprecision when those
constructs are encountered. '

Variable use

SCOPE’s flow information includes relations which describe the way in which procedures
use variables. Variables in INTERLISP can be bound in a PROG or LAMBDA, either internally to
a function or as an argument. For flow analysis, it is necessary to split functions up into
“frames” which correspond to PROG or LAMBDA bindings. For example, the program

. (cOM2

[LAMBDA (BUF)
(PROG ((W (WIDTH BUF)) (BLANKS (LIST TAB SPACE)))
... (COM3 W 3) ...]) _
binds the variable BUF in its top level frame, and the variables W and BLANKS in an interior

frame.

SCOPE generates names for the interior frames so that they can be identified; in this case,
the top frame is the name of the.fiinction COM2, while the first frame is called COM2:1. The
SubFrame relation holds between a frame and its subframes, eg.,
SubFrame[COM2,COM2: 1]. The SubFrame relation is built-in in SCOPE, ie., ScopE does
not need to store any data to represent it)

SCOPE separates flow information felating to procedure calls (MayCall) and variable use
(Bind, Ref. and Set) for each frame. Thus. SCOPE knows that the Bind, relation holds
between COM2 and BUF. and also between CZi2:1 and W and BLANKS. SCOPE is able to tell
that the call to COM3 in COMZ will occur under the COM2: 1 frame. i.c., at a time when W and
BLANKS are bound. This information is necessary to detcct possible misuse of free variables; if
the call to COM3 occurred outside of the binding of BLANKS and if COM3 uscs BLANKS freely,

42

Chapter 4—What SCOPY. Knows About Programs

there would be a possible free variable error.

Although flow information is computed scparately for cach frame, most applications only
require information on how the entirc procedure behaves. In general, the summary flow
behavior for a procedure can be computed from the specific information for its frames. For
example, the MayCall relation can bg formally defined as SubFrame” ° MaycCail, the
composition of the closure of SubFrame with MayCall. Thus. MayCall[COM2Z, COM3]
holds because SubFrame[COM2,COM2:1] and MayCail[COM2:1.COM3] hold.

Side effects in INTERLISP

Another kind of flow information SCOPE maintains is a characterization of the effects of a
procedure as well as the external state upon which the procedure relics. This characterization
consists of a finite set of elements: each element describes some part of the state of the
program exccution which can be changed or used. The INTERLISP Virtual Machine definition
[Moore 1976] defines "fields” which are clements of data structures in INTERLISP. Some of
these fields are directly accessible to the programmer, e.g.. CAR and CDR fields of a CONS cell
or the PROPLIST field of an atom, while some arc only accessibie indirectly, e.g., the ENO-
OF-FILE field of an open file or the CONSCOUNT field for the system. For each primitive -
operation in INTERLISP, SCOPE has a description of the fields the primitive might use and the
fields it might modify. For example. RPLACA modifies the CAR ficld while CAR uses the CAR
field of a CONS-cell: GETPROP uses PROPLIST, CAR, and CDR, SETFILEPTR modifies a
file's POSITION and FILEPOINTER, while PRINT both uses and modifies POSITION and
FILEPOINTER as well as modifying FILECONTENTS. (To reduce the burden of creating the
inital data base of uses and effects, some distinct fields are grouped together in SCOPE’s initial
data base. For example, SCOPE does not distinguish between any of the different ficlds in a
readtable. In addition, a number of fields are grouped together under OTHER. Finally, there is
a use/effect catcgory called ANY which subsumes every other field. This is uscd for primitives
which can have unknown side effects on the program, e.g., the INTERLISP-10 functio_n CLOSER

¢an modify arbitrary memory locations.)

SCOPE's characterization of side effects is very rough. For example. SCOPE makes no
distinction bectween one CAR ficild and another, because therc is no analysis of possible
structure sharing. SCOPE assumecs that any two structurcs can be shared. However, this
characterization is sufficient for cnabling many compiler optmizations [Stcele 1978}, and also

presents uscful program documcntauon.

Unusual control structures

SCOPL's analysis of program flow does not deal with some of the more unusual control

43

Chapter 4—What SCOPE Knows About Programs

structures allowed in INTERLISP. For example, SCOPE's flow analysis routines do not currently
deal with ERﬁORSET used in tandem with intentional errors or with RETFROM. During
analysis, SCOPE keeps a relation UsesUnusualControiStructures, so that ~when
responding to a request to check for programming crrors, SCOPE can warn when its analysis
might be incorrect. SCOPE also. maintains the relations MightSetUnknown and
MightCaliUnknown so that it is always known when an arbitrary variable might be set or an
arbitrary form evaluated; these relations are used to avoid making compiler transformations
which might be incorrect and to temper error messages. For example, if a procedure binds a
variable which is apparently not uscd by any routine called beneath it, but there is some path
to a procedure which MightCallUnknown, then SCOPE can add a caution (0 its warning
message which indicates that the unknown procedure might be the one which uses the given
variable. Some flow analysis algorithms in the literature are able to analyze flow relations more
accurately in the presence of procedure valued variables. In INTERLISP, however, the cases
where procedure variables are used and where the range of values can be determined for those
procedures is actually quite small

4.3 TYPE INFORMATION

The definition of "type inference” as it is used in the literature depends on whether the
language for which the inference is being performed is strongly typed or allows dynamic types.
For strongly typed languages. a variable or function value can be of one and only one type;
further, there is a predefined finite set of existing types. Type inference in strongly typed
languages is the process of choosing the correct type for each variable or procedure. Languages
like LISP, SETL, and APL, however, allow dynamic types. Such languages do not a priori have
typed variables, but allow any variable to assume any value. For example, in LiSP the same
variable can be used both to store a list at one time and a number at another. The "type” of a
variable is thus similar to a range spcc:ﬁcauon An analogy to type inference in dynamically
typed languages would be the specification, in a FORTRAN program, of the numeric ranges of
values for all of the variables. For some variables, it is not possible to draw any inferences
about the range of values (the values can assume any value allowed by the implementation)
while other variables can be restricted to a small range. Type infercnce of this nature can be
performed in a heuristic manner: Since “any value” is a legitimate range specification, a
legitimate (but useless) result of type inference might be that every valuc is within the range
“any value”. The goal of type inference is to improve the restrictions assigned to values as
much as is computationally feasible. '

Chapter +=What SCOPE Kaows About Programs

Type information in INTERLISP

When SCOPE analyzes a program. it dectermincs sub-ranges within which values must
- remain in order for the program to cxecute correctly. Summary type information for a function
includes the range of values expected for each argument (ExpectsArg). the range of values
which might be rcturned (Returns). the range of valucs assigned to free variables during its
exccution (SetFreeType). and the range of values cxpected of any free variables
(ExpectsFree).

In INTERLISP, the structure of the set of values that a variable can assume is much more
complex than a simple number linc and the descriptions for sets of values are thus necessarily
more complex. As with side effccts. the characterization of the ranges of values for variables
and procedures can be described in a multitude of ways: while any description scheme can be
refincd, the undecidable property of range analysis prevents any description from being
completely accurate. The type descriptions are expressed using an extension of INTERLISP’s
DECL package [Teitelman et al. 1978, p. 24.53] '

Briefly, the type description language allows range descriptions to be a specific list of
constants: for example, a value which is cither NIL or T can be described as (MEMQ NIL T).
The names of INTERLISP's basic data types can be used as type descriptions: for example,
floating point numbers are described by FLOATP and litcral atoms by LITATOM. A type
description can provide a predicate which elements of the type must satisfy; for example,
(LITATOM SATISFIES (NTHCHAR X 1)='A) denotes the set of literal atoms whose first
character is the letter "A". Type descriptions can be a set of alternative types; for example,
(ONEOF LITATOM FLOATP) denotes the set of values which are either literal atoms or
floating point numbers. A complex type can be "named” and the name uscd interchangably
with its definition; for example, NUMBER is dcfined as (ONEOF FLOATP FIXP)-—either a
floating or a fixed point number.) Type descriptions for composite data structures (e.g., records
and CONS cells) can include restrictions on the types of the ficlds; for cxample, (LISTP WITH
CAR FLOATP) describes list cells whose CAR field contains a floating point number. Type
declarations can be rccursive; for example LIST, the type of "proper” lists, is declared as
(LISTP WITH CDR LIST). The type mechanism allows for abstract type declarations via the
SUBTYPE mcchanism: for example, the declaraton of FILENAME is mcrely (SUBTYPE.
LITATOM). This declaration says that a FILENAME is a kind of a literal atom, without giving
any other information about the restriction. The type mechanism can deduce that if X is a file
name. it is also a literal atom. However, the importance of a FILENAME is that certain
INTERLISP primitives cxp-cct to be passcd a filename (specifically the input-output functions).
Finally. thc type ANY subsumes all other types. and NONE dcenotes the cmpty, set

45

Chapter 4—What SCOPE Knows About Programs

4.4 FILING PROPERTIES

The word "filing” is used here to denote those organizational' properties of the program
which are independent of the meaning of the program. e.g., which piece was edited by whom
at what time. These properties have littie to do with the meaning of the program, but rather
about the process with which the program is created and maintained. '

Filing in INTERLISP

Filing properties in INTERLISP include those which the progammer has communicated to
SCOPE or the programming system; these include properties about which pieces of the program
belong in which file (the Contain relation) as well as information about which piece was
edited by whom at what time (the Edited relation). In addition. the Entry relation, which
describes a declaration the user has made about his program, is classed under filing.

Proper interpretation of filing information also has subtle complications. For example, the
SCOPE relation Contain denotes the relation between a file and the names which it defines. If
Contain[FlLE,NAME,DEFTYPE] is the relaton which denotes that definition of NAME as a
DEFTYPE is stored on the file named FILE, there are several different principles which might
be implied:

(1) Loading FILE will modify the definition of NAME as a DEFTYPE.

(2) Loading FILE will cause NAME's definition to be completely specified. (No part of
NAME's definition is not on FILE.)

(3) Changing the definition of NAME as a DEFTYPE means that previous external
representations of FILE are obsolete.

(4) FILE contains the entire current definition of NAME.

Relation (4) is the most common instance of Contain in the INTERLISP file package and -
also is the most straightforward; (4) implies that (1), (2), and (3) hold.

These different meanings for Contain are mutually independent; all combinations of (1),
(2) and (3) can be achieved in the INTERLISP file package. Representing these different
relations complicates SCOPE's interface to the file package.

Chapter 4—What SCOPY. Knows About Programs

4.5 CONCLUSIONS

The program properties with which SCOPE deals are by no means all-inclusive; the
possible summary propcrtes of programs are without number. The choices for SCOPE were
madc because they met particular needs and showed the varicty of program properties which
could be dealt with in a single representation scheme. In each instance, the information SCOPE
deals with has the characteristic that corrcctg (;Jut possibly inaccurate) information can be
gathered for any program; increasing accuracy is available at additional computational expense.

47

Chapter 5—Program Analysis Techniques

SCOPE employs several different kinds of analysis; each kind of analysis is performed by a
separate analysis module. This chapter discusses the mcthods of program analysis (in general
and as performed by SCOPE) and somec of the problems invoived.

In general, program analysis takes a picce of program, and computes a set of relations
which hold for that piece. Analysis begins with a parse trec of the piéi:c‘ of program being
analyzed. Each analysis routine “walks down" the parse tree, generating new assertions at each
node in the tree. It is sometimes necessary to do some global searching (e.g.. to find all of the
labels in a block) and often neccessary to keep track of "state”. In many respects, analysis
resembles symbolic exccution: the analysis routines trace through the code as an interpreter
might, although all alternatve branches are explored.

In LIsP, the parse trees for programs are easily obtained as the S-expression
representation of the program. LISP is one of the few programming languages which has a
natural representation of programs as data. For other languages. more complicated analysis is
necessary to obtain a parse tree. Furthermore, the basic syntax for LISP is very simple; LIsp
programs consist of nested “forms” where each form is a list and the head of the list is either 2
special token or a procedure name.

5.1 CROSS REFERENCE ANALYSIS

For cross reference analysis, the parse tree gives indications of the use and identity of
symbols. Even in languages like ALGOL it is simple to distinguish a procedure reference,
although in some languages there might be ambiguity, e.g., in FORTRAN it is not possible to
immediately tell the difference between a reference to a global array and a function call.

Cross reference analysis in SCOPE

While SCOPE uses the basic method of recursive descent analysis of the parse trees of LISP
programs, special problems are encountered. Through the years, LISP systems and INTERLISP in
particular have acquired many syntactic extensions. There are several ways that syntactic
extensions have been implemented: the way in which they were implemented affects the
complexity of analyzing them. Some syntactic extensions were implemented as "macros”, e.g.,
one syntactic construct would have a description of how it was to be translated in terms of
regular LISP expressions. In such a case. SCOPE's analysis can merely translate and analyze the
translation. On the nther hand. some of the extensions, e.g.. the LISP constructs PROG, AND,
OR, arc implemented using "FEXPRs" (special forms for which the arguments arc passed
unevaluated), with the LiSP compiler cxtended to handle them as special cases. In general,

48

(hapter S={"rogram Analysis Techniques

three choices arc available for handling syntactic additions: (1) cxtend the analysis routines to
include knowledge of the additions: (2) treat the extensions as macros: or (3) provide a way to
associate with cach form a data structure which describes features of the syntactic form. Choice
1 makes analysis routincs more complex. Choice 2 is not always possible: for cxample, while is
always possible to translatc an AND expression into an cquivalent COND. a COND cannot in
general be translated into]lm{urc primitive operations. Choice 3 requires the uscr to specify new
tempiates for cach new syntactic cxtension and thus is burdensome.

SCOPE uses (cmplates when performing cross reference analysis (choice 3). but expands
macros (choice 2) when performing all other types of program analysis. In a few instances (for
simplicity or because macro expans:on is not possible), SCOP:'s analysis routines contain
special purpose code for LISP syntactic additions (choice 1). The structure of the tempiates in

SCOPE is described in Appendix IV.

Even without tcmplates, simple cross reference analysis on LISP forms requires
understanding of the “argument type™ of various functions. because the text of the function
does not determine whether the arguments to called functions arc LAMBODA or NLAMBDA.
Thus, even if a function has no template or simplification. it is necessary to remember if it
expects its arguments to be evaluated "For this rcason, SCOPE maintins a relation
NLambda[FN] which denotes that FN expects unevaluated arguments.

Multiple analysis routines

INTERLISP has many different kinds of symbol definitions. each with a separate syntax.
Different analysis routines are required for each of them. For example, record declarations
must be analyzed scparately to find their cross reference relations. Editor commands, "top
level” commands. compiler macros, and templates cach require a separate analysis routine to
determine the cross reference relations in which they are involved. In some cases, the analysis
of cross refercnce in definitions of symbols was available as part of the INTERLISP
environment; for example, the INTERLISP rccord package itsclf provides sufficient information
to cc;mi:utc the FieldOf cross reference relation. Some- of the INTERLISP "commands”, e.g
top level commands (LISPXMACROS) and dcbugger commands (BREAKMACROS) require use
of SCOPE’s function-cross reference routines. :

5.2 FLOW ANALYSIS

The literature contains several algorithms for computing interprocedural flow information,
and work is continuing on decvelopment of cfficient techniques [Rosen 1979, Barth 1977,
Banning 1979]. Each of the algorithms for flow analysis uses a different computational strategy,
and computes somewhat different information. The techniques for flow analysis represent

49

Chapter 5—Program Analysis Techniques

tradeoffs between computational expense and expected quality of computed information. The
most appropriate algorithm for a particular application will depend on the value placed on the
quality of information computed.

The differences in interprocedural flow analysis algorithms revolve around the handling of
the summary of properties of sub-procedures. One important characteristic of intcrprocedural
flow analysis is the nature of the summary information computed for each procedure. In
particular, the flow algorithms described by Barth [1977] and Banning {1979] use simple binary
relations to represent the summary flow information for a procedure. The flow algorithms
described by Rosen [1979], however,. use a more complicated representatdon.

In computing flow information, it is important to distinguish between two categories;
those properties which "may” hold and those which "must” hold. The distinction becomes
important when tracing flow through conditionally executed code. For example, a variable is
extraneous if there is no way in which it might be used. A use which only happens in some
exccutions will still imply that the variable is not useless. On the other hand, an assignment to
a variable is extraneous if, during any subsequent path through the program the variable will
be reassigned. In this case, the assignment must occur in every possible subsequent path.

Flow analysis in SCOPE

In the range of flow analysis techniques, SCOPE’s algorithm results in relatively poor
quality flow information, but with low computational overhead. SCOPE uses its relational
representation scheme for handling the intermediate summary properties of procedures.
SCOPE’s analysis is simplified because all of the flow properties SCOPE computes are "may”
properties. For example, the Ref relation denotes only that a variable may be used within a
function. In order to compute Ref, SCOPE needs only to accumulate the variable references it
sees during the recursive examination of the program.

ScoPE's flow analysis notices procedure calls (for MayCail), bmdmg and use of variables
(for Bind, Ref, and Set), use.of records and fields (for Fetch. Replace and Create), and
use of data structures (for Uses and Effects). Analysis starts with the LAMBDA-expression
definition of the procedure, and notices the variables bound as arguments. Then analysis
examines the body of the procedure. Built-in INTERLISP control primitives (c.g.. COND and
AND) are traversed rccursiirely: at procedure calls, SCOPE notices the procedure (for MayCail)
and then analyzes the arguments (unless the proccdure is known to be a FEXPR by the
NLambda rclation). Variable assignments are detccted at SETQ's. SCOPE also recognizes the
appropriate context for rccord package accesses. When a new set of bindings is encountered (as
an internal PROG or LAMBDA). SCOPE generates an appropriate frame name to associate with

subscquent properties.

Chapter S—{*rogram Analysis Techniques -

Side effects are accumulated in a separate application of the flow analysis routines; no
notice is taken of frames or frame names when accumulating information for Uses and
Affects. Because SCOPE is not currendy able to analyze structure sharing, side cffect analysis
consists merely of accumulating the uses and cffects of any INTERLISP primitives which occur
in the definition of the function being analyzed.

Applying flow information

Most applications of flow information arc based on the accumulated effects of a set of
functions reachable via a chain of cails (MayCall): this is cxpressed using the corresponding
augmented flow relations. For example, the preconditions for most code transformations are
generally expressed in terms of the !Uses rclation (= MayCall® ° Uses) rather than what
any individual function might use. In addition. when applying SCOPE's flow information, it is
necessary to take into account the possibic use of unusual control structures. For example, the .
correct test to determine if two procedurc applications can be interchanged is:-

* There is no data structure which one uscs (!Uses) and the other modifies (!Affects).

* If one procedure has unknown references (i.e.. it !Uses ANY). the other must have no
effects at all (i.c, there is no value the other !Affects). similarly, if one of them has
unknown side effects (ie. it !Affects ANY). the other uscs no data structures.

* There is no field which one can reference (!Fetch) and the other modify (!Replace).

* There is no variable which one function can set (SetFree) which the other uses
(RefFree).

* If one procedure can modify an arbitrary variable (!MightSetUnknown), the other
cannot reference (RefFree, !'MightUseUnknown) any variable.

* Neither one uses unusual controi stuctures (!MightCallUnknown +
!UsesUnu.suaIControlStructures).

§.3 TYPE INFERENCE

For strongly typed languages. a variable or function value can be of one and only one
type. Type analysis can be performed by application of a small sct of niles. (Gordon et al.
[1977. pp. 36-40] describe a system which performs type inference in a strongly typed
language.) Algorithms for determination of type in typeless language have been described by
Tencnbaum [1974] and. Kaplan and Ullman [1978]. Jones and Muchnick (1979] describe a
mecthod for type inference in a simpiified lise-like language which allows side effects.
Generally. type inference algorithms employ two techniques. Both start with the assumption

51

Chapter 5—VProgram A nalysis Techniques

that the program is to operate correctly, and attempt to infer the ranges of variables and
procedures starting from that assumption. The two techniques used are Jforward inference and
backward inference.

Forward inference across a single statement takes the a priori assumptions of variable
types. and modifies them by the possible cffects that the statement might have. For example,
after the statement X«SIN(THETA), it can be assumed that X is a floating point number in
the range [0,1].

Backward inference, on the other hand, takes the a posteriori assumptions of variable
types. and strengthens them according to any additional requircments that the statement might
imply. For example, across the same statement X~SIN(THETA) it can be inferred that THETA
must be a number.

Sequences of statements are analyzed by chaining the information propagation across
them. For example, given the sequence X~SIN(THETA); Y«X+1, forward inference results in
the additional assertion that Y is a floating point number in the range [L2].

Type inference in SCOPE

SCOPE’s type inference starts with a simplification of the definition of the function to be
analyzed. Mapping functions and PROG's are transformed into (possibly recursive) internal
functions [Moore 1975]. macros are expanded. and whenever possible, complex expressions are
put into a canonical form. For example. SELECTQ’s are transformed into an equivalent COND.
The simplification is performed so that the rest of the type analysis is not filled with special
cases for each syntactic extension to INTERLISP. ‘

SCOPE’s type inference routine is given a set of pre-conditions, a set of post-conditions,
and a form. Its-jeb is ta propagate the pre-conditions forward and the post-conditions
packwards in a symbolic execution of the form, gencrating new conditions for proper
execution. SCOPE uses the type information for called functions (ExpectsArg and
ReturnsType) when a procedure call is found. and Affects to possibly modify the types in
the. presence of side effects. For example, in analyzing the form

(SETQ W (WIDTH BUF))

the precondition that BUF is a LIST is inferred because WIDTH expects its first argument to be
a-LIST: the postcondition that W is a LIST is infcrred because WIDTH returns a LIST. Any
preconditions which describe the type of W are removed from the derived postconditions. If
WIDTH had side effects, e.g.. if WIDTH could change the CDR field of some list, then the

52

Chapter 5—{"rogram Analysis Techniques

preconditions would be "weakened™ by removing any assertions about CDR’s of any list
structures.

Recursive procedures are more difficult to analyze. To analyze a system of mutuaily
recursive procedures, SCOPE first invents new “abstract” data types which correspond to the
ExpectsArg and ReturnsType of cach of the procedures. SCOPE then performs type
analysis 0 compute new types. If the new types do not mention the old types. they are
replaced as the values of ExpectsArg and ReturnsType. [f the new types do mention
themselves, they are used as the definitions of recursive data structures [cf. Jones & Muchnick

1979].
Complications

Although it is possible to convert an arbitrary PROG into a collection of recursive
functions. not all of the transformations arc made. In particular, SCOPE’s type analysis does not
perform well when faced with GO's which extend across PROG boundarics or RETURN's which
-occur inside computations. In such situations, the only pre-conditons generated are those
which can be inferred by the program up to the first label or GO, while the only post-
conditions inferred are those derived by the disjunction of post-conditions of ail of the
embedded RETURN expressions. The types of the values manipulated by a program is a more
brecisc description of the operation of the program than SCOPE's simple flow analysis, and for
that reason type analysis is more strongly affected by the same obstacles to exact information.
In particular, type inference inside PROG's is difficult. because of the possibilities of a GO or
RETURN. A RETURN or GO embedded within an expression indicates that any subsequent
execution may conditionally not be executed. It is easier to dcrive information from a mapping
function than from the equivalent PROG.

5.4 CONCLUSIONS

A variety of program analysis techniques are employed in SCOPE. Among the possible
techniques reported in the litcrature, SCOP!:'s analysis methods tend to be those which provide
sufficient quality of information without enormous computational expensc. Thus, for examplc.'
SCOPE does not analyze stucture sharing when characterizing side cffects because (a) SCOPE’s
weak characterization of side effects is sufficient for many applications (c.g.. compiler
improvement). and (b) the quality of information derived from statc-of-the-art techniques is
not sufficiendy better to warrant the extra effort

53

Chapter 6—Implementation Notes

SCOPE is implemented in several parts (Figure 6-1). Users communicate to SCOPE via the
SCOPE command language. The Parser parses the command language and produces queries;
the Interpreter interprets the parsed structure and produces queries. The
QueryProcessing module uses SCOPE's relation-description tables to cause any required
program analysis and to translate the input queries into data base accesses. Tht DataBase
module accesses and maintains the data base of facts. Each of these parts is discussed below.

Scape ___ ____ ___ __
—r—r ——

command / \

Interpreter

[

| query

I Relation

J Hescriptions

|

\

Program AN Data Base -
~
N _— s ot et s e —— -~

Figure 6-1—Implementation of SCOPE

6.1 PARSER
You can't state something simple to an unknowledgeable mechanical recipient and expect it to

alter its behavior in major- ways. (Standish 1971]

The interface to SCOPE is in two parts. First, an English-like command language is
available for casual interactive use. (SCOPE's command language is described in Appendix I1.)
Second. a formal query language is available for more cfficient access to primitive operations.
(The formal query language is described in Appendix IIl.) SCOPE's command language

e vememe m— of— -

Chapter 6—Implementation Notes

processor translates queries in the SCOPE command language into the formal query language.

Scope’s command language processor employs a top-down recursive descent algorithm
with lookahead and partial backtracking. In parailel to the top-down parse, a bottom-up
scanner looks for adverbs and prepositional phrases which are attached to the components
which they most likely to modify. language tables describe the classes of nouns, verbs,
modificrs. etc.. along with attachments which indicate how the words are to be interpreted.
The command language is simple enough so that a more sophisticated parser is not necessary.
SCOPE's language was designed so that. while it is a very limited subset of English, any
command which is accepted is interpreted with a meaning which corresponds to the intuitive
meaning of the English sentence. SCOPE's command language language was designed to be
comprehensive and flexible, with frequently used commands kept as simple as possible.

Spelling correction

If a command cannot be parsed, SCOPE attempts to correct spelling by retrying the parse
‘with a "fuzzy match” of terminal symbols in the parse tree. (The standard INTERLISP spelling
correction routines are used to select probable respellings among the candidates gencrated by
SCOPE.) Only one misspelling per phrase is allowed as a compromise between the extreme of
looking for all possible misspellings and merely giving up and saying that the command was
not parsable. Because of the combinatorial explosion of possibilities, looking for multiple
misspellings would probably take much longer than the time it would take the user to
recognize the error, correct it, and re-type the command. -

6.2 INTERPRETER

Once a command has been parsed and an internal representation of its structure
generated. SCOPE translates the parsed structurc into a retrieval request. In gencral a noun-
phrasc corresponds to a quantified referent, while a verb - corresponds o a . relation.
Quantification is assumed to take a left-right precedence.

SCOPE's command processor translates the command language input of the user into a
formal query of the data basc. User programs can dircctly interface with the data base using
the same formal query language. The formal query language consists of first order predicate
calculus cquations. For cxample, WHICH FUNCTIONS THAT BIND X CALL Y translates into
the formal query (find Z suchthat (AND (Bind Z 'X) (Bind Z 'Y))).

tn
an

Chapter 6—Implementation Notes

6.3 ANSWERING QUESTIONS

Once SCOPE has a query cxpressed in its formal query language. it must first update its
knowledge about the uscr's program as necessary to corrcctly answer the question, and
secondly. direct the data base module to retrieve the required information. In order to do this
processing, SCOPE needs to consult its general knowledge about the relations it maintains.

What SCOPE knows about relations

There are two kinds of facts SCOPE knows: facts about a particular program and facts
about programs in general. The facts SCOPE knows about a particular program are instances of
relations between the picces of that program; the facts SCOPE knows about programs in general
are the rules it has which tell it how to process those relations. For example, SCOPE may know
that the proccdure COMMAND can cause the procedurc PHEAD to be called—a fact about a
particular program. SCOPE knows that the !MayCall relation (used to express facts about one
procedure eventually calling another) is the transitive closure of MayCall—a general piece of
information which is independent of any specific program.

SCOPE knows several general properties about cach of the relations with which it deals
(Figure 6-2). For each rclation, it knows the types of each element which can be involved in
the relation, the manner of derivation, whether the relation is stored in the data base, and

information about propagating changes. These elements are discussed in detail below.
RelationName[arguments]
test and generate procedures (if built in)
translation rule (if computed)
analysis routine name (if direct result of analysis)
data base information (if not always recomputed)

dependency information
change propagation information

Figure 6-2—What SCOPE knows about a relation .

Relation argumenis

SCOPE relations are facts which relate one piece of program to another. Each relation has
a number of arguments. With cach relation, SCOPE stores a description of the kind of elements
which can be in each argumcnt position. For example, the Edited relation relates a name, a

‘ type. a person, and a date.

Chapter 6—Iimplementation Notes

Built-in relations

Some relations are "built-in"—no information is stored in SCOPE's data base but rather,
the relation "knows™ how to solve itscif. For cxample, the SubFrame rclation 'is built-in;
attached to the SubFrame relation is a pointer to a routine which can test if onc frame is a
dircet descendent of another. and another routine which. given the name of a frame, returns
the name of the frame's parent

- Transiation rules

Often, one relation is defined in terms of other relations. There are two reasons why this
is desirable.

First. the rclations which occur in different contexts arc not necessarily the same. There
are three different situations in which relations occur: (1) relations are used to express queries;
for example, the question WHO CAN CALL WIDTH in the ScoPE command language is
expressed as the query (find X suchthat (MayCall X 'WIDTH)): (2) rclations are
derived as the result of of program analysis; the flow analysis routine determines, for any
procedure, the sct of other proccdures that it may call: and (3) information is stored in
SCOPE’s data base in terms of relations. The relations used in thesc three different ways are not
necessarily t.he same. For cxample, the !MayCail rclation can be used in a query, but is not
derived as a dircct result of analysis: rather, SCOPE must perform some processing to desive

IMayCall from MayCail.

The second reason it is desirable to be able to define one relation in terms of other
relations is because the relations in SCOPE's data base may actually be quite different from
both the relations available for query and the relations derived from analysis: again, a
translation is necessary.

To perform. the transformatian from one relation to another, SCOPE employs translation
rules. which tell how onec relation can be derived from another. Each of the relations which
can be used in a query have a translation rule which says how that relation can be derived
from cither other query rclations or from the relaticns stored in the data base. For example,
!MayCalls translation rule says that !'MayCall = MayCall

Relations derived from analysis

Some relations are not computed in terms of others, but are the direct result of analysis.
For these relations. SCOPE stores the name of the anlysis routine and the proper way of

invoking the analysis program.

Chapter 6—implementation Notes

Data base information

Some relations are not stored at all; rather SCOPE merely recomputes the information
wheneéver a question is asked. Other relations are stored. and must be updated if the program
has changed since the last time a question was asked. For relations which are stored, SCOPE
must know where the information is stored, i.e., 'thf name of the data base in which it resides.

Dependency information

A second kind of general knowledge SCOPE has tells it how one relation depends on other
information. SCOPE’s dependency rules are used when a part of the program has changed.
Changes to the program require SCOPE to update any incorrect facts in its data base. To help
SCOPE to do so, each relation in the data base has a dependency rule which indicétes other
relations or definitions upon which this relation depends. In order to simplify change
propagation, the dependency rules are actually inverted—stored along with the relations which
are depended upon.

Change propagation information

Because SCOPE propagates changes only when necessary, SCOPE must remember the
specific information about what is out of date in its data base. For this purpose, SCOPE
maintains a set of invalid tables. Each relation in the data base has a pointer to one or more of
the invalid tables. Before performing a retrieval, SCOPE first propagates the invalid tables based
on the dependency rules, and then updates any relations which are invalid according to the
tables. '

How SCOPE processes queries

SCOPE receives a query as the result of processing a user’s command or directly from the
program interface. Often the information required is not directly stored in SCOPE’s data basé
but must be computed. The computations SCOPE performs are pure deduction; given a query,
and the data base of facts, SCOPE uses a set of deductive rules (the relaton definitions) to
produce an answer to the query. Transformation of the input query into terms which the data
base stores is straightforward. Each relation is either primitive (stored in the data base and
computed by analysis routines) or compﬁted. For direct computed relations, there is a simple
transformation which will turn the high-level query into a low-level query via substitution.
Each complex computed relation has an attached procedure for computing it, as well as
information abcut its dependency. -

58

Chapter 6—implementation Notes

When a picce of program changes, it is necessary to mark any information which depends
on the definidon of that picce as invalid. and then to subscquently mark any information
which might depend on the invalid information as invalid in turn. Each rclation has markers
which indicate which of its arguments arc the names of definitions upon which the rclation
depends. In addition. direct computed relations clearly depend on the relations in their
definitions. Complex computed rclations have scparate tables which list the other relations
upon which they depend. When SCOPE processes a query, it first checks to see if there is any
piecc of program described in the data basc which must be reanalyzed or if any of the
computed and stored relations must be recomputed. For each definition type and type of
analysis. there is a table of names of pieces which have changed and for which the analysis has
not been performed.

6.4 DATA BASE

Once a query has been transiated and progessed, the DataBase module retrieves the
required information from the data base. While the way in which information is retrieved is
best described using the relational model of data bases [Codd 1970}, the implementation of the
SCOPE data base differs from the implementation of large relational data bases, for several
reasons. First, SCOPE’s data base is usually small and does not reduire mechanisms which very
large data.bases require. Although resident memory space is at a premium for INTERLISP users,
the amount of disk space taken by a SCOPE data base is small enough that minimizing the size
of the data base was not important. Second, many of SCOPE's relations are binary, and a
special format for binary relations could be employed to advantage. Third. the kind of retrieval
requests involved are often significantly more complex than that normally found in data base

systems.

SCOPE stores relations indexcd by each clement which can be used as an access key. For
example, the Call relation can be used for queries "WHO DOES X CALL". which rcquires an
index on the first argument to Call, and also for queries "WHO CALLS X", which requires an
index on the sccond argument. For binary relations, the index can actually contain the relation
information itself: i.e.. accessing the Call relation on the first argument FOO will retrieve the
list of functions which FOO can call. For rclations with more than two arguments, the index
can cither contain pointers to a common “tuple” table which contains thc elements in each
instance of a relation or can contain the tuples themsclves. Only one of the indices nceds be
precise: the others can be used as "hints” which must be checked. For cxample, the
Edited[NAME,DEFTY PE,PERSON,DATE] relation can be accessed hy cither NAME or
PERSON. The NAME index contains a list of instances of (DEFTYF’E.PEF\‘SON.DATE)t
while the PERSON index contains only a list of NAMEs. Some indices can be shared between

59

Chapter 6—Implementation Notes

similar relations because of the capability of using "hints”; for example, the VAR index for
SetFree and RefFree is shared—the index contains a list of functions for each variabie
which might either set or reference them freely. In order to access SetFree or RefFree
relations by their VAR argument it is necessary to prune the ciements in the index to be the
functions which are in the forward index.

In the process of developing SCOPE, three separate versions of SCOPE's indexing scheme
were implemented, each of which maintains the index in a different place. One
implementation stores the index in the INTERLISP address space (using the INTERLISP function
GETHASH). The second stores indices in a separate address spz;ce (using the "swapped arrays”
of the PDP-10 implementation of INTERLISP). A third implementation uses a hash table stored
in an external file as the index. These three implementations span a continuum of speed and
memory requirements. The first can be accessed quickly, but consumes memory—a resource
which is scarce for INTERLISP users. The last is slower but requires only a small amount of
resident space. The second implementation lies between the others in both access time and

- storage space.

Because of the variations in storage methods, some relations are easier to "solve” than
others; for example, it 'is easier to retrieve the set of functions which Call another function
than it is to find the set which Bind a given variable (because the VAR index of Bind is
stored with a hint). Associated with each retrieval method for a relation is a “difficulty rating”.
When SCOPE receives a retrieval request, SCOPE rewrites the query to improve the efficiency of
retrieval. Given a request which requires the mutual satisfaction of several factors, SCOPE first
ranks the clauses by their restrictive power, and evaluates the most restrictive clause first. For
example, SCOPE responds to a request to find the set of functions which Bind BLANKS and
also Call SKIPBL by retrieving the callers of SKIPBL first and testing each one for the Bind
relation with BLANKS rather than the other way around.

SCOPE's query processing is simple compared to query processing in conventional data
bases because SCOPE’s relations generally have the property that for any relation, the number
of instances of the- relation involving a given item is quite small (average over all relations is
less than 10), and thus the result of a relational query can be assumed to fit within memory.
Furthermore, no complex mechanism is heeded to minimize file accesses to intermediate data
structures; SCOPE can use simple linked lists in LISP for intermediate results during data base

retrieval.

Chapter 6—Iimpicmentation Notes

6.5 CONCLUSIONS

For the most part. the impicmentation of SCOPE is straightfoward. Perhaps the most
interesting and novel part of SCOPE's implementation is its mechanism for change propagation.
SCOPE is a fairly large program-—on the order of 200 pages of INTERLISP code. Approximately
20% of the code is the command language parser and interpreter: another 20% makes up query
processing and the data base. The analysis routincs comprise drc ther 30%. The rest of the code
consists of interface to INTERLISP, the program structure pnmer crror checking routines, and

other utilities.

61

Chapter 7—Future Directions

SCOPE is by no mcans the end of the road. There are many directions in which it could
be cxtended and improved. This chapter describes some of the directions for research for
which SCOPE can provide a point of departure. These fall into three categories: (1)
improvements to the current implementation of SCOPE: (2) additional analysis techniques and
applications; and (3) ways of improving programmer productivity which are beyond SCOPE-like
facilities.

7.1 IMPROVING TIIE CURRENT IMPLEMENTATION

While there are several areas where the current implementation of SCOPE could be
improved, the most important areas which need improvement are the user interface and the
data base.

Improving the user interface
Since this work has not focused on natural language understanding. a range of simple techniques

has been used to provide the level of performance required.... This approach appears to be viable

where unrestricted dialog is not the goal. and in domains where there is available a semiformal

technical language with a low degree of ambiguity. [Davis 1978]

The user interface to SCOPE (and MASTERSCOPE) has been successfully used by INTERLISP
programmers. However, the general problem of natural language understanding is far from
being solved. Even within SCOPE's limited domain, problems have been encountered. For
example, commands which use the conjunction "and™ may be misinterpreted due to "and™s

inherent . ambiguity.

The problem of prescnting a consistent, easy-to-use interface to a casual user of SCOPE is
quite similar to the problem which confronts the designer of an interface to a conventional
data base system. The present interface to SCOPE could be extended in several ways. One way
to extend SCOPE would be to provide a more extensive gra;nmar. thus allowing gfeater
freedom in how queries are expressed.

Natural language interfaces for question-answering systems have been explored by many
researchers (e.g., Hendrix [1977]. Burton [1976]. Woods [1977). S.Kaplan {1979]); many difficult
problems have been uncovered. some of them solved. SCOPE could bencfit from the
improvements which these works represent

However, two important problems exist with the use of any natural language interface.
First. no current natural language interface "understands”™ the user very well, even in domains

Chapter 7—¥'uture l)irections

as limited as SCOPE's. In many respects, SCOPE's domain resembles that of the LUNAR system
[Woods 1977]; in both instances, the user is manipulating a data basc of facts about objects (in
SCOPE. programs, and in LUNAR, moon rocks) and many of the same probiems arise, e.g.,
difficuitics with conjunctons, clipses, and resolving the scope of quantifiers [Vanichn 1978].
Second. a natural language interface tends to lure the user into atributng greater powers (o
the systcm than warranted. Transcripts of MASTERSCOPE sessions reveal many uscrs stumbling
into this pitfall. As with other natural-language systemis, some users would infer processing
capabilities which were not present, e.g.. they would expect MASTERSCOPE t0 answer such
questions as "Why doesn’'t my program work?" and, more seriously, "Who depends on the
format of X?". The natural language approach does allow users to form a simple model of the
capabiliies of the system.

Alternative interfm which would not require the ability 10 understand natural language
include query by example and graphical interfaces. Unfortunately, such interfaces lack the
simplicity of use and understanding and the conciseness of expression prov1ded by a natural
language interface.

Improving the data base

While MASTERSCOPE was carefully designed to be responsive to INTERLISP users, some of
the efficiency was sacrificed, for generality in the implementation of SCOPE, and in particular,
in the implementation of the SCOPE data base and inference modules. Fortunately, efficiency
and gemerality in data base design is an area which is being thoroughly explored by other
researchers (e.g., [System R 1976}, [Milman 1977]); SCOPE’s data base modules could profit by
many of the techniques now being investigated.

Background computation

One direction which was briefly explored in SCOPE was the use of background
computation ‘to update SCOPE's data base. As personal computers become more commonplace,
it is possible to employ the unused time ("between the keystrokes”) to perform computation
which might be of use in the future. In SCOPE, for example, it is possible to reanalyze changed
parts of the program “in the background”. Such analysis may never be used, for example, if
the program changes again before any question is asked. However, if the computer has no
other task to perform, background analysis can speed SCOPE’s responses even when the
program does undergo major changes betwecen SCOPE queries.

63

N

!
Chapter 7—Iuture Directions

7.2 ADDED CAPABILITIES

The most ‘important additional capabilities from which SCOPE would benefit are the
ability to deal effectively with many different programmers on the same project. and additional
analysis tools.

Multiple users

A serious deficiency with the current design for SCOPE as a practical programmer’s
assistantis that it is designed for use by only a single programmer. In large-scale software
development, feams of programmers frequently work together on a single, very large
program—ijust the kind of program where SCOPE is most useful. Extcnding SCOPE to be a
useful tool in a multi-person project involves solving some difficult problems. One problem is
that programmers would like to have a view of the system which included summaries of the
publicly availabie parts of his colleague's programs. while sceing all of their own. Mechanisms
which allow multiple users to share a set of data, but which limit access for individual users,
would be required to allow SCOPE to be used easily by a team.

Other kinds of analysis and applications

Many program analysis tools exist which could be integrated with SCOPE. In particular,
analysis of program performance [Wegbreit 1975a] and characterization of structure sharing
[Jones & Muchnick 1979] are attractive possibilities.

Some researchers in automatic programming have pursued automatic data structure
selection [Low 1976] based on a characterization of how the data structure is used. Such data
structure selection could be made based on global analysis provided by SCOPE, where the data
structures could change incrementally as the program was developed.

Other tools which can profit from the availa.bility of global analysis include program
testing aids (c.g.. path constraint generators and constraint solvers), maintenance tools which
validate modifications, tools for performance and software quality assurance (e.g., tools for
estimating exccution time and for simpiec mctrics of software quality), program standards
enforcers (which enforce project naming conventions, commenting conventions and detect
error-prone constructs), and finally program restructuring tools [Ramamoorthy & Ho, 1977].

Chapter 7—¥uture I)ircélions

73 BEYOND SCOPE

There are scveral directions which deserve investigation but are beyond simple
improvements to the capabilitics of SCOPE. These include programmer assistants which provide
more knowledgeable aid, and new directions for programming languages.

Understanding programmer intentions

While the kinds of analysis which SCOPE performs rclate to the semantics of the program
insofar as SCOPE understands dependency-of-computation for cross reference and the execution
properties of the program for flow analysis. a more ambitious project would be to analyze
programs to determine the programmer’'s concept of what the program does. It is likely that
such understanding would require understanding of the more formal properties of programs
such as SCOPE provides.

Implications for programming language design

One property of an easily understood and modified program is locality [Goodenough &
Shafer 1976]. A program posseses locality when it is unnecessary to look very far away to
understand any particular piece of code. Many of the efforts in programming language design
have focused on providing programming languages which encourage locality. Computer
languages can never succeed completely in the goal of providing for locality of information,
however, as the one-dimensional nature of computer program listings almost always leads to
the placing of related parts of a program in widely separated locations. Such separation leads
to errors, as the programmer may make assumptions about the execution of a piece of program
which are no longer true.

SCOPE provides a way around the one dimensional nature of programming languages, by
providing an interactive index to the interrciationships of pieces of programs. The “proximity"
of one piece of program to another is no longer related to their physical scparation within a
listing, but rather to the amount of difficulty in finding the related texts. Because SCOPE makes
finding related picces of program easy. it effectively brings different picces of the program
closer together, and improves locality by increasing the connectivity of the program.

Rule-based or production systems

The ultimate impediment 1o further discovery was the lack of rules that could rcason about,
modify. delcte, and synthesice other rules. [Lenat & Harns 1978)

Applications of SCOPi-likc tools to rule-based programming languages holds much
promise: the requirement for locality in the programming language wcakens when the

65

Chapter 7—I‘uture Dircctions

programmer has good global analysis tools availabic, and global program information improves
the attractiveness of languages with pattern-directed invocation [Waterman & Hayes-Roth 1978,
Davis & King 1975]. One of the major disadvantages of production systems up to now has
been the difficulty of debugging them, becausc of unforeseen interactions between old and
new rules.

Beyond programming languages

Even in a programming environment enhanced by SCOPE, it remains the case that the
program itself is the "truth” about the computation. and the information with which SCOPE
deals is merely derived summary information; that is. the program is captured completely in its
listing. A programming cnvironment could be imagined in which no single canonical
- representation of the program exists. The programmer creates various descriptions of the
processes to be invoked and examines the program from various viewpoints, but does not rely
on a single distinguished external representation. In such a system. a program is not its listing,
the listing is merely one of many possible external forms.

Appendix I—Relations Used in SCOPE

In SCOPE, assertions about programs are cxpressed in terms of relations. This section lists
those relations, and briefly describes each one.

I.1 ABBREVIATIONS

The description of a relation may contain some of the following abbreviations:

Abbreviation Meaning

cross-ref cross-reference property

Jlow data flow property.

type type inference property.

filing organizational property rclating to file system.

'built-in Built-in relation. (Built-in relations are not derived via analysis or stored,

but rather are handled by procedures inside SCOPE.)

=query Derived via the query given.
I-1, I-n, =1 Restrictions on number of solutions.
L2 NOTATION

When dealing with binary relations, it is possible to do some symbolic manipulations on
the relations themselves.

Given two bina!_'y.relations R and P, ReP, the composition of R with P, is the relation
defined by)
(ReP)[X,Y]- = 3 Z st R[X,Z] A P{Z,Y]
Composition is called "join" in the data base literature. Relations can be added:
(R+P)[X,Y] = R[X,Y] V P[X,Y]
or subtracted:
(R-P){X,Y] = R[X,Y] A =P[X,Y]

or combined (intersected):

67

Appendix I—Relations Used in SCOPE

(R'P)[X,Y] = R[X,Y] A P[X,Y].

Given a binary relation R, R’ the transitive closure of R, is a new binary relation given by:

+ R + ReR + R°eR°R + ..

where | is the identity.

A
-

" Flow relations which deal with individual frames are distinguished by a subscript f. Flow
relations written R! are defined as MayCall' s R, ie., the composition of the transitive
closure of MayCall with the relaton R.

I3 RELATION ARGUMENTS

Each argument of a n-place relation has a class which describes the argument For
example, the relation Use relates functions and variables, and is described as Use[FN,VAR].
The classes of relational arguments are:

FN
VAR
FRAME

RECORD
FIELD
EC

TC
MACRO

TYPE
NAME

DEFTYPE
FILE

a function.

a variable.

a frame—i.e., a set of bindings generated by a PROG or LAMBDA
expression.

a record—an Interlisp declared data structure.

a field of a record.

an editor command.

an Interlisp top level command (also known as a LISPXMACRO).

A compiler macro.

" "a number—any integer.

a description of a Lisp data type (a range of values).

the name of an arbitrary item. This is used in relations which have a
separate "argument” which is the kind of definition NAME is supposed
to be.

the type of NAME.

a collection of dcfinitions (which corresponds to an cxternal file in the
filing system).

Appendin [—Relations Used in SCOPE

USAGE a VM “ficld" name.
PERSON the login name of a programmer.
DATE a date specification.

1.4 ScoreE’s RELATIONS

Below is a list of the relations SCOPE knows. Along with cach relation are the elements it
relates and a brief definition.

* Cross reference relations

Call[FN,,FN,] cross-ref
FN, mentions FN, as a function.

Use[FN,VAR] cross-ref
FN mentions VAR as a variable.

NLambda[FN]
FN is a procedure which takes its arguments unevaluated. When changed, it is

necessary to mark invalid any property of any caller (Call) of FN.

UseAsField[FN,FIELD] cross-ref
The body of FN mentions FIELD as a record field.

UseAsRecord[FN,RECORD] cross-ref
The body of FN mentions RECORD as a record name.

FieldOf[FIELD,RECORD] cross-ref
FIELD is a ficld of RECORD.

Accessfn[RECORD,FN] cross-ref
: RECORD uses FN as an access function.

Editinvoke[EC,,EC,] crossref
Denotes when one cditor command invokes another.

EditCall[EC,FN] cross-ref
The cdit command EC invokes the function FN.

TopLevelCall[TC,FN] cross-ref
The top-level command (LISPXMACRO) TC invokes the function FN.

69

Appendix I—Relations Used in SCOPE

MacroCall[MACRO,FN] cross-ref
The compiler macro MACRO invokes the function FN.

FileCall[FILE,FN] cross-ref
The initalization of the file FILE invokes the function FN.

* Flow relations Ine

SubFrame[FRAME,,FRAME,] built-in I-n
The top level frame of a given function is the function itself: the set of frames of

a function FN is {FR : SubFrame [FN,FR]}. The SubFrame relaton is 1-n;
given a frame, it can have multiple subframes, but any frame has at most one
parent. The "top level” of a function is also a frame which binds arguments of the
function. Interior frames correspond to internal PROG and LAMBDA bindings.
When performing flow analysis, SCOPE makes up "frame names”, one for each
internal PROG or LAMBDA which binds variables so that flow relations of
MaycCall, Ref, and Bind can be identified separately for each frame. The valuq
of a FRAME is a frame name; frame names have the format FN:n:m: ... where
FN is the name of the top function and each level of binding adds another integer
onto the tail. This format is chosen so that testing Subframe[X,Y] is possible
without any data base retrieval, as is finding the "parent” of a given frame.

Bindr[FRAME,VAR] flow
Denotes that the variable VAR is bound in the frame FRAME. This relation

associates with a frame the names of the variables bound within it

Bind[FN,VAR] flow
FN contains a binding of the variable VAR. Note that Bind = SubFrame” °
Bind,, i.e, that Bind is the composition of the transitive closure of SubFrame
composed with Bind,

MayCall [FRAME,FN] flow
A call to FN may occur under frame FRAME.

MayCall[FN,,FN,] flow
MayCall = SubFrame® ° MayCall. Again, the rclation normally used for
retrieval rclates one function with another; however, the calls are actually

separated by the frames in which Lhey'occur.

'MayCall[FN,,FN,] flow
'MayCall = MayCall'. This means that there is some calling path from FN, to
FN,.

70

Appendix I—Relations Used in SCOPE

Ref [FRAME,VAR] flow _
The variable VAR is referenced in frame FRAME.

Set[FRAME,VAR] flov
An assigniti.:it (SETQ) of the variable VAR is made within frame FRAME

RefFree [FRAME,VAR]. RefFree[FN,VAR] flow
Mecans that the variable VAR is used freely below FRAME. RefFree, and the
relation RefFree[FN,VAR] can be computced using Bind and Reference with
the recursive cquations
RefFree[FN,VAR] = RefFree|FN,VAR]

and

RefFree, = (Ref, + (SubFrame +MayCall)°RefFree) - Bind,.
That is. a frame uses a variable frecly if it doesn’t bind that variable, and either
the frame references the variable, or some subframe or called function uses the
variable freely.

SetFree[FN,VAR], SetFree[FN,VAR] flow
Similar to ,RefFree, with Set used rather than Ref.

Ref[FN,VAR] flow
The function FN references somewhere the value of the variable VAR.
Ref:SubFrame't'Refr

Set[FN,VAR] flow
The function FN references somewhere the value of the varable VAR.
Set=SubFrame.°Setr

Recursive[FN] flow
FN can call iwself. i.e., !Call[FN,FN].

CallForValue[FN,,FN,] flow, crossref
The value returned by FN, might be used within EN;. This relation includes a
combination of flow and cross refercnce information; that is. it means that FN;
refers to FN, (i.e., the cross refcrence rclation Cail), but in a context where it
cannot be determined that the valuc of FN, will be discarded (a flow property).

Fetch[FN,FIELD] flow
The ficld FIELD is accessed by the function FN. There is no need to compute on

a framc-by-frame basis.

Replace[FN,FIELD] flow
The ficld FIELD is assigned by the function FN.

n

Appendix [—Relations Used in SCOPE

Uses[FN,USAGE] flow .
The function FN directly uses the value of the data structurc field USAGE. This

reladon is built-in for system functions (i.e., not derived from analysis).

Affects[FN,USAGE] Sflow
The function FN can directly modify the data structure field USAGE. This

. reladon is built-in for system functions.

CreateRecord[FN,RECORD] flow
An instance of the record type RECORD is created by the function FN.

* Unusual constructs:

MightSetUnknown [FRAME], MightSetUnknown[FN] flow
FRAME contains a call to one of the functions SET, SAVESET, SETSTKARG,

SETTOPVAL. SETATOMVAL, /SET, /SAVESET, /SETTOPVAL, or /SETATOMVAL
whose fifst argument is not quoted: this means that some variable will be assigned
by the call, but SCOPE does not know the identity of the variable.

MightRefUnknown [FRAME], MightRefUnknown[FN] flow
FRAME contains a call to one of the functions EVALV, STKARG,

GETATOMVAL, or GETTOPVAL whose first argument is not quoted; this means
that some variable will be accessed by the call, but SCOPE does not know the
identity of the variable.

UsesUnusualiControiStructures[FN] flow
FN uses an ERRORSET, RETTO, RETFROM, RESUME, ENVEVAL, STKEVAL,

RETEVAL, SETCLINK, or SETALINK. These are the “spaghetti stack™ primitives
in Interlisp, which allow flow of control regimes which differ radically from
normal procedure call and return. Most of SCOPE's error analysis assumes that
these primitives are not used; this refation is used to test if a warning message
must be generated that an analysis might not be correct.

MightCallUnknown [FRAME], MightCalliUnknown[FN] flow
FN f:ontains a construct which will cause exccution of code which is determined

at run time; in particular, a call to EVAL, APPLY, APPLY®, ENVAPPLY,
ENVEVAL, or a mapping function in which the functional argument is not quoted.

Appendix I—Relations Used in SCOPE

* Type inference relations

ExpectsArg[FN,N,TYPE] pe n-m-/
The function FN cxpects its Nth argument to be within TYPE.

ExpectsFree[FN,VAR,TYPE] type
The function FN expects the variable VAR to be of type TYPE to work correctly.

SetFreeType[FN,VAR,TYPE] iype
At the termination of the procedure FN, the variable VAR has been set (freely) to

TYPE.

Returns{FN,TYPE] type
The value of FN is of type TYPE.

* Filing relations

Contain[FILE,NAME,DEFTYPE] filing
This can be broken down into separate relatons for each type, i.e. there is a
relation Contain [FILE,NAME] = Contain{FILE,NAME,t].

Entry[FN] filing
FN is declared to be an entry function. Entry is an extrinsic property of
functions: the declaration of whether a function is intended to be an entry is
something which is an attribute of the file on which that function resides.

Edited[NAME,DEFTYPE,PERSON,DATE] filing n-m-1-1
Says that NAME's definition as a DEFTYPE was last edited by PERSON on
DATE. Extrinsic property, stored by watching editor. Given a NAME and a
DEFTYPE, PERSON and DATE are unique.

UserFunction[FN] filing
Scope distinguishes between Interlisp system functions and user functions, by
keeping track of which functions the user has noticed upon loading.

* Miscellaneous built-in relations

After[DATE,DATE,] built-in _
Basic predicate for comparing dates.

Covers[TYPE |, TYPE,] built-in
TYPE, is a subset of TYPE, cg. Covers[NUMBER,INTEGER].

73

!

Y

!-Appendix I—Relations Used in SCOPE

Disjoint[TYPE,TYPE,] built-in
TYPE, and TYPE, are disjoint (no value is in both).

Meet[TYPE,,TYPE, TYPE,] built-in
TYPE, = TYPE, N TYPE,

74

Appendix II—The SCOP¥. Command Language

The user communicates with SCOPE via an English-like command language. Through the
commands, the user can interrogate SCOPE’s database and perform other operations. The basic
building blocks of the language are spccifications of sets—scts of functions, sets of variables,
etc. A sct can be specified in a variety of ways, cither explicitly, t;'-.gi. THE FUNCTION NAMED
FOO. or implicitly, e.g.. ANY FUNCTION THAT DOES NOT CALL FIE. The spccifications of sets
correspond to English nouns and noun phrases.

The relations between sets are denoted in the SCOPE command language by verbs and
prepositions. For example, the verb CALL is used to talk about the Call cross reference
relation. Noun and verb phrases, plus a few additional words, form English-like sentence
commands. For example, the command

«. WHICH FUNCTIONS ON FOO USES X FREELY

will print out the list of functions contained in the file FOO which use the variable X freely.
"The command

+. EDIT WHERE ANY FUNCTION CALLS ERROR

will direct the INTERLISP editor at those places in functions which mention the function
ERROR, pointing at each successive expression where ERROR actually occurs.

I1.1 NOUN PIIRASES

Noun phrases are used in the SCOPE command language to denote an object or a set of
objects, and consist of three parts: (1) a determiner, eg. A, THE; (2) a noun, e.g.,
FUNCTIONS; and (3) a restriction, e.g., CALLED BY F00. The first part of thc noun phrase can
also be a-simple pronoun, e.g.. WHO. The parts of the noun phrase in the SCOPE command
language are cxplained below.

Determiners

The determiner in an English noun phrase is used for a varicty of purposes; in SCOPE, it
is used to mark a noun phrase as a question, or in a syntactic role to introduce the noun
phrase. The determiners recognized by SCOPE include A, THE, ANY, SOME, WHICH and
WHAT .

75

Appendix H—The SCOPLE Command l.anguage

Nouns

The nouns available in the SCOPE command language are the names of the types of
symbols—FUNCTION, VARIABLE, RECORD, FILE, MACRO, COMMAND and FIELD. (Of course,
various abbreviations and alternate phrasings are allowed.) Noun phrases denote objects or
collections of objects; these objects have a type, i.c., the type of symbol which is denoted. The
major purposc of the noun within the noun phrase is to specify what type of symbol is being
denoted; if there is no noun. the type is determined from context, e.g.. in WHO IS CALLED BY
X, the type of the noun phrase WHO is FUNCTION, since only functions can be called. Nouns
may occur in either singular or plural form, although the SCOPE parser does not distinguish
number except to resolve ambiguous parsings.

Restrictions

The last part of the noun phrase in the SCOPE command language is a specification of the
range of values denoted by the phrase, and may take a variety of forms:

NAMED name The simplest way to specify a set consisting of a single symbol is by the
name of that symbol. For example, THE FUNCTION NAMED F00. A
name, used alone, takes the role of a "proper noun” in English; thus
FOO is allowed for ANY NAMED F0O. Of course, there is some danger of
ambiguity in the SCOPE command language, e.g., if the programmer has
a function named ANY. The NAMED construct can be used to avoid the
ambiguity.

IN expression Because SCOPE is available at any time in the INTERLISP environment,
one powerful feature is the ability to refer to the interactive environment
from inside a SCOPE command. The IN phrase allows the user to give a
LISP expression to be evaluated, and have the value treated as a list of
the elements of 4 set. For example, THE FUNCTIONS IN (FILEFNSLST
'FOO) denotes the set of values returned by evaluating (FILEFNSLST
'FOO).

@ predicate Another way in which the embedding of SCOPE inside LISP provides
power is the ability to write arbitrary LISP predicates as a "test” for set
membership in the spccification of a SCOPE command language noun
phrasc. The specification represents all eiements for which the value of
"predicate” is non-NIL. For example. the phrase ANY @ GETD denotes
clements which have a LISP definition.

Appendix 1I—The SCOPE Command 1.anguage

Another way of specifying the range of denotation of a noun phrase is to give a rclation
which must hold for the set of objects denoted:

verbING np
verbED BY np Refers to the set of all objects which have the relation denoted by verb

with some element of the set denoted by np. The notation "verbING” is
used generically to mean an'y of Scopt's verbs phrases (described in
Section 11.2) in the present participle form. For example, USING ANY IN
FOOVARS FREELY spccifics the sct of functions which uscs freely any
variable in the value of FOOVARS; CALLED BY X specifies the set of
functions called by the function X.

EDITED [BY person] [AFTER date] [BEFORE date]
Restricts the set denoted to include only objects which were last edited

by the person specified or during the interval specified. Uses the Edited
relation.

Sets may also be specified with relative clauses introduced by the word THAT, e.g., THE
FUNCTIONS THAT BIND X.

(FIELD) OF records This denotes the field names of the records specified, the FieldOf
relation.

ON A PATH pathoptions
Refers to the set of functions which would be printed by the command

SHOW PATHS pathoptions. For example, IS FOO BOUND BY ANY ON A
PATH TO 'PARSE tests if FOO is bound above the function PARSE.

Pathoptions are explained in detail later.

RECURSIVE Those functions which satisfy Recursive. The word RECURSIVE may
actually occur between the determiner and the noun in a noun-phrase.

NOT restriction This allows the restrictiox:l of a noun phrase to be complemented, e.g.,
THE FUNCTIONS NOT CALLED BY FOO or ANY NOT IN FOOVARS X.

Conjunctions

The role of conjunctions in English is complex: in SCOPE, only noun phrases may be
joined by the conjunctions AND and OR to denote the corresponding intersection and union of
the components. For example, CALLING X OR Y spccifies the set of all functions which call
the function X or the function Y.

Appendix 1I—The SCOPE Command |.anguage

Because of SCOPE's limited understanding of conjunctions, it often fails to follow the
correct interpretation in English. For example, "CALLING X AND Y" would, in English, be
interpreted as thosc things which both call X and call Y: however, SCOPE interprets the phrase
as "CALLING (X AND Y)". where (X AND Y) is necessarily the empty set (in SCOPE's world,
an object cannot have two different names).

11.2 VERB PHRASES

Within the SCOPE command language, verbs are used to denote the relations between sets.
For example, the verb "CALL" corresponds to the SCOPE relation Call; the user query "WHO
CALLS FOO" corresponds directly to finding the set of all X such that Call[X,FO0] holds.
Sometimes, adverbs are used to modify the meaning of the verb to denote a different relation.
For example, the verbs USE, SET, SMASH and REFERENCE all may be modified by the adverb
FREELY. Verbs can occur in the present tense (e.g., USE, CALLS, BINDS, USES) or as present
or past participles (e.g., CALLING, BOUND, TESTED). The verbs (with their modifiers) which

are recognized by the SCOPE command processor are:

verb
CALL

MAY CALL

CALL FOR VALUE
CALL FOR EFFECT
CALL INDIRECTLY
CALL SOMEHOW
USE

USE FREELY
SET

SET FREELY
CHANGE
REFERENCE

REFERENCE FREELY

BIND
FETCH

REPLACE _
USE AS FIELD
USE AS A RECORD

interpretation
Call

MaycCall

CallForValue

MayCail - CallForVaiue

Cail - MaycCail

!MayCalil

Ref + Set, UseAsField, UseAsRecord,
Uses (interpretation depends on context)

RefFree + SetFree

Set

SetFree

Affects

Ref

RefFree

Bind

FetchField

ReplaceField

UseAsField

UseAsRecord

78

Appendix [I—=The SCOPYE, Command l.anguage

CREATE Create

CONTAIN Contain,, where t is determined from context.
RETURN ReturnsType

EXPECT ExpectsArg

Unfortunately, it was not possible to choose intuitive names for all of SCOPE’s relations;
for example, the fine distinction between CALL (the cross reference relation) and MAY CALL
(the flow relation) is not evident in the casual presentatdon of the SCOP: command language.

The SCOPE command language actually allows more complicated constructs when dealing
with verbs which denote more than two place predicates. For example, the verb EXPECTS s
used to denote the Expects type-inference relation. The verb EXPECTS has not only a subject
and object, but also a modifier TO BE, e.g., WHO EXPECTS ITS FIRST ARGUMENT TO BE
LISTP. In this example, "ITS FIRST ARGUMENT" is a special noun phrasc which is taken as
a representation for the value 1 in the relation Expects.

I3 COMMANDS

Commands are sentences in the SCOPE command language which direct SCOPE to answer
questions or perform various operations. Commands to SCOPE may take the form of a question

or an imperative.

Questions

Questions in the SCOPE command language have the same format as an English sentence
with a subject (a noun phrase), a verb phrase (one of SCOPE's verbs or IS or ARE), and an
object (another noun phrase). Any of the noun phrases in the question can have a question-
determiner, c¢.g.. WHO or WHICH. For example, SCOPE will respond to the question WHICH
FUNCTIONS CALL X with the list of functions that call X. The verb phrase in the question
_ may be in the present tense (e.g., CALL, BIND, TEST, SMASH) or passive (e.g., in the
command WHO IS CALLED BY WHO). (Other variants are also recognized, e.g., WHO DOES X
CALL, IS FOO CALLED BY FIE, etc.)

The interpretation of the command depends on the number of question elements present.
If there is no question element, the command is treated as an assertion and SCOPE responds
cither T or NIL, depending on whether the assertion holds. Thus, SCOPE will respond to the
question DO ANY IN MYFNS CALL HELP with T if any function in MYFNS calls the function
HELP, and NIL otherwisc. If there is one question element, SCOPE will respond with the list of
items for which the assertion would be true. For example MYFN BINDS WHO USED FREELY
BY YOURFN recsults in the list of variables bound by MYFN which arc aiso used frecly by

79

Appendix {I—The SCOPE. Command Language

YOURFN. If there is more than onc question element SCOPE will display a table of possible
results:

«. WHO BOUND BY WHOM IS USED FREELY BY WHO ON MYFILE

FLGX --- RECFN1 --- RESULTX
VAR3 --- REMTOP --- GETRESLT
VARK --- LISTER - VARKUSER

This means that FLG is bound by RECFN1 and is used frecly H»yr RESULTX, that VARS3 is
bound by REMTYP and is used freely by GETRSLT, etc.

Imperatives

EDIT WHERE np verb-phrase np
Invokes the INTERLISP editor on each expression where the relation

specified by verb-phrase actually occurs, e.g., EDIT WHERE ANY CALLS
ERROR.

SHOW WHERE np verb-phrase np
Similar to the EDIT command, but mercly prints out the expressions

without calling the editor. (Note that this is different from the SHOW
PATHS command which displays a tree structure.)

DESCRIBE np Prints out a summary of potentially useful information about the items
denoted by np. For example, the command DESCRIBE THE FUNCTION
PRINTARGS might print out:

PRINTARGS[N;FLG]

binds : TEM,LST,X

calls : MSRECORDFILE,LSPACES,PRIN1

called by: PRINTSENTENCE ,MSHELP,CHECKER
which shows that PRINTARGS has two arguments N and FLG, binds
internally the variables TEM, LST and X, calls MSRECORDFILE,
SPACES and PRIN1 and is called by PRINTSENTENCE., MSHELP, and
CHECKER.

CHECK np . Tells SCOPE to check for various abnormal conditions in the functions or
files specified by np.

RENAME np TO BE np
Instructs SCOPE to (a) copy the definition of the first symbol to the
second, and (b) change any place that references the first symbol to
instcad reference the second.

80

\
Al

Appendix [I—The SCOPE Command Ianguage

SHOW PATHS pathoptions

FROM np

TO np

AVOIDING np

MARKING np

I1.4 CONCLUSIONS

Causcs SCOPE to display a tree structure of the CALL rclation, according
to the pathoptions: pathoptions consists of any number of the following:

Display CALLs which originatc with elements of np.

Display the CALLs lecading to clements of np. If TO is given before
FROM (or no FROM is given), the trec is inverted. When both FROM
and TO are given, the first one indicates a set which must be
displayed while the sccond restricts the paths that will be traced,
e.g., the command SHOW PATHS FROM X TO Y will trace the
elements of the sct CALLED SOMEHOW BY X AND CALLING Y
SOMEHOW.

Do not display any element of np. For example, SHOW PATHS TO
ERROR AVOIDING ON FILE2 will not display (or trace) any
function on FILE2.

Adds an asterisk to the display of clements of np. For example, the
command SHOW PATHS TO SCINTERPRET MARKING ANY THAT
BIND X will identify, in the tree of calls which can reach
SCINTERPRET, those functions which bind the variable X.

SCOPE’s command processor, as it was first used in MASTERSCOPE, enabled MASTERSCOPE
users to find a workable set of commands which gave them the results they needed; however,
in order to make MASTERSCOPE even more responsive to queries of casual users, transcripts of
several hundred MASTERSCOPE sessions were rccorded (with permission). Scanning these
typescripts often revealed reasonable. sentence structures which MASTERSCOPE rejected. These
sentence structures were added to the command language although they were not documented.
The ScoPE command language is actually more extensive than this documentation indicates;
however, a brief documentation of a working subset of the language scems better than a

complex documentation of all possible commands.

81

Appendix III—The SCOPE Intermediate Query Language

While the natural language interface for SCOPE is convenient for casual use, SCOPE
provides a more formal interface for programs which wish to query SCOPE's data base. Other
programs which use SCOPE do not usually nced to go through the SCOPE command parser
every time a query is made. The intcrmediate query language resembiles a first-order predicate
calculus language with conjunctions, quantifiers, and base asscrtions corresponding to SCOPE’s
relations.

* Queries

(FIND bindings predicate)
Generally, a SCOPE query asks SCOPE to find a set of quantities.
bindings is a list of variables to be filled in with the names of symbols,

and predicate is a predicate which should be satisfied, e.g.. (FIND (X Y)
(AND (MayCall X Y) (Bind X 'FO0) (UsefFreely Y 'F00)).

* Predicates

relationname vc v¢ ...)
The basic form of a predicate involving one of SCOPE's relations. vc is
either a variable which has been “bound” in an enclosing FIND or else a
constant. (A vc can also be a set specification as outlined below.)

(AND predicate predicate ...)
(OR predicate predicate ...)

(NOT predicate ...)
SCOPE allows predicates to be joined by the normal logical conjunctions

to form new predicates.

(FORALL bindings predicate)

(THEREIS bindings predicate)
These have the same form as the FIND query, but are the corresponding
existentially and universally quantified predicates.

(MEMBER var LISP-expression)

(SATISFIES var LisP-predicate)
These predicates allow a simple escape to the LISP environment, by
specifying respectively that the variable is an element of the list given by
the MEMBER cxpression, or that the LISP functional predicate given
returns non-NIL when passed the valuc of the variable as an argument.

82

)
;
Appendix [H—The SCOPE Intermediate Query Language

(IN var set) 'This specifies that the variable var is an clement of the set set, where set
is a sct specification, as outlined below.

* Set specifications

. In addition to predicates, the SCOPE query language allows specification of sets of
clements. These are specified in several constructive ways:

(SETOF binding predicate)
For cxample. .(SETOF X (Call X 'ERROR)). The binding is a variable
which will be used within predicate; the SETOF specification denotes the

set of values for which predicate will hold.

(UNION set set ...)
(INTERSECTION set set ...)

(COMPLEMENT set)
Sets can be joined with the normal set theory conjunctions to form new

sets.

* Using scts within queries

A convenient abbreviation in the SCOPE intermediate query language is the ability to use
set specifications as the arguments to predicates, to avoid making up unnecessary variable
names. A standard transformation is performed to expand the abbreviation: a predicate
(relation ..1.. set ..2..) is transformed into (THEREIS X (AND (IN X set) (relation .l. X
.2..))) where X is a "new" variable.

Appendix IV—Templates for Computing Cross Reference

When computing cross reference for procedures, SCOPE associates with each special Lisp
form a template which describes the pattern of a function’s evaluation. In SCOPE, a template is
a list structure containing any of the following atoms:

PPE If an expression appears in this location, there is most likely a
parenthesis error.

EVAL The expression at this location is evaluated normally.

NIL The cxpression occuring at this location is not evaluated. For example,
the template for QUOTE is (NIL . PPE).

FUNCTION The expression at this point is used as a functional argument. For
example, the template for MAPC is (EVAL FUNCTION FUNCTION
PPE).

FIELD An atom at this location is used as a record field.

RECORD An atom at this location is used as a record name.

BIND An atom at this location is a variable which is bound.

CALL An atom at this location is used as a function.

In addition to the above atoms which occur in templates, there are some "special forms"
which are lists keyed by their first element.

. . template Any part of a template may be preceded by two periods which specifies
that the template should ‘be repeated an indefinite number (n2>0) of
times to fill out the expression. For example, the template for COND
might be (.. (.. EVAL)) while the template for SELECTQ is (EVAL

(NIL .. EVAL) EVAL).

(BOTH template template)
Analyze the current expression twice, using each template in turn.

(IF test template template)
Apply test to the current expression at analysis time, and if the result is
non-NIL, use the first template. otherwise the sccond. For example, (IF
LISTP (RECORD FIELD) FIELD) spccifies that if the current
expression is a list, then the first element is a record name and the

second element a field name, otherwise it is a ficld name.

Appendin 1Y — Femplates for Computing € ross Refereace

Templates may be changed and new templates defined. Whenever the template for a
function changes, SCOPt: knows that it must rcanalyze any procedure whose analysis might be
affected by the template.

85

Appendix V—The FORMAT Program

The following program is used as an example in the text of this dissertation. The program
and its documentation was taken fairly directly from Kernighan and Plauger, Sofiware Tools
[1976], and was chosen as an example of a particularly well-written program. In translating the
program from RATFOR into INTERLISP, a few liberties were Laken—sinceJINTERLISP does not
manipulate character strings or arrays of characters as efficiently as lists, lists of characters are
used instead of the character arrays in the original source; this caused the ‘internal structures of
some of the routines to change. Since INTERLISP does not have call by reference, the calling
structure of a few of the routines were modified to return their values rather than perform
assignments to reference arguments. OQutside of those changes, the program is taken intact,
comments included.

This example is a text formatter—a program for neatly formatting a document on a
suitable printer. It produces output for devices like terminals and line printers, with automatic
right margin justification, pagination, page numbering and titling. centering, underlining, .
indenting, and multiple line spacing. The FORMAT program is quite conventional. It‘accepts
the text to be formatted, interspersed with formatting commands telling FORMAT what the
output is to look like. A command consists of a period, a two-letter name, and perhaps some
optional information. Each command must appear at the beginning of a line, with nothing on
the line but the command and its arguments. For instance,

.ce
centers the next line of output, and
.sp 3
generates three blank lines.
By default, FORMAT fills output lines, by packing as many input words as possible onto
an output line before printing it. The lines are also justified (right margins made even) by

inserting extra spaces into the filled linc before output. Filling can be turned off by the no-fill
command

.nf

and thereafter lines will be copied from input to output without any rearrangement. Filling can
be turned back on with the fill command

fi

86

Appendin Y—The FORMAT Program

The action of forcing out a partially collected line is called a break. The break concept
pervades FORMAT: many commands implicitly cause a break. To force a break explicitly, for
example, to scparate two paragraphs, use

.br

Of coursc you may want to add an extra blank line between paragraphs. The space

command

.Sp

causes a break, then produces a blank line. To get » blank lines, use
Sp n
By default output will be single spaced, but the line spacing can be changed at any time:

As n

sets line spacing to n. (n=2 is double spacing.) The .Is command does not cause a break.

The begin page command .bp causes a skip to the top of a new page and also causes a
break. If you use

.bp n

the next output page will be numbered n. The current page length can be changed (without a
break) with

.pl n
To center the next line of output,

.ce :
line of text to be centered

The .ce command causes a break. You can center n lines with

.ce n
and, if you don't like to count lines, say

.ce 1000
lots of lines
10 be centered
.ce O

The lines between the .ce commands will be centered.

87

Appendix V—"The FORMAT Program

Underlining is much the same as centering:
ul n
causes the next n lines to be unerlined upon output. But .ul does not cause a break, so words
in filled text may be underlined.
The indent command controls the left margin:
n n
causes all subsequent output lines to be indented n positions. The command
.rm n

sets the right margin to n. The traditional paragraph indent is produced with temporary indent
command:

zi n

breaks and sets the indent to position n for one output line only.

To put running header and footer titles on every page, use .he and .fo:

.he this becomes the top of page (header) title

.fo this becomes the bottom of page (footer) title
The title begins with the first non-blank after the command, but a leading quote will be
discarded if present, so titles that begin with blanks can be produced. If a title contains the
character #, it will be replaced by the current page number.

Since absolute numbers are often awkward, FORMAT allows relative values as command
arguments. All commands that allow a numeric argument n also allow +n or -n instead, to
signify a change in the current value.

88

Appendix V—The FORMAT Program

The FORMAT program

Here is the FORMAT program in its cntirety. (Note that the program is presented in its
"CLisP" form [Teitelman 1973} while examples in the text of this dissertation are in standard
S-expression notation; SCOPE automatically invokes the CLisSP processor before analyzing or

, presenting code to the programmer):

(DEFINEQ
(FORMATINIT
[LAMBDA NIL (* initialize variables for FORMAT)

(** misc pmghzm constants * %)
PAGEWIDTH«60 (* width of page)
PAGELEN«66 (* length of page)
PAGENUM«'# (® character which signals page numbers in footer and header)
COMMAND«"'%. (* character which signals beginning of command)
MAXLINE«200 (* maximum size of internal buffer)
MAXOUT«200 (*® maximum size of output line)
INSIZE«200 (* maximum size of input line)
HUGE«10000000 . (* a very large integer)

(* * special characters * %}
NEWLINE«'%

(* end of line (carriage return))

TAB«'% ~ (* tab character)
SQUOTE«"'%"' (* single quote)
DQUOTE«"'%4" (* double quote)
PLUS«'+ (* plus sign)
MINUS«' - (* minus sign)
UNDERLINE«"'% (* underline character)
BLANK«'% _ (* a space character)
BACKSPACE«"'% ') (* backspace)

(* * page formatting variables * %)
FILLeT LAY
LSVALe1 - ' (" current line spacing)
INVAL«O (* current indent; GE 0)
RMVAL<PAGEWIDTH (* current right margin)
TIVAL«O (* current temporary indent)
CEVAL«O0 (" number of lines 1o center)
ULVAL«0 (* number of lines to underline)
CURPAG+0 (* current output page number)
NEWPAG«1 (* next output page number)
LINENQO«O (* next line to be printed)
PLVAL+<PAGELEN (* page length in lines)

89

Appendix V—The FORMAT Program

M1VAL«2 (* margin before and including header)
M2VAL«2 (* margin after header)

M3VAL«2 (* margin after last text line)
M4VAL«2 (* bottom margin, including footer)

BOTTOM<PLVAL-M3VAL-MAVAL (*last live line on page)
HEADER+(CHARBUFFER MAXLINE) (*op of page title)
FOOTER«(CHARBUFFER MAXLINE) (*bottom of page ritle)

(* * output common variables * %)
OQUTP«0 (* last char position in OUTBUF)
OUTW«0 (* width of text currently in OUTBUF)
OUTWDS«0 (* number of words in QUTBUF)
OUTBUF«(CHARBUFFER MAXOUT) (* output buffer)

(* * used only by SPREAD * *)
DIRFLG#NIL

(* *used by TEXT * *)

WRDBUF«(CHARBUFFER INSIZE) (*buffer for words)

1
(FORMAT '
[LAMBDA (STDIN STDOUT) (® text formarter main program)
(PROG ((INBUF (CHARBUFFER INSIZE)))
(FORMATINIT)
(while (GETLIN INBUF STDIN)~ 'EOF
do (if INBUF:1=COMMAND
then (COMMAND INBUF) (* it’sa command)
else (TEXT INBUF) (*irstext)))
(if LINENO gt O
then (SPACE HUGE) (* flush last outpu))])
(COMMAND
[LAMBDA (BUF) . L. (* perform formatting command)

(PROG (VAL:CT)
(CT«(COMTYP BUF))
(VAL~(GETVAL BUF))
(SELECTQ cT
(FI (BRK) FILLeT)
(NF (BRK) FILLeNIL)
(BR (BRK))
(LS LSVAL«~(FORMATSET LSVAL VAL 1 1 HUGE))
(HE (GETTL BUF HEADER))
(FO (GETTL BUF FOOTER))
(SP SPVAL«~(FORMATSET SPVAL VAL 1 0 HUGE)
(SPACE SPVAL))

Appendix Y—The FORMAT P’rogram

(BP (if LINENO gt O
then (SPACE HUGE)) ,
CURPAG«~(FORMATSET CURPAG VAL CURPAG+1
(-HUGE) HUGE)
NEWPAG-CURPAG)
(PL PLVAL«(FORMATSET PLVAL VAL PAGELEN
M1VAL+M2VAL+M3VAL+M4VAL+1 HUGE)
BOTTOM«PLVAL-M3VAL-M4VAL)
(IN INVAL¢(FORMATSET INVAL VAL 0 0 RMVAL-1)
TIVAL<INVAL)
(RM RMVAL«(FORMATSET RMVAL VAL PAGEWIDTH TIVAL+1
HUGE))
(TI (BRK)
TIVAL<(FORMATSET TIVAL VAL 0 0 RMVAL))
(CE (BRK)
TEVAL+~(FORMATSET CEVAL VAL 1 0 HUGE))
(UL ULVAL<(FORMATSET ULVAL VAL 0 1 HUGE))
(* unknown command])

(COMTYP _
[LAMBDA (BUF) (* decode command type)
(* Kernighan & Plaugher must convert from characters
to codes for commands. It can be simpler in Lisp)

(U-CASE (PACK* BUF:2 BUF:3])

(GETVAL
[LAMBDA (BUF) (* evaluate optional numeric argument)
(PROG (ARGTYP) ’
(while BUF:1~=BLANK and BUF:1~=TAB and BUF:1~=NEWLINE
do BUF«BUF::1)
(BUF<(SKIPBL BUF))
(ARGTYP«BUF:1)
(if ARGTYP=PLUS or ARGTYP= MINUS
then BUF«BUF::1)
(RETURN (create COMARG
TYPE « ARGTYP
N « (CTOI BUF)])

(FORMATSET ’ :
[LAMBDA (OLDVAL VAL DEFVAL MINVAL MAXVAL) (* réturn new value for parameter)
VAL«(if VAL:TYPE=NEWLINE

then DEFVAL (* default value)

elseif VAL:TYPE="+ .
then OLDVAL+VAL:N - . (® relative +)

elseif VAL:TYPE='- .
then OLDVAL-VAL:N (* relative -)

else (* absolute)

VAL:N)
VAL«(IMIN MAXVAL VAL)
VAL«~(IMAX MAXVAL VAL])

91

i T

Appendix V—The FORMAT Program

(TEXT

[LAMBDA (INBUF) (* process text lines)
(PROG (I) :
(if INBUF:1=BLANK or INBUF:1=NEWLINE
then (LEADBL INBUF) (* move left, set TIVAL))
(if ULVAL gt O
then (UNDERL INBUF WRDBUF) (* underlining)
ULVAL«ULVAL-1)
(if CEVAL gt 0
then (CENTER INBUF) (* centering)
(FORMATPUT INBUF)
CEVAL~CEVAL-1
elseif INBUF:1=NEWLINE
then (FORMATPUT INBUF) (* all blank line)
elseif FILL=NIL .
then (FORMATPUT INBUF)
else (do (INBUF<(GETWRD INBUF WRDBUF))
(if WRDBUF:1='EOS
then (RETURN))
(PUTWRD WRDBUF])

(FORMATPUT
[LAMBDA (BUF) (* put out line with proper spacing and indenting)
(if LINENO=0 or LINENO gt BOTTOM
then (PHEAD))
(for I from 1 to TIVAL do (PUTC BLANK))
TIVAL«INVAL
(PUTLIN BUF STDOUT)
(SKIP (IMIN LSVAL-1 BOTTOM-LINENO))
LINENO«LINENO+LSVAL
(if LINENO gt BOTTOM
then (PFOOT])

(PHEAD
[LAMBDA NIL : (® put out page header)

CURPAG-NEWPAG
NEWPAG-NEWPAG+1
(if M1VAL gt O .

then (SKIP M1VAL-1)

- (PUTTL HEADER CURPAG))

(SKIP M2VAL)
LINENO-M1VAL+M2VAL+1])

(PFOOT
[LAMBDA NIL (* put out page footer)

(SKIP M3VAL)
(if MAVAL gt 0
then (PUTTL FOOTER CURPAG)
(SKIP MavAL-1])

(PUTTL

92

Appemdix Y—The FORMA'I Program

[LAMBDA (BUF PAGENO) (* put out title line with optional page number)
(on old BUF while BUF:1~='EOS do (if BUF:1=PAGENUM
then (PUTDEC PAGENO 1)
else (PUTC BUF:1])

(GETTL
[LAMBDA (BUF TTL) (* copy title from buf to tt))
(while BUF:1~=BLANK and BUF:1~=TAB and BUF:1~=NEWLINE do '
BUF<BUF::1)
BUF«<(SKIPBL BUF)
(if BUF:1=SQUOTE or BUF:1=DQUOTE
then BUF«BUF::1)
(SCOPY BUF TTL])

(SPACE
[LAMBDA (N) (* space n lines or to bottom of page)
(PROG NIL
(BRK)
(if LINENO gt BOTTOM
then (RETURN))
(if LINENO=0
then (PHEAD))
(SKIP (IMIN N BOTTOM+1-LINENO))
(LINENO~LINENO+N)
(if LINENO gt BOTTOM
then (PFOOT])
(LEADBL
[LAMBDA (BUF) (® delete leading blanks, set TIVAL)
(BRK)

(PROG ((CBUF BUF))
(for I from 1 while BUF:1=BLANK
do BUF+BUF::1 finally TIVAL«I-1)

(do (CBUF:1«BUF:1)

(if BUF:1="EOS
then (RETURN))

(CBUF«CBUF::1)
(BUF«BUF::1])

93

(PUTWRD
[LAMBDA
(PROG

(WIDTH
[LAMBDA
(PROG

(BRK
[LAMBDA

Appendix V—The FORMAT Program

(WRDBUF) (* put a word in OUTBUF: includes margin justification)
(W LAST LLVAL NEXTRA)
(We(WIDTH WRDBUF))
(LAST«(FORMATLENGTH WRDBUF)+0UTP+1)
(LLVAL<RMVAL-TIVAL)
(if OUTP gt 0 and (QUTW+W gt LLVAL or LAST ge MAXOUT)
then (* 100 big)
LAST+(LAST-0UTP) (* remember end of WRDBUF)
NEXTRA«LLVAL-OUTW+1
(SPREAD OUTBUF OUTP NEXTRA OUTWDS)
(if NEXTRA gt 0 and OUTWDS gt 1
then OUTP«QUTP+NEXTRA)

(BRK) (* flush previous line))
(SCOPY WRDBUF (NTH QUTBUF OUTP+1))
(OUTP«LAST)
((NTH OUTBUF OUTP):1« BLANK) (" blank between words)
(OUTW<OUTW+W+1) (* 1 for blank)
(OUTWDS<OUTWDS+1])
(BUF) (* compute width of character string)

((WIDTH 0))
(for X in BUF while X~='EQOS
do (if X=BACKSPACE
then WIDTH«(WIDTH-1)
elseif X~=NEWLINE
then WIDTHe«(WIDTH+1)))
(RETURN WIDTH])

NIL : (* end current filled line)

(if OUTP gt O
then ((NTH OUTBUF OUTP):1¢NEWLINE)

OUTP«0
OUTW«0

((NTH OUTBUF OUTP+1):1«'EOS)
(FORMATPUT OUTBUF))

OUTWDS«0])

(SPREAD
[LAMBDA
(PROG

(BUF OUTP NEXTRA QUTWDS) (* spread words to justify right margin)
(NE NHOLES I J NB)
(if NEXTRA l1e 0 or OUTWDS le 1
then (RETURN)) -
(DIRFLG~DIRFLG)
(NE-NEXTRA)
(NHOLES<OUTWDS-1)
(I+0UTP-1)
(J«(IMIN MAXOUT-2 I+NE)) (* leave room for NEWLINE, EOS)

94

Appendisn Y—"The FORMAT Program

(while I 1t J do (NTH BUF J):1«(NTH BUF I):1
(if (NTH BUF I):1=BLANK
then (if DIRFLG
then NB«(NE-1)/NHOLES+1
else NB«NE/NHOLES)

NE-NE-NB
NHOLES«~NHOLES-1
(while NB gt 0 do

Jed-
(NTH BUF J): I*BLANK
NB«NB-1))
[«I-1
Jed-1])
(CENTER
[LAMBDA (BUF) (" center a line by setting TIVAL)

TIVAL«(IMAX (RMVAL+TIVAL+(-(WIDTH BUF)))/2 0])

(UNDERL
[LAMBDA (BUF TBUF) (* underline a line)
(* * expand into TBUF, and then copy back into BUF * %)
(PROG ((OBUF BUF)
(OTBUF TBUF))
(do (OTBUF:1«0BUF:1)
(if OBUF:1=NEWLINE
then OTBUF:2«'EOS
(RETURN))
(OBUF+~0OBUF ::1)
(if OTBUF:1~=BLANK and OTBUF:1~=TAB
and OTBUF:1~=BACKSPACE
then OTBUF:2+BACKSPACE
OTBUF : 3+UNDERLINE
OTBUF<QTBUF::3
else OTBUF«OTBUF::1)))
(SCOPY TBUF BUF])

(PUTLIN
[LAMBDA (BUF 0UT)
(for X in BUF while X-='EOS do (PUTCH X OUT])

(FORMATLENGTH
[LAMBDA (STR)
(for 1 from 0 while STR:1~='EQOS do STR«STR:
finally (RETURN I])

Appendix V—The FORMAT Program

(SKIPBL _
[LAMBDA (BUF) (* skip blanks)
(if BUF:1=BLANK or BUF:1=TAB
then (SKIPBL BUF::1)
else BUF])

(CTOI
[LAMBDA (BUF) o (* convert string to integer)
(bind I«0 do (SELECTQ BUF:1 ‘
((01 234567 889)
I«I*10+BUF:1 BUF«BUF::1)
(RETURN I])

(SKIP

[LAMBDA (N) (* output N blank lines)
(RPTQ N (PUTC NEWLINE])

(* used to return values from GETVAL)
(RECORD COMTYPE (TYPE . N))

(* Utilities from earlier chapters)

(DEF INEQ

(SCOPY
[LAMBDA (FROM TO) (* copy characters from FROM to

(do (TO:1<FROM:1)
(if FROM:1='EOS
then (RETURN))
(TO«T0::1)
(FROM«FROM::1])

(PUTDEC
[LAMBDA (N W) (* put decimal integer N in field width ge W)
(SPACES W-(NCHARS N) STDOUT)
(PRIN1 N STDOUT])

Appendix V—The FORMAT Program

(GETWRD
[LAMBDA (IN OUT) (* get non-blank word from IN into
QUT and return new IN)
(while IN:1=BLANK or IN:1=TAB do (IN«IN::1))
(while IN:1~='EQS and IN:1~=BLANK and IN:1~=TAB
and IN:1~=NEWLINE
do (OUT:1«IN:1)
(OUT«0UT::1)
(IN«IN::1))
OUT:1«'EOS
IN])

(* interface to interlisp)

(DEFINEQ

(PUTC
[LAMBDA (CHAR)
(PUTCH CHAR STDOUT])

(* output a single character)

(PUTCH
[LAMBDA (CHAR OUT) (* put char out on OUT)
(PRIN1 (the CHARACTER CHAR) 0UT])

(CHARBUFFER
ELAMBDA (N) . (® initiate value for a character buffer)

(to N collect 'EOS])

(GETLIN
. - [LAMBDA (BUF FILE) (* read a line of characters into BUF)
(do (if BUF::1=NIL)

then (BUF::1¢<NILD) (* expand buffer if necessary))
(if ~(ERSETQ BUF:1«(READC FILE))
then (RETURN 'EOF)
elseif BUF:1=NEWLINE
then BUF:2«'EOQS
(RETURN))
(BUF+BUF::1])
)
(DECLTYPE CHARACTER

(ONEOF (LITATOM SATISFIES (EQ (NCHARS X) 1))
(MEMQ EOF EOS))

Key to abbreviations:

Bibliography

ACM Association for Computing Machinery

BBN Bolt Beranek and Newman Inc., Cambridge, MA

CACM Communications of the ACM

ISI/RR Technical report, University of Southern California Information
Sciences Institute, Marina del Rey, CA

JACM Journal of the ACM

1JCAl International Joint Conference on Artificial Intelligence

MIT-AI-TR Technical report. Artificial Intellegence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA

Xerox PARC Xerox Palo Alto Research Center, Palo Alto, CA

POPL ACM Symposium on Principles of Programming Languages

SIGPLAN ACM SIGPLAN Notices, Special Interest Group on Programming
Languages ’

SRI SRI International, Menlo Park, CA

STAN-CS Technical report, Computer Science Department, Stanford

University, Stanford, CA

[Aho & Johnson 1976]
A. V. Aho and S. C. Johnson. "Code Generation for Expressions with Common

Subexpressions”. Second POPL, Jan. 1976.

[Aho & Ullman 1977]
A. V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley,

1977.

[Allen & Cocke 1971]
F. E. Allen and J. Cocke. "A Catalogue of Optimizing Transformations". in Design
and Optimization of Compilers, R. Rusten, ed., Prentice-Hall, 1971.

[Allen 1975]
F. E. Allen. "Interprocedural Analysis and the Information Derived by It." in

Programming Methodology: Lecture Notes in Computer Science, Volume 23,
Springer-Verlag, Heidelberg, Germany, 1975.

[Balzer 1972]
R. M. Balzer. Automatic Programming. ISI/RR-73-1, Sept 1972

[Balzer 1975}
R. M. Balzer. Imprecise Program Specification. ISI/RR-75-36, Dec. 1975.

98

Bihliography

[Banning 1978] _
J. P. Banning. A4 Method for Determining the Side Effects of Procedure Calls.
STAN-CS-78-676, Nov. 1978.

[Banning 1979]
J. P. Banning. "An Efficient Way to Find the Side Effects of Procedure Calls and

the Aliases of Variables.” Sixth POPL, Jan. 1979.

[Barth 1977]
J. M. Barth. A4 practical interprocedural data flow analysis algorithm and its
applications. Ph.D. dissertation, Computer Science Tech. Report 770520, U.C.
Berkeley, May 1977.

[Barth 1978)
J. M. Barth. "A Practical Interprocedural Data Flow Analysis Algorithm”. CACM

21:9, Sept. 1978.

[Bobrow 1975]
D. G. Bobrow. "Dimensions of Representation”. Representation and Understanding,
D. G. Bobrow and A. Collins (eds.), Academic Press, 1975.

[Bobrow & Winograd 1976}
D. G. Bobrow and T. Winograd. An Overview of KRL, a Knowledge Representation
Language. Xerox PARC CSL-76-4, July 1976. Also in Cognitive Science 1:1, Jan.
1977.

[Bobrow & Deutsch 1976]
D. G. Bobrow and L.P.Deutsch. "Extending Interlisp for Modularization and
Efficiency”. Proc. EUROSAM 79, Lecture Notes in Computer Science 72,
Springer-Verlag 1979. :

[Brachman 1978]
R. J. Brachman. 4 Sitructural Paradigm for Representing Knowledge. BBN Report

No. 3605, May 1978.

[Burton 1976]
Richard C. Burton, Richard R. Semantic Grammar: An Engineering Technique for

Constructing Natural Language Undersianding Systems. BBN Report No. 3453,
Dec. 1976.

Bibliography

[Codd 1970]
E. F. Codd. "A Relational Model of Data for Large Shared Data Banks". CACM

13:6, June 1970.

[Cousot & Cousot 1979) ,
P. Cousot and R. Cousot. "Systematic Design of Program Analysis Frameworks".

Sixth POPL, Jan. 1979.

[Davis & King 1975]
R. Davis and J. King. An Overview of Production Systems. STAN-CS-75-524, Oct

1975.

[Davis 1978]
R. Davis. "Knowledge Acquisition in Rule-Based Systems - Knowledge About
Representations as a Basis for System Construction and Maintenance”. Pattern-
Directed Inference Systems, D. A. Waterman and F. Hayes-Roth (eds.), Academic
Press, 1978.

[Deutsch 1973}
L. P. Deutsch. An Interactive Program Verifier. Xerox PARC CSL-73-1, May 1973.

[Dolatta et al. 1978)
T. A. Dolotta, R. C. Haight, and J. R. Mashey. "The Programmer’s Workbench".

Bell System Tech. Journal 57:6, Jul-Aug. 1978.

[Feldman 1979]
Stuart 1. Feldman. "MAKE--a program for maintaining computer programs"”.
Sofiware Practice & Experience 9:4, April 1979.

[Fosdick & Osterweil _1976]
L° D. Fosdick and L. J. Osterweil. "Data flow analysis in software reliability".
ACM Computing Surveys, 8:3, Sept. 1976.

[Goodenough & Shafer 1976]
J. B. Goodenough and L. H. Shafer. 4 Swdy of High Level Language Features.
Softech, Inc., ECOM-75-0373-F. Available as NTIS AD-A021 206 and 207, Feb.

1976.

100

Bibliography

[Gordon et al. 1977]
M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Internal Report CSR-

11-77 (Part I), Dept. Computer Science, University of Edinburgh, Sept. 1977.

[Graham & Wegman 1976]
S. L. Graham and M. Wegman. "A fast and usually linear algorithm for giobal

flow analysis”. JACM 23:1, Jan. 1976.

[Hecht & Ullman 1973]
M. S. Hecht and J. D. Ullman. "Analysis of a Simple Algorithm for Global Data

Flow Problems.” (First) POPL, Oct. 1973.

[Hendrix 1977]
Gary G. Hendrix. The Lifer Manual. Technical Note 138, AI Center, SRI

International, Feb. 1977.

[Hoare 1973] . .
C. A. R. Hoare. Hints on Programming Language Design. STAN-CS-73-403, Dec.

1973.

[Jones & Muchnick 1977]
" Niel D. Jones and Steven S. Muchnick. "Even simple programs are hard to

analyze”. JACM 24:2, April 1977.

[Jones & Muchnick 1979]
Niel D. Jones and Steven S. Muchnick. "Flow Analysis and Optimization of LISP-

like Structures”. Sixth POPL, Jan. 1979.

[S.Kaplan 1979]
Samuel J. Kaplan. Cooperative Responses from a Portable Natural Language Data

Base Query System. PhD Dissertation, University of Pennsylvania, 1979.

[Kaplan & Ullman 1978]
M. A. Kaplan and J.D.Ullman. "A General Scheme for the Automatic Inference of

Variable Types”. Fifth POPL, 1978.

[Kernighan & Plauger 1976]
B. W. Kemighan and P. J. Plauger. Sofiware Tools. Addison-Wesley, 1976.

101

Bibliography

[Kling & Scacchi 1979]
Rob King and Walter Scacchi. "The DoD Common High Order Programming
Lar_lguage Effort (DoD-1): What Will the Impacts Be?" S/GPLAN 14:2, Feb. 1979.

[Lenat & Harris 1978]
D. B. Lenat and G. Harris. "Designing a Rule System that Searches for Scientific
Discoveries”. Pattern-Directed Inference Systems, D. A..Waterman and F. Hayes-
Roth (eds.), Academic Press, 1978.

[Lientz et al. 1978] .
B. P. Lientz, E. B. Swanson, and G. E. Tompkins. "Characteristics of Application
Software Maintenance”. CACM 21:6, June 1978.

[Liskov et al. 197‘{]
B. Liskov et al. "Abstraction Mechanisms in CLU". CACM 20:8, Aug. 1977.

[Low 1976]
J. R. Low. Automatic Data Structure Selection: An Example and Overview.
University of Rochester, Computer Science Department Technical Report 14, Sept.
1976.

[McCarthy 1978]
J. McCarthy. History of Programming Languages Conference, SIGPLAN 13:8, Aug.
1978.

[Milman 1977]
Y. Milman. "An Approach to Optimal Design of Storage Parameters in

Databases”. CACM 20:15, May 1977.

[Mitchell 1970]
J. G. Mitchell. The Design and Construction of Flexible and Efficient Interactive
Programming Systems. PhD thesis, Computer Science Department, Carnegie-
Mellon University, Pitusburgh, June 1970.

[Mitchell et al. 1978]
J. G. Mitchell, W. Maybury, and R. Sweet. Mesa Language Manual. Xerox PARC
CSL-78-1, Feb. 1978.

102

Ribliography

[Model 1979}
M. L. Modcl. Monitoring System Behavior in a Complex Computational

Environment. STAN-CS-79-701, Jan. 1979.

[Moore 1975]
J S. Moore. Introducing Iteration into the Pure Lisp Theorem Prover. Xerox PARC

CSL-74-3, March 1975.

[Moore 1976]
J S. Moore. The Interlisp Virtual Machine Specification. Xerox PARC CSL-76-5,

Scptember 1976.

[Moriconi 1977]
Mark S. Moriconi. A System for Incrementally Designing and Verifying Programs.

ISI/RR-77-65, Nov. 1977.

[Moriconi 1978]
M. S. Moriconi. A Designer/Verifier's Assistant. SRI Tech. Report CSL-80, Oct.

1978.

[Morris 1973]
J. Morris. "Protection in programming languages”. CACM 16:1, Jan. 1973.

[Parnas 1972a]
D. L. Pamnas. "A Technique for Software Module Specification with Examples”.

CACM 15:5, May 1972.

[Parnas 1972b]
D. L. Parnas. "On the Criteria to be Used in Decomposing Systems into Modules”.

CACM 15:12, Dec. 1972.

[Pertis 1977]
Alan Perlis. Keynote speech. Perspectives on Computer Science. Academic Press,

1977.

[Ramamoorthy & Ho 1977]
C. V. Ramamoorthy and S. F. Ho. "Testing large Softwarec with Automated

Software Evaluation Systems”. Current Trends in Programming Methodology,
Volume 1I: Program Validation. R. T. Ych, (cd.). Prentice-Hall, 1977

103

Bibliography

[Rich & Shrobe 1976]
Charles Rich and Howard E. Shrobe. Initial Report on a Lisp Programmer’s
Apprentice. MIT-AI-TR-354, Dec. 1976.

[Rich & Shrobe 1978}
Charles Rich and Howard E. Shrobe. "Initial Report on a Lisp Programmer’s

Apprentice”. [EEE Sofiware Engineering SE-4.6, Nov. 1978.

[Rich, Shrobe & Waters 1979]
Charles Rich, Howard E. Shrobe, and Richard C. Waters. "Overview of the
Programmer’s Apprentice”. Sixth IJCAI, Aug. 1979.

[Roberts & Goldstein 1977}
R. B. Roberts and I. P. Goldstein. The FRL Primer. MIT-AI 408, July 1977.

[Rosen 1979]
Barry K. Rosen. "Data Flow Analysis for Procedural Langauges”. JACM 26:2,

Apr. 1979.

[Ryder 1979]
B. G. Ryder. "Constructing the Call Graph of a Program”. IEEE Transactions on

Software Engineering SE-5:3, May 1979.

[Sandewall 1978]
E. Sandewall. "Programming in the Interactive Environment: The LISP

Experience”. ACM Computing Surveys 10:1, March 1978.

[Satterthwaite 1975]
E. H. Satterthwaite. Source Language Debugging Tools. STAN-CS-75-494, May

1975.

[Schaeffer 1973]
M. A. Schaeffer. Mathematical Theory of Global Program Optimization. Prentice-

Hall, 1973.

[Shrobe 1979]
H. E. Shrobe. "Dependency Directed Reasoning in the Analysis of Programs

Which Modify Complex Data Structures”. Sixth IJCAI, Aug. 1979.

104

Bibliography

[Simon 1969]
Herbert A. Simon. The Sciences of the Artificial. MIT Press, 1969.

[Standish 1971}
T. A. Standish. "PPL - an Extensible Language that Failed”. S/GPLAN 6:12, Dec.

1971.

[Stecle 1978]
G. L. Steele. RABBIT - a Compiler for SCHEME. MIT-AI-TR-474, May 1978.

[Sussman & Steele 1975]
G. J. Sussman and G. L. Steele. SCHEME: An Interpreter for Fxiended Lambda

Calculus. MIT-Al 349, Dec. 1975.

[System R 1976]
M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, et al. "System R: Relational

Approach to Databasc Management”. ACM Transactions on Database Systems 1:2,
June 1976.

[Swinehart 1974}
D. C. Swinehart. COPILOT: A Multiple Process Approach 1o Interactive

Programming Systems. STAN-CS-74-412, July 1974.

[Teitelman 1969]
W. Teitelman. "Toward a Programming Laboratory”. IJCAI 69, May 1969.

[Teitelman 1972)
W. Teitelman. "Automated Programmering - The Programmer’s Assistant”, Proc.

AFIPS Fall Joint Computer Conference, Dec. 1972.

[Teitelman’ 1973]
W. Teitelman. "CLISP - Conversational LISP". Third IJCAI, Aug. 1973.

[Teitelman ect al. *1978]
W. Teitelman ct al. Interlisp Reference Manual. Xerox PARC, Dec. 1978.

[Tecnenbaum 1974]
Aaron M. Tenenbaum. Type Determination in Very High Ievel Languages.
Courant Computer Science Report #3, Report NSO-3, Courant Institute, New

York University, Oct. 1974.

105

Bibliography

[Ullman 1975]
J. D. Ullman. "A Survey of Data Flow Analysis Techniques.” Proceedings Second
US A-Japan Computer Conference, Tokyo, Aug. 1975.

[Vanlehn 1978]
Kurt A. Vanlehn. Determining the Scope of Engish Quantifiers. MIT-AI-TR-483,
June, 1978. I

[Wasserman 1975] »
A. . Wasserman. "Issues in Programming Language Design--An Overview".
SIGPLAN, July 1975.

[Waters 1979]
R. C. Waters. "A Method for Automatically Analyzing Programs”. Sixth IJCAI,
Aug. 1979.

[Waterman & Hayes-Roth 1978] _
D. A. Waterman and F. Hayes-Roth (eds). Pattern-Directed Inference Systems.
Academic Press, 1978.

[Wegbreit 1975a]
B. Wegbreit. "Mechanical Program Analysis”. CACM 18:9, Sept. 1975.

[Wegbreit 1975b]
B. Wegbreit. "Property Extraction in Well-Founded Property Sets". IEEE
Transactions on Software Engineering SE-1:3, Sept. 1975.

[Wilczynski 1975]
D. Wilczynski. A Process Elaboration Formalism for Writing and Analyzing
Programs. 1SI/RR-75-35, Oct. 1975.

[Winograd 1975]
T. Winograd. "Breaking the Complexity Barrier Again”. SIGPLAN 10:1, Jan.
1975. '

[Wulf 1974]
W. A. Wulf. Alphard: Towards a Language to Support Structured Programs.
Technical report, Computer Science Department, Carnegie-Mellon University,
April 1974,

106

; Bibliography

[Yonke 1975]
Martin D. Yonke. A Knowledgeable, l.anguage-Independent System for Program
Construction and Modification. 1S1/RR-75-42, Oct. 1975.

107

